
Pr
ep

rin
t

Supporting Interview Analysis with Autocoding

Andreas Kaufmann
Computer Science Department
Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

andreas.kaufmann@fau.de

Ann Barcomb
Computer Science Department
Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

ann@barcomb.org

Dirk Riehle
Computer Science Department
Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

dirk@riehle.org

Abstract

Interview analysis is a technique employed in
qualitative research. Researchers annotate (code)
interview transcriptions, often with the help of
Computer-Assisted Qualitative Data Analysis Software
(CAQDAS). The tools available today largely replicate
the manual process of annotation. In this article, we
demonstrate how to use natural language processing
(NLP) to increase the reproducibility and traceability
of the process of applying codes to text data. We
integrated an existing commercial machine–learning
(ML) based concept extraction service into an NLP
pipeline independent of domain specific rules. We
applied our prototype in three qualitative studies to
evaluate its capabilities of supporting researchers by
providing recommendations consistent with their initial
work. Unlike rule based approaches, our process can
be applied to interviews from any domain, without
additional burden to the researcher for creating a new
ruleset. Our work using three example data sets
shows that this approach shows promise for a real–life
application, but further research is needed.

1. Introduction

Qualitative research methods form one of the
main forms of inquiry in social sciences, psychology
and market research. A typical goal of qualitative
research is to understand behavior, reasoning and
opinion. Often, this is accomplished through the
analysis of unstructured textual data, which may be
derived from expert interviews, discussions, or message
logs. In the first stage of qualitative data analysis
(QDA), the researcher develops a structured collection
of categories of conceptual labels (codes) which are
used to annotate the data. These codes represent
the researcher’s interpretation of the data and are
grounded in knowledge of the domain and the research
questions. The researcher applies codes to segments of
text (coding) which address the concept for which the

code was developed. As the researcher proceeds, codes
are added, deleted, and modified, and the researcher
reviews and revises earlier analysis. The researcher
may be aided in this task by Computer–Assisted
Qualitative Data Analysis Software (CAQDAS). Current
CAQDAS applications provide assistance in identifying
relationships between codes and overviews of the
occurrence of codes within the text, but only replicate
the manual method during the initial stage of coding.

One common concern about the process is
reproducibility [1, 2, 3, 4]. Because coding depends
on the researcher’s knowledge and focus, two qualified
researchers may emphasize different aspects of the
data. This can lead to a lack of consistency, especially
in large teams. The coding process may also be seen
as lacking transparency and traceability because the
context of a researcher’s reasoning behind a specific
coding—which is critical not only for reproduction but
also for complete understanding—is not available to
others. While these problems can be methodologically
mitigated, for instance through investigator or theory
triangulation, these measures for ensuring rigor of the
research also incur a significant additional investment
from the researcher.

We propose the use of natural language processing
(NLP) technologies to improve the reproducibility and
traceability of the coding process. In this paper, we
present an approach which can be easily adapted for
any domain. Our work does not introduce novel ML
techniques, but applies established ML-based services
like a concept extraction API, to a new domain by
integrating them into a NLP pipeline using linguistic
and statistical filtering of candidates, in order to
improve the researcher’s performance. Our algorithm
uses previously coded interviews as training data and
extracts the semantic context of each applied code
in order to propose codes in new data. Inter–team
reproducibility is improved by offering prompts which
are consistent with previous applications of a code,
ensuring that all members of the team have a similar
view of a code’s meaning. Traceability is improved

1



Pr
ep

rin
t

by automating identification of the underlying semantic
context behind a code’s application, offering insight into
the researcher’s thoughts.

While rule-based approaches to autocoding have
shown promise in assisting researchers find new
evidence for already existing codes, the success of
such approaches comes at the cost of having to define
rules that are mostly domain specific. This is almost
unavoidable, since QDA is highly dependent on the
researchers skill and the chosen research question under
focus. This is not information that can be modeled
with general purpose rules, or extracted from a general
purpose corpus. We therefore try a training data based
approach. However, the drawback of such in this context
is the usually very small sets of data to train on.

The contribution of this work is to provide an initial
exploration into the feasibility of using NLP and ML
to assist the qualitative researcher in improving the
reproducibility and traceability of the coding process
through recommendations. Two key aspects of our
approach are that it requires no extra effort on the part of
the researcher, yet it can be applied to any domain where
interview analysis is used. It is important to note that our
work is an exploratory proof-of-concept, and is aimed at
supporting, not supplanting, the qualitative researcher.

2. Related Work

Previous research has examined existing CAQDAS
tools, both comparing them [5, 6] and instructing in their
use [7].

