
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

THOMAS WOLTER

BACHELOR THESIS

A COMPARISON STUDY OF OPEN

SOURCE LICENSE CRAWLER

Submitted on 13 May 2019

Supervisors:
Prof. Dr. Dirk Riehle, M.B.A., Michael Dorner, M. Sc
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 13 May 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 13 May 2019

i

https://creativecommons.org/licenses/by/4.0/

Abstract

In order to include open source software in a project, a software developer must
abide to the license the software is published under. However, there are no
clear guidelines for license placement in open source projects. As a result, the
location of the relevant licensing text can vary for each project, making the license
identification process a difficult task. A proposed solution for this issue are license
crawlers designed to search project directories for the licensing information. This
thesis aims to evaluate the existing license crawlers for their functionality and
performance, in order to find out if a sufficient solution to the problem exists.

To do so, we performed a two phased benchmark with 6 license crawlers and 75
open source projects. Firstly, we determined which of the software tools found the
most licenses in a direct competition. Secondly, we evaluated conflict situations
in the output of the best performing license crawlers.

Our results show, that FOSSology and Scancode performed the most reliably.
Looking at the conflict situations, we also determined that FOSSology made
fewer errors in its evaluation. However, we also found that there are four error
categories the crawlers are especially susceptible to.

ii

Contents

1 Introduction 1
1.1 Original Thesis Goals . 1
1.2 Changes to Thesis Goals . 1

2 Research 2
2.1 Introduction . 2
2.2 Related Work . 3
2.3 Research Question . 4
2.4 Research Approach . 4

2.4.1 Overview . 4
2.4.2 Sampling . 5
2.4.3 Study Design . 6

2.5 Research Results . 9
2.5.1 Sampled crawlers . 9
2.5.2 Sampled projects . 15
2.5.3 Phase 1 . 15
2.5.4 Phase 2 . 17

2.6 Results Discussion . 21
2.7 Limitations . 23
2.8 Future work . 24
2.9 Conclusion . 24

Appendices 25
Appendix A Sampling information 25
Appendix B Conflict situations . 26

iii

1 Introduction

1.1 Original Thesis Goals

The goal of this thesis was to survey existing license crawlers on their workflow
and their effectiveness at identifying licenses in open source projects. To do so, a
benchmark with the top 1000 most starred projects on GitHub was planned. By
comparing the results of each crawler we wanted to find out which license crawler
performs best.

1.2 Changes to Thesis Goals

The amount of projects for the benchmark was changed from the top 1000 to a
sample of 75. The reason for this was the project quality among the top rated
projects. A detailed explanation can be found in chapter 2.4.2.

1

2 Research

2.1 Introduction

When being faced with a challenge, today’s software developer can oftentimes fall
back on a variety of open source projects. These projects can offer preexisting
solutions to the task at hand and a chance to access the knowledge and work of
one’s peers. However, while doing so, it is of importance to consider the license
a project is published under. The license determines what restrictions are placed
on the usage of a specific software (Lerner & Tirole, 2005). Therefore, a software
developer should always determine the license of an open source project and only
use it if he is willing to abide to the imposed limitations. However, the process
of finding the appropriate licensing information often poses a problem.

There are no clear guidelines on where exactly the licensing text should be placed.
As a result, the location can vary depending on the project. GitHub, a popular
software development platform, for example suggests that a dedicated file should
be included in the root directory. These files are often named ’LICENSE’ or
’COPYING’ and contain only license relevant data. Another suggestion is in-
cluding the license text in the ’README’ file. However, these two suggestions
are only described as best practices and far from being the only locations used
in open source projects.1 Thus, in the worst case, a project can use completely
unknown means to indicate the license. Furthermore, projects often already use
the work of others and therefore contain several licenses in different locations of
the directory tree, potentially resulting in a conflict situation between licenses
(Rosen, 2005). As a result, identifying the licenses of larger projects can become
a time intensive and error-prone task.

However, there are already a variety of proposed solutions to this problem. Sev-
eral license crawler aim to automatically scan project directories for possible
licensing texts. This process is supposed to be significantly faster than manu-
ally inspecting every subdirectory by hand. Upon completion, the user is then

1https://help.github.com/en/articles/licensing-a-repository

2

presented with an overview of the results. However, the crawlers have not been
thoroughly tested yet. Thus, this thesis aims to evaluate the existing crawlers.

2.2 Related Work

The necessity of identifying an open source projects license is well documented.
If a developer has the intention to open source his work, a license must be chosen.
Generally speaking, the project owner must determine how restrictive the project
is going to be. On the one hand, there are strongly restrictive licenses. With
these licenses, all changes must always be published under the same license as
the original. On the other hand, there are more permissive licenses . These
licenses give potential users more freedom of use (Lerner & Tirole, 2005). Overall,
the choice of restrictiveness can influence aspects of the development process in
meaningful ways. Stewart, Ammeter and Maruping (2006) for example suggest,
that contributors tend to contribute more, the less restrictive the licensing is.
Furthermore, it is important to consider that combining licenses of different types
may lead to a conflict situation (Rosen, 2005). Thus, identifying the license of
an open source project is of great importance. However, the process of actually
identifying where the licensing information can be found, is not covered in much
detail.

Vendome et al. (2017) suggested that there are two commonly used ways to
declare licenses in open source projects. Firstly, source code file often contain a
license declaring comment at the top of the file. Secondly, developers also add
dedicated files containing the licensing text to the projects directories.

German, Manabe and Inoue (2010) investigated the difficulties of identifying open
source licenses in source code. They also concluded that the needed data is most
commonly found in a comment at the top of code files, but a variety of challenges
make an algorithmic solution to this problem a difficult task. They split these
challenges are in 3 categories:

• ’ Finding the license statement’:

Covers the problems that arise because no standard practices about license
placement exist. This includes the necessary text being mixed with unre-
lated text and files having multiple licenses.

• ’ Language related’:

Covers the problems that arise because of human errors in writing/copying
the license text. This includes spelling errors and grammar changes.

• ’ License customization’:

3

This covers the problems that arise when licenses are customized by the
project owner.

Based on their research, they suggested that license verification tools should be
created for the development process. By doing so, a more standardized approach
at license inclusion could be achieved.

2.3 Research Question

Overall, the research goal was to find out, if a reliable license crawler already
exists. The desired tool should be able to scan an open source project and find
all licenses contained within. However, properly validating whether a crawler
located every possible license is a difficult task. Therefore, the two research
questions we aim to answer compare the existing crawlers among each other.

Firstly, RQ1 surveys all the existing crawlers for their output and general cor-
rectness. We wanted to investigate which crawler exceeds at finding licenses in a
project and which of the software tools underperforms in a direct comparison.

RQ1: How do the existing license crawlers compare at finding licenses
in open source projects?

