
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

GABRIEL BAUER

MASTER THESIS

IMPLEMENT
COMMENTING FUNCTIONALITY
IN SWEBLE DOCUMENTS

Submitted on 14 August 2019

Supervisor: Dipl.-Inf. Hannes Dohrn, Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 14 August 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 14 August 2019

i

https://creativecommons.org/licenses/by/4.0/

Abstract

A commenting functionality is an essential part of social media platforms and
broadly used in the modern internet. However, some collaborative platforms
like e.g. Wikipedia, the largest online encyclopedia, are still missing an effective
communication channel. This thesis analyses existing commenting solutions for
collaborative work, designs a commenting user interface and develops a concept
to identify text ranges in an abstract syntax tree. The results are implemented
into Sweble Documents which is a platform for distributed collaboration on doc-
uments.

ii

Contents

1 Introduction 1

2 Requirements 3

3 Fundamentals 5
3.1 Types of Collaboration . 5
3.2 User Interface Best-Practices . 6
3.3 Review of Existing Commenting Solutions 9

3.3.1 Microsoft Word . 9
3.3.2 Google Docs . 11
3.3.3 Github . 12

4 Architecture and Design 15
4.1 Sweble Platform . 15
4.2 Commenting Functionality . 16
4.3 User Interface Design . 17

4.3.1 Creating a Comment . 17
4.3.2 Viewing Comments . 19

4.4 Comment Text Selection . 21
4.4.1 Wiki Object Model . 22
4.4.2 Referencing a Text Range 23

4.5 Changes to a Document . 27
4.5.1 HDDiff . 28
4.5.2 Implications for Texts Referenced by Comments 30
4.5.3 Fragmented References . 31

4.6 Comments in a Multi-Synchronous Environment 32
4.7 Notifications . 34
4.8 Commenting API . 35

5 Implementation 36
5.1 Software Stack . 36
5.2 Frontend . 37

iii

5.2.1 Used Technologies and Libraries 37
5.2.2 Structural Overview . 40
5.2.3 Commenting Container . 41
5.2.4 Selection Popup . 43
5.2.5 Create & View Comment Containers 48
5.2.6 Article Renderer . 50
5.2.7 Decorators . 51

5.3 Backend . 55
5.3.1 Backend For Frontend . 55
5.3.2 Project Storage Service . 56
5.3.3 Identifying Comments . 58
5.3.4 Updating the Node References 59
5.3.5 Database Layer . 61

6 Evaluation 64

7 Future Work 67

8 Conclusions 68

Appendices 70

References 70

iv

1 Introduction

Commenting functionalities are an essential part of the modern internet and
used by many websites like blogs and social media platforms. With the help of
a commenting functionality, users are able to discuss aspects of the referenced
content. In terms of collaborative work, text processors like Microsoft Word or
Google Docs offer a commenting functionality. However, an environment that
currently lacks a commenting functionality is the wiki Wikipedia1.

A wiki is a platform, on which users write and organize content collaboratively.
The first wiki became available in 19952. Since then, Wikis have become an
increasingly essential part in the modern internet. The best-known wiki and fifth
most visited website worldwide3 is Wikipedia. It is a freely available encyclopedia,
which contents are mainly crowd-sourced. In any collaborative system, effective
communication channels are needed.

Wikipedia includes only a rudimentary communication system. Each article has
an additional ”talk” page, which is essentially another article used to discuss
improvements. The talk page does not include the functionality to reference
certain contents of the article nor does it separate replies clearly. Instead users
have to use Wikipedia’s markup language Wikitext in order to make answers
distinguishable.

Sweble is a platform for distributed collaboration on documents. It combines
the wiki approach with the collaborative concepts elaborated by Github4, a web
platform for collaborative software development built on-top of the version control
system Git. Sweble is based on prior research to improve the wiki ecosystem by
introducing a machine-accessible format to represent a wiki’s contents (Dohrn
& Riehle, 2011b) and by implementing a parser, which is able to transfer the
contents into this new format (Dohrn & Riehle, 2011a). Sweble’s unique selling
point is its distributed collaboration. It allows users to have individual variants of
a document, while still enabling users to synchronize and merge different variants.

1https://www.wikipedia.org
2http://wiki.c2.com/?WikiHistory
3https://www.alexa.com/topsites
4https://github.com/

1

https://www.wikipedia.org
http://wiki.c2.com/?WikiHistory
https://www.alexa.com/topsites
https://github.com/

The goal of this thesis is to design and implement a commenting functionality
for Sweble. The requirements for the commenting functionality are presented in
Section 2. Section 3 focuses on the fundamentals including user interface best-
practices and reviews existing software solutions which integrate a commenting
functionality. Section 4 presents the design of the commenting user interface and
discusses the technical implementation of text references. A brief overview of the
final implementation as well as a description of the key challenges and solutions
is given in section 5. In section 6 the results are then evaluated.

2

2 Requirements

The commenting functionality shall fulfill certain requirements as presented in
this chapter. In general, the commenting functionality shall be integrated into
Sweble documents and each comment shall reference a specific text range in the
document. The commenting functionality shall enable users to perform certain
commenting tasks. The first seven functional requirements are defined from the
user perspective as acceptance criteria:

1. Users can create comments in documents, reply to comments in form of a
single-threaded discussion and view existing comments in the document.

2. As the user views an existing comment, the connection between the com-
ment and the referenced text range is visualized adequately.

3. The project owner can mark comments as either resolved or rejected and
the comment creator is able to mark the comment as closed in case the
comment was opened by mistake.

4. The project owner as well as all users who participated in a comment get
notifications on new replies or in case the comment was marked as resolved,
rejected or closed.

5. As the user views an older revision of a document, the comments are dis-
played in a past state which correspond to the revision time.

6. The user interface shall also be able to handle a large number of comments.

7. Comments shall be preserved in forks.

Requirement 7 is developed in the chapter ”Architecture” and requirement 9 is
based on findings from the chapter ”Fundamentals”. All above requirements will
be validated using a manual acceptance test in the browser. Besides the user
perspective, there are further functional and non-functional requirements for the
commenting functionality which are listed below:

8. The comment data shall be integrated and stored in the document format
used on Sweble.

3

9. The user interface (UI) shall rely on recognition rather than on recall.

10. The UI shall be easy to use.

Requirement 8 will be validated by fetching an arbitrary document containing
comments from the Sweble API1. The response should contain the document
as well as the comments. Whether the UI relies on recognition (requirement
9) will be validated with a manual acceptance test. All commenting functions
should be reachable without prior knowledge. Requirement 10 will be validated
by comparing the commenting UI with UI best-practices developed in the chapter
3 (Fundamentals).

1Application programming interface

4

3 Fundamentals

This chapter gives a brief overview of some basics regarding the types of col-
laboration as well as a summary of UI best-practices discussed in the literature.
Section 3.3 presents some existing commenting solutions and compares their im-
plementation with the UI best practices.

3.1 Types of Collaboration

There are different approaches, as how modifications can be handled in a col-
laborative system. Molli, Skaf-Molli, Oster and Jourdain, 2002 categorized them
as asynchronous, synchronous and multi-synchronous environments. Within an
asynchronous environment one user at a time has the exclusive right to perform
modifications. For example, having a text document on an USB stick and passing
it along is an asynchronous environment. Only one user is able to change the
contents stored on the USB-stick. A synchronous environment allows all users
to simultaneously make changes. Google Docs, which is presented in subsec-
tion 3.3.2, is an example for a synchronous environment. Changes are shown
in real-time and multiple users can edit a document simultaneously. However,
this approach has the limitation that multiple users working on the same part
of a document will interfere with each other. The collaboration approach, which
solves this limitation, is categorized as multi-synchronous. A multi-synchronous
environment enables users to have independent variations of a file or document.
Each user is able to generate a private copy of a file and modify it. Multiple
copies of a file can then be merged. However, merging files can introduce merge
conflicts. Merge conflicts occur if one file contains changes at the same position as
another file. While some merge conflicts can be solved automatically, e.g. import
statements in programming languages, other conflicts have to be resolved man-
ually. This approach has been elaborated especially in software development.
Well-known version control systems (VCS) like Git or Subversion use a multi-
synchronous environment. Sweble also uses this approach and applies it onto the
concept of a wiki.

5

VCSs introduced some terms which are shared by Sweble and used in this the-
sis. In a VCS files are organized in repositories, which can contain multiple
files in different versions. Within a repository any kind of modification (includ-
ing creation, modification and deletion of files) is grouped as a commit. The
user decides at which point multiple modifications are arranged as one commit.
Furthermore, the commits represent the history of the repository. The user can
view the state of the repository at the time of any commit. To do so, com-
mits have a chronological order. Each commit will reference its previous commit
with the exception of the first commit within the project. In order to achieve
the multi-synchronous environment, repositories can be cloned. Cloning refers to
downloading the repository, which effectively produces a local copy. New commits
are created independently from the original repository, but can be pushed back
into the remote repository. To avoid having new commits only locally, multiple
commit sequences can be stored in one repository. Different commit sequences
are accessed through a corresponding branch. Each repository usually has one
main branch, often called master or develop.

The way collaborative development is carried out was especially shaped by plat-
forms like e.g. GitHub1 or Gitlab2, which are built on-top of the VCS git. Both
platforms offer two different ways for users to collaborate. Users can be added to
the repository as collaborators. Collaborators have access to the repository and
are able to make commits directly. Since collaborators have direct access, exter-
nal users are not added lightheaded. For external users to propose changes, the
user has to fork the repository. A fork is similar to a clone, as it creates a copy.
It creates a new project containing the state of the original repository. The new
repository’s owner is the user, who forked the project. Modifications can then be
applied independently of the original repository. In order to merge changes back
into the original repository, the owner may create a merge request. GitHub
calls this feature as pull request. However, since the term merge request seems
to fit the purpose better, it will be referenced as merge request in this thesis.
Nevertheless, a merge request is the request to merge changes into the original
repository. The repository’s collaborators will have to review the changes and
either accept and merge the changes or reject them. This second approach is
commonly used on open source projects and is also adopted by Sweble.

3.2 User Interface Best-Practices

Since one of the main tasks of this thesis is to design an UI for a commenting
functionality, I reviewed literature on user interface design. In general, user

1https://github.com/
2https://gitlab.com/

6

https://github.com/
https://gitlab.com/

interface design as well as user experience is part of the field human computer
interaction. There are several principles discussed in literature, some of which
are presented below. All these principles are technology and implementation
independent.

Molich and Nielsen, 1990 originally defined 9 principles for user interface design.
Nielsen, 2005 restated and extended those principles into 10 heuristics, which
should be seen as rules of thumb instead of fixed rules. Those 10 heuristics are
listed below:

• Visibility of system status

• Match between system and real world

• User control and freedom

• Consistency and standards

• Error prevention

• Recognition rather than recall

• Flexibility and efficiency of use

• Aesthetic and minimalist design

• Help users recognize, diagnose and recover from errors

• Help and documentation

Shneiderman and Plaisant, 2010 defined 3 principles: i) the broad range of differ-
ent users with different knowledge and skills as well as users with different system
requirements should be considered, ii) the system should help users to prevent
errors before they are executed, and iii) the following ”8 golden rules” should be
followed:

• Strive for consistency

• Enable frequent users to use shortcuts

• Offer informative feedback

• Design dialogues to yield closure

• Error prevention/handling

• Permit easy reversal of actions

• Support internal locus of control

• Reduce short-term memory load

7

In this thesis, the 10 heuristics of Nielsen, 2005 as well as the eight golden rules
from Shneiderman and Plaisant, 2010 were combined in four aspects that seemed
most relevant.

As emphasized, it is important to prevent errors. It is unlikely, that users make
errors while commenting. However, an important conclusion arising from error
prevention and handling, is that comments should be delete-able by the creator
of the comment. In case of a mistake, the creator should have the ability to
discard the comment. A delete functionality for creators full-fills the golden rule
”Permit easy reversal of actions”.

Furthermore, the UI should be consistent, in the user’s language and easy
to use as suggested by Nielsen, 2005 (”Consistency and standards”, ”Aesthetic
and minimalist design”) as well as Shneiderman and Plaisant, 2010 (”Strive for
consistency”). A very good example for consistent design is the color-coding of
specific buttons as well as their positioning. A button that creates an item should
always be of the same color throughout the system. Its color should not change
throughout the application. Furthermore, a submit and cancel button are often
presented together. The relative position of both should be identical within a
system.

Another important aspect is to provide ”informative feedback” (Shneiderman
& Plaisant, 2010). This aspect is also stressed by Nielsen, 2005 as he suggests
to have ”Visibility of system status”. In terms of modern web applications,
loading bars or spinners are among the mostly used tools to visualize the system
status. Due to the rise of single page application frameworks as e.g. React
and Angular additional contents are loaded by the application itself and not the
browser anymore3. On an ordinary web site, each page request loads a new
page with images, stylesheet and the HTML file. The browser therefore shows a
loading symbol. However, on a single page application only the needed content
is fetched asynchronously from an API and the browser will not show a loading
symbol. The web application should therefore integrate it’s own loading symbol
so that the user is informed of the pending network request.