CAQDAS has been used to facilitate “the rigor
of methodology and the transparency of method as
manifested in one’s audit trail that in essence constitutes
research that is accountable, innovative and effective”
[8], but existing software is largely limited to systematic
data management and querying text and codes. Richards
[9] argued that the lack of an active and critical academic
debate on qualitative computing is due in part to the fact
that new technologies are only assessed in terms of old
methods, and software is seen as a mere tool to enhance
speed and fluidity of an analysis process that would
be applied regardless of the technological capabilities.
A query of several research databases with the terms
“text mining AND qualitative” showed that this area of
research continues to languish [10].

Text mining and qualitative research have several
common principles which make them epistemologically
compatible [10]. A hypothetical overview of the use
of four different NLP techniques—lexical management,
statistical analysis, named entity recognition and pattern
learning—hypothesized the effectiveness of NLP for
social science analysis but the authors did not implement

the tools for the identified use cases [11]. However, it is
important for CAQDAS to avoid automating to the point
that the reflection and creativity of the researcher are
eliminated, and the interpretation is done by the software
developers [12].

The only implementation of autocoding using NLP
we found was performed by Crowston et al. [13]. They
presented a case study in which they built a rule–system
to perform autocoding for 12 predefined codes on a set
of instant messaging logs and compared the results to a
manual coding. In a related work [14], the preliminary
results of a ML approach using the same data was
published. They concluded that both approaches
show promise, but only the rule-based approach was
described in detail. Deriving the code system from the
researcher, rather than from a general corpus, allows
for the researcher’s knowledge of the domain and
the research questions to be taken into consideration.
However, a rule–based approach necessitates explicitly
expressing the concepts behind the codes in a specific
format. By contrast, our work is able to derive the
meaning from the application of codes. This makes
our approach domain independent while still respecting
the researcher’s knowledge. This is demonstrated by
making use of example data from two different domains.

3. Research Approach

Our goal was to determine how established NLP
technologies and services may be applied to interview
analysis. We do not propose that the use of NLP
techniques should replace the interpretative ingenuity of
the qualified researcher, but performing content analysis
through the use of NLP and automating suggestions may
aid the researcher, for instance by ensuring consistency.
Naturally assistive tools should be developed with an
awareness of the potential for tools to alter decision
making processes, for instance by anchoring selections
[15] or limiting the development of new codes. Our
work is exploratory, with the purpose of determining if a
general corpus-based NLP approach shows any promise
in supporting QDA.

NLP comprises a range of methods and techniques
applicable for different use cases, four categories of
which appear to be well–suited for the enhancement of
QDA. Table 1 provides an overview of the potential
applications, with our area of research using corpus
based tools in highlighted text. Complementary to
Crowston et al.’s research on a rule–based approach, we
explore a machine learning methodology and determine
how accurately an autocoding algorithm incorporating
existing technologies can reproduce the results of a
trained researcher [13].

2



Pr
ep

rin
t

Table 1: NLP techinques for QDA

Task Method Tools

Find new
codings

Rule based
Manually written rules

tailored to specific codes

Pattern analysis

Corpus
based
(machine
learning)

Keyword extraction

Named entity recognition

Lexical databases

Statistical linguistics

Sentiment analysis

Generate
new codes

Machine
learning

Concept extraction

Keyword extraction

Sentiment analysis

Enhance
manual
codes

Generation
of structured
metadata

Sentiment analysis

Named entity recognition

Facilitate
translations Dictation Voice recognition software

To assess the applicability of NLP to the problem
of autocoding we implemented a prototype to process
experimental results using three interview sets (see
section 4). The manual coding was performed in
MAXQDA1 and exported to the XML file format.

Our algorithm is trained using a subset of the data,
while the remainder is reserved for testing. Any ML
method will require a certain minimum amount of data
to perform well. Our method is therefore not aimed at
projects consisting of two or three interviews. Because
our available data sets were smaller than ideal, we used
a high proportion of test data. We maximized the
available training data by using N-1 of the N available
interviews in Interview Sets 1 and 2 to train, and the
remaining interview to test. We repeated this method
for every interview in both data sets, resulting in N
trials per data set. After training, we compared the
results of the autocoding against the actual coding of
the interviews by the original researcher. In the third
trial, using Interview Set 3, we used coded interviews
as training data and created suggested codings for
uncoded interviews. The proposed codes were supplied
to the original researcher, who manually evaluated the
effectiveness of the autocoding.

We describe the method in more detail in Section 5,
illustrating with examples from the data sets described
in Section 4.

3.1. Metrics

To measure the success of our autocoding algorithm
on Interview Sets 1 and 2, we used recall and precision.

1http://www.maxqda.de

Recall describes the percentage of manual codes that
could be replicated by the algorithm, while precision
measures the percentage of autocoded codes that are
correctly applied.

Both metrics are, to some extent, inversely
correlated. Coding each interview with all possible
codes would yield 100% recall, but this approach would
be punished with a low precision value. Applying only
correct codes sparingly would give high precision but
low recall. We consider the ideal algorithm to be one
which applies all the same codes as a human coder,
with no additional codes, thus displaying 100% for both
recall and precision.