Secondly, RQ2 aims to follow up to this question. We wanted to find out what
differences there are between the best performing crawlers on a file-by-file basis.

RQ2: Is there a significant difference in output between the top li-
cense crawlers?

2.4 Research Approach

2.4.1 Overview

In order to answer our research questions, we oriented ourselves towards Stol and
Fitzgeral (2018) and their ABC framework. The research approach was supposed
to maximize the potential for generalizability of our findings on license crawlers.
Thus, we chose to conduct a sample study. To do so, we first sampled existing
license crawlers and open source projects. This selection then served for a 2
phased benchmark of the software tools against each other.

4

2.4.2 Sampling

Sampling of crawlers

Overall, there is already a good amount of crawlers that attempt to solve the
problem of license identification. The goal of this thesis was to consider as many
candidates as possible. Thus, an internet search was conducted. Searching for
keywords like ’license crawler’, ’license identifier’ and ’license detector’ on pop-
ular online platforms such as Google and GitHub yielded a variety of results.
Additionally, some of the identified crawler’s descriptions gave recommendations
to other, similar projects. These software tools were then also taken under con-
sideration.

Once a potential crawler was found, it was checked for the following criteria:

1. A function to scan a given project for licensing information. This can be
limited to the root directory or extend to the entire directory tree. Only
looking at a single file however was considered to be insufficient.

2. The scanning process is mostly automated and does not require much input
beyond an initial directory name or input file.

3. The output presents the results in a comprehensive manner. In order to
make more in-depth comparisons in phase 2 of our benchmark we needed
the crawlers to give details about their finds.

4. The project is open sourced.

If all criteria were fulfilled, the crawler was considered for further evaluation in
phase 1 of our benchmark. The reasoning for setting the requirements so broad,
is that the field of research is still relatively new. While a number of crawlers
already exist, little has been done to document which works best. As a result,
we wanted to make sure any valid license crawler was taken under consideration.

Sampling of projects

The sampling of projects was one of the aspects of this thesis that was changed
during the development phase. Originally, we intended to benchmark the selected
crawlers by using the 1000 most starred projects on GitHub. The platform was
chosen, as it hosts a large number of projects and offers a curation aspect in the
form of ’starring’ a project. By using the starring feature, users can bookmark
a project. The GitHub documentation states that the overall number of stars
indicates the level of interest in the project.2 The problem we faced was, that

2https://developer.github.com/v3/activity/starring/

5

the interest level in a project did not necessarily mirror the factors we desired
in a project. We were looking for projects that software developers might make
direct use of while working on software. However, the most starred section of
GitHub does containing a variety of projects that do not fit this pattern. The
section includes many projects that are not supposed to be integrated in other
projects. Overall, we wanted to avoid using projects that cover:

• Project lists that accumulate links to different programming resources. An
example for this is the most starred repository on the platform with about
300.00 stars. ’freeCodeCamp’ is an open source codebase that is aimed at
teaching beginners to code.

• Book collections related to specific topics. There are for example collections
of freely available programming books among the most starred projects.

• Joke projects that have no real life application.

• Foreign language projects. As we wanted to investigate the projects on a
directory tree level, we needed to be able to understand the files contained
in a project.

To counteract this problem, we designed a method to filter out the undesired
projects. In order to be added to the final test set, a software project had to
fulfill the following criteria:

• The project is actively working on developing code.

• The project is providing more than just links to other resources.

• It must be feasible that the project is implemented in other projects.

2.4.3 Study Design

Phase 1

Firstly, to find out if any of the license crawler significantly underperformed, we
chose to benchmark all sampled software tools with the success criteria ’total
licenses found’ and ’unique licenses found’. As little research has been done in
this field of research, no gold standard for comparison exists. Thus, we were
unable to compare the output against a perfect outcome. Instead we chose to
benchmark the crawlers against each other.

To extract as much data as possible, we tested each crawler with each project
in our test set. This entire process was almost entirely automated. All license
crawler besides ’FOSSology’ were run as a command line application. This al-
lowed us to start a simple shell loop, that started each crawler with our entire test

6

set. Additionally, we used the ’time’-command available in shell to record the
scanning duration of each crawler. The output of ’go-license-detector’, ’askalono’
and ’licensee’ were then saved by writing the command line output to a text
file. For ’Scancode’ and ’licensechecker’ we simply saved the corresponding out-
put files for each project. In order to use FOSSology the respective client was
used and each project of our test set was uploaded manually. We then star-
ted the ’nomos’ scanner. After the completion of the scans, the ’DEP5’-file and
the ’SPDX tag:value’-file were download to extract the necessary information for
both phases.

To find the total amount of licenses, each output was crawled with a python
script. The total number of licenses each crawler found then served as a base for
our comparison.

To best display the unique licenses found per project we chose do create a simple
table view. This enabled us to make an easy side-by-side comparison. The
leftmost column of the table is used to indicate the project. The topmost row
of the table shows which license crawler the result belong to. This helped us
easily recognize which license crawler performed worse than the others in a side-
by-side comparison. To extract the necessary information from the output, we
wrote a python script that crawls the different output files we created while
benchmarking. The script scrapped the data and then automatically place the
data in a CSV file to create the table view. Figure 2.1 gives an exemplary
overview of the table with 2 projects and 2 crawlers. The actual output of the
script contained all projects and all crawlers, but is not shown in this thesis due
to the size.

Figure 2.1: Example of the table view with 2 projects and 2 crawlers

After the creation of the table, we compared the results with each other in order
to eliminate the weakest performing crawlers. In the end, a list of the best
performing crawlers was passed to phase 2 of our benchmark.

Phase 2

Upon completion of phase 1, we wanted to compare the best crawlers in a more
in-depth manner. To do so, the outputs from the initial benchmark were taken

7

under consideration again. This time we looked at the exact locations of license
hits in the directory tree. By comparing the results of each crawler on this level
of depth, we were able to find conflicts between the remaining tools and thus
draw conclusions. As there are a total of 292573 files in our test set, it was not
possible to check every conflict that occurred by hand. Instead, we looked at 25
random conflict situations.

To display the results in a comprehensive manner, we designed a python script
to create a directory tree view for every project in our test set. In these files
we displayed the path to every component of the project. Each of these paths
was then marked with the corresponding result of the remaining license crawlers.
Figure 2.2 shows an exemplary output.

Figure 2.2: Example of the directory tree view with one license conflict

Afterwards we searched each of the files for conflicting evaluations of the license
crawlers. If two crawlers came to a different conclusion, we added the path and
the results to a master file containing every license conflict in the entirety of our
test set. Upon being added to the master file, we also assigned each path a number
for identification purposes. In order to select files at random, we generated 25
random numbers. These numbers corresponded to the ones assigned in the master
file. The selected files were then investigated by hand.

