
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

SEBASTIAN JOSEF SCHMID

MASTER THESIS

A MODEL OF CODE REVIEW PRACTICES

A QUALITATIVE MULTIPLE CASE STUDY
ON CODE REVIEW IN OPEN SOURCE

Submitted on 14 May 2019

Supervisor: Michael Dorner, Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 14 May 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 14 May 2019

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Code review is nowadays viewed as a crucial part of every software project. Be-
nefits, efficiency and effectivity are therefore often the center of attention when
looking at these processes. Beside this, the question arises how in a setting like
open source software development code review is even formally defined and ex-
pected to be done. This includes topics like who is involved in a code review,
what criteria are stated to accept or reject a possible change and who has the
final say about the introduction of a change into the code base. In this thesis,
we use a multiple case study approach to study six different open source software
projects to gather the core expectations about the practices of their respective
way of doing code review. We come to the conclusion that a common model can
be described on how code review is expected to be done in open source software
development.

ii

Contents

1 Introduction 1

2 Research Chapter 2
2.1 Introduction . 2
2.2 Related Work . 4
2.3 Research Questions . 7
2.4 Research Approach . 9

2.4.1 Multiple case study design 9
2.4.2 Case definition . 9
2.4.3 Case selection . 10
2.4.4 Analysis methods . 11

2.5 Used Data Sources . 12
2.5.1 Linux Kernel . 14
2.5.2 FreeBSD . 16
2.5.3 LLVM . 17
2.5.4 Chromium . 19
2.5.5 OpenStack . 20
2.5.6 React . 22

2.6 A model of code review practices 23
2.7 Discussion . 28

2.7.1 Construct validity . 28
2.7.2 Internal validity . 28
2.7.3 External validity . 29
2.7.4 Reliability . 29

2.8 Future Works . 30
2.9 Conclusion . 31

Appendices 32
Appendix A Used Data Sources . 32

References 34

iii

1 Introduction

The overall goal in which this thesis wants to participate, can be defined in a very
concise way: how is code review expected to be done in different open source soft-
ware (OSS) projects and what are the similarities or differences between them?
Of course this is a very broad topic, but this thesis wants to help to answer it by
analyzing the formal settings of such code reviews. If different developers want
to work together on a big software project, they need techniques to assure quality
and interoperability between their work, if they want their project to survive and
be actively used by a community. Without it things would get rather complicated
to maintain with a growing code base - simply because only rarely one developer
alone can know everything about every aspect of code.
This means that rules have to be stated and often these kind of rules are one of
the first ones which are presented to interested developers who want to take part
in such a project. It is not only important to know how the code works and how
it looks like, but also what requirements the process behind a contribution to the
code has. In the end, a contribution has to be accepted to make it to the code
base. So if one wants to contribute, the developer has to know who is responsible,
who will possibly review the change, what might benefit or harm the success of
a proposed piece of code or what kind of change is considered important at all.
These points are all part of a formal framework which has nothing to do with
writing code itself, but rather defining the work between developers and aiming
to make their lives and work better and more productive. The goal of this thesis
is therefore to study this framework - and thus contribute to the overall goal.
Of course, different OSS projects have different expectations about this frame-
work and how they want to work together. Different kinds of hierarchy and fields
of responsibility come with various structures of how a contribution process and
its code review could be organized. Due to this, it is highly interesting, how
various projects handle this process, what they have in common and what might
separate them. This is another goal of this thesis.
So in the end, there are two goals: on the one hand studying the formal process
of code reviews of several chosen OSS projects and on the other hand analyz-
ing, where these practices are standing compared to each other. This is done by
performing a multiple case study.

1

2 Research Chapter

2.1 Introduction

Software is a product that can change very quickly and can be adjusted to almost
any means that requirements demand. Therefore it is most important to check
changes and adjustments with attention. Over time, means of checking code
have been introduced to help developers with their task on writing useful code
and preventing or finding errors. An example for a method from the past is the
so called code inspection, a very formal way of reviewing code line by line in a
group, which is reported to detect errors very efficiently, but also needs lots of
preparation and organization (Galin, 2018). Today developers use easier and less
formal approaches to review code changes which do not need a significant amount
of preparation and are faster to carry out (Bacchelli & Bird, 2013).

But not only in closed industrial settings or in enterprises software is produced
and during this process code reviews applied. Also in OSS projects, which have
an equal interest of writing good software, code reviews are a mean of checking
contributions, maintain quality and manage changes. These processes of course
have to be defined by the respective authorities of these projects and considered
by everyone who wants to take part in such projects (Prokop, 2010). The OSS
communities therefore have to deal with these frameworks of code reviews.