The algorithm only applies one most likely code for
each paragraph, meaning that if that code was also coded
by the researcher this paragraph is considered coded
correctly. A paragraph with many codes applied to it
is thus easier to correctly autocode than one with only
one manually applied code, leading to higher recall and
precision values for densely coded data.

Therefore the result of our NLP pipeline is a
relevance value for each code to each paragraph of
uncoded data. The relevance value determines if a code
should be automatically applied, or reccomended, for a
specific paragraph in the new data.

Precision and recall are not the only metrics that
could be employed to measure replication of human
behavior; a detailed discussion of intercoder agreement
in QDA can be found in Krippendorff [16]. We opted to
use two standard metrics for information retrieval (IR)
for the sake of simplicity.

For Interview Set 3, we relied on the human coder’s
report and focused on the insightful suggestions, as our
previous experiments provided a clear picture of how the
techniques performed at replication.

4. Data Sources

For our research we focused on three different sets
of interviews, which were chosen as examples in part
due to their availability to us. All three were in
English.Table 2 summarizes the data by the number
of codes used in our analysis (top– or second–level),
the total number of codes, and the number of codings
applied by the researchers. The depth of the code system
was 4 levels in data sets 1 and 2, and 3 levels in data set
3. The Each set is described in more detail below.

Interview Set 1 comes from the domain of
software engineering and consists of six unstructured
interviews about inter–cultural challenges that ensue
when collaborating with Chinese software development
teams, from the perspective of German and US
developers [17]. An example code in this data set would

3



Pr
ep

rin
t

Table 2: Overview of Data Sources

Set Domain Used codes Total codes Codings

1 Soft. Eng. 13 68 441
2 Sociology 9 40 315
3 Soft. Eng. 46 104 506

be Trust > Transparency > IP Rights.
Interview Set 2 contains 11 structured interviews

about general life satisfaction [18].We used the second
data set to determine if our approach was suitable not
only for software engineering, but other domains. An
example code in this data set would be People > Parents.

The training data for Interview Set 3 was six
semi–structured interviews with Free/Libre and Open
Source Software community managers on the topic of
episodic volunteering in their communities [19]. With
this data set we used second-level codes rather than
top-level codes. We proposed codes for two new
interviews. An example code in this data set would be
Contributors > motivation > altruism.

We used this data set to evaluate our method
manually. The researcher was asked to evaluate
the suggested codes during the coding process to
determine if they aligned with her own choice,
were inappropriately applied, or provided new insight
resulting in the application of a code she would not have
organically applied.

5. NLP Pipeline and Results

As the purpose of our study was to examine the
feasibility of using NLP to assist in QDA, we present our
results as a more detailed description of our approach,
interwoven with examples from each data set in turn.

5.1. Data Preparation

Pre-processing of interview data is necessary to
preserve useful meta information before parsing the
document. For this study the process was only partially
automated, as the data was not consistently formatted
and needed to be manually reformatted into a common
format. When the text is parsed we can identify
section headers and differentiate between questions and
answers.

While parsing the document some metadata is
also removed which is not useful and may skew the
results. These include time markers which may be
included in audio transcriptions. Such imperfections
in the data represent one of the challenges to be faced
when applying text processing software to real–world
situations.

We also generate statistics of word frequencies
relative to the current document and all documents.

5.2. Processing

An overview of the entire process, from data
preparation through autocoding, is shown in Figure 1.

Figure 1: Process overview

The NLP pipeline component of Figure 1 is shown
in more detail in Figure 2. Each component of the NLP
pipeline is described in greater detail below.

Keyword Extraction. For each code we look
up the coded text within the training data and use
the AlchemyAPI2 keyword extraction service on each
coding. The keywords extracted will be assigned as
semantic content for the corresponding code and can
later be used to identify semantically similar text in
the test data. The same process is used to determine
the semantic content of each interview element. An
interview element is either a question, an answer, or
metadata.

Keyword extraction is used to identify semantically
significant words in a text. In Figure 3 we present an
example result, taken from Interview Set 1, where the
extracted keywords are highlighted.

In this example, the text was manually coded with
the code Turnover. It demonstrates the significance
of attributing actual semantic context to a code.
Some autocoding features in existing CAQDAS tools
support pattern matching for occurrences of a code’s
name within the text. In slightly more sophisticated
mechanisms, synonyms are detected as well. In our
example, this technique would have led to the false

2http://www.alchemyapi.com

Conflation

Lexical Chains 
(WordNet)

Statistical Linguistics 
(DISCO)

Web Queries 
(DAP using Yahoo!)