While looking at specific files, we first located the relevant licensing information.
Afterwards, we compared our result to the evaluation of the license crawlers. By
doing so, we were able to find out which crawler was in the wrong. This allowed
us to draw conclusion on the overall correctness of each crawler. Furthermore,
the cases in which both crawlers failed gave us information on potential error
sources.

8

2.5 Research Results

2.5.1 Sampled crawlers

The following gives a short overview of the workflow of the sampled crawlers.
Additionally, a sample output is demonstrated for each crawler by running the
software tool on a small demo project we created.

askalono

Askalono is a license crawler written in the Rust programming language. To
identify possible licenses, two commands are available. On the one hand, the
user can input the ’id’-command and a file path. The crawler then scans only
the given file for licensing information. On the other hand, inputting the ’crawl’-
command and a directory path, scans the entire directory tree. The workflow of
the id-command is as follows:

1. Normalize the file

Elements such as whitespaces are not necessarily important for the compar-
ison process. Thus, redundant aspects of the input file are removed. The
end result of this step is a normalized text version of the input file.

2. Apply the algorithm

This normalized output is split into bigrams. The resulting set of word pairs
is then checked with sets of bigrams created from actual licenses. After all
comparisons are concluded, askalono outputs the top result.

If the crawl command is used, this workflow is repeated for all possible files.

The output lists the path to every analyzed file and the crawler’s end result.
In addition, each file receives a confidence value, describing the similarity of the
bigram sets with a Sørensen-Dice coefficient. This coefficient describes the overall
similarity of the sets.3 In Listing 2.1, an exemplary output of the crawl function
is displayed.

$ askalono/askalono.linux crawl demo-master/

demo-master/LICENSE

License: MIT (original text)

Score: 0.994

demo-master/subdirectory/LICENSE

License: MIT (original text)

3https://github.com/amzn/askalono

9

Score: 0.994

Listing 2.1: Exemplary output: askalono

FOSSology

FOSSology is a toolkit, that provides the user with license and copyright scanners,
as well as further tools enabling license compliance. However, for this thesis only
the license scanner aspect will be considered. It is available as a command line
application and a client version. The client provides reports in more detail and
was therefore chosen for our benchmark. The workflow of the ’nomos’ scanner is
as follows:

1. Search for keywords

The crawler attempts to search the projects files for specific keywords that
often indicate license texts. Furthermore, in FOSSology there is a measure
to avoid false positives. In addition, the tool considers heuristics during
this process. For example, certain sentences should appear either close to
each other or not together at all. The found files are then passed to the
actual scan.

2. Apply algorithm

’Nomos’ uses a regular pattern algorithm for it’s identification process.
Upon completion the results are made available to the user in the form
of short overviews or lengthy reports.

The more in-depth reports give the exact location of each license identified, while
the short overview simply gives a list ordered by number of occurrences.4 Figure
2.3 gives a look at the overview.

Figure 2.3: Example of the output in the FOSSology client

4https://www.fossology.org/features/

10

go-license-detector

As the name suggests, the ’go-license-detector’ is written in the Go programming
language. The tool is offered both as a library and as a command line application.
To determine what licenses a project may hold, the user gives the crawler a project
directory. The crawler then splits its workflow in several steps:

1. Sample out files with high potential

The crawler scans the given directory for the files containing the licensing
information. It mostly looks for LICENSE files. The results passed to the
next step are the identified files.

2. Normalize the found files

To ease the identification process, the file’s have several parts of their
content stripped away. Firstly, the original file’s format is converted to
plain text, and the unnecessary content, such as HTML tags, is removed.
Secondly, the crawler strips away information, which does not impact the
end result. Lastly, the crawler erases punctuation from the file. By remov-
ing these aspects, as little necessary information as possible is lost. The
result passed to the next step are the files in their normalized form.

3. Apply algorithm

The go-license-detector creates unigrams of the normalized text. These are
then used to count the occurrences of each word. By using ’Weighted Mini-
Hash’ and ’Locality Sensitive Hashing’ the crawler picks similar licenses.
Then a value is set for the similarity.

A possible exception to this pattern, is the absence of ’LICENSE’-files. If no
such files are present, the search is expanded upon. The crawler starts looking
for possible alternatives, such as README files. This is a rather difficult task,
as there are countless possible naming conventions for these files. To solve this
problem, the development team has designed a collection of common expressions
aimed to identify them as best as possible. It important to consider that a
README file often contains more than just licensing information, so the file is
searched for the passages that contain possible license names.5

Upon completion, the crawler will output a summary of the licenses found. This
includes a percentage, describing the similarity to the identified license as well
as the actual name of the license. Listing 2.2 provides an exemplary output of
command line execution:

$ license-detector demo-master/

demo-master/

5https://github.com/src-d/go-license-detector

11

99% MIT

93% JSON

85% MIT-feh

82% Xnet

Listing 2.2: Exemplary output: go-license-detector

It is important to note, that the go-license-detector focuses on the directory it was
given by the user. It does not search the sub directories for potential information.
To be able to compare it with other crawlers that are able to do so, every directory
of every selected project was tested for the later part of this thesis.

licensechecker

Licensechecker is written in the Go programming language It is available as a
command line application. To start the crawler, it requires a directory path. The
resulting workflow can be split in 2 steps:

1. Scan the parent directory for license files

The crawler attempts to find a license file in the input directory by looking
for specific keywords in filenames.

2. Apply algorithm on results

To identify which license the file contains, licenschecker compares ngrams
in the range 2 to 8 of the actual license texts and the found files. If a license
was found, the result is then checked again with the ’Vector Space Modell’.
Furthermore, a confidence value describing the similarity is assigned to each
hit. This license will then be used for every file in the subdirectories of the
project.

3. Remember the results and proced to the subdirectories

The result is then memorized and passed on to the subdirectories. The
crawler also scans each subdirectory for further licenses. The same al-
gorithm as step 2 is used to identify potential hits. If a new license is
found, it is also pased on to the following subdirectories. This is repeated
until a leaf in the directory tree is found. In the end, each file is marked
with every license found on the path.

The output file shows the entire directory tree and marks every file with a
coresponding license and a confidence value.6 Figure 2.4 gives a shortend ex-
emplary output in the CSV format.

6https://boyter.org/2017/05/identify-software-licenses-python-vector-space-search-ngram-
keywords/

12

Figure 2.4: Exemplary output: licensechecker

licensee

Licensee is written in the Ruby programming language. The tool is available both
as a command line application and a library. License identification is possible
with a ’detect’-command, that takes directories, files or a GitHub repository as
input. The resulting workflow looks as follows:

1. Sample out files with high potential

The crawler attempts to estimate the most likely files containing the licens-
ing text. To do so, a number of regular expressions are saved and used to
compare to each file name.

2. Normalize the found files

The software tool removes whitespaces and copyright notices from the file
to make the comparison step easier.

