
Architectural
Inter-Microservice

Integration
An Overview

by Georg Schwarz

7. Treffen des Arbeitskreises MSDO, 9th March 2020

Photo by Rafif Prawira on Unsplash

Left or Right?

https://unsplash.com/@rafifatmaka?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/labyrinth?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Microservice Integration
What to integrate…?

● Microservices with each other?
● With an external system?
● With infrastructure as Kubernetes?

Focusing on which aspect...?

● Architectural design?
● Monitoring?
● Security?
● Communication between teams?
● Evolution over time?

Architectural
Inter-Microservice

Integration

Microservices
vs.

Enterprise Information Integration

Schwarz, Georg-Daniel, and Dirk Riehle. "What Microservices Can Learn
From Enterprise Information Integration." Proceedings of the 53rd Hawaii
International Conference on System Sciences. 2020.

Architectural Levels
Enterprise Information Integration:

We can integrate on every architectural level
of a system [1]

[1] P. Ziegler and K. R. Dittrich, “Three decades of data integration —
all problems solved?,” in Building the Information Society, pp. 3–12,
Springer, 2004.Database

Middleware

API

UI

Architectural Levels
Microservices:

Database

Middleware

API

UI
Monolithic UI

Distributed UI
Omitted in this talk

Architectural Levels
Microservices:

Database

Middleware

API

UI
Monolithic UI

Distributed UI

RESTful HTTP

RPC
RESTful HTTP over RPC

Omitted in this talk

RESTful HTTP over RPC

● HTTP well-known, lots of tools
○ Security
○ Routing
○ Load balancing
○ Caching

● Easier to version - no stub generation
● Technology-independent
● No network transparency

Architectural Levels - RESTful API over RPC

Database

Middleware

API

UI
Monolithic UI

Distributed UI

RESTful HTTP

RPC

Architectural Levels
Microservices:

Database

Middleware

API

UI
Monolithic UI

Distributed UI

RESTful HTTP

RPC

ESB

Message Broker

Keep the middleware as
dumb as possible

RESTful HTTP over RPC

Omitted in this talk

*

* due to potential misuse by pushing business logic into the ESB

Architectural Levels
Microservices:

Database

Middleware

API

UI
Monolithic UI

Distributed UI

RESTful HTTP

RPC

ESB

Message Broker

Direct Access

Indirect Access

Keep the middleware as
dumb as possible

Are these even
microservices anymore?

RESTful HTTP over RPC

Omitted in this talk

?

Why not at Database Level?

Conclusion:
DON’T DIRECTLY ACCESS THE DATA OF

OTHERS MICROSERVICES

● Expose implementation
details

● Break consumers by
internal changes

● Tie consumer to
DB technology

● Distribute logic to manipulate data to
multiple services

=> No independent deployability

● Simple
● Fast to get started
● Database is fast at

joining data

A Closer Look at Architectural
Inter-Microservice Integration *

Work in Progress

Input Wanted! !
* based on most popular gray literature

Goals of Integration

● Independent Deployability
○ Decoupling
○ Interface Versioning

● Scalability (includes sufficient performance)

● System extensibility
● Technology Heterogeneity
● System Simplicity

○ Understandable Workflows
○ Failure Handling
○ Complexity should be justified!

Non-negotiable

Trade-offs based on strategy

Why Do We Integrate?

Cross-cutting features need to

● Trigger distributed behavior
○ Control Flow

● Access data from other microservices
○ Data Flow

(Unvalidated) Theory:
We can combine control and data flow integration

approaches to build our architectural inter-microservice
integration strategy. *

* Discussion: probably one of both aspects is dominating in system design (control flow follows data flow vs. vice versa)

Data Flow Integration

Data Flow Integration

When to get the data from other microservice?