Filtering keywords by 

- word frequency 
- entity type

Stemmer 
(GATE - Snowball)

Keyword Extraction 
(AlchemyAPI)

NER 
(Annie)

Text element (test data) Coding (training data)- or -

Attribute List of 
Keywords to source

For training dataFor test data

Interview Coding System

Figure 2: NLP pipeline overview

4



Pr
ep

rin
t

Figure 3: Example keyword extraction

application of the code Trust, because this word occurs
twice. We assume that the researcher did not apply
the code Trust in this example because uses of this
code have the semantic context of (mis)trust between
collaborating software developers, whereas in this
paragraph the term occurs in the context of motivation.
Our algorithm correctly detects that most of the text
concerns money, payment and salary, which are closely
identified with the code Turnover.

Conflation and Elimination. An important part
of our autocoding algorithm is different conflation
methods, creating equivalence classes for token
normalization. This allows us to match semantically
similar codes to a text even though the vocabulary within
the training data may differ from that used in the test
data.

Conflation can also be performed on derivations
of the word, as well as semantic relationships from
a lexical database. The more coarse–grained our
conflation methods are, the more information will
usually be lost, but the more connections between codes
and text may be uncovered. The drawback of lost
information is that these new connections may be based
on false assumptions. Conflating “China” with “china”
draws a connection between a country and porcelain
which is undesired, because although the terms are
etymologically connected, they are semantically distant.

All our coding methods were tested in conjunction
with conflation through lexical chains, stemming and
taxonomies created through web queries.

For lexical chains we used WordNet3. WordNet
encompasses 177’000 distinct synsets (sets of cognitive
synonyms), which are structured using different
relationships. One of the relations we are interested
in is the hypernom-hyponym relation. This semantic
relation is a is-a relation, where the hypernym is the
more general term. Through this relation we create

3http://wordnet.princeton.edu

Keyword List: Interview Element

Keyword List: Code

For Each Interview Element

For Each Code

Find Matching Keywords

Store Highest Relevance

Calculate Similarity 
Keywords/Title

Calculate Similarity 
Keywords/Keywords

Result: 
Keyword Count

Result: 
Keyword Relevance

Result: 
DISCO Keywords

Result: 
DISCO Title

Select One

Result: Score And Pick

Compare All Codes

Figure 4: Autocoding overview

a hierarchy of abstractions. We then configured our
prototype to conflate a term with a fixed degree of parent
and child nodes.

For stemming we chose the snowball stemmer
integrated in the GATE framework 4, which is based
on the Porter stemmer. The stemmer performs the
following 5 steps: (1) recode pluras, (2) remove -ed or
-ing, (3) recode y to i, if the stem contains another vowel,
(4) handle double suffix and (5) remove suffixes, if the
removal rule is not violated for the remaining stem.

For conflation through web queries we relied on
Doubly-Anchored Pattern (DAP) [20] with the Yahoo!
web search engine. The DAP pattern is [SeedTerm1]
such as [SeedTerm2] and [X]. For SeedTerm1 we used
the word concept and for SeedTerm2 we used the term
we were looking to expand. An example search term
would be concepts such as trust and.

5.3. Autocoding

During the autocoding process we match each
interview element with a code that is considered to be
semantically closest to the content of the text.

We used complete paragraphs as the unit of
coding. We chose this because the theme of an
answer in the interview became much stronger
in the sentences were not addressed individually.
We unsuccessfully experimented with linguistic
inter-sentence dependencies based on rules using
part-of-speech tagging.

An overview of the autocoding process is shown
in Figure 4. The autocoding process is performed on
all interview element types. This is helpful because a
question may sometimes give a more precise hint about
the context of an answer.

The coding algorithm has two main input
parameters. First, we have the interview element,
containing the actual text, metadata on the interview

4https://gate.ac.uk

5



Pr
ep

rin
t

element type, and a list of keywords associated with
the text. Second, we have a set of codes (the coding
system), each consisting of a set of codings and
keywords associated with this code. In order to simplify
the problem, we flattened the coding hierarchy and
worked with individual codes.

The goal of our algorithm is to select the correct
code from the coding system or to select none, if
the algorithm determines that the semantic similarity
of the text to any codes is below a certain threshold.
We initially set a low threshold, so that even weak
semantic connections appear when comparing our
different methods.

After each interview element has been processed
this way, there is a high probability that too many
codes have been assigned. To counter this effect we
eliminate the least likely candidates among all assigned
codings. Criteria for this selection are the length of the
text to be coded and the score of the assigned code,
which measures the strength of the semantic connection
between code and text. Codes assigned to questions
or metadata are also deleted in this step, to align with
a coding guideline employed by the human coders of
data set 1 and 3 where questions were only coded
together with the answer when the answer was not
comprehensible on its own.

Coding Methods. To calculate the semantic
similarity an interview element to a set of codings, we
experimented with different technologies.

Our first approach was Keyword Count, which
compares a list of keywords generated for an interview
element to each list of keywords assigned to each code,
and counts the number of matching keywords. We then
normalized the count, to account for the fact that codes
which have been assigned more frequently are more
likely to contain matching keywords.