3. Apply Algorithm

Firstly, an attempt at an exact match is made. The developers state that
comparisons are easy for Ruby to handle. Secondly, if there was no match,
the tool will attempt to find out if a file is at least similar to an existing one.
The software employes a Sørensen-Dice coefficient to describe the overlap
between the normalized text and a license text.

The output then list every file found and the result, including the license found
and the confidence.7

$ licensee detect demo-master/

License: MIT

Matched files: LICENSE

LICENSE:

Content hash: 46cdc03462b9af57968df67b450cc4372ac41f53

Confidence: 100.00%

Matcher: Licensee::Matchers::Exact

License: MIT

7https://github.com/licensee/licensee/blob/master/docs/what-we-look-at.md

13

Listing 2.3: Exemplary output: licensee

scancode

Scancode is written in the python programming language. It can be used as
a command line application or as a library, in order to ’discover and inventory
open source and third-party packages’.The crawler takes a directory path and an
output file as input for the following workflow:

1. Gather every file in the directory and subdirectories. Afterwards, the files
are grouped in different categories depending on their type.

2. Start the scan on the collected files, by comparing the texts to a search
index. This includes a collection of possible references to licenses in the
form of ’thousands of license texts, notices and examples’. Hits are then
written to the output file.8

The software can output the result in JSON, HTML, CSV and SPDX. The output
lists every file and all identified licenses as shown in figure 2.5.

Figure 2.5: Example of the output of scancode

Others

Besides the previously mentioned tools, 2 more were discovered. However, they
did not meet the criteria we imposed for our sampling:

• ’licenseclassifier’: Can only be used to scan single files.

• ’LiD’: We were not able to get the tool to work on our system.

8https://github.com/nexB/scancode-toolkit/wiki

14

2.5.2 Sampled projects

We gathered a total of 75 projects fitting the criteria we imposed during our
planning. This collection was then used as a test set for the benchmarking. A
complete list can be found in appendix A.

2.5.3 Phase 1

Total licenses found

Figure 2.6 represents a first overview of our benchmarking. It shows the total
amount of license hits by each of the crawlers excluding licensechecker. Licen-
sechecker had to be excluded, because of it’s output. The crawler marks the entire
directory if a license was found and gives no information on which file contains
the licensing text. Thus, we can not determine how many hits took place in total.
Overall, Scancode performed the best with a total of 82105 hits and an average
of about 1094 licenses per project. FOSSology came in second with 67779 hits
and about 903 average hits. Go-license-detector, askalono and licensee are far
behind those with 1953, 1144 and 131 total licenses found.

to
ta

l l
ic

en
se

s
fo

un
d

0

25000

50000

75000

100000

askalono fossology go-license-detector licensee scancode

Figure 2.6: Total licenses found

Unique licenses found

Furthermore, we considered the amount of unique licenses found in each project.
Like with our previous success criteria, Scancode found the most unique licenses.
A total of 725 unique hits were registered while scanning the 75 projects. FOS-
Sology came in second, finding 667 licenses. go-license-detector, licensechecker

15

and askalono found 361, 238 and 136 licenses respectively. Lastly, licensee found
only 58 unique licenses.

un
iq

ue
 li

ce
ns

es
 fo

un
d

0

200

400

600

800

askalono fossology go-license-detector licensechecker licensee scancode

Figure 2.7: Unique licenses found

Time spent scanning

Furthermore, we also noted the total time spent scanning our test set for all
license crawlers. In this regard, go-license-detector took the longest. However, it
is important to mention that it is not designed to scan the entire directory tree.
As a result the process is not optimized. The best performing license crawlers
FOSSology and Scancode were matched pretty even. The former scanned for
11367.739 seconds and the later scanned for 13370.398 seconds.

to
ta

l t
im

e
sp

en
t

0

50000

100000

150000

200000

askalono fossology go-license-detector licensechecker licensee scancode

Figure 2.8: Total time spent scanning

Because of the large differences in output and efficiency we discovered during
our benchmark, we chose to focus on Scancode and FOSSology going into phase

16

2. Thus, askalono, licensee, licensechecker and go-license-detector were removed
from our list of crawlers.

2.5.4 Phase 2

A total of 149884 total license hits occurred while scanning with Scancode and
FOSSology. Overall, the two license crawler agreed on their result in 124756
of those cases. This amount to a total of 83.24% of all license hits. However,
there were a total of 12564 conflict situation. In order to analyze these conflict
situations, we picked 25 random cases to cover in more detail. Table 2.1-2.3
show the results of Scancode and FOSSology for these cases, as well as the actual
result we found by checking the files ourselves. Furthermore, we marked the
result based on the quality. A green marking means the evaluation was correct,
a yellow marking means the result is a corner case and the red marking means
an error occurred.

17

C
on

fli
ct

Fo
ss

ol
og

y
re

su
lt

/
Ev

al
ua

tio
n

Sc
an

co
de

 re
su

lt
/

Ev
al

ua
tio

n
Li

ce
ns

es
 fo

un
d

Li
ce

ns
e

re
le

va
nt

 te
xt

 /
Ev

al
ua

tio
n

1

Li
ce

ns
eR

ef
-

U
nc

la
ss

ifi
ed

Li
ce

ns
e

M
IT

M
IT

 L
ic

en
se

"U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

n
M

IT
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

th

e
LI

C
E

N
S

E
 fi

le
 a

t h
ttp

s:
//a

ng
ul

ar
.io

/li
ce

ns
e"

⇒
 T

he
 s

ta
te

m
en

t i
s

no
t d

ef
in

iti
ve

. A
 c

ra
w

le
r w

ou
ld

 h
av

e
to

 c
he

ck
 th

e

 p
ro

vi
de

d
lin

k
(N

on
e

of
 th

e
cr

aw
le

r d
o)

.
O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

2

Li
ce

ns
eR

ef
-

U
nc

la
ss

ifi
ed

Li
ce

ns
e

M
IT

M
IT

 L
ic

en
se

"U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

n
M

IT
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

th

e
LI

C
E

N
S

E
 fi

le
 a

t h
ttp

s:
//a

ng
ul

ar
.io

/li
ce

ns
e"

⇒
 T

he
 s

ta
te

m
en

t i
s

no
t d

ef
in

iti
ve

. A
 c

ra
w

le
r w

ou
ld

 h
av

e
to

 c
he

ck
 th

e

 p
ro

vi
de

d
lin

k
(N

on
e

of
 th

e
cr

aw
le

r d
o)

.
O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

3
M

IT
B

S
L-

1.
0

, M
IT

M

IT
 L

ic
en

se
"D

is
tri

bu
te

d
un

de
r t

he
 M

IT
 s

of
tw

ar
e

lic
en

se
, s

ee
 th

e
ac

co
m

pa
ny

in
g

fil
e

C
O

P
Y

IN
G

 o
r

ht
tp

://
w

w
w

.o
pe

ns
ou

rc
e.

or
g/

lic
en

se
s/

m
it-

lic
en

se
.p

hp
."