● Get data when we need it
○ Work with references and fetch on-demand
○ Get only the data that we need and not more, still can apply caching for optimization
○ Can get “too new” data

● Get data beforehand and cache it
○ Data replication
○ Eventual consistency: work on potentially outdated data

Data Flow Integration - Middleware Level

Database

Middleware

API

Replicate data via message broker

Event-Driven Architecture

● Listen to events and build up own
replication of data (in own format)

● Whole event history necessary
○ Event sourcing

● Or combination with API-level
data flow integration

○ Similar to snapshot & delta

● Harder to reason about
async architecture

● Event versioning
required

● Message broker as
additional dependency

Data Flow Integration - Middleware Level

● Decoupling by events
● Keep only data that

is necessary in best
suiting format

● Easy to add new
services

● Use features of
message brokers

Database

Middleware

API

Conclusion: complex but recommended

Replicate data via message broker

Data Flow Integration - API Level

Database

Middleware

API

Alternative on API level: Event Feeds

ATOM feeds over HTTP

● Implement features of
message broker
ourselves

○ Polling schedule
○ Competing

consumer pattern
○ ….

● Advantages from
HTTP

○ Security
○ Scaling
○

● Decentralized, no
message broker as
single point of failure

Conclusion: might be worth a look

Data Flow Integration - API Level

Database

Middleware

API

● APIs often not designed
for replication

● Breaks down with larger
data volumes

● Simple to implement
as consumer

Replicate data via RESTful API calls

Data Flow Integration - API Level

Database

Middleware

API

● Multiple API calls
might be necessary if
multiple resources required
(non-optimized interfaces)

● Request/Response
with HTTP is
well-understood

Fetch data on-demand via RESTful API calls

Conclusion: sensible default choice

Data Flow Integration - API Level

API

Alternative on API level: Query-based Interfaces

E.g. GraphQL

Looking for interviewees
 that use query-based

interfaces with
microservices! !

● Could potentially solve the non-optimized
interface problem

● Evolution instead of versioning?
Middleware

Database

Control-Flow Integration

Control Flow Integration

Orchestration vs. Choreography

● Orchestration by a central brain
○ request/response to trigger

other services
● Choreography forms system behavior by emergence of service (re)actions

○ (Async) events represent what happened in the system
■ Event-Driven Architecture

● Business process only
implicitly reflected in our
system

● Harder to reason about
● Complex failure handling

Control Flow Integration - Middleware Level

Choreography via message broker (events)

● Decoupling
● Easy to add new

services
● Evenly distributed

business logic (no
central brain)

Conclusion: more complex but recommended

Database

Middleware

API

Control Flow Integration - API Level

Database

Middleware

API

Orchestration via RESTful API (Request/Response)

● Resource-orientation
might not fit to trigger
behaviour

● Danger to build central
point for all business logic

● Higher cost of change

● Request/Response
with HTTP is
well-understood

● Easier failure
handling

● Easier business
process modeling

Conclusion: also recommended

Summary

Architectural
Inter-Microservice
Integration

Database

Middleware

API

Data Flow

Control Flow

Database

Middleware

API

RESTful HTTP

ATOM feeds

GraphQL

Events

RESTful HTTP

Events

?

* probably many more options and more dimensions to consider, e.g. gRPC, Service Meshes

Orch. Choreo.

Repl. on-demand

?

Summary

● Microservices exclude some classical architectural integration strategies

● Still, there are a lot of different options with each pros and cons
○ Hard to get started with microservices!

● There are even more aspects in the area “Inter-Microservice Integration”

● It would be nice to have patterns or best practices to know which one to
choose in which context

Summary

● It would be nice to have patterns or best practices to know which one to
choose in which context

My Research
Goal

Industry Theory
(Best Practices)

Theory Building
(Interviews)

Theory Evaluation
(Case Studies)

Thank you!

Georg Schwarz

PhD student at Professorship for Open Source Software,
Friedrich-Alexander University Erlangen-Nürnberg

georg.schwarz@fau.de

 @schwargeo

https://twitter.com/schwargeo
mailto:georg.schwarz@fau.de
https://twitter.com/schwargeo