As a baseline to compare the performance of our
Keyword Count method, and to evaluate the suitability
of the chosen keyword extraction service is Word
Count. Word Count works exactly like Keyword Count,
except that every word is treated as a keyword.

The keyword extraction service we used provides
a relevance score for each keyword, which we used
to assign the code with the most relevant matching
keyword in the Keyword Relevance method. Through
experimentation, we found that this method, like
Keyword Count, benefits from factoring in the size of
the text to code and the existing evidence of a code.

We wanted to determine how similar a text is to the
training data even when the vocabulary is completely
disjunct. For this we made use of the DISCO5 tool.
To determine the semantic distance of two words,

5http://www.linguatools.de/disco/disco en.html

DISCO uses statistical analysis on large corpa. We used
DISCO in combination with the British National Corpus
(BNC)6. DISCO calculates the similarity of two words
either by counting and weighing the co–occurrences of
two words in a three word window within the training
corpus or by measuring the distributional similarity
[21]. DISCO creates word position triplets containing
two words and their distance in a window of +/- 3
words. As a first metric, the number of co-occurrences
of both words normalized by their overall frequency
is calculated. In a further step, the two words are
then compared based on their sets of distributionally
similar words to identify words that are not necessarily
co-located directly but have similar sets of co-occurring
words.

In our DISCO Title approach, we calculated the
similarities of each keyword assigned to an interview
element to the name of each code. From these values
we calculated a normalized score for each code. A
significant advantage of this approach is that no training
data is required to perform the autocoding.

We extended our previous DISCO approach with the
DISCO Keyword method, which included the training
data. The similarity between each keyword of each code
and each keyword in the text are also calculated and
normalized.

In another approach, DISCO Inflation, we extended
the vocabulary of the keyword list by adding frequently
co–occurring words within the BNC extracted through
DISCO, and subsequently applied the Keyword Count
method.

We ultimately implemented a weighting scheme to
leverage the benefits of the techniques under different
circumstances. The weighting scheme, Score and
Pick, chooses one of the methods described previously
and assigns the recommended code to a paragraph.
For instance, Score and Pick would choose the code
suggested by Keyword Relevance if the assigned
relevance variable was above a given threshold, or
if the similarity to the codes name was significantly
above average it would choose DISCO Title. We found
that identifying good values for parameters is highly
sensitive to the type of data, even within one study.
Therefore these should ideally be learned on a training
set of the actual data.

Finally for our third data set and the manual
evaluation, we added suggestions based on a simple
pattern matching algorithm similar to what current
CAQDAS packages offer, but different in that it only
tries to match code names with identified keywords and
any of their conflated and related terms or their word
stems. We refer to this method as Direct Match.

6http://www.natcorp.ox.ac.uk

6



Pr
ep

rin
t

Table 3: Recall and Precision for data set 2

Codes Recall Precision Manual
Codings

Day-to-Day issues 79.31% 67.64% 29
Interview Guideline

Topics
70.00% 43.75% 40

Key Quotes 0.00% 0.00% 6
People 14.29% 33.33% 7
Challenges 0.00% 0.00% 1

Total 62.65% 50.98%

The input to all these methods was already processed
by the rest of the NLP pipeline.

5.4. Initial Results

Table 3 shows the results of our algorithm applied to
two interviews from data set 2. The table shows recall
and precision for each of the codes as well as the number
of instances this code was applied by the researcher in
the test data.

Our method only applied one top-level code to
each paragraph. This proved to perform more reliably,
because for each of the top level codes there was more
aggregated training data compared to each individual
lower level code. When autocoding all individual codes
on any abstraction level, the precision fell to 29.7% for
all codes aggregated. We attribute this effect mostly
to the different amount of training data per code, but
it remains open how much other factors, such as the
abstraction level itself, contribute to this relationship
between number of codes and precision. The statistical
effect of a higher chance to choose the wrong code out
of a larger set by chance does not appear to be the main
factor in our case, since recall was not only not affected,
but even slightly improved to 69% when autocoding on
all abstraction levels of the code system.

The code Challenges shows an inherent drawback
of our approach requiring training data. This code
appeared exclusively in one interview. Therefore, when
our data was divided into training and test data, there
was no possibility for instances to be included in both.

5.5. Methods for Semantic Matching

Keyword Frequencies. We experimented with
the frequency threshold under which a keyword is
considered during autocoding. The apparent trend of
our Keyword Count method is that it performs better
if we allow keywords to be associated with a higher
number of codes. On the other hand, we observed
that methods that draw on each keyword’s relevance,
or semantic meaning, show the opposite reaction to

Keyword Count

Keyword Relevance

DISCO
Inflation

DISCO
Title

DISCO
Keywords

Score And Pick

10

20

30

40

50 48

40

46

21

32

40

49

43

51

13

38

44

C
or

re
ct

C
od

es

without stemming with stemming

Figure 5: Impact of conflation (stemming)

changing the threshold variable. The DISCO Title
method is unaffected by this variable, as it does not rely
on training data.