In the context of a commenting functionality, a very important principle is to
”reduce short-term memory load” (Shneiderman & Plaisant, 2010) and therefore
rely on ”recognition rather than recall” (Nielsen, 2005). The term recall
describes the process of retrieving information from memory, while recognition
only implies that something is familiar. An example of recognition vs recall is
the use of a command-line interface (CLI) or a graphical user interface. In order
to execute a command on the CLI, the user has to remember it exactly. On a
graphical user interface, it is sufficient to identify the appropriate item on the
screen. Recognizing something is easier, since it offers more clues to retrieve the

3https://trends.google.de/trends/explore?date=all&q=React,Angular

8

https://trends.google.de/trends/explore?date=all&q=React,Angular

information.4

3.3 Review of Existing Commenting Solutions

There are well-known software solutions which implement a commenting func-
tionality. I chose three software solutions and analyzed them. The commenting
UIs are discussed regarding the UI best-practices presented in the previous sec-
tion. All presented commenting solutions use a single-threaded discussion. Thus,
a reply can only be added to the end of the discussion and not below another
reply within the comment.

3.3.1 Microsoft Word

Microsoft Word is a word processor first released in 19835. Nowadays it is part of
the office suite ”Microsoft Office”, which is available for multiple platforms and
as web application.

Microsoft Word features a built-in commenting functionality. It is accessible via
the ”review” ribbon on the top navigation. To create a new comment, the user
has to select a text, activate the review ribbon and click on the comment button.
If at least one comment is present, all comments for the opened document are
shown on the right hand side of the document. The connection between the
referenced text and the comment is visualized only if the user hovers or clicks on
the comment (compare with Figure 3.1).

Comparing Microsoft Word’s commenting UI with the UI best practices, the com-
ment creation in Microsoft Word relies on recall rather than on recognition. The
user needs to know where the button is located in order to create a comment.
While Word displays a tooltip as a text range is selected, it does not contain a
button to create a new comment referencing the selection. Furthermore, the com-
ment view is kept simple. The corresponding text range is only highlighted if the
comment is actively selected. Moreover, the user is unable to distinguish which
parts of the document are commented on. All comments shown in Figure 3.1 are
referencing the first three lines of the document. Without actively checking the
text references, it could appear to the user that the last comment is referencing
the last section. If users work collaboratively on a document, it is important to
see commented text ranges.

4https://www.nngroup.com/articles/recognition-and-recall/
5https://royal.pingdom.com/first-version-of-todays-most-popular-applications-a-visual-tour/

9

https://www.nngroup.com/articles/recognition-and-recall/
https://royal.pingdom.com/first-version-of-todays-most-popular-applications-a-visual-tour/

Figure 3.1: A screenshot of Microsoft Word 2019 showing the comments on the
right hand side. The second comment is hovered with the mouse and therefore
highlights the corresponding text range.

One further downside is that Microsoft’s text processor is unable to handle a
larger number of comments. In Word, all comments are displayed on the right-
hand side and sorted by the position of the text selection within the document.
An active comment does not displace other comments but rather stays on its
fixed position in the sidebar. Therefore, in a document with a large number
of comments, the corresponding text section may not be visible on the display
anymore (see Figure 3.2). In order to find the associated text section the user has
to select the comment and scroll towards the text section. Since the text section

Figure 3.2: Screenshot of a document in Microsoft Word illustrating that in
case of a large number of comments the corresponding text may not be visible.

and comment are connected by a line, the user knows in which direction to scroll.
However, as soon as the text selection is within the viewport, the comment is not

10

visible anymore. Hence, the handling of multiple comments can be a frustrating
user experience.

3.3.2 Google Docs

Google Docs is a word processor similar to Microsoft Word and was released
(without a beta status) in 20096. Google Docs originated as an web-based appli-
cation. Today it is also available as mobile app. Compared to Microsoft Word
there is no standalone desktop solution (with the exception of Google’s own op-
erating system Chrome OS).

The general commenting UI is similar to Microsoft’s solution, but has some mi-
nor but important improvements regarding UI best-practices. A comment can
be created by simply selecting a text range. A small comment button appears on
the right-hand side of the document (Figure 3.4). This approach is advantageous,
since the process of creating a comment does not rely on the user recalling the
button within the menu, but rather on recognizing the comment symbol. Addi-
tionally, there is also a button to add a comment within the menu under ”insert”.
Since selecting a text range to add a comment still relys on recall - the user needs
to know that a text selection will enable a comment button on the side - the
additional button within the menu is convenient.

Figure 3.3: A screenshot from Google Docs showing the comment button to
add a comment as well as the highlighting of a text referenced by a comment.

All comments of a document are also shown on the right-hand side. As soon as
a text range is referenced by a comment, it is permanently highlighted as shown
in Figure 3.4. For a user, it is therefore easy to identify text sections which are
referenced by comments. Moreover, comments can be selected either by clicking
on the text section or on the comment on the right-hand side. The active comment
is always displayed directly next to the text section. Other comments referencing
text sections near the active comment are displaced to the top or bottom.

While Google Docs is able to handle a large number of comments better than
Microsoft Word, it also has its problems. A single text range referenced by

6https://googleblog.blogspot.com/2009/07/google-apps-is-out-of-beta-yes-really.html

11

https://googleblog.blogspot.com/2009/07/google-apps-is-out-of-beta-yes-really.html

multiple comments has no seperator between the different text ranges as shown
in Figure 3.4. Moreover, hovering over on comment does not highlight the text
range - only by clicking on a comment the text range will be highlighted. For
a user it is therefore difficult to identify which comment references which part
of the document. Another problem is, that active comments will displace other
comments. While this helps to prevent that both the comment and text range
are rendered within the viewport, it also makes navigating comments difficult.
If e.g. the last comment is selected, all other comments are displaced to the
top. Those displaced comments may be hidden, if its the start of the document.
Since it is not possible to scroll through the comments, the first comment can
only be reached by clicking on the corresponding text or by clicking on the top-
most comment until the first comment is reached. It is not visible which of the
texts belong to the first comment, making the first approach not intuitive. Long
comment threads will worsen the situation as it will fill up the viewport with
replies and show even less comments.

Figure 3.4: Screenshot of a document on Google Docs showing many comments
referencing a few lines at the beginning.

3.3.3 Github

As mentioned previously, GitHub is a web platform for collaborative software
development and built on-top of the VCS git. While GitHub focuses on source
code and Sweble on documents, both share a similar collaborative concept. There-
fore, I analyzed how developers collaborate on open source software projects on
GitHub. There are two main features within the web interface which are used to
discuss aspects of the source code.

12

First of all there are issues, which are part of every repository on Github. An
issue does not reference a specific file within the repository, but rather each issue
is specific to one repository. Issues are a single-threaded discussion, to which
any user with read-access to the repository can participate. As the term issue
implies, they were formerly used to report issues or bugs in the software. However,
looking at community driven open source projects, the development process is
often organized via issues. Ideas and problems are discussed in an issue before
an effort is made. Furthermore, user-defined labels can be assigned to issues,
which helps to categorize the issues. Labeled issues are also used to organize and
manage community driven projects. Issues can for example be marked under a
label ”help wanted”, which is a way of organizing the community’s efforts. An
example is shown in Figure 3.5, in which issues are organized with labels. In
summary, issues can be used beyond simple discussion, but rather as a way of
organizing collaboration and to discuss ideas, problems or improvements of the
project.

Figure 3.5: Issues filtered by the label ”help please” within the community-
driven open source project ianstormtaylor/slate on Github.

The second feature, which is used for collaboration, is the review process of source
code changes. As discussed in section 3.1, a user, who is not a collaborator of
a project, needs to fork the project and create a merge request. If a user opens
a merge request, the collaborators have to review the changes. Every Github
user with access to the repository is allowed to discuss the merge request. Each
merge request includes a single-threaded discussion similar to issues. Further-
more, within each merge request, developers can comment on specific parts of
the source code. This feature is therefore similar to the commenting solutions in

13

Microsoft Word or Google Docs. However, in software development one line usu-
ally contains only one program statement. Github’s commenting feature therefore
does not reference a text range but rather a single line within the source code.

14

4 Architecture and Design

As the commenting functionality should be implemented into Sweble, the com-
menting UI has to fit the application. In order to design the commenting function-
ality, the structure of Sweble and its collaborative workflow is described below.

4.1 Sweble Platform

As outlined above, Sweble applies the concept of distributed VCSs (and especially
Git) onto the wiki concept. Since Sweble is made for general usage, its users
usually do not have a software development background. Some of the concepts
are therefore hidden within the backend and not visible to the user.

Similar to Github, Sweble organizes documents in repositories. However, they
are referred under the broader term project. Each project can contain arbitrary
documents. Documents cannot be organized hierarchically as it is possible in
Git repositories. Projects rather contain a list of documents. Documents can be
added, removed and modified through commits. The possible contents of a docu-
ment are mostly defined by the functional range of Wikipedia’s contents. Sweble
is built on top of the Wiki Object Model (WOM). It is a high-level representation
of the markup language Wikitext, which is used on Wikipedia. Therefore, WOM
includes all content types which are expressable in Wikitext.

Collaboration is achieved solely through forks. It does not offer the ability to clone
a project or to create branches. Each fork creates a new branch of commits, which
is visualized in Figure 4.1. The user forking the project will become the owner
of the fork and therefore has full access to its contents. Similar to the workflow
on Github a user may propose changes to a document through a merge request.
The owner of the original document has to review the changes and may accept or
rejected them. Sweble offers a more powerful merge process compared to Github
or Gitlab, since changes can be merged selectively. Therefore, the original project
owner is able to decide which changes to accept, rather than to ask the merge
request owner to change the merge request.

15

Fork
Commit

Merge

Figure 4.1: A visualization of a commit sequence, including a fork and merge.

The commenting functionality of this thesis can be seen as a starting point for
collaboration. Similar to the workflow used on GitHub, the comments within
the documents can be used to organize and manage collaboration. Ideas can be
discussed with the owner before an effort is made to apply those modifications.
One important aspect that emerges from the workflow of Sweble is that com-
ments should be sustained on forks. In order to apply modifications discussed
in a comment, it would be useful to have the comments within the fork as well.
Therefore, the ideas discussed in a comment can be looked up without switching
to the original project.

4.2 Commenting Functionality

The commenting base functionality is similar to Google Docs’ and Microsoft
Word’s approach. A comment is implemented as a single-threaded discussion,
which references a text range. Furthermore, comments can be created by any
user, who has access to the document. The user creating the comment will
further be referenced as the owner of the comment. The initial comment contains
the first comment entry. Users with access to the document may reply to the
comment and thus create further entries. The comment entries are displayed in
a chronological order with the first comment at the top.

The context of comments is shown in Figure 4.2. Each comment contains an
arbitrary number of entries. Since the comments correspond to a specific text
range in one document, a comment is only present at the context of this document.
This approach is different as compared to the issues on GitHub, as issues belong
to a specific project. A comment is bound to a specific document in a certain
state. The state of the document is defined by the sum of commits that lead to

16

the current contents of the document. As a given commit can exist in multiple
forks, the comments for a document is referenced by the triple of project, commit
and document.

defines

1

Comment

Entry

Document

User

1...n

1

CommitProject

1...n

1

1 1...n

1

1...n

1

1

1...n

1...n

1...n

1...n1...ncontains

creates

owns starts

writes

Figure 4.2: The context of the commenting functionality and its relationship
to other objects on Sweble.

Each comment is in one of the four states opened, closed, resolved or rejected.
Initially a comment is opened. The comment can be closed by the author in case
it was opened by mistake. Furthermore, the project owner may mark a comment
as resolved or rejected. Only if a comment is in the state opened, replies to the
comment are enabled. In all other cases a message will be shown, explaining the
current state to the user.

4.3 User Interface Design

Since one of the main tasks is to design the commenting UI, I created mocks for
all UI elements. The initial mocks are presented below.

4.3.1 Creating a Comment

As shown in section 3.3, there are multiple ways to design the comment creation
interface. Google Docs’ approach, selecting a text range and showing an icon,
is a good implementation regarding the UI best-practices. However, the final
design was inspired by the UI of Medium1. As the user selects a text, a tooltip

1https://medium.com/

17

https://medium.com/

appears directly above the selected text presenting buttons to interact with the
text range as shown in Figure 4.3. The tooltip above the selection catches the
users eyes easier compared to an icon on the side of the document.

Figure 4.3: A screenshot from medium.com showing a text selection with a
respective tooltip. The tooltip enables the user to create a comment.

In terms of this thesis’ implementation, the tooltip contains two buttons (compare
with Figure 4.4). One button in order to create a new comment referencing the
current text selection. The other button in order to view comments. The button
to view comments, will be enabled only if the current text selection overlaps with
at least one text range referenced by a comment. If no text reference is present
in the current text selection, the button is disabled. The initial mock uses a plus
and eye icon, which were replaced in the final implementation with icons showing
one speech bubble for the create and multiple speech bubbles for the view button.

Figure 4.4: A tooltip will be shown
if the user selects a text range.

Figure 4.5: The form to add a com-
ment is rendered below the text range.