⇒
 A

ll
fil

es
 in

 C
O

P
Y

IN
G

 p
oi

nt
 to

 M
IT

 /
O

rig
in

al
 s

ta
te

m
en

t s
uf

fic
ie

nt
C

or
re

ct
 e

va
lu

at
io

n
Fa

ls
e

fla
g

4
M

IT
B

S
L-

1.
0

, M
IT

M

IT
 L

ic
en

se
"D

is
tri

bu
te

d
un

de
r t

he
 M

IT
 s

of
tw

ar
e

lic
en

se
, s

ee
 th

e
ac

co
m

pa
ny

in
g

fil
e

C
O

P
Y

IN
G

 o
r

ht
tp

://
w

w
w

.o
pe

ns
ou

rc
e.

or
g/

lic
en

se
s/

m
it-

lic
en

se
.p

hp
."

⇒
 A

ll
fil

es
 in

 C
O

P
Y

IN
G

 p
oi

nt
 to

 M
IT

 /
O

rig
in

al
 s

ta
te

m
en

t s
uf

fic
ie

nt
C

or
re

ct
 e

va
lu

at
io

n
Fa

ls
e

fla
g

5

M
IT

 ,
G

PL
-2

.0
 ,

Li
ce

ns
eR

ef
-D

ua
l-l

ic
en

se
M

IT
 ,

G
P

L-
2.

0
D

ua
l l

ic
en

se
d

un
de

r t
he

 M
IT

or

 G
P

L-
2.

0
lic

en
se

s.
"D

ua
l l

ic
en

se
d

un
de

r t
he

 M
IT

 o
r G

P
L

V
er

si
on

 2
 li

ce
ns

es
.

ht
tp

://
jq

ue
ry

.o
rg

/li
ce

ns
e"

C
or

re
ct

 e
va

lu
at

io
n

N
o

m
en

tio
n

of
 d

ua
l l

ic
en

si
ng

6

M
IT

 ,
Li

ce
ns

eR
ef

-C
C-

BY
-S

A
M

IT
 ,

C
C

-B
Y

-S
A

-2
.5

M
IT

 L
ic

en
se

Fu
ll

lic
en

se
 te

xt
: M

IT
 L

ic
en

se

"A
B

O
U

T_
TE

X
T_

M
D

N
_D

O
C

S
"

 :

"D
ok

um
en

ta
si

 d
an

 lo
go

 g
ra

fis
 M

D
N

be

rli
se

ns
i C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n,
 <

a
hr

ef
='

{M
D

N
_D

O
C

S
_L

IC
E

N
S

E
}'>

C
C

-
B

Y
-S

A
 2

.5
 U

np
or

te
d<

/a
>.

",
⇒

 N
ot

 a
ct

ua
l l

ic
en

si
ng

 in
fo

rm
at

io
n

Fa
ls

e
fla

g
Fa

ls
e

fla
g

7
Li

ce
ns

eR
ef

-M
IT

-C
M

U-
st

yl
e

H
P

N
D

M

od
ifi

ed
 L

ic
en

se
S

lig
ht

ly
 m

od
ifi

ed
 li

ce
ns

e
te

xt
M

od
ifi

ed
 li

ce
ns

e
M

od
ifi

ed
 li

ce
ns

e

8
Li

ce
ns

eR
ef

-P
yt

ho
n

G
P

L-
2.

0-
pl

us
P

yt
ho

n
S

of
tw

ar
e

Fo
un

da
tio

n
Li

ce
ns

e

"T
hi

s
m

od
ul

e
is

 fr
ee

 s
of

tw
ar

e,
 a

nd
 y

ou
 m

ay
 re

di
st

rib
ut

e
it

an
d/

or
 m

od
ify

 it
 u

nd
er

 th
e

sa
m

e
te

rm
s

as
 P

yt
ho

n
its

el
f,

so
 lo

ng
 a

s
th

is
 c

op
yr

ig
ht

 m
es

sa
ge

 a
nd

 d
is

cl
ai

m
er

 a
re

re

ta
in

ed
 in

 th
ei

r o
rig

in
al

 fo
rm

."
C

or
re

ct
 e

va
lu

at
io

n
Fa

ls
e

fla
g

9

Ap
ac

he
-2

.0
A

pa
ch

e-
2.

0
, B

S
D

-3
-C

la
us

e

A
pa

ch
e-

2.
0

"C
op

yr
ig

ht
 2

01
0-

20
18

 J
et

B
ra

in
s

s.
r.o

. U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 th

e
A

pa
ch

e
2.

0
lic

en
se

 th
at

 c
an

 b
e

fo
un

d
in

 th
e

lic
en

se
/L

IC
E

N
S

E
.tx

t f
ile

."
"C

op
yr

ig
ht

 2
00

0-
20

18
 J

et
B

ra
in

s
s.

r.o
. U

se
 o

f t
hi

s
so

ur
ce

 c
od

e
is

 g
ov

er
ne

d
by

 th
e

A
pa

ch
e

2.
0

lic
en

se
 th

at
 c

an
 b

e
fo

un
d

in
 th

e
lic

en
se

/L
IC

E
N

S
E

.tx
t f

ile
."

C
or

re
ct

 e
va

lu
at

io
n

Fa
ls

e
fla

g

10
Li

ce
ns

eR
ef

-B
SD

B
S

D
-3

-C
la

us
e

B
S

D
-3

-C
la

us
e

"C
op

yr
ig

ht
 (c

) 2
01

1,
 th

e
D

ar
t p

ro
je

ct
 a

ut
ho

rs
.

P
le

as
e

se
e

th
e

A
U

TH
O

R
S

 fi
le

 fo
r

de
ta

ils
. A

ll
rig

ht
s

re
se

rv
ed

. U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

 B
S

D
-s

ty
le

lic

en
se

 th
at

 c
an

 b
e

fo
un

d
in

 th
e

LI
C

E
N

S
E

 fi
le

."
O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

Table 2.1: Conflict situations 1-10

18

C
on

fli
ct

Fo
ss

ol
og

y
re

su
lt

/
Ev

al
ua

tio
n

Sc
an

co
de

 re
su

lt
/

Ev
al

ua
tio

n
Li

ce
ns

es
 fo

un
d

Li
ce

ns
e

re
le

va
nt

 te
xt

 /
Ev

al
ua

tio
n

11
CC

-B
Y-

SA
-4

.0
C

C
-B

Y
-4

.0
C

C
-B

Y
-S

A
-4

.0
Th

is
 M

et
eo

r C
od

e
of

 C
on

du
ct

 is
 li

ce
ns

ed
 u

nd
er

 th
e

[C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

S
ha

re
A

lik
e

4.
0

In
te

rn
at

io
na

l](
ht

tp
s:

//c
re

at
iv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-s
a/

4.
0/

)
lic

en
se

. T
hi

s
C

od
e

w
as

 la
st

 u
pd

at
ed

 o
n

A
ug

us
t 2

8,
 2

01
7.