When comparing the Keyword Count method to the
baseline Word Count method, We observed that using a
sophisticated keyword extraction method can double the
number of correctly identified codings.

We also measured the impact of limiting the
frequency of a word in regards to its overall occurrence.
While we found the parameter for inter-code word
frequencies to be a useful variable to tune the algorithm
to a specific method, excluding a word because it is
generally common in all documents did not have a
positive impact. In the test runs, the only method which
slightly benefited from a lower threshold was DISCO
Keywords.

Named Entities. In an attempt to tailor the
parameters of the algorithm more closely to our
semantic context, we experimented with removing
specific entitles that are possibly too common in our
context. However, the results of measuring the impact
of named entity keywords showed, overall, the opposite
trend. Only the methods Keyword Count and DISCO
Keywords were affected.

Stemming. In Figure 5 we present the impact of
one form of conflation, stemming the keywords on our
autocoding algorithm. The results show a significant
variance, but aggregated we see a slight advantage

7



Pr
ep

rin
t

in including stemming. For instance, with DISCO
Inflation, the number of correctly applied codes rose
from 46 to 51 when conflated through stemming. This
method is clearly not suited for DISCO Title, but it
increased the number of correctly applied codes for all
other methods by an average of 9.23%.

Web Queries. Our conflation approach using
web queries was trialed on code titles exclusively,
and on all keywords. Overall, Keyword Count and
Keyword Relevance showed a slight improvement with
this method, while DISCO Keywords performed more
poorly. DISCO Title was unaffected as it does not rely
on training data, while DISCO Inflation benefited from
using web queries on code titles and suffered from its
use on all keywords.

WordNet. We conflated all keywords with
hyponyms, hypernyms, meronyms, holonyms and
derivationally different forms. While this conflation
alone did not provide a significant improvement, it
showed promising results for interviews which had
already been processed using stemming and web
queries, further improving the number of correctly
applied codes by up to 17%.

5.6. Manual Evaluation

With data set 3, the researcher worked through the
two test interviews by first coding a paragraph and then
comparing her codings to the codings proposed by each
method. She indicated if the proposed code had already
applied (accepted), was not appropriate for the context
(rejected), or was appropriate and had not already been
applied (inspirational). Table 4 shows the aggregate of
all three types of results across the two interviews.

In terms of replicating the researcher’s work, DISCO
Keywords has the highest fidelity, with only two rejected
codings. If we consider only these codings, the success
rate of our recommendations is excellent. However,
these recommendations are limited to a fixed unit of
coding. A researcher could apply multiple codings
to a paragraph, whereas our method is designed to
promote a single code for a paragraph or choose
none. This limitation reduces the complexity of
the recommendation system significantly and makes
sensible suggestions possible in the first place while
limiting the scope of the recommendations.

Several methods were able to identify appropriate
keywords which the researcher overlooked. Of the 14
successes, there were 12 unique codings proposed for
11 different paragraphs.

One example of an inspirational coding was the
following, which the researcher coded as practices
> guiding, and practices > communication. DISCO

Table 4: Results of manual evaluation (data set 3)

Method Accept Reject Inspire

Direct Match 185 43 4
Word Count 178 51 3
Keyword Count 188 44 0
Keyword Relevance 179 50 3
DISCO Title 194 38 0
DISCO Keywords 230 2 0
DISCO Inflation 186 44 2
Score And Pick 183 47 2

Inflation suggested contribution types > translation.

Yes. The contact is synchronize first,
to manage the status, to notify about the
new events, to introduce newly funded
project and to tell them how the projects
work, where the resources if they have
questions to answer their questions. There
is a specific case of the translation project
because in the translation it’s important
that all the applications have the same
English word and the same expression
always translate the same way. So there
is a need to big—to match communication
between the translators.

The former example could have been detected by
a naı̈ve approach, as the code appears in the text. It
could be said that the researcher merely overlooked the
applicable coding. However, there were also instances
of more revealing codings, which required inference,
such as the suggestion by DISCO Inflation of market
share for the following paragraph.

So I mean we don’t really know how many
users we have, I mean that’s probably
millions that would be a really—really large
community but of course people are not
interacting usually, so I would say the core
community that’s probably few thousand
people once in a while do something related
to KDE.

To suggest the code market share, the algorithm
needed to link millions with non–active people in the
community, and find the similarity between this and
other applications of the code, which involved counts
of users.