As the create comment button is pressed, the comment creation form has to
be displayed. There are multiple ways to integrate the creation into the UI. A
simple implementation would be to use a modal. A modal (or popup) is a window
overlaying and disabling the page’s contents. However, a modal would deny the
user to see the original text. In case the user has to recheck the document,
the modal containing the comment form has to be closed and thus the already
written comment is discarded. Another solution which is used by Google Docs
and Microsoft Word is to display the comment form (as well as the comments)
on the right-hand side. While this is generally a good place, it does not work
on devices with narrow screens like e.g. mobile devices. A responsive design is

18

not a requirement of this thesis. However, since mobile usage is increasing, the
design should be usable on mobile devices in the future. Therefore the comment
form is placed directly within the document, underneath the text selection as
shown in Figure 4.5. The form will not overlay parts of the document but rather
displace the following contents. This approach is different compared to the two
word processors of Microsoft and Google. Only Github implemented a similar
approach in their review UI for merge requests. Comments referencing source
code are displayed beneath the corresponding code line.

4.3.2 Viewing Comments

Comments can be viewed directly within the document. The popup above a text
selection contains a button to view comments. The button is only activated, if
the current text selection overlaps with a text range referenced by a comment.
As the button is clicked, the comment is rendered into the document.

The comment is rendered using the same approach as the comment form. It will
be displayed beneath the text range as shown in Figure 4.6. The text referenced
by the comment is highlighted. The comment view consists of the entries in a
chronological order. Below the entries is an input field in order to reply to the
comment. In case that the comment has a large number of replies, the replies
can be paginated. Pagination is a technique used to divide a larger number of
elements into pages and is commonly used on the web.

Figure 4.7 shows the design of a comment with many replies. It does not use a
classic pagination approach but rather an approach used by GitHub on their issue
page. In the classical pagination only the oldest few comments are shown to the
user. If the user clicks on the next button, the current comments are replaced with
some newer comments. Github approach always displays the oldest and newest
comments with a load more button in-between. If the user clicks on the button,
more comments are added to the page. This approach offers a better handling,
since comments are never displaced with other comments. Furthermore, the
initial state shows the oldest and newest comments which are often the important
parts. The first comments usually explain the problem, while the last comments
may offer a solution or compromise.

One of the main challenges is the visualization of text ranges referenced by com-
ments. Microsoft Word does not display any highlighting where comments refer-
ence text. The user is therefore unable to efficiently determine if a specific text
range has been commented. Google Docs highlights all text ranges by displaying
a coloured background. This approach has the disadvantage that a larger num-
ber of comments cannot be visualized since there is no distinction between one
or multiple comments on the same text range.

19

Figure 4.6: A comment with only a
few replies, rendered underneath the
referenced text range.

Figure 4.7: A paginated comment
thread displaying some of the oldest
and newest entries. The button in-
between both entry sections loads the
remaining entries.

The initial idea was therefore to display a comment counter on the side of each
block as shown in Figure 4.8. By clicking on the counter, the first comment
would be rendered onto the page. Above the comment view are two buttons
in order to navigate to the next or previous comment. However, this approach
also has its drawbacks. The user will not be not able to see directly which texts
are commented. Furthermore, if a document contains larger text paragraphs or
small blocks, the implementation would need to split big and merge small blocks
so that the comment counters have a uniform interval.
Another solution would be to work on a per line basis as Github does. However,
there is a technical challenge that a line’s text content is dependent on the display
width. On a narrower display, text will be wrapped into new lines automatically.
Text lines can therefore not be referenced clearly. Furthermore, if a comment
references a whole paragraph, a comment icon or counter would be shown on
each line of the paragraph. The user will not be able to determine if there are
multiple comments (one per line) or if there is one comment covering the whole
paragraph.

20

Figure 4.8: Initial design mock of the comment counters displayed on the side
of blocks, which show the number of comments for a specific block.

It is debatable whether a comment counter offers a better user experience than
Google’s solution to highlight the text ranges, since the user looses the ability to
distinguish whether a specific text range is referenced by a comment. Therefore,
I abandoned the idea of comment counters and the final implementation uses a
similar concept as Google’s implementation. Instead of colouring the background,
which may also be part of the editors capabilities, all referenced text ranges are
underlined with dotted line. A dotted line is not included in the Sweble Document
editor’s capabilities and therefore offers a unique appearance.

4.4 Comment Text Selection

A comment always references one specific text range as it was presented in sec-
tion 4.2. A data model has to be developed in order to store the text reference.
The text range corresponds to specific WOM nodes as presented in the following.

21

4.4.1 Wiki Object Model

Sweble uses the Wiki Object Model (WOM) to store documents (Dohrn & Riehle,
2011b). The WOM represents Wikitext, which is the markup language used on
Wikipedia and initially proposed because wikitext did not offer a high-level repre-
sentation. However, a high-level representation is needed in order to parse a wiki’s
contents easily and make it machine-accessible. Furthermore, the semantics of
wikitext were only defined implicitly by the software behind Wikipedia. WOM
was therefore developed to provide the wiki community with a standardized for-
mat to interact, store and share contents. The structure of WOM documents is
represented using an abstract syntax tree (AST) and will be further referenced
as WOM-tree in this thesis.

The WOM is similar to the Document Object Model (DOM), which represents
HTML documents. Every modern browser uses the DOM in order to connect the
web-page to ”scripts or programming languages by representing the structure of
a document”2. Similarly to the WOM, the DOM is also structured as a tree. The
root of the tree in both object models is a document node. Each node may be
the parent to multiple child nodes. An exception are text nodes, which cannot
contain child nodes. If a node has no children, it is called a leaf node. A text
node is therefore always a leaf node.

To transform Wikitext into WOM a Wikitext parser is nessesary, e.g. the Sweble
wikitext parser (Dohrn & Riehle, 2011a). Since WOM was developed to repre-
sent Wikitext, it includes all content types found in Wikitext. WOM is able to
represent any Wikitext formatted document. Since Wikitext uses some standard
formattings like bold, italic, etc. many elements can be found in the HTML stan-
dard. However there are also certain elements like e.g. an internal link, which
are only available in Wikitext and WOM.

The WOM can be serialized into a XML representation as shown in Listing 4.1.
On Sweble the XML representation is only used to transfer the WOM to the
frontend. The resulting WOM-tree of Listing 4.1 is shown in Figure 4.9. The
XML serialization does not contain the root node, the WOM document, which is
only present in the WOM.

2https://developer.mozilla.org/en-US/docs/Web/API/Document Object Model

22

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

1 <article >

2 <body>

3 <p>

4 <text>...</text>

5

6 <text>...</text>

7

8 </p>

9 <p>

10 <text>...</text>

11 </p>

12 </body>

13 </article >

Listing 4.1: A WOM
document serialized as XML.
The node’s attributes and
texts are stripped for a better
readability.

document

article

body

p p

text bold text

text

Figure 4.9: The corresponding WOM-tree
to the XML serialization shown in List-
ing 4.1.

4.4.2 Referencing a Text Range

A text range can be expressed by the combination of one start and endpoint
within the document. Everything between the two points is within the text
range and would therefore be part of a comment’s text selection. There are two
solutions how the start and endpoint of a text range can be referenced.

Marker Elements

A new WOM element can be defined to mark the start and beginning of a text
referenced by a comment. The element would not be rendered and therefore
not be visible to the user. The marker element would be a leaf node and thus
not contain any children. Per comment two markers have to be inserted into
the WOM-tree. Each marker holds a unique identifier referencing the respective
comment. The text range can be reconstructed by traversing the tree with a
depth-first search. The first encountered marker of a specific comment ID is its
starting point and the second marker with a matching ID is the end of the text
range.

However, a new comment should not result in new revision of the document.
Thus, the markers cannot be inserted on comment creation but rather can only

23

committed if changes are made to the document. Therefore, before the comments
are stored within the WOM, they have to be stored separately in a database.

This approach would make the requirement to store the comment data within
the document easy to fulfill. The marker element could additionally contain the
comment information and all comment entries.

Referencing WOM Nodes

The alternative approach relies on referencing WOM nodes or rather a position
within certain nodes. Both, the start and end point of a selection, can be mapped
to a specific text node within the WOM-tree. However, it is not sufficient to map
the selection points to WOM nodes. Rather the exact position within the node is
needed. Therefore per point, an offset is used, which describes at which character
within the node the selection starts or ends. The offset is the index into a text
node’s string. One special case is if the selection is contained in a single text
node. Then, the start and end node can be identical and only the offset differs.
A text range in which the start and end node as well as both offsets are identical,
represents a collapsed text range and is not considered as a valid text reference
for a comment. A collapsed text range or collapsed selection can also be seen as
the cursor within the document. It has a width of zero characters.

As it will be presented in the implementation chapter in subsection 5.2.4, the
browser exposes a selection interface, which is similar to the selection interface
used in this approach. The selection interface of the DOM is defined over an
anchor and a focus node and two offsets for each node. The DOM selection
interface does not use the terms start and end, since the anchor node always
references the node from which the selection started and the focus node references
the node where the user ended the selection. If the user selects a text and moves
the selection further to the right, the anchor node comes first in the DOM tree.
However, if the user moves the selection to the left, the focus node comes first
in the DOM tree. Since the anchor and focus points are not relevant, they are
normalized into start and end points. The start point corresponds to the node,
which can be found first within the document.

While the offset is a simple number, referencing the nodes is more challenging. In
both, the DOM as well as the WOM, a node has no unique identifier. There are
mainly two solutions to reference a node. One approach is to describe the path
from the root-node to the specific node. This can be done by a list of numbers.
Each number describes which child-node to navigate to in order to reach the
referenced node. To reference the bold text node in Figure 4.10, the path can be
described by ”0, 0, 0, 1, 0”. To find the node, one always navigates to the first
child (0) expect for the paragraph-node, where one navigates to the second child,
which is represented by the numeral 1. Another approach is to give each node a

24

consecutive number. A depth-first search is used to apply the numbers, so that
the numbers correspond to the order of the rendered content. A node with a lower
number is rendered before a node with a higher number. This approach has the
main advantage that a number is simpler and needs less space than an array of
numbers. The bold text node in Figure 4.10 is referenced by the number 6. Since
the path IDs do not offer any advantages over the node IDs, the path IDs are not
considered further. The resulting selection interface is shown in Listing 4.2.

document

article

body

p p

text bold text

text

0

1

2

3

4 5

6

8

7

0

0

0 1

010

0

Figure 4.10: A WOM-tree with its nodes numbered by a depth-first search in
blue and the child index in red.

1 type Selection = {|

2 startNodeId: number ,

3 startOffset: number ,

4 endNodeId: number ,

5 endOffset: number ,

6 |};

Listing 4.2: The selection interface used to reference a text range through a
start and end point.

Comparison of Marker Elements vs. Node IDs

A major disadvantage of the last approach is that the node IDs are not stable,
since the node IDs are relative to a specific WOM-tree. If changes are intro-
duced to the document, the tree structure will also be altered. Depending on the
position of a change in the document, the node IDs generated by the deep-first
numeration may get invalid. A given node ID may still reference a node. How-
ever, the referenced node might have changed. An example is the insertion of

25

a node at the beginning of the document. Before the insertion, the node ID 3
would correspond to the first child-node of the body. As the first node is displaced
with the inserted node, its new node ID is 4. Therefore, each time a document
with comments is altered, the text references have to be mapped to the changed
document. The start and end node IDs need to be updated so that the comment
references the original text range. For example, if a single node is inserted at the
beginning, both the start as well as end node IDs need to be increased by 1.

The marker elements are unaffected by modifying the document as long as both
the start and end markers are not deleted. While this is a major advantage
compared to the node IDs, it also demands that every tool that interacts with
the WOM has to keep the markers intact and preserve them. This is especially
true for the visual editor. It has to be extended in such a way, that markers cannot
be deleted accidentally by a user. For example, if a sub-tree containing a marker
is deleted, the marker has to be preserved. Implementing this behaviour into
the visual editor requires in-depth knowledge of the visual editor. Furthermore,
the marker approach also introduces a tight coupling between the content and
the comments. In cases where the comments are not needed (e.g. diff view or
pull request reviews), the markers are transferred unnecessarily. In addition, the
mark approach has no consistent storage of its markers. Since the marker cannot
be embedded directly into the WOM as the comment is created, it will still rely
on the node IDs to store not yet embedded comments. Therefore, comment
markers are present in two places. All current comment text ranges are stored in
a database via their node IDs and offsets, while all older comment text ranges are
embedded within the WOM. In conclusion, I chose to reference the nodes with
the help of the second approach by using node IDs and offsets.

The disadvantages of the marker approach also apply to the requirement to store
the comment data directly in the document. Therefore, I decided to drop the
requirement and store all comment data separately to the document in respective
database tables.

Example

The title of this thesis is used as an example, in which the word ”Functionality”
is formatted bold. Three WOM text nodes are needed to encapsulate the text,
since the bold text has to be wrapped in an additional bold node. An exemplary
text selection is shown in Figure 4.11. Figure 4.12 presents the corresponding
WOM representation with the text selection highlighted. Parts of the first and
last text nodes as well as the whole middle text node are in the selection. The
resulting WOM tree is presented in Figure 4.13. As outlined above, the node IDs
are computed with a depth-first search. The start node corresponds to ID 4 and
the end node to ID 7. The start offset 10, shown in Listing 4.3, corresponds to
the position of space after the word ”implement”. The end offset is computed

26

similarly.