C

or
re

ct
 e

va
lu

at
io

n
In

co
rr

ec
t v

er
si

on

12
Li

ce
ns

eR
ef

-B
SD

B
S

D
-3

-C
la

us
e

B
S

D
-3

-C
la

us
e

"U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

 B
S

D
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

 th
e

LI
C

E
N

S
E

 fi
le

."
⇒

 T
he

 s
ta

te
m

en
t i

s
no

t d
ef

in
iti

ve
. A

 c
ra

w
le

r w
ou

ld
 h

av
e

to
 c

he
ck

 th
e

fil
e.

O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

13
BS

D-
3-

Cl
au

se
N

on
e

B
S

D
-3

-C
la

us
e

Fu
ll

lic
en

se
 te

xt
 (n

o
he

ad
er

):
B

S
D

-3
-C

la
us

e
C

or
re

ct
 e

va
lu

at
io

n
M

is
s

14
Li

ce
ns

eR
ef

-B
SD

B
S

D
-3

-C
la

us
e

B
S

D
-3

-C
la

us
e

U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

 B
S

D
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

 th
e

LI
C

E
N

S
E

 fi
le

.
⇒

 T
he

 s
ta

te
m

en
t i

s
no

t d
ef

in
iti

ve
. A

 c
ra

w
le

r w
ou

ld
 h

av
e

to
 c

he
ck

 th
e

fil
e.

O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

15
Li

ce
ns

eR
ef

-B
SD

B
S

D
-3

-C
la

us
e

B
S

D
-3

-C
la

us
e

U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

 B
S

D
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

 th
e

LI
C

E
N

S
E

 fi
le

.
⇒

 T
he

 s
ta

te
m

en
t i

s
no

t d
ef

in
iti

ve
. A

 c
ra

w
le

r w
ou

ld
 h

av
e

to
 c

he
ck

 th
e

fil
e.

O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

16

Li
ce

ns
eR

ef
-B

SD
B

S
D

-3
-C

la
us

e

B
S

D
-3

-C
la

us
e

U
se

 o
f t

hi
s

so
ur

ce
 c

od
e

is
 g

ov
er

ne
d

by
 a

 B
S

D
-s

ty
le

 li
ce

ns
e

th
at

 c
an

 b
e

fo
un

d
in

 th
e

LI
C

E
N

S
E

 fi
le

.
⇒

 T
he

 s
ta

te
m

en
t i

s
no

t d
ef

in
iti

ve
. A

 c
ra

w
le

r w
ou

ld
 h

av
e

to
 c

he
ck

 th
e

fil
e.

O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

17
Li

ce
ns

eR
ef

-U
ni

co
de

-T
O

U
U

ni
co

de
 In

c
Li

ce
ns

e
A

gr
ee

m
en

t
U

ni
co

de
®

 C
op

yr
ig

ht
 a

nd

Te
rm

s
of

 U
se

Li
ce

ns
e

&
 te

rm
s

of
 u

se
: h

ttp
://

w
w

w
.u

ni
co

de
.o

rg
/c

op
yr

ig
ht

.h
tm

l
C

or
re

ct
 e

va
lu

at
io

n
C

or
re

ct
 e

va
lu

at
io

n

18
Li

ce
ns

eR
ef

-U
ni

co
de

-T
O

U
U

ni
co

de
 In

c
Li

ce
ns

e
A

gr
ee

m
en

t
U

ni
co

de
®

 C
op

yr
ig

ht
 a

nd

Te
rm

s
of

 U
se

Li
ce

ns
e

&
 te

rm
s

of
 u

se
: h

ttp
://

w
w

w
.u

ni
co

de
.o

rg
/c

op
yr

ig
ht

.h
tm

l
C

or
re

ct
 e

va
lu

at
io

n
C

or
re

ct
 e

va
lu

at
io

n

19

Li
ce

ns
eR

ef
-G

P
L

G
PL

-2
.0

+,
 G

PL
-1

.0
+

Zl
ib

42
. T

he
 m

at
ch

.a
sm

 c
od

e
in

 c
on

tri
b

is
 u

nd
er

 th
e

G
N

U
 G

en
er

al
 P

ub
lic

 L
ic

en
se

. S
in

ce

it'
s

pa
rt

of
 z

lib
, d

oe
sn

't
th

at
 m

ea
n

th
at

 a
ll

of
 z

lib
 fa

lls
 u

nd
er

 th
e

G
N

U
 G

P
L?

=>
 A

ct
ua

l l
ic

en
se

 fo
un

d
in

 d
iff

er
en

t f
ile

. L
in

ke
d

in
 th

e
FA

Q
. A

lm
os

t i
m

po
ss

ib
le

 to
 fi

nd
.

O
nl

y
a

re
fe

re
nc

e
w

as
 m

ar
ke

d.

Fa
ls

e
fla

g,
 M

is
s

20
G

P
L-

2.
0+

 ,
LG

P
L-

2.
1+

 ,
M

P
L-

1.
1

, L
ic

en
se

R
ef

-D
ua

l-l
ic

en
se

G
P

L-
2.

0+
, L

G
P

L-
2.

1+
,

M
P

L-
1.

1
G

P
L-

2.
0+

, L
G

P
L-

2.
1+

, M
P

L-
1.

1
V

er
si

on
: M

P
L

1.
1/

G
P

L
2.

0/
LG

P
L

2.
1

D
ua

l-l
ic

en
se

 n
ot

 m
en

tio
ne

d
in

te

xt
C

or
re

ct
 e

va
lu

at
io

n

Table 2.2: Conflict situations 11-20

19

C
on

fli
ct

Fo
ss

ol
og

y
re

su
lt

/
Ev

al
ua

tio
n

Sc
an

co
de

 re
su

lt
/

Ev
al

ua
tio

n
Li

ce
ns

es
 fo

un
d

Li
ce

ns
e

re
le

va
nt

 te
xt

 /
Ev

al
ua

tio
n

21

Li
ce

ns
eR

ef
-

U
nc

la
ss

ifi
ed

Li
ce

ns
e

N
on

e
N

on
e

"N
am

es
 s

ho
ul

d
be

 a
dd

ed
 to

 th
is

 fi
le

 o
nl

y
af

te
r v

er
ify

in
g

th
at

 th
e

in
di

vi
du

al
 o

r t
he

in

di
vi

du
al

's
 o

rg
an

iz
at

io
n

ha
s

ag
re

ed
 to

 th
e

ap
pr

op
ria

te
 C

on
tri

bu
to

r L
ic

en
se

A

gr
ee

m
en

t,
fo

un
d

he
re

:"
Fa

ls
e

fla
g

C
or

re
ct

 e
va

lu
at

io
n

22
Li

ce
ns

eR
ef

-M
IT

-B
S

D
M

IT
 ,

B
S

D
-3

-C
la

us
e

U
nc

le
ar

 li
ce

ns
e

st
at

em
en

t
M

od
er

ni
zr

 2
.8

.3
 (C

us
to

m
 B

ui
ld

) |
 M

IT
 &

 B
S

D
O

nl
y

a
re

fe
re

nc
e

w
as

 m
ar

ke
d.