6. Discussion

Since inter-rater agreement scores are highly
dependent on the context of the study it is hard to define

8



Pr
ep

rin
t

generally applicable values for ”good” agreement.
Overall, we found that our autocoding approach, not
surprisingly, fell short of replicating human effort.
However, DISCO Keywords showed high fidelity when
it was manually compared to Interview Set 3, which
suggests that the success or failure of the method may
be related to the researcher or domain. Especially if
precision can be improved in the future, we believe
an autocoding recommendation system can significantly
improve the QDA process.

DISCO Title had the benefit of being independent
of any training data, however it relies heavily on good
naming of the codes. As it is evidenced in Figure 5 the
method doesn’t work when the codes are too broad like
in our experimentation with data set 1 and 2. However,
it doesn’t under-perform anymore when the codes are
more precise and specific like in our experimentation
with data set 3.

When we attempted to provide new information to a
researcher rather than to compare our results to existing
codings, the method showed that the algorithm can
find evidence of new, appropriate codes that the human
coder overlooked. Of course the difference between
inspirational and accepted codes as we defined them was
whether the researcher had also applied them. However,
the fact that inspirational codes existed demonstrates
that the measurement used in the first two data sets,
comparing the recommendations to previously coded
text segments, does not fully measure success of the
method, as the data may be missing codings.

In most of the instances the researcher reported
that the suggestions were not so much inspirational as
helpful in ensuring consistency given a large number
of codes to keep in mind. In a situation such as the
one presented by Interview Set 3, where there were
104 different codes, the reproducibility of the work is
improved when the CAQDAS is able to recommend
codings based on keywords retrieved from data coded
by the original researcher.

Within Interview Set 3, the inspirational codings
were never identified with multiple methods. In most
cases, the other methods all proposed one coding,
while the dissenting method revealed an insightful,
less obvious coding. No method clearly stood out as
consistently providing inspirational codings, indicating
that each method may have distinct benefits which are
not present in the other methods.

This research demonstrates that an approach using
ML and NLP has potential in an assistive capacity
for qualitative interview analysis. Our results show
more support for assisting researchers in maintaining
consistency given a large number of codes, but there
were also instances where the researcher may be

directed toward additional meaning through NLP. There
is significant room for further research to improve the
quality of the results and to present the information
to the researcher in a helpful but unobtrusive
manner. Nonetheless, we feel that CAQDAS could
potentially include this type of support, particularly if
discipline–specific corpa could be employed.

7. Limitations

During our research process we identified some
limitations to autocoding in general and our approach
specifically.

While keyword extraction for natural language is
largely independent of the analysis being done, the
semantic generalization needed for autocoding is not.
For general purpose NLP, large corpora of texts can be
used as training data, but such a large set of training data
is not available for autocoding. Instead data explicitly
tailored to the domain of analysis is required. The
amount of training data available is therefore small by
comparison, constituting only a few interviews in each
case within our examplary cases.

One technical problem, which precluded us from
using multiple data sources coded with different tooling,
was the lack of a standardized representation of coded
data. One development which will aid in the exploration
of using NLP to assist QDA is the REFI-QDA XML7

exchange format, which will simplify the task of writing
software by eliminating the data preparation phase.

A general limitation of any ML algorithm arises due
to the requirement of a certain amount of training data.
Any code which has few occurrences in the training data
might not be detected. These types of codes are common
although they should only constitute a small fraction of
the code system. A general restriction in this respect
is the frequently small sample size of many qualitative
research studies. For smaller sample sizes a rule–based
approach may be more appropriate.

We addressed potential overfitting of our algorithm
by using three different qualitative studies. However,
some variables in our NLP pipeline were configured
manually. It remains open how well a fully automated
algorithm would adjust to a new data set.

Another limitation is, that only the top-1 result is
either chosen or discarded for any paragraph. Further
investigation into an interactive recommendation system
based on a ranking like ours is needed.

7https://www.qdasoftware.org

9



Pr
ep

rin
t

8. Conclusions and Future Work

We assessed the applicability of a wide range
of NLP methods in an experimental autocoding
system for unstructured, semi–structured and structured
interviews. We achieved 45.83% recall and 45.83%
precision for Interview Set 1 and 62%–69% recall
and 29.71%–50.98% precision on Interview Set 2,
depending on the abstraction level of the codes. For
Interview Set 3, our methods were able to identify some
suggested codings which the researcher chose to adopt.

We identified beneficial effects for word conflation
through stemming, DAP and lexical chains. Considering
the question–answer sequence of interviews was also
helpful. No positive effect was observed for using
word frequencies related to the documents, or filtering
keywords by entity type.

Further research is needed to improve upon the recall
and precision, and to address some of the complexities
of QDA we simplified for our investigation. In
particular, future work could incorporate the hierarchy
of the code system, include memos, and consider
overlapping and variable–length codings.

We had relatively small data sets, which showed
some limited value of NLP. Future work could examine
how much data is necessary for our approach to be
beneficial to the researcher. This might be considered
in relation to saturation, which is a common standard
by which the qualitative researcher determines if the
existing data is sufficient.