Figure 4.11: An exemplary text selection on this thesis title.

Figure 4.12: The WOM structure of Figure 4.11 with the selection highlighted
in blue.

p

text bold text

text

...

Figure 4.13: The resulting WOM
tree to Figure 4.11

1 {

2 startNodeId: 4,

3 startOffset: 10,

4 endNodeId: 7,

5 endOffset: 9

6 }

Listing 4.3: The selection object
describing the selection shown in
Figure 4.11

4.5 Changes to a Document

Modifications to a document have multiple consequences for this thesis’ com-
menting functionality. Not only the node IDs can get invalid, but rather the
contents within a text reference can change. If for example all referenced nodes
are deleted, the reference would be lost. It is therefore not sufficient to just map
the node IDs in case of a change, but rather to analyze the changes in greater
depth. As changes are made to a document the corresponding WOM-tree will be
modified. To determine the changes,the current and new WOM-tree are available.

27

However, nodes present in both trees have no connection between each other. A
diff algorithm is needed to determine which nodes have been inserted, deleted or
modified.

4.5.1 HDDiff

To detect changes between two trees, Sweble uses the diff algorithm HDDiff
(Dohrn & Riehle, 2014). HDDiff analyzes the changes, finds a mapping between
the nodes present in both trees and returns an edit script. The edit script de-
scribes which transformations have to be applied to the original document in
order to get the new document. The edit script consists of a list of different
operations. Each operation describes a certain type of change that can be ap-
plied to the document. Five different operation types are used to describe any
modification to a document.

Insert & Delete

The insert as well as the delete operations are the two most basic transformations.
All other operations can theoretically be expressed solely through insert and
delete operations. An insert operation adds one single node to a specific position
within the parent’s children as visualized in Figure 4.14. Contrary to the insert,
the delete operation removes one node from the tree (Figure 4.15).

Figure 4.14: Visualization of an in-
sert operation.

Figure 4.15: Visualization of an
delete operation.

Move

The move operation relocates a subtree within the document as shown in Fig-
ure 4.16. Compared to an insert or delete operation it may affect more than one
node. A move operation can be expressed as a delete and insert operation. It is
therefore mainly an improvement to detect movements within a document.

28

Figure 4.16: A move removes and inserts some nodes at different positions.

Split

A split operation can only affect a single text node, since it splits its text content
into two separate nodes. It is used e.g. to improve the move operation detection.
Since the move operation only applies to nodes, it cannot represent the movement
of a text passage. The split operation is able to extract a moved text passage into
its own node. Thus, a move operation is then able to describe the text movement.

Figure 4.17: The split operation splits a text node at a specific position.

Update

Since the update operation does not affect the tree structure, it differs from
all other operations. The update operation rather changes an attribute or the
text of a node. In case text should be added to an existing text node or be
modified, the node is updated and not replaced. For text updates the operation
contains the old and new text. For the commenting functionality an additional
algorithm is used to further analyze the changes. To compare both versions of the
text, an implementation3 of the Myer’s diff algorithm (Myers, 1986) by Google is
used. It produces a list of inserted, deleted and equal characters or rather words
(depending on the settings). The update operation of HDDiff can therefore be
seen as additional insert and/or delete operation on the scope of text nodes.

3https://github.com/google/diff-match-patch

29

https://github.com/google/diff-match-patch

4.5.2 Implications for Texts Referenced by Comments

Changes to a document may alter the content of the referenced texts. If comments
exist while many modifications are applied, references may no more represent the
original text. Therefore, the changes have be analyzed and the text ranges ad-
justed appropriately. The goal is that the text reference resembles the original
text as close as possible. Since the five operations are able to describe any modi-
fications to a document, they will be used to categorize and analyze the possible
effects on the referenced text ranges.

A split operation within the referenced text is irrelevant for its contents, since
it only affects the structure and not the contents. However, if a split operation
applies to the start or end node, it has to be validated whether both generated
nodes are within the text range. The latter depends on the selection offsets as
well as the split position. If the start node is split at a position after the selection
start, both nodes are within the text range. However, if on the other hand, the
start node is split before the selection start, the first node is not within the text
range and thus the node and offset have to be corrected. The node ID is increased
to represent the second half of the split and the offset is subtracted by the split
position. The impact to the end node is similar to the start node. It has to be
checked, whether both nodes are within the selection.
The delete operation is similar to the split operation. If nodes are deleted within
the text range no changes are required. Only if an start or end node is deleted,
the text range has to be adjusted. If the start node gets deleted, the new start
point will be the first character of the next sibling. On the other hand, if the
end node gets deleted, the text range’s end will be set to the last character of
the previous sibling. Furthermore, if the text range only consists of one node and
this node is deleted, the reference will be lost. A comment with a lost reference
will not be visible in the document anymore.

The remaining operations insert, update and move are able to split the text
range and thus produce fragments. An inserted node within the text reference
is not part of the original text, hence the reference consists of two parts - the
nodes before the inserted node as well as the nodes after the inserted node both
correspond to the original reference. However, in practice not all inserted nodes
will produce fragments. Formatting a text part bold creates a bold node and
moves the text into the bold node. Since the text node stays identical, the bold
text is still part of the reference. Therefore, only nodes that actually contain
content like e.g. text, images or similar nodes will produce fragments.
Moreover, while the update operation does not affect the tree structure, it can
contain text insertions in the text reference. Similar to the insert operation, an
update is therefore able to introduce fragmentation. While one insert operation
only produces two parts, an update operation may introduce a large number of

30

fragments depending on the number and position of text insertions. A special
case is the update of the edge nodes. If text is inserted in front of the start of a
comment, the start offset has to be increased by number of characters inserted
in front. Text inserted in front of the selection end, will increase the end offset.
Last but not least, the move operation is also able to produces fragments. As
parts of a text reference are moved, two fragments are generated. Only if the
whole text range is moved, there will be no fragments.

4.5.3 Fragmented References

Fragmented text references have implications towards the user experience and
implementation complexity. Microsoft has therefore not allowed fragmented text
references in Word. Insertions within a text reference are treated as part of the
reference. Copying and pasting parts of a reference will also not produce frag-
ments. However, moving the whole text reference will preserve the comment and
corresponding text reference. Google Docs implemented support for fragmented
references as shown in Figure 4.18. While typing within a reference will not pro-
duce fragments, copy & paste will. Pasting into a reference, moving parts of a
reference or simply copying referenced texts creates fragments.

Figure 4.18: Screenshot of Google Docs showing a fragmented reference.

Comment references which undergo many modifications can get heavily frag-
mented. In the worst case, fragments can be scattered across the entire document.
In this commenting functionality, text references are highlighted by underlining
them. Therefore, a user would not see the difference between a fragmented ref-
erence and multiple references. Moreover, if fragments are spread over a larger
document, the scattered references would not be visible within the browser’s
viewport and thus only offer limited advantages. In order to enhance the user
experience it would be necessary to implement some sort of heuristics. Fragments
which are too small or which are moved to a remote part of the document, should
be neglected. Since more research is needed to implement a good solution and
algorithm for fragmented references, I decided to not use fragmentation.

My approach is therefore similar to Microsoft Word’s solution, however the han-
dling of move operations was significantly improved. If part of the reference in
Microsoft Word is cut and pasted, the comment will always reference the initial,
uncut part. This may result in misleading results. In case that the majority of

31

the text reference is copied, the comment will still reference the small part which
was left intact. So, instead of referencing the initial text range, my approach
references the bigger of both parts. The algorithm will compute all fragments
and choose the biggest fragment, which is then used as new text reference.

4.6 Comments in a Multi-Synchronous Envi-

ronment

Since Sweble is a multi-synchronous environment, the commenting functionality
has to include a concept of how comments behave in terms of forks and merges.
There are different approaches how comments can be integrated. All solutions are
technically feasible. It is therefore mainly a decision regarding the user experience
and usability. In section section 4.1, I discussed that comments from the original
project should be visible in forks, since the comments can be used to support
the collaborative workflow. If a comment is forked, the entries can either be
visible in both projects or only visible in the project, in which they were created.
Of course, both comments would still contain all replies before the project was
forked.

Displaying new replies only in the current project, would follow the principle of a
multi-synchronous environment and apply the concept of branches to comments.
As a project is forked, the comment and its entries would be forked. Replies
(similar to commits) would only be visible in the corresponding project. This
approach also implicates that comment branches should be merged if a project
is merged. However, merging replies will degrade the meaning of the reply se-
quence, since a comment is a list of chronological entries. Merging two branches
would mean to mix two time-lines together, effectively destroying the sequence
of comment entries.

To avoid this problem, replies have to be visible in all projects. However, this
solution has usability disadvantages. The referenced text ranges are prone to
modifications and may be altered with new commits. The original project and
its forks may be modified differently. The text reference in one project may be
different compared to the same comment’s text range in another fork. In a worst
case, where two projects have been changed significantly, the referenced texts
have no commonalities anymore. Users would debate based on different texts,
which would hinder a collaborative discussion.

As a solution, I chose to disallow replies on comments which originate from a dif-
ferent project. Instead an info box is shown with the message, that the comment
was created in a different project and to participate, the user has to navigate to
the original project (compare with Figure 4.19). The info box contains a but-

32

ton in order to navigate to the original comment. This solution still allow users
to follow the discussion without leaving the project. Comments can therefore
still support the collaborative workflow. Furthermore, the user gets a better in-
sight how comments work, since the UI communicates clearly where a comment
originated.

Figure 4.19: Screenshot of a comment in Sweble showing that comments are
disabled within forks.

Within the original project, the owner can accept or reject a comment. Further,
the owner of a fork should also be able to delete comments. The owner of the
fork is able to close such comments. In addition, a state change in the fork should
not affect the original project and vice versa. Thus, the state only corresponds
to a comment in a specific project.

While the approach of forking comments with replies disabled does not have the
challenge of merging comment entries, it still raises the question if comments
originating within a fork are preserved in a merge. In Sweble, the user is able to
only merge parts of a merge request. There is a merge UI, in which the owner
of a project can select which changes should be merged back into the project.
Comments referencing change which was not merged, should not be preserved.
For all other parts, comments can be preserved. However, the owner of the
project may not want to incorporate comments form the fork into the original
project. A solution would be to extend the merge UI, so that comments from the
fork can be merged optionally. This implies that a reviewer of a merge needs to
review the comments in order to decide if they should be merged. Depending on
the number of comments, this may be a time-consuming task. Furthermore, the
workflow of Sweble predicts that forks are mainly created to introduce changes

33

to a project. Thus, merging comments into the original project does not offer a
distinct benefit. For this implementation, I chose not to preserve comments on a
merge.

4.7 Notifications

Sweble includes a notification system which is extended and used by the com-
menting functionality. Comments will generate notifications for the project owner
and for user who contributed to the comment. There are three types of comment
notifications which are send once a comment is created, a user replied to a com-
ment or as the state has been changed (Figure 4.20). All comment notifications
reference the corresponding comment.

The URL to a specific comment contains the identifying triple of project, commit
and document as well as the comment id. If the user opens a comment URL, the
document as well as the referenced comment is shown. Since the URL contains
the specific commit, the link can further be used to reference a past state of the
comment. As a past state is viewed, both the document as well as the comment
are shown as they were at the time of the commit. The notification always
reference the newest state of a comment by using the keyword ”master” instead
of the actual commit. Internally, the ”master” corresponds to the master branch,
which always points to the newest commit within the project.

Figure 4.20: Screenshot of the notification system showing the three types of
comment notifications.

34

GET /comments/ Get comments
POST /comments/ Create comment
POST /comments/{commentId}/ Update comment state
GET /comments/{commentId}/entries Get entries
POST /comments/{commentId}/entries Create entry

Table 4.1: An overview of the commenting API.

4.8 Commenting API

Sweble uses a client server approach. The server has to expose appropriate end-
points, so that the frontend can create, retrieve and modify comments. The base
path includes the identify triple of project, commit and resource:

/v2/projects/{projectId}/commits/{commitName}/resources/{resourceName}

This path is already used to e.g. retrieve the document’s contents. All API
endpoints shown in Table 4.1 are based on this base path.

35

5 Implementation

This chapter gives a broad overview of the implementation and highlights some
of the challenges and used algorithms. All source code examples are excerpts,
reduced to the essential parts and should be seen as pseudo-code.

5.1 Software Stack

Figure 5.1 gives an overview of Sweble’s architecture which uses a server client
approach. The frontend is a single-page application which describes a website

Frontend

«client»
React

Backend

«microservice»
BFF

«microservice»
ProjectStorage

«microservice»
IdentityService

«database»
Cassandra

«database»
PostgreSQL

Figure 5.1: UML deployment diagram showing an extract of the Sweble’s ar-
chitecture.

36

that is loaded once and content changes are performed by modifying the DOM.
In order to fetch additional data, the frontend performs REST requests to the
backend. The backend is organized in microservices. The only microservice that
is accessible from outside is the ”Backend For Frontend” (BFF). It functions
as a proxy and load-balancer. Requests can be transformed within the BFF
before they are relayed to the appropriate microservice. The ProjectStorage
service handles requests regarding projects, branches, commits and documents.
It furthermore stores the WOM documents in the database Cassandra. The
IdentityService is responsible to handle all requests regarding the user.