Th

e
re

su
lt

is
 b

as
ed

 o
n

in
su

ffi
ci

en
t i

nf
or

m
at

io
n.

23
Li

ce
ns

eR
ef

-B
S

D
-p

os
si

bi
lit

y
B

S
D

-3
-C

la
us

e
B

S
D

-3
-C

la
us

e
Li

ce
ns

e:
 B

S
D

 3
 c

la
us

e
In

co
rr

ec
t v

er
si

on
C

or
re

ct
 e

va
lu

at
io

n

24
A

pa
ch

e-
2.

0
A

pa
ch

e-
2.

0
, P

ub
lic

 D
om

ai
n

A
pa

ch
e

Li
ce

ns
e

v2
.0

 w
ith

R

un
tim

e
Li

br
ar

y
E

xc
ep

tio
n

A
pa

ch
e

Li
ce

ns
e

v2
.0

 w
ith

 R
un

tim
e

Li
br

ar
y

E
xc

ep
tio

n
"T

hi
s

fil
e

is
 b

as
ed

 o
n

th
e

re
fe

re
nc

e
C

 im
pl

em
en

ta
tio

n,
 w

hi
ch

 w
as

 re
le

as
ed

 to
 p

ub
lic

do

m
ai

n
by

:"
In

co
rr

ec
t v

er
si

on
In

co
rr

ec
t v

er
si

on
, F

al
se

 fl
ag

25
Li

ce
ns

eR
ef

-A
pa

ch
e-

po
ss

ib
ili

ty
A

pa
ch

e-
2.

0
A

pa
ch

e-
2.

0
lic

en
se

s(
["n

ot
ic

e"
])

 #
 A

pa
ch

e
2.

0
In

co
rr

ec
t v

er
si

on
C

or
re

ct
 e

va
lu

at
io

n

Table 2.3: Conflict situations 21-25

20

Evaluating each of the results on the correctness compared to our conclusion,
we created the following tables. We ignored cases that had insufficient licens-
ing information for FOSSology, because the crawler only marked these with a
Reference-tag. The tag is supposed to prompt the user to act and clarifies that
the crawler only found a small hint at a license. As a result, it is difficult to
judge whether the judgement was correct or not. Scancode had many false posit-
ives, marking license hits that were not actually present or had insufficient data.
Overall, the positive prediction value was 37.5%. FOSSology on the other hand
stayed neutral in a lot of cases. Thus, it’s positive prediction value was much
higher with 66.66%. Both crawlers only had few complete misses.

Table 2.4: Confusion matrix: Scancode

Table 2.5: Confussion matrix: FOSSology

2.6 Results Discussion

The results of phase 1 of our benchmark showed that go-license-detector, licen-
sechecker, askalono and licensee underperformed by a significant margin. Overall,
the four crawler’s combined total hits only amounted to 16.76% of all hits. Look-
ing at the workflow of each crawler and the results of phase 2, we can see that the
crawlers do not look at all files. They make preselections of files they deem likely
to have relevant data. FOSSology and Scancode check every single file available
and ultimately provide a better result. Furthermore, every conflict situation we
investigated dealt with non license dedicated files. This finding also matches
statements of German et al. (2010) about license text often being found at the
top of coding files, as the four crawler do not look at this aspect.

The results of phase 2 helped us identify a variety of flaws in both remaining
crawlers. In most of the cases we looked at, a conflict between the two crawlers
actually meant the result of both was either erroneous or insufficient. Overall,

21

by analyzing the 25 conflicts, we were able to determine 4 different categories of
flaws. The following will give a short explanation of the error and the handling
of the problems by Scancode and FOSSology.

1. License references

One of the major issues was the handling of short references in files. Oftentimes
the header containing the licensing information did not contain the actual relevant
data, but pointers to the actual location. Case 12 for example states that the file
is licensed under a ’bsd-style’-license. To find the actual license one has to look at
the LICENSE file. However, this file can only be found several directories above
the original file. By checking manually we found out that the project is licensed
under the BSD-3.0 license. However, there are multiple versions of this license
family and ’bsd-style’ could refer to all of them. This problem also occurred when
the license relevant text only contained links to a website. Overall, this issue was
found in cases 1, 2, 10, 12, 14, 15, 16 and 19.

• Scancode: The crawler actually guessed the correct answer in the specific
case mentioned above. It conclude that ’bsd-style’-license refers to the BSD-
3.0 license. However, the crawler did not check the corresponding license
file. Thus, it merely made a correct guess. This handling could potentially
prove to be error-prone.

• FOSSology: The crawler did not give a definitive answer in the cases we
inspected. It merely marked the file with a ’LicenseRef-BSD’ tag. This is
supposed to serve as a prompt for the user to manually check the file for
the licensing text.

2. Context

This error was mostly found while scanning larger files that contain text unrelated
to the actual license the project is published under. The crawlers scan these text
files for mentions of any license. However, this text does not necessarily refer to
actual licensing information related to the project. Case 19 for example looks at
an FAQ file in which a question asks if a component is published under the ’GNU
General Public License’. The actual answer to this question states that it is not.
In order to come to the right conclusion, a crawler must be able to recognize this.
Overall, this issue was found in cases 6, 19, 21 and 24.

• Scancode: The crawler marked these cases with an actual license hit.

• Fossology: The crawler marked these files with LicenseRef-tags. Prompting
the user to look at the corresponding files.

3. Incorrect Version

In some of the cases, the crawler was unable to determine the exact version of a
specific license family, even if sufficient information was available. Excluding the

22

cases from category 1.,this issue was present in case 11, 23, 24 and 25.

• Scancode: The crawler identified the correct version in 2 of the cases.

• FOSSology: The crawler made a mistaken in 3 of the 4 cases.

4. False evaluation

In several of the cases checked, we were not able to understand why a license
crawler failed. This includes crawlers marking licenses that were not actually
present, as well as failing to find the correct license. Overall, this issue was found
in cases 3,4,7,8,9,13.

Looking at all the conflict situations we investigated, we found out that Scancode
oftentimes assumes the license based on insufficient information. FOSSology on
the other hand is more conservative with its statements, by only marking the files
with a Reference-tag. Thus, considering the time spent scanning the projects,
our evaluation of the conflict situations and the handling of the error categories,
we found Fossology to be the faster more reliable tool.