Further research may also focus on some of the other
fields of application, like generating recommendations
for new codes.

Our research demonstrates the exceptional
adaptability of a domain independent NLP and ML
based approach for autocoding using parts of the study
to be aided as training data. Although our final results
show significantly lower coding agreement compared
to the rule–based approach, the ML approach does
not require the researcher to adapt the algorithm for a
specific domain or data set. Our work demonstrates
the potential of using NLP approach to autocoding to
increase reproducibility and traceability in QDA.

References

[1] N. Mays and C. Pope, “Qualitative research: rigour
and qualitative research,” Bmj, vol. 311, no. 6997,
pp. 109–112, 1995.

[2] A. Martin and P. Stenner, “Talking about drug use:
what are we (and our participants) doing in qualitative
research?,” International Journal of Drug Policy, vol. 15,
no. 5, pp. 395–405, 2004.

[3] J. Neale, D. Allen, and L. Coombes, “Qualitative
research methods within the addictions,” Addiction,

vol. 100, no. 11, pp. 1584–1593, 2005.
[4] K. De Ruyter and N. Scholl, “Positioning qualitative

market research: reflections from theory and practice,”
Qualitative market research, vol. 1, no. 1, pp. 7–14,
1998.

[5] A. Lewins and C. Silver, “Choosing a CAQDAS
package,” tech. rep., University of Surrey, 2009.

[6] E. K. Saillard, “Systematic versus interpretive analysis
with two CAQDAS packages: NVivo and MAXQDA,”
Forum: Qualitative Social Research, vol. 12, no. 1, 2011.

[7] E. Welsh, “Dealing with data: Using NVivo in the
qualitative data analysis process,” Forum: Qualitative
Social Research, vol. 3, no. 2, 2002.

[8] S. A. Bong, “Debunking myths in qualitative data
analysis,” Forum: Qualitative Social Research, vol. 3,
no. 2, 2002.

[9] L. Richards, “Qualitative computing–a methods
revolution?,” International Journal of Social Research
Methodology, vol. 5, no. 3, pp. 263–276, 2002.

[10] C. H. Yu, A. Jannasch-Pennell, and S. DiGangi,
“Compatibility between text mining and qualitative
research in the perspectives of grounded theory, content
analysis, and reliability,” The Qualitative Report, vol. 16,
no. 3, p. 730, 2011.

[11] K. Verspoor, A. Sanfilippo, M. Elmore, and
E. MacKerrow, “Deploying natural language processing
for social science analysis,” in Chicago Colloquium on
Digital Humanities and Computer Science, 2006.

[12] H. Knoblauch, “Qualitative methods at the crossroads:
Recent developments in interpretive social research,”
Forum: Qualitative Social Research, vol. 14, no. 3, 2013.

[13] K. Crowston, E. E. Allen, and R. Heckman, “Using
natural language processing technology for qualitative
data analysis,” International Journal of Social Research
Methodology, vol. 15, no. 6, pp. 523–543, 2012.

[14] K. Crowston, X. Liu, and E. E. Allen, “Machine learning
and rule-based automated coding of qualitative data,”
Proceedings of the American Society for Information
Science and Technology, vol. 47, no. 1, pp. 1–2, 2010.

[15] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and
J. Riedl, “Is seeing believing?: how recommender
system interfaces affect users’ opinions,” in Conference
on Human factors in computing systems, pp. 585–592,
ACM, 2003.

[16] K. Krippendorff, “Agreement and information in the
reliability of coding,” Communication Methods and
Measures, vol. 5, no. 2, pp. 93–112, 2011.

[17] B. Zaghloul, “A theory of problems and solutions
in German/Chinese and American/Chinese software
engineering collaborations,” Master’s thesis, Peking
University, 2014.

[18] C. Silver and A. Lewins, Using software in qualitative
research: A step-by-step guide. Sage, 2014.

[19] A. Barcomb, A. Kaufmann, D. Riehle, K.-J. Stol, and
B. Fitzgerald, “Uncovering the periphery: A qualitative
survey of episodic volunteering in free/libre and open
source software communities,” IEEE TOSEM, 2018.

[20] Z. Kozareva, E. Riloff, and E. H. Hovy, “Semantic class
learning from the web with hyponym pattern linkage
graphs.,” in ACL, vol. 8, pp. 1048–1056, 2008.

[21] P. Kolb, “Experiments on the difference between
semantic similarity and relatedness,” in ODALIDA,
pp. 81–88, 2009.

10


	Introduction
	Related Work
	Research Approach
	Metrics

	Data Sources
	NLP Pipeline and Results
	Data Preparation
	Processing
	Autocoding
	Initial Results
	Methods for Semantic Matching
	Manual Evaluation

	Discussion
	Limitations
	Conclusions and Future Work