In this work, the Frontend, BFF, ProjectStorage as well as PostgreSQL have to
be extended. The main modification is the UI implementation in the frontend.
Furthermore, the BFF has to be extended so that it offers the corresponding API
endpoints to the frontend. The actual backend logic will be implemented into the
ProjectStorage. The PostgreSQL database scheme has to be extended in order
to store the comments.

5.2 Frontend

5.2.1 Used Technologies and Libraries

React is a open-source JavaScript frontend library developed by Facebook. Some
if its concepts are presented here, since they are important for parts of the UI
implementation. In order to build a rich user interface, React uses a hierarchical
component architecture. Each component is able to render HTML (e.g. a button)
as well as other React components. Conceptually, React components are similar
to function, since ”they accept arbitrary inputs [...] and return React elements
describing what should appear on the screen”1. Since React components may
contain other components, a React application can also be seen as component
tree. There is one root component and any number of descendant components.
In order to be able to render HTML and other components easily, React uses
JSX, a syntax extension for JavaScript. The syntax is similar to HTML and can
be used directly within JavaScript as shown in Listing 5.1. React components
can either be written as a simple JavaScript function, which returns JSX, or as
a class. A React class has to implement the render method which returns JSX
as well. The differences between both approaches are minimal. With the newest
React version 16.8 functions as well as classes offer similar functionality. Most of
my components were implemented as classes.

1https://reactjs.org/docs/components-and-props.html

37

https://reactjs.org/docs/components-and-props.html

1 function HelloWorldComponent(props) {

2 return (

3 <div >

4 <h1 >Hello World!</h1 >

5 <AnotherReactComponent />

6 </div >

7);

8 }

Listing 5.1: A minimal React component using JSX to render HTML as well
as React components.

Out of the box React only supports unidirectional data flow. Data is propagated
downwards in the component tree. A component can provide data to its children
via so called props. The props are similar to function parameters, since they are
the inputs for the component. In order to return data from a child to its parent
(upwards), the parent needs to pass down a callback function via props. The
child is then able to invoke this callback and pass data upwards in the component
tree. Components also need the ability to store state, e.g. whether a popup is
shown or not. In order for components to be stateful, React offers components
the ability to define their own state. The state is part of a component’s instance
and only accessible by itself. The state can be passed to its children via props.

A problem that arises from the directional data flow is that communication be-
tween components of different subtrees is cumbersome. Without an additional
library, the data has to be lifted up towards the first common ancestor and then
down into the right component again. A library solving this issue (and other
challenges) is Redux. It provides one single, central state container which acts as
single source of truth (compare with Figure 5.2). In Sweble, it is mainly used to
store the API requests and results as well as essential aspects of the page, e.g. the
logged-in user or active project data. Each component is able to access the store

Store

Figure 5.2: Visualization of the communication (arrows) between components
(circles) in React with and without a central store like Redux.

38

(the state container) as well as to trigger modifications. The whole Redux store
is immutable and usually organized hierarchically. There are different concepts
how to structure the store. In this thesis the commenting functionality uses its
own sub-store. Since the store is immutable, changes can not be made directly
but rather through a specific mechanism. Components can dispatch actions,
which will trigger a store modification. This concept is used by the commenting
UI and will be described in greater detail in subsection 5.2.3.

Another concept of React is its lifecycle. Since large documents can contain many
elements, components involved in rendering documents have to be optimized for
performance. Understanding the React lifecycle is crucial for any performance
optimization. There are two main phases in React’s lifecycle: the render and
commit phase. The render phase modifies the DOM, so that it corresponds to
the React component. In the commit phase, components can perform changes,
e.g. setting a new state and therefore activating a popup, starting a network
request, etc. Once the commit phase has finished, React will switch into the
render phase. In order to not re-render every component in each render phase,
React only triggers the rendering of components, whose props or state have
changed. React does not deep-compare props or state, but rather shallow-
compares them. Complex JavaScript types like functions and objects (including
arrays) are only compared by their reference. To optimize performance, new
objects should therefore only be generated if their content actually changed. A
bad practice is the use of lambda functions within JSX. Since a new function will
be generated every time the JSX is rendered, the reference is never stable. This
will trigger a re-rendering of the component receiving the callback each time the
parents re-renders. To solve this, the lambda function has to be defined outside
the render function.

Sweble uses the architectural concept of container and presentational compo-
nents. Presentational components are usually reusable, stateless components,
while container components are mostly stateful and not reusable. Containers are
used to contain individual pages, as e.g. the document view page. Since the
React tree consists of only one root component, the different containers are ren-
dered conditionally depending on the URL (also known as routing). The concept
of container and presentational components is not treated as fixed rule but rather
as guideline or best practice.

Furthermore, Sweble uses the static type checker Flow. Therefore, the frontend
and BFF source code is written with Flow typings. The code excerpts shown in
the frontend section are only partially typed to improve readability. Moreover,
Sweble uses the UI library Semantic UI. It provides many pre-built components
(e.g. buttons, popups and icons), which were partly used to implement the
commenting UI.

39

5.2.2 Structural Overview

The main part of the commenting UI has to be integrated into the document
view, as presented in section 4.3. The document view is implemented in the
container RenderResourcePage. Currently, the RenderResourcePage in-
cludes the article renderer directly, which renders a WOM document as HTML.
Since the commenting functionality has to adjust the article renderer e.g. to
underline text references, the main commenting container is placed between the
RenderResourcePage and the article renderer as shown in Figure 5.3. The
commenting functionality includes two sub-containers. The CreateComment
component, responsible to render the form in order to submit a new comment,
as well as the ViewComments component, which implements the UI to dis-
play a comment. Both components are inserted into the WOM-tree so that they
are rendered at the right position. An decorator approach is used to insert the

Rendered WOM-tree

RenderResource
Page

ArticleRenderer

Commenting

CreateComment ViewComments

Decorators

Figure 5.3: Overview of the frontend commenting implementation. Each box
represents a React component and the arrows visualize the parent-child connec-
tions. The decorators are part of the propagated props and render the Create-
Comment and ViewComments components into the rendered WOM-Tree.

40

components into the actual document tree (presented in subsection 5.2.7).

5.2.3 Commenting Container

The root level of the frontend implementation is implemented as the Comment-
ing container. It embeds and manages all commenting sub-components as well
as the article renderer. The commenting container holds the state, whether the
comment create form or the comment view should be rendered. If neither is ac-
tive the container will enable the selection popup, which is rendered when the
user selects a text range.

As the container is mounted, it loads the comments for the current document.
This logic is implemented in the componentDidMount() method. The container
uses Redux to store the state of the network request. Since the store is im-
mutable, a specific mechanism of actions and reducers has to be used to mod-
ify it. Actions are plain JavaScript objects, which contain a type (in form of a
string) and a payload. Actions can be dispatched by any React component. In
case of the comments component, the corresponding action is dispatched as the
container is mounted. The action’s payload contains the current project, commit
and resource name. These data are needed in order to generate the API endpoint
URL and are provided to the container via its props from the RenderResour-
cePage. The expected payload is defined as part of the action and reducer.
As the commenting container dispatches the load-comments action with its type
and payload, a corresponding reducer mutates the store. The reducer does not
generate a deep copy of the store but rather a shallow copy.

After the reducer mutated the store, it contains the information that the request
is loading. However, the actual network request to fetch the comments is started
by another library called Saga. With the help of the Saga library it is possible to
listen for specific actions and execute code as the action is detected. For the ”load-
comments” action, the corresponding Saga contains the network request logic.
The Saga code will use the action’s payload to build the corresponding endpoint
URL. As the network request finishes, the saga dispatches a corresponding action
by itself. The reducer corresponding to the action mutates the store, which will
then contain the result of the network request.

To store the state of a network request, Sweble defines four states to categorize
a request (compare with Figure 5.4). If a request isn’t send yet, the entry will
be in the initial state and as the network request is loading, it is in the loading
state. Since a network request can either succeed or fail, a loaded or error
state represent a finished network request. Both contain additional information.
In case of an error, the state contains information to the error and in case of
loaded, the state includes the network request’s results. The result of the ”load-

41

comments” request is an array of comments.

initial

loading

loaded error

success failure

network
request

load
resource

reset

Figure 5.4: UML state machine showing the four states to categorize a network
request.

The commenting container has to access the state within the store. Instead of
accessing the store directly (via a reference), parts of the store are mapped into
the commenting container’s props. The container includes a mapStateToProps
function, which gets the entire store and extracts the relevant parts. Passing parts
of the store via the props has the advantage that a change in the corresponding
sub-store will trigger the lifecycle of the component. As the component is re-
rendered and the comments are in the loaded state, the container can insert the
text underlining into the article renderer.

In total, there are four network requests, which are mapped into the store. Two
requests to get and two to create a comment or comment entry. Since a network
request can be categorized in one of four states, each request implementation
contains four actions. Each action represents a different network state. Corre-
sponding to each of the four actions, a reducer has to be defined. Furthermore,
the saga code has to be defined for each request. Therefore, to perform one net-
work request, which is mapped into the store, a lot of boilerplate-code has to be

42

written. Hence, Sweble contains helper functions to reduce some of the needed
code automatically. The redux.js source code file mainly contains the type def-
initions and the code to perform the network request. The actual actions and
reducers are generated with the help of the helper functions.

5.2.4 Selection Popup

The first step in creating a comment is the selection of a text range. Thus, the
frontend implementation has to detect a selection within the document. I imple-
mented the SelectionHandler component that is able to detect text selections
within its children. It expects the article renderer as its child. The Selection-
Handler relies on the Selection Web API2, which is supported by all modern and
commonly used browsers3. However, the underlying specification by the World
Wide Web Consortium (W3C) is still marked as working daft4. Therefore, cer-
tain aspects of the API could change in the future.
While the term selection implies that a text range is selected (and highlighted on
the screen), a selection can also be collapsed. A collapsed selection has a width
of zero characters and is not highlighted on the screen. In a text processor, a
collapsed selection represent the cursor position.

Selection Detection

The Selection Web API offers two methods to get the current selection. There
is a selectionchange event as well as a window.getSelection method. While the
event is faster to implement, it has the disadvantage that it emits multiple times
and not only once if the selection is final. If the user selects a text range, each
newly selected character will change the selection and trigger a selectionChange
event. Each time a selection is detected it has to be checked, whether the se-
lection is within the SelectionHandler’s children. In order to save some CPU
cycles I implemented the detection using window.getSelection as well as mouse-up
events. In general, a text selection is completed as the user releases the mouse
key. Every-time the mouse-up event fires, the SelectionHandler will call the
window.getSelection method.

The mouse-up event listener can be attached to arbitrary DOM nodes. If an event
occurs within a child, the event will be propagated upwards - also known as event
bubbling. Since the SelectionHandler captures events within the wrapper, one
solution would be to attach the listener to the wrapper. However, this approach
would not capture all events, which correspond to a valid selection. The user can

2https://developer.mozilla.org/en-US/docs/Web/API/Selection
3https://caniuse.com/#feat=selection-api
4https://www.w3.org/TR/selection-api/

43

https://developer.mozilla.org/en-US/docs/Web/API/Selection
https://caniuse.com/##feat=selection-api
https://www.w3.org/TR/selection-api/

start the selection within the wrapper and end the selection outside. This may
still produce a valid selection but the mouse event would be triggered outside the
wrapper and not be detected. Therefore, to detect every selection, I attached the
listener to the document node.

A problem that arises from using mouse events was, that mouse events in quick
succession would produce an invalid state, e.g. showing a popup where no se-
lection is present. If mouse events are produced rapidly, there can be a delay
between the mouse event firing and the window.getSelection providing the right
data. To overcome this issue I used the setTimeout function, which will invoke
a callback after a specified number of milliseconds. In the SelectionHandler
the timeout is set to zero milliseconds. Even with a timeout of zero milliseconds,
the callback will not be invoked right away but rather be delayed. JavaScript
is executed synchronously as part of the browser event loop. The event loop
”orchestrates the main thread of the browser, which includes JavaScript, events,
and rendering”5. As the setTimeout function is executed, the callback is queued
as a task and will be invoked by the event loop once the JavaScript call stack is
empty (Archibald, 2015). At the time the call stack is empty the click event has
been processed completely. The window.getSelection method then returns the
selection, which is actually visible in the browser.

Selection Filtering

As a selection is detected, the selection object from the Selection Web API is
filtered, transformed and normalized. First of all, the selection has to be filtered
whether it is within the SelectionHandler. The SelectionHandler’s children
are wrapped in a div node with an unique ID (compare with Listing 5.2). The
unique ID is a statically defined number and will be increased each time the
SelectionHandler is mounted into the React-tree. Since the unique ID is a counter,
multiple SelectionHandler can be used on one page. The selection includes a
reference to two nodes (anchor and focus) within the DOM, which define the
range of the selection. In order to verify if a node is within the SelectionHandler,
the DOM is traversed upwards until either the body or wrapper node is reached.
If one of the nodes reached the body, null will be emitted as selection, since the
selection is (partly) not within the wrapper.