2.7 Limitations

Firstly, one of the issues we faced while conducting our benchmark is the sheer
volume of data. All sampled projects together have a total of 292573 files. As
a result, it was not possible to check every single file by hand and the random
selection of conflict situations we made could potentially not be representative of
the actual outcome.

Secondly, a lot of the conflicts repeated themselves many times across the same
project. Some projects copied the licensing header into every file of a directory
and it’s subdirectories. This resulted in thousands of conflicts being virtually
the same. This problem can be seen in table 2.1-2.3, as many conflicts share the
same pattern.

Thirdly, we found that the documentation of the crawlers workflow was often
insufficient. The developers did not properly document every step of their al-
gorithms making the detailing of the used algorithm difficult.

Lastly, it is important to consider that the sampled crawler are still in develop-
ment. The projects are popular open source projects and each have a community
working on them. Thus, potential changes in the future might improve the res-
ults of the crawlers. This makes disregarding any of the software tools for further
study problematic.

23

2.8 Future work

We suggest that there should be further research done investigating the identified
error categories. As the two crawler agreed on a large amount of files, these
conflict situations provide valuable insight. An attempt could be made to add a
solution to resolving the references found in some of the files by following links
or looking for the files mentioned in the header. Furthermore, the problem of
understanding context should be addressed. Some sort of algorithm is necessary
to recognize keywords outside of licensing information. Furthermore, as we were
only able to look at 25 conflict situations due to time constraints, a more thorough
approach could uncover additional information.

Another issue that could arise through the context error category is licensing
trolls. A potential project could maliciously add a simple ’not licensed under’
to their header. Most likely none of the investigated crawlers would be able to
recognize that the statement means the opposite of a hit. Thus, a prevention
algorithm should be considered.

2.9 Conclusion

In this thesis we took an in-depth look at the state of the art of open source
license crawler. By creating a sampled test set of open source projects, we were
able to benchmark 6 of the existing license crawlers in a direct competition.

This showed us that 2 of the 6 software tools strongly outperformed the rest.
Overall, Scancode and FOSSology found 83.24% of all licenses in our benchmark.
Thus, we decided to look at these software tools on a directory tree level. By
considering conflict situations in the output, we were able to find out that both
crawlers have only few complete misses. However, Scancode has a much higher
rate of false positives, while FOSSology is more conservative in it’s evaluation.
Furthermore, we were able to classify the errors made by the crawlers into 4 differ-
ent categories. These categories represent difficult situations for license crawlers
to evaluate.

For future research we suggest to expand the scope of the conflict analysis. Ad-
ditionally, more research is necessary to find solutions to the mentioned error
categories.

24

Appendix A Sampling information

Used projects:

AFNetworking-master incubator-echarts-master react-native-master
angular-master jekyll-master react-router-master
async-master jQuery-File-Upload-master redis-5.0
atom-master julia-master redux-master
axios-master keras-master requests-master
babel-master kotlin-master Rocket.Chat-master

bitcoin-master laravel-master rust-master
bootstrap-master lodash-master RxJava-2.x
brackets-master lottie-android-master scikit-learn-master
caddy-master mermaid-master SDWebImage-master

cpython-master meteor-master select2-master
d3-master moment-master serverless-master

discourse-master node-master shadowsocks-windows-master
express-master normalize.css-master slate-master

flask-master nvm-master socket.io-master
fullPage.js-master nylas-mail-master spring-boot-master

Ghost-master oh-my-zsh-master swift-master
gogs-master parcel-master tensorflow-master

grafana-master pdf.js-master three.js-master
gulp-master pixi.js-master vscode-master
hexo-master preact-master vue-master

html5-boilerplate-master prettier-master x64dbg-development
httpie-master prometheus-master yarn-master
hugo-master quill-develop you-get-develop

immutable-js-master rails-master zxing-master

25

Conflict situations

Appendix B Conflict situations

angular-master/packages/animations/browser/src/render/css keyframes/direct style player.ts

angular-master/modules/benchmarks/e2e test/tree spec.ts

bitcoin-master/src/qt/transactionfilterproxy.h

bitcoin-master/src/test/cuckoocache tests.cpp

brackets-master/src/extensions/default/JavaScriptQuickEdit/unittest-files/jquery-
ui/ui/jquery.ui.tooltip.js

brackets-master/src/nls/id/strings.js

cpython-master/Lib/platform.py

cpython-master/Lib/unittest/ init .py

kotlin-master/core/script.runtime/src/kotlin/script/templates/annotations deprecated.kt

kotlin-master/js/js.ast/src/org/jetbrains/kotlin/js/backend/ast/JsBreak.java

node-master/deps/v8/test/message/fail/rest-param-object-setter-sloppy.js

node-master/deps/v8/test/mjsunit/harmony/regexp-property-lu-ui3.js

node-master/deps/v8/test/cctest/gay-precision.cc

node-master/deps/v8/tools/unittests/testdata/testroot2/test/sweet/testcfg.py

node-master/deps/v8/src/string-hasher.h

node-master/deps/v8/src/compiler/type-narrowing-reducer.cc

node-master/deps/icu-small/source/i18n/simpletz.cpp

node-master/deps/icu-small/source/common/ubidiln.cpp

node-master/deps/zlib/FAQ

pdf.js-master/test/resources/reftest-analyzer.js

prometheus-master/vendor/google.golang.org/api/CONTRIBUTORS

Rocket.Chat-master/packages/rocketchat-ui/client/lib/Modernizr.js

scikit-learn-master/sklearn/utils/multiclass.py

swift-master/stdlib/public/core/SipHash.swift

tensorflow-master/tensorflow/compiler/xrt/BUILD

26

Literaturverzeichnis

German, D. M., Manabe, Y. & Inoue, K. (2010). A Sentence-matching Method for
Automatic License Identification of Source Code Files. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering
(S. 437–446). ASE ’10. Antwerp, Belgium: ACM.

Lerner, J. & Tirole, J. (2005). The Scope of Open Source Licensing. Journal of
Law, Economics, & Organization, 21 (1), 20–56.

Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Pro-
perty Law. Prentice Hall.

Stewart, K. J., Ammeter, A. P. & Maruping, L. M. (2006). Impacts of License
Choice and Organizational Sponsorship on User Interest and Development
Activity in Open Source Software Projects. Information Systems Research,
17 (2), 126–144.

Stol, K.-J. & Fitzgerald, B. (2018). The ABC of Software Engineering Research.
ACM Trans. Softw. Eng. Methodol. 27 (3), 11:1–11:51.

Vendome, C., Bavota, G., Penta, M. D., Linares-Vásquez, M., German, D. &
Poshyvanyk, D. (2017). License usage and changes: a large-scale study on
gitHub. Empirical Software Engineering, 22 (3), 1537–1577.

27