1 class SelectionHandler extends React.Component <Props > {

2 static wrapperCounter = 0;

3 wrapperId = SelectionHandler.wrapperCounter ++;

4

5 componentDidMount () {

6 document.addEventListener('mouseup ',
7 () => window.setTimeout(this.checkForSelection , 0),

5https://2018.jsconf.asia/

44

https://2018.jsconf.asia/

8);

9 }

10

11 checkForSelection = () => {

12 const rawSelection = window.getSelection ();

13 let selection = null;

14 if (this.isValidSelection(rawSelection)) {

15 selection = normalizeSelection(rawSelection);

16 }

17 // Only calls the callback if the selection has changed

18 this.emitSelectionChanged(selection);

19 }

20

21 render () {

22 return (

23 <div id={this.wrapperId}>

24 {this.props.children} // Contains the article renderer

25 </div >

26);

27 }

28 }

Listing 5.2: Excerpt of the SelectionHandler’s source code showing the main
algorithm to detect selection within its children.

Computing Node ID and Offset

In case both nodes are within the wrapper, the node IDs and offsets have to be
computed. The node IDs are computed once and then attached to the nodes as
data attributes, as will be described in subsection 5.2.7. The node IDs can be
accessed directly through the DOM. However, it is not sufficient to get the node
IDs from the nodes which are referenced in the selection. The article renderer’s
decorator system has the ability to add additional nodes into the DOM. Thus,
a referenced node may not be a representation of a WOM node and would not
contain a node ID attribute. To overcome this issue, the DOM-tree is traversed
upwards until a node with a node ID attribute is found. Computing the offsets
is similar to the node IDs. The selection interface contains the offset to the
referenced node. However, a single WOM text node could have been split into
multiple parts by the decorators. To get the offset, which corresponds to the
WOM text, the algorithm has to find the first node representing a WOM text.
Each DOM node representing a WOM node has the WOM-type attribute, which
is used to detect text nodes. The offset can then be computed recursively by
adding the text lengths of previous siblings and ancestors to the selection’s offset.

Before emitting the selection, it has to be normalized. Instead of including anchor
and focus entries, the NormalizedSelection interface contains a start and end
entry (compare Listing 5.3). While the anchor in the selection object corresponds

45

to the point where the selection started, the start in the NormalizedSelection
references the point of the selection, which comes first in the document. In
order for the SelectionHandler to pass the NormalizedSelection to the com-
ponent’s parent, the SelectionHandler accepts a onSelectionChange callback
as prop. The SelectionHandler will call the callback each time the selection
changes. If no (valid) selection is present, null is passed as argument to the call-
back and otherwise the NormalizedSelection is passed. Subsequently, identical
values are not emitted.

1 export type SelectionNode = {|

2 +offset: number ,

3 +womId: number ,

4 |};

5

6 export type NormalizedSelection = {|

7 +start: SelectionNode ,

8 +end: SelectionNode ,

9 +type: 'Caret ' | 'Range ' | 'None';
10 +ref: ?Range ,

11 |};

Listing 5.3: The NormalizedSelection JavaScript interface written in Flow
syntax. The type and ref property in the NormlaizedSelection are taken from
the Selection Web API.

Popup

As a selection is detected, the Popup has to be displayed. The Semantic UI
library includes a popup component, which does not have to be inserted at the
exact position within the DOM. The popup is rather positioned absolutely with
the help of Cascading Style Sheets (CSS). Therefore, the decorator system of
the article renderer is not needed. The popup component expects a reference to
an element as a prop, which will be used to position the popup above it. The
SelectionPopup component combines the SelectionHandler with the Seman-
tic UI popup as shown in Listing 5.4. It uses the React state to store whether
a selection is active or not. Since the popup contains two buttons to create or
view comments, the component’s props include the handleCreateComment and
handleViewComments callbacks to lift the click event up to the Commenting
component. The view comments button is only active if the selection overlaps
with a text reference of a comment. To determine if the button is active, the se-
lectionHasComment callback props is needed. It returns a boolean value, which
describes whether a given selection overlaps with any comment text range. An-
other way to check the comments and selection for overlaps, would be to pass
the comments array into the SelectionPopup. Since the SelectionPopup does
not require knowledge of the acutal comments, the callback approach was used.

46

1 class SelectionPopup extends React.Component <Props , State > {

2 render () {

3 return (

4 <SelectionHandler onSelectionChange ={...} >

5 {this.props.children} // Contains the article renderer

6 </SelectionHandler >

7 <Popup

8 // Selection reference to position the popup:

9 context ={this.state.selection.ref}

10 content ={...} // The popup's contents

11 />

12);

13 }

14 }

Listing 5.4: Code excerpt of the SelectionPopup showing the usage of the
SelectionHandler in combination with the popup

One problem with the Semantic UI’s popup is that a change of the provided node
reference will not trigger a re-render. So if the user clicks on one referenced text
and then on another, the popup will stay in the old position. This problem can
be solved by disabling the popup first and then activating it again with the newly
referenced selection. However, setting both states in the same lifecycle will not
disable the popup, since the second state will overwrite the first state. Thus the
states have to be set in two different cycles. To do so, the components state
includes the property nextSelection. Since disabling the popup triggers a new
cycle, the nextSelection property is checked in the componentDidUpdate lifecycle
method. If the nextSelection is set, it will be used as new reference for the popup.
This approach forces the popup to re-render, since it will be hidden shortly for
one lifecycle.

Figure 5.5: Screenshot of the final selection popup.

Another initial challenge was that the activation of the popup would trigger a
re-rendering of the article renderer, which will discard the selection. Browsers
discard a selection if a re-rendering of the corresponding nodes occur. This ef-
fectively lead to an unusable UI, since the selection would be discarded as soon
as the Popup is shown, thus removing the popup again. This issue occured as

47

the popup state was part of the commenting container. The commenting con-
tainer regenerated the decorators everytime it was updated. Since the popup
triggered an update, new decorators were passed into the article-renderer, which
re-rendered the WOM document. To solve this issue, the state of the popup
was integrated into the SelectionPopup component, which will not trigger an
update of the commenting container.

5.2.5 Create & View Comment Containers

The CreateComment and ViewComments containers implement the major-
ity of the UI. Their source code contains mostly markup in form of HTML and
Semantic UI elements. Both containers use Redux to create or reply to com-
ments. Furthermore, the ViewComments container uses Redux to load the
comment entries. The container gets the current comment id via its props and
validates whether the entries are loaded and correspond to the given comment
id. If the comment entries are not loaded or reference a different comment id,
the container will dispatch an action to load the comment entries. As the state
of the comment entries may be loading, the container renders a loader.

As shown in Figure 5.6 the UI is positioned below the text reference. To achieve
this behaviour in React, the container has to be positioned after the last word in
the text line. However, the last word in the text line depends on the screen size. It
will differ between a smartphone and a desktop. Another approach is to use CSS
as shown in Listing 5.5. The CSS specification includes a float property, which
allows elements to be surrounded by text. It is generally used to position an image
on one side of a text, while the text wraps around the image. The container is
inserted directly behind the text reference. By combining the float property with
a width of 100% the text will wrap around the container at the top and bottom.

Figure 5.6: Screenshot of the final create comment UI showing the interface
placed beneath the corresponding text range.

48

Furthermore, the commenting UI should interrupt the white background of the
document, so that there is a clear separation between the document and the
commenting. However, the commenting UI’s width is restricted by the width
of the text, which is less then the width of the white background. To overlay
the whole background, the container has to be as large as the article renderer’s
parent. The commenting UI width can be enlarged by using a negative margin
on the container and hiding overflows (in CSS: overflow: hidden) on the article
renderer’s parent. Without the overflow property, the container would extend
beyond the width of the parent. In order for the container’s children to have the
same width as the document, the negative margin has to be balanced in an inner
element with a positive margin.

1

2

3

4 <!-- The content -->

5

6

7

8

9 .commenting__inline -box__outer {

10 float: left;

11 width: 100%;

12 }

13

14 .commenting__inline -box {

15 margin: 10px -200px 10px;

16 display: block;

17 }

18

19 .commenting__inline -box__inner {

20 margin: 0 180px;

21 padding: 20px;

22 box -sizing: border -box;

23 display: block;

24 }

Listing 5.5: The combination of HTML and CSS used to position the
commenting UI below the referenced text line.

One problem with this approach that I could not solve completely, is that React
will throw warnings regarding the DOM nesting:

validateDOMNesting (...):

<form > cannot appear as a descendant of <p>

Since the containers are embedded within the article renderer, its parent element
is usually a paragraph. Rendering a block element as e.g. a form or div within a

49

paragraph makes no sense regarding the semantics of the elements. To limit this
warning all my components use a span instead of a div element. However, the
components of Semantic UI are using forms and divs. Therefore, some warnings
are still produced. Since all commonly-used browsers will render it correctly and
since the warnings are only visible in the developer console, there is no real-world
benefit in replacing all Semantic UI elements.

5.2.6 Article Renderer

To render documents, Sweble includes the article renderer. The article renderer
is a React component, which is able to transform a WOM document into a
HTML representation. For each WOM element it contains a corresponding React
component able to render the specific element. To map a WOM element to the
corresponding React component, the article renderer uses the factory pattern.
The factory takes a WOM element and returns a component instance.

For the article renderer to generate a tree, the WOM nodes are mapped recur-
sively. Each React component representing a WOM element will use the factory
to render its children. The factory is passed into each component via the props.
Starting at the top of the document, the article element will be mapped to its
React component. This component will invoke the factory to map each of its di-
rect WOM children. In case of the article, the only child is a body element which
will be rendered as the article’s child. As the body component is generated, it
will also map its children which can contain multiple elements and set them as
its children. As all elements are rendered, the structure of the WOM and DOM
tree are identical.

Depending on the use-case of the article renderer, certain contents have to be
modified, wrapped or added. As the commenting UI has to modify text (e.g.
underline text references) or insert the commenting UI directly into the document,
this implementation needs to be able to manipulate the article renderer. For such
use-cases the article renderer includes a decorator system. Multiple decorators
can be passed into the article renderer via the props. Each decorator is able to
change the rendering, modify attributes and overwrite the components children.
Since multiple decorators need to be able to perform changes, they have to be
chain-able. The actual generation of the component cannot be performed until all
decorators were invoked. Otherwise, the component would not get the changed
props from some of the decorators. Therefore, the return value of the decorators
is a function, which accepts the props and generates the actual element (compare
with Listing 5.6). Each decorators implements the applyTo method, which will be
called by the factory for each element. The method gets the components props,
the createElement function as well as the component class, which corresponds to
the React component.

50

1 type DecoratorReturnType =

2 (props: ReactArticleElementProps) => React.Element <any >;

3

4 class Decorator {

5 applyTo(

6 props: ReactArticleElementProps ,

7 createElement: DecoratorReturnType ,

8 componentClass: ArticleReactElement ,

9): ?DecoratorReturnType {

10 return createElement;

11 }

12 }

Listing 5.6: The decorator JavaScript interface.

5.2.7 Decorators

The commenting functionality relies on some newly implemented decorators,
which are presented in this subsection. The decorators may accept parameters in
their constructor, as used by most of the commenting decorators. The decorator
array which is passed into the article render, is generated by the commenting
container.

Attaching Node IDs

As mentioned in the subsection 5.2.4, the node IDs are computed once and then
attached to the corresponding DOM nodes. The JavaScript WOM implementa-
tion already handles the computation of the node IDs. Therefore, each WOM
element already contains its ID. A decorator is used to attach the node IDs
from the WOM element to the React element. The AttatchNodeIdDecroa-
tor manipulates the props which will be passed into the React component. The
decorator adds a data attribute containing the node ID to the element’s props
(compare Listing 5.7).

1 applyTo(props , createElement) {

2 const nodeId = props.womElement.nodeId;

3 if (nodeId != null) {

4 overrideReactProps(props , { 'data -node -id': nodeId });

5 }

6 return createElement;

7 }

Listing 5.7: Code excerpt of the AttatchNodeIdDecroator showing the code
to add an attribute to the props.

51

Appending Elements & CSS Class Wrapper

Both the AppendDecorator as well as ClassNameDecorator are simple
structural decorators. The ClassNameDecorator wraps the WOM element in
a span element containing one or multiple CSS classes. The AppendDecorator
appends a React element to a WOM node. It is used to append the CreateCom-
ment or ViewComments containers into the WOM tree at a specific position.
As shown in Listing 5.8, a React fragment is used here since React disallows to
return an array of elements. The fragment is a special element as it will not be
rendered to the DOM. It’s sole purpose is to wrap both elements into a single
node, which can then be returned.

Furthermore, a key prop is attached to the fragment. React expects that each
element in an array contains an unique key property. Since the decorator may
apply to a node which is rendered in an array, a structural decorator should always
use a key. The key is provided by the decorator base class, which generates a
unique ID for each decorator.

1 applyTo(props , createElement) {

2 return (props_) => (

3 <React.Fragment key={this.getDecoratorKey(props_)}>

4 {createElement(props_)}

5 {this.elementToAppend}

6 </React.Fragment >

7);

8 }

Listing 5.8: Code excerpt of the AppendDecorator showing the usage of
React Fragments to append a React element in the WOM tree.

Decorating Text Ranges

A general limitation of the decorator system is, that only one decorator is able
to change an element’s children. The children of a React element are propagated
via the props. The children are therefore a property within the props, which can
be modified by the decorators. However, multiple decorators setting the chil-
dren property would overwrite the changes of the previous decorator. Resolving
this conflict within the decorators is complex, since the decorators do not have
knowledge of the previous decorators.

The commenting functionality has to split text nodes in order to apply an effect
only to a specific range. Furthermore, multiple decorators can affect the same
text ranges within a single text node, e.g underlining the text references and
highlighting an active selection within a single node. A central mechanism is
needed to perform the text node splitting.

52

To solve this limitation, I implemented the TextRangeDecorator. It is a higher
order decorator which accepts other decorators as input and applies them to a
certain text range. It’s constructor accepts an array of TextDecorators (com-
pare with Listing 5.9). The TextDecorator interface contains a decorator, the
text range and a definition how to apply it. The text range is from the type
SimpleSelection, a simplified version of the NormalizedSelection, which only
contains the necessary node IDs and offsets. A SimpleSelection can be generated
from NormalizedSelection as well as the text range definition in comment models.
The SimpleSelection can therefore be used for the initial create comment view,
underlining text references and highlighting the text reference in the comment
view. The apply definition (applyTo property) mainly depends on the kind of
the decorator. For example, the CSS class decorator has to be applied to all text
splits, while the append decorator should only be applied once to the last node
or text split.

1 type TextDecorator = {|

2 +textRange: SimpleSelection ,

3 +applyTo: 'start ' | 'end' | 'all',
4 +decorator: Decorator ,

5 |};

6

7 class TextRangeDecorator extends Decorator {

8 constructor(textRangeDecorators: TextDecorator []) {

9 super ();

10 this.textRangeDecorators = textRangeDecorators;

11 }

12 // ...

13 }

Listing 5.9: The interface of the TextRangeDecorator.

As every Decorator, the TextRangeDecorator is invoked for each WOM node.
The first step for each node is to check whether any of the given decorators apply
to the specific node. Whether a decorator applies to a node depends on the
text range and the applyTo property. If applyTo is set to either ’start’ or ’end’,
only the start or end node is affected. If applyTo is set to ’all’, all nodes which
are part of the text range are affected. Since this check will be performed for
each node, it important to mind the performance. To improve the speed of the
check, whether a decorator applies to a node, the TextRangeDecorator computes
all affected node IDs once in the constructor. Those node IDs are stored in a
JavaScript set which is able to quickly check if a given node ID is present in the
set.

The following algorithm steps can be categorized into different segments as vi-
sualized in Figure 5.7 and are executed for each decorator. It has to be checked
whether the decorator applies to the whole node or if the node is a text node and

53

the decorator applies only partly. In the first case, the algorithm can be applied
normally by invoking the applyTo method of the decorator directly. A decorator
applies only partly to a text node if the current node is either the start or end
node of the decorator’s text range and its offset does not cover the whole node.
In this case the text node has to be split.

compute splits

apply decorator normally

is text node and
decorator applies partly

else

map decorators
to splits

apply decorators
to splits

set splits as
node's children

Figure 5.7: UML Activity Diagram showing the performed steps for each dec-
orator within the TextRangeDecorator.

The first step in splitting a text node is to compute all split positions. The
algorithm goes through the partly applying decorators and collects their offsets.
The offset depends on whether the current node is a start or end node. As
all offsets are collected duplicates are eliminated and the offsets are sorted. In a
second step the decorators are mapped to the offsets. Whether a decorator applies
depends again on the current node as well as on the current offset generated in the
first step. The map of offsets and decorators is then used to apply the decorators.
The algorithm goes through each map entry, gets the corresponding text split,
converts it into a React element and applies the corresponding decorators. As
a last step the resulting array of React elements is set as the original node’s
children.

An example for the TextRangeDecorator on the basis of a single text node with
the contents ”Implement Commenting” is presented in the following. As example
two decorators are applied to this single text node. The corresponding input to
the TextRangeDecorator is outlined in Listing 5.10. A visualization of both text
ranges is shown in Figure 5.8.

1 [

2 {

3 textRange: {

4 startNodeId: 4,

5 startOffset: 0,

6 endNodeId: 4,

7 endOffset: 9,

8 },

9 applyTo: 'all',
10 decorator: ..., // A decorator instance

11 }, {

12 textRange: {

13 startNodeId: 4,

14 startOffset: 5,

54

15 endNodeId: 4,

16 endOffset: 13,

17 },

18 applyTo: 'all',
19 decorator: ..., // A decorator instance

20 }

21]

Listing 5.10: Exemplary input for the TextRangeDecorator.

Figure 5.8: Visualization of the TextRangeDecorator input shown in List-
ing 5.10 using the text ”Implement Commenting”.

The text positions at which the text has to be split are extracted from both
textRange properties. In this example both text ranges affect a single node and
both the start and end offsets have to be used. The split positions are therefore 0,
5, 9 and 13. Since 0 is at the beginning of the text, the position is omitted. The
resulting splits are ”Imple” (0-5), ”ment” (6-9) and ” Com” (10-13) as well as
the rest ”menting” (14-20). The decorators are then mapped to the splits. The
first decorator is applied to the first and second split, while the second decorator
is applied to the second and third split. When all decorators were applied to the
splits, the TextRangeDecorator replaces the text node’s child (the simple text)
with all four splits.

5.3 Backend

Three parts of the backend were extended in this thesis: the backend-for-frontend
(BFF), Project Storage Service as well as the PostgreSQL’s database
scheme.

5.3.1 Backend For Frontend

The BFF is built on top of NodeJs and written in JavaScript and thus able to
share type definitions with the frontend. In terms of the commenting functional-
ity, the BFF only functions as a bridge between the frontend and the microser-
vices. Since all commenting APIs are located in the project-storage-service, each
request regarding comments is forwarded to this microservice. Before forwarding
the request, the BFF will validate whether the request is valid. For example, in
case certain properties are missing, the BFF will reject the request directly.

55

In terms of the commenting functionality, the BFF is responsible to transform the
request and response payloads. Within the payload entities like users, projects
or comments are referenced by a URL. This URL contains the internal IP of
the microservice, which is not accessible by the client. The URLs have to be
mapped to the external endpoints as shown in Listing 5.11. To map the response
payloads, the JSON from the microservice is parsed into an JavaScript class and
mapped to a response class, which converts the URLs. The resulting object is
then sent to the frontend as JSON.

1 // Internal URL

2 http ://172.42.42.14:8080/ v2/projects /1

3 // External URL

4 http :// localhost :6001/ api/v2/projects /1

Listing 5.11: The internal and external URLs, which are converted by the
BFF.

5.3.2 Project Storage Service

The Project Storage Service is one of two main backends and written in Java. Its
main purpose is to store and manage projects including documents. Figure 5.9
gives an overview of the project storage service’s structure. The three layers are
implemented as Java packages. Each layer contains their own models which are
used to store the comment or comment entry data.

project-storage-service

The project-storage-service package includes the REST6 endpoints. All com-
menting endpoints are defined in the CommentResource class. The class vali-
dates and extracts the parameters from a request and invokes the corresponding
method within the ProjectStorageManager. The ProjectStorageManager will
fetch additional data which are required to process the request. The frontend
does not distinguish between commits and branches. The ProjectStorageMan-
ager validates which type was provided and fetches the commit or branch. As
all required data are available, the ProjectStorageManager will invoke the Com-
mitStorageAPI.

6Representational State Transfer

56

project-storage-commit-
backend-postgresql

project-storage-core

project-storage-engine

project-storage-service

CommentResource

BFF

ProjectStorage
ManagerImpl

«interface»
CommitStorageAPI

CommitStorage
APIImpl

CommentAPIBits

«interface»
CommentDAO

Postgres
CommentsDAO

Use

Use

Use

Use

dispatch return

PostgreSQL

Use

«interface»
ResourceStorageAPI

ResourceStorage
APIImplUse

«interface»
ProjectStorageManager

Figure 5.9: Excerpt of the project storage service implementation

57

project-storage-engine

Most of the business logic is implemented in the project-storage-engine. The
CommitStorageAPI includes low-level functions to create and manipulate the
comment models. The offered functions are not a direct representation of the
REST endpoints. The ProjectStorageManager invokes multiple methods in or-
der to fullfill a single request. The CommentAPIBits, which is invoked by the
CommitStorageAPI, consist mainly of the algorithm to compute the text ref-
erence updates (presented in subsection 5.3.4). To compute reference updates,
the current and the changed WOM are needed. The CommentAPIBits uses the
ResourceStorageAPI, which is also part of the project-storage-engine, to fetch
both WOMs. The ResourceStorageAPI uses the database Cassandra to store
documents.

project-storage-commit-backend-postgresql

The database connection is handled in the project-storage-commit-backend-
postgresql package. It contains the logic to store, fetch and modify data in
the PostgreSQL database. Each database table has a Java class representation.
Those models are generated from the database scheme by the jOOQ7 library.

project-storage-core

The project-storage-core package includes interfaces for the engine and postgresql
package as well as the models for the business logic.

5.3.3 Identifying Comments

In the previous chapters, the comments of a document were identified by the
triple of project, commit and document. However, internally text selections are
not identified by a commit but rather by a change. A change represents an
update of a specific document, while a commit comprises a set of changes. The
text references have to be updated only as the document changes. As a commit
is created, text references of an unchanged document would still reference the
previous commit. Therefore, the direct connection between the text references
and commit would be lost. Text selections could only be retrieved by iterating
through prior commits.

To solve this limitation, the selection references the change. As the document
is modified, a change is created and the selections are updated. The new selec-
tions will reference the new change. Therefore, all selections of a document will

7https://www.jooq.org

58

https://www.jooq.org

reference the last change. To retrieve the selection for a given document, the
algorithm has to determine the last change of a document which can be retrieved
from any given commit.

A commit includes the last change for each document. Each commit references
a B-Tree, which consist of all latest changes. In the B-Tree the changes are
identified by the corresponding document’s name. Therefore, to get the latest
change for a given document, the algorithm has to traverse only the B-Tree until
the change is found. This change can then be used to identify all text selections
which were present at the time of the change.

5.3.4 Updating the Node References

One main part of the backend implementation is the algorithm to update text
references as a document is modified. The project storage service includes the
endpoint to store a new revision of a document, which is handled within the
ProjectStorageManager. The algorithm to update the references is located in the
CommentAPIBits and invoked in the ProjectStorageManager after the commit
has been created.

As outlined in the previous subsection, the created commit includes a set of
changes. Each change represents the modification of a document. To update the
references both the old and new WOM documents are needed. Therefore, for
each change contained in the commit, the previous change is retrieved. A map
containing the old and new changes is then passed into the CommentAPIBits
class.

For each map entry, the algorithm will retrieve the selections which reference
the old change. In case that no selections are present, the document includes no
comments and the algorithm will proceed to the next change. As changes are
present, both versions of the document have to be analyzed. The first step is to
retrieve both WOM documents from the ResourceStorageAPI and to apply the
HDDiff which returns a list of EditOps.

The general concept to apply the EditOps to text references is to go through
each EditOp individually. The text reference which consists of two node IDs is
converted into a list of nodes. The list includes all nodes which are part of the text
reference. The operations can then be applied to this list. For example, a delete
operation may remove a node from the list. As a document can contain multiple
selections, each operations is applied to each selection as shown in Listing 5.12.

1 private void applyEditOps(

2 List <CommentSelections > selectionList , List <EditOp > editOps

3) {

59

4 for (EditOp editOp : editOps) {

5 switch(editOp.getType ()) {

6 case DELETE:

7 EditOpDelete delOp = (EditOpDelete) editOp;

8 for (CommentSelections selection : selectionList) {

9 selection.remove(delOp.getDeletedNode ());

10 }

11 break;

12 // Further cases for MOVE , SPLIT and UPDATE

13 }

14 }

15 }

Listing 5.12: Excerpt of the CommentAPIBits showing the main loop to
apply the editOps to the text selections.

The list of nodes is not stored as variable, but rather contained in a specialized
class called DiffNodeRange. It is the representation of a single text range
containing the list as well as the offsets. It includes methods to apply certain
operations onto itself (compare with Listing 5.13). The remove method will delete
a node from the list and the split method will insert the second half of the split
into the list. Both methods will validate the start or end offset in case one of
the edge nodes is affected. The update operation is handled by the checkOffsets
method. It needs the diff between both texts (represented as a list of diffs) to
calculate the new offsets. The diff of an update operation is computed in the
CommentAPIBits and passed into each DiffNodeRange.

1 public class DiffNodeRange {

2 private List <DiffNode > nodes;

3 private int startOffset;

4 private int endOffset;

5

6 public DiffNodeRange(

7 List <DiffNode > nodes , int startOffset , int endOffset

8);

9

10 public boolean hasCollapsed ();

11 public boolean remove(DiffNode node);

12 public void split(

13 DiffNode splittedNode , DiffNode otherHalf , int splitPos

14);

15 public void checkOffsets(

16 DiffNode node , LinkedList <DiffMatchPatch.Diff > diffs

17);

18 }

Listing 5.13: Interface of the DiffNodeRange class which includes the
methods to apply some edit operations.

60

The move operation is not handled in the DiffNodeRange but rather in the Com-
mentSelections which is able to represent fragmented references (compare with
Listing 5.14). Since I wanted to offer a proper handling of the move operation,
the internal representation has to be able to handle not only one but multiple text
ranges. Each text reference will be mapped to one CommentSelection which
contains one DiffNodeRange initially. The delete, split and update operation are
forwarded into each DiffNodeRange. The move operation is handled within the
CommentSelections class. It invokes the remove method of each DiffNodeRange
to remove the nodes and creates a new DiffNodeRange which consists of the
moved nodes. As all edit operations are applied, the CommentAPIBits will use
the largest DiffNodeRange as new text reference.

Once all operation were applied, each CommentSelection and the list of nodes
has to be converted back into a representation of node IDs. This transformation
as well as the initial transformation from the node IDs to the list is backed by a
map containing each node and its ID. This map is generated for both document
version. The map based on the old document is used for the first transformation
(node IDs to a list) and the other map is used for the second transformation.

1 public class CommentSelections {

2 private List <DiffNodeRange > ranges;

3

4 public CommentSelections(List <DiffNode > initalNodes);

5

6 public boolean hasVanished ();

7

8 public void remove(DiffNode node);

9 public void move(DiffNode movedNode);

10 public void split(DiffNode splitedNode , DiffNode otherHalf ,

int splitPos);

11 public void checkOffsets(DiffNode node , LinkedList <

DiffMatchPatch.Diff > diffs);

12 public DiffNodeRange getFirstRange ();

13 }

Listing 5.14: Interface of the CommentSelections which is an internal
representation of fragmented references.

5.3.5 Database Layer

Scheme

Sweble uses the database migration tool Liquibase8 to apply changes to the

8https://www.liquibase.org/

61

https://www.liquibase.org/

database. The SQL statements required to extend the database schema are de-
fined in their own migration file in the project-storage-commit-backend-postgresql
package. The new database tables are shown in Figure 5.10. The main comment-
ing table contains the owner, project as well as the time of creation. All other
information are stored in additional tables which reference the main table. The
comment entries are stored in the Comment Entry table and the text references
in the Comment Selection table. Since text ranges will change as the document
is adjusted, multiple selections refer to one comment. Depending on the commit
and change the document is viewed in, the equivalent text reference is fetched
from the database.

Another newly added table is the Comment State table which is an improvement
for the history view of comments. The state of a comment could also be stored
within the selection. However, a new selection is only created if the document
was actually changed. Viewing a document at a commit which did not affect the
document, could show a different comment state as to what the actual state was.
Therefore, the state is stored within its own table. A new entry is created every-
time the state is changed. The Comment State table is joined as the comment is
selected.

Comment
id

owner_id

project_id

timestamp

timezone

Comment_Selection
id

comment_id

change_id

resource_name

start_node_id

start_offset

end_node_id

end_offset

Comment_State
id

comment_id

owner_id

state

timestamp

timezone

Comment_Entry
id

comment_id

owner_id

message

timestamp

timezone

1

11

0...n

0...n

0...n

Figure 5.10: Database scheme of the commenting functionality

Freeze Comments within Commits

A requirement is to be able to view the state of a comment at an older commit.
Whether a comment is present at a given commit, is determined by the presence or

62

absence of a selection entry. Each commit contains the last change of a specific
resource. A text selection can therefore be retrieved based on the change id.
Comments created after the time of a given change will not be fetched, since the
comment has no selection which references the older change id.

To retrieve all comment entries at the time of a given commit, the timestamps of
the commit and comment entries are compared. All entries which timestamp is
less or equal to the timestamp of the commit will be fetched from the database.
The comment state is treated similar, since a timestamp is used as well. In case
of the comment state, only the most recent state will be joined to the comment,
while in case of the entries all of them are retrieved.

The method to retrieve the comments for a given change is located in the Com-
mentsDAO class and shown in Listing 5.15. The listComments method returns
an array of a triple containing the comment, state and selection. All three back-
end models will be combined into a single comment model in the core package.
There are two methods to retrieve the comments. The first method needs only
the change ID as parameter and fetches the most recent comment. The second
method needs an additional timestamp to filter the comments which is extracted
from the commit at which the comments are viewed.

1 public List <Triple <

2 BackendComment , BackendCommentState , BackendCommentSelection

3 >> listComments(long changeId);

4

5 public List <Triple <

6 BackendComment , BackendCommentState , BackendCommentSelection

7 >> listComments(long changeId , DateTime beforeTime);

Listing 5.15: Method signature of the listComments function located in the
CommentsDAO class.

63

6 Evaluation

In this chapter, the requirements from chapter 2 are evaluated with their corre-
sponding evaluation schema. The first 7 requirements were verified with a manual
acceptance test in the browser. Starting point of all commenting requirements
is the document view page. A document can only be created in the scope of a
project. Therefore a project is created as first step and the document as second
step. From this starting point, the additional steps to verify each requirement as
well as the expected outcome are listed below.

1.1 Creating a comment

• Select a text range in the document

• Click on the speech-bubble icon within the appearing popup

A commenting form is shown below the text selection.

1.2 Viewing a comment

• Click on a text range which is referenced by a comment. A referenced text
range is marked with a dotted underlining.

• Click on the speech-bubbles icon within the appearing popup

The comment is shown below the referenced text.

1.3 Replying to a comment

• Open an existing comment as described above.

At the end of the comment, a form to submit a reply is displayed.

2. Visualization of the connection between a comment and its refer-
enced text range

64

• Open an existing comment.

The referenced text range of the viewed comment is highlighted with a blue
background color. Furthermore, the comment view is displayed directly below
the text range.

3. Marking a comment as resolved, rejected or closed

• View an existing comment.

• As project owner: The comment view includes a button to mark the com-
ment as resolved or rejected.

• As comment starter: The comment view includes a button to mark the
comment as closed.

After the user marked the comment as resolved, rejected or closed, the comment
view shows an info box with the current state.

4. Comments trigger notifications

• Logged in as test user: Create a comment in the new project.

• Logged in as project owner: Reply to the comment.

• Logged in as test user: Mark the comment as closed.

The project owner receives two notifications - when the comment is created and
when the comment is closed. The user who created the comment receives one
notification, that a user replied to the comment.

5. Viewing older revisions of a document

• Modify the document. (First revision)

• Create a new comment.

• Modify the document again. (Second revision)

• Create a reply in the comment.

• Switch to the revision (commits) page and select to view the second revision.

One comment is present in the document with the initial comment text. The
reply is not visible.

• On the revision (commits) page select to view the first revision.

No comment is present in the document

65

6. The UI is able to handle a large number of comments

• Create multiple comments on similar text ranges.

The comment view offers buttons to view the next and previous comment at the
top of the comment box. It is therefore possible to view all comments even if the
text ranges overlap each other.

7. Comments are preserved in forks

• Create a comment.

• Fork the current project.

The document within the forked project contains one comment.

All above listed requirements were tested successfully. The expected outcome
could be observed in the browser. Those requirements are therefore fulfilled.

8. Store comments in the document data format WOM

As outlined in this thesis, storing comments in the document itself are disadvan-
tageous. Instead, the comments are stored separately to the document in the
database. This requirement was not fulfilled.

9. The UI relies on recognition rather than recall

Creating and viewing comments requires prior knowledge since a click or text
selection is needed to activate the commenting popup. The initial step to access
the commenting functionality therefore relies on recall. A solution would be to
offer an alternative way to create a comment e.g. by adding a dedicated comment
button to the action navigation. Another improvement would be to offer a tutorial
to new users which explains the comment functionality. All other components
of the commenting UI rely on recognition, since they are reachable through a
directly visible button.

10. Easy to use UI

All parts of the UI offer ”informative feedback” since all network requests will
be represented by a loader in the frontend. Furthermore, all components are
equipped with error handling. In case that an error occurs, the frontend will dis-
play a description of the problem. The commenting system also allows comment
starters to close comments which were opened by mistake.

66

7 Future Work

As outlined in this thesis, two aspects of the current commenting functionality
could be improved. First of all, the concept of comments in a multi-synchronous
environment could be extended. Currently, comments are visible within fork with
its replies disabled. However, the UI lacks the option to exclude comments in a
fork and the possibility to delete all comments that originated from a different
project. Furthermore, for certain cases, it can be useful to be able to preserve
comments on merges. Another improvement which was presented in this thesis is
the integration of fragmented references. However, fragmented references might
have a negative impact on the usability. More research is therefore needed to
determine if fragmented references provide a benefit for users. An alternative
solution would be to store the original text reference along the comment. Users
would see the current text range highlighted in the document, but are able to
check the original text via a button.

Beyond those additions, comments could be integrated closer into the multi-
synchronous workflow As discussed in this thesis, comments can be seen as a
starting point of collaboration. As improvements are discussed in a comment,
the comment could be used to simplify the process of making a fork, applying
changes and submitting the merge request. Each comment could include a button
to make modifications and propose the discussed changes. As the user clicks
on this button, a simplified collaboration workflow is started. The UI could
show the visual editor and the selected comment side-by-side, enabling the user
to recheck the discussion. As the user finishes the changes, the system would
generate a merge request automatically referencing the specific comment. This
approach would greatly simplify the collaboration process for novice users and
cloud therefore increase the number of collaborators.

67

8 Conclusions

In this thesis, I designed and implemented a commenting functionality for Swe-
ble Documents, summarized UI best-practises relevant for the design of the com-
menting functionality and presented existing commenting solutions. The final
commenting design combines ideas from existing solutions with new concepts as
e.g. the placement of the commenting UI directly in between text passages. The
commenting UI combines some of the best interface features in order to provide
a satisfying user experience. Furthermore, I developed a concept to store and
identify text ranges in WOM documents with the help of node IDs and offsets.
The implementation consists of an algorithm to analyze changes in a document
and to update the text ranges referenced by comments appropriately.

While this thesis focused on Sweble, the approach can be adopted by other wiki
systems. Since WOM, the format used by Sweble, is a representation of Wikitext,
most of the concepts can be transferred easily. The largest wiki Wikipedia lacks a
modern communication channel for collaboration. A commenting functionality as
presented in this thesis could simplify collaboration and could lead to an increased
participation.

68

Acknowledgments

I would like to thank my supervisor Dipl.-Inf. Hannes Dohrn for his guidance
in the development and writing phase of my thesis as well as for his detailed
explanations of existing concepts in Sweble.

I am very grateful to my father Michael Joachimski for his support and feedback
while writing this thesis.

69

References

Archibald, J. (2015). Tasks, microtasks, queues and schedules. Retrieved from
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

Dohrn, H. & Riehle, D. (2011a). Design and implementation of the sweble wikitext
parser: Unlocking the structured data of wikipedia. In Proceedings of the
7th international symposium on wikis and open collaboration (pp. 72–81).
ACM.

Dohrn, H. & Riehle, D. (2011b). Wom: An object model for wikitext (tech. rep.
No. CS-2011-05). University of Erlangen, Dept. of Computer Science.

Dohrn, H. & Riehle, D. (2014). Fine-grained change detection in structured text
documents. In Proceedings of the 2014 acm symposium on document engi-
neering (pp. 87–96). ACM.

Molich, R. & Nielsen, J. (1990). Improving a human-computer dialogue. Commun.
ACM, 33 (3), 338–348. doi:10.1145/77481.77486

Molli, P., Skaf-Molli, H., Oster, G. & Jourdain, S. (2002). Sams: Synchronous,
asynchronous, multi-synchronous environments. In The 7th international
conference on computer supported cooperative work in design (pp. 80–84).
IEEE.

Myers, E. W. (1986). Ano (nd) difference algorithm and its variations. Algorith-
mica, 1 (1-4), 251–266.

Nielsen, J. (2005). Ten usability heuristics. http://www. nngroup.
com/articles/ten-usability-heuristics/(acc-essed . . .

Shneiderman, B. & Plaisant, C. (2010). Designing the user interface: Strategies
for effective human-computer interaction. Pearson Education India.

70

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://dx.doi.org/10.1145/77481.77486

	Introduction
	Requirements
	Fundamentals
	Types of Collaboration
	User Interface Best-Practices
	Review of Existing Commenting Solutions
	Microsoft Word
	Google Docs
	Github

	Architecture and Design
	Sweble Platform
	Commenting Functionality
	User Interface Design
	Creating a Comment
	Viewing Comments

	Comment Text Selection
	Wiki Object Model
	Referencing a Text Range

	Changes to a Document
	HDDiff
	Implications for Texts Referenced by Comments
	Fragmented References

	Comments in a Multi-Synchronous Environment
	Notifications
	Commenting API

	Implementation
	Software Stack
	Frontend
	Used Technologies and Libraries
	Structural Overview
	Commenting Container
	Selection Popup
	Create & View Comment Containers
	Article Renderer
	Decorators

	Backend
	Backend For Frontend
	Project Storage Service
	Identifying Comments
	Updating the Node References
	Database Layer

	Evaluation
	Future Work
	Conclusions
	Appendices
	References