The reasons and expectations behind doing code reviews are versatile and still
subject of current research (Bacchelli & Bird, 2013). Initially defects, bugs and
other errors should be caught before they can be introduced into the code base.
Code should ideally only improve if it is changed. But also other positive side
effects can occur. Not only is the whole code quality increased by applying code
reviews, e.g. by enforcing a certain common coding standard or style guide, but
also life between developers is influenced. Team awareness and productivity, es-
pecially in commercial settings, are touched by interpersonal expectations which
are generated by code reviews: in the end, a developer does not want to be em-
barrassed by having errors pointed out in submitted code, so the efforts of passing
the code review on first try by writing extra good code are increased.
Also effects of transparency occur, because it is much more difficult to make

2

quick-and-dirty fixes or change the direction of code development in a certain
direction if other developers also have to give their approval. Lastly, code review
comes with interesting passive benefits which can not only improve the code, but
also the author’s skills. By actively discussing and being exposed to the work
of others, surely a reviewer will get to known new ways of thinking and coding.
Likewise an author is expected to deal with the reviewer’s comments and think
about made errors and proposed solutions. This is something that goes beyond
the pure amount of external links and references that are provided and used by
authors to improve their code. It is a process that is steadily and subconscious.
Nevertheless it is a very important aspect and benefit of code reviews, which can
lead on the one hand to personal training and growth of individual developers,
but also on the other hand to a better, more homogeneous development team
with almost equal experience.
Alternative solutions result partly from defect detection and partly from know-
ledge sharing. If a review is not only seen as a limited time where code has to
be examined, but also has space for discussion and group-based thinking and
problem solving, as it has been observed especially for OSS projects from Rigby
and Bird (2013), a review can quickly evolve from pure defect finding to think
tank like work groups. However the original task of performing reviews may not
be lost out of sight, but surely the chance of getting together and improving the
code while one is at it, is something desirable.

As it can be seen, the expected benefits behind code reviews are promising and
useful, so an OSS project has enough reason to state rules for a code review
process. This means a theoretical framework is issued on how code review is
expected to be done. The consequence for contributors and developers is that
they not only have to deal with the code and its properties itself, but also with
processes and paths which have to be taken to get their ideas accepted and com-
mitted to the code base. So if one wants to contribute, the developer has to know
who is responsible, who will possibly review the change, what might benefit or
harm the success of a proposed piece of code or what kind of change is considered
important at all. These information are all part of a formal framework which
has nothing to do with writing code itself, but rather defining the work between
developers and aiming to make their lives and work better and more productive.
The contribution of this thesis is thus an analysis of this theoretical code review
framework by performing a multiple case study on several OSS projects, extract-
ing the below stated key information according to our research questions and
comparing their practices to each other.

3

2.2 Related Work

Code review practices, benefits and processes are all topics of current research.
They are not only considered for settings in open source software development,
but also in industrial and academic settings.

In their work, Bacchelli and Bird (2013) researched the modern, lightweight form
of code review (in contrast to classic formalized code inspection) with focus on
expectations, outcomes and challenges. By observing and conducting interviews
as wells as surveys with employees of Microsoft, they concluded that the expected
benefits of code review are far more than only finding defects, despite this being
the number one reason why it is done. It also promises positive effects on the
overall coding standard, solution finding and improvement of the development
team, e.g. by knowledge transfer and team awareness just by being exposed to
the work of others. These expectations give a good reason why code review is
done at all, and why even in an industrial setting the invest of performing reviews
is done.
Similarly, Rigby and Bird (2013) compared the practices of industrial projects,
e.g. of Google and Microsoft, with OSS projects, e.g. Linux and KDE, to find out
the respective parameters of peer review (such as review intervals or number of
involved reviewers) deviate among these projects. They found that the similar-
ities among these projects are quite significant. Especially in OSS development,
code review has to follow a ”lightweight, flexible process” where preferably small
changes are reviewed as quickly as possible before they are committed. Also,
modern reviews changed in general from pure defect finding sessions to group
problem solving.
The survey of Bahamdain (2015) discusses quality assurance in OSS development,
especially the general framework and processes in defect detection. They state
that after a bug is detected, possibly reported and verified, the code for solving
the bug is on one hand permanently reviewed by the author, which is called self-
review by them. On the other hand, before the code can be handed in, it needs to
be reviewed by another developer such that no new defect is introduced and the
solution for the former defect is in fact provided. They explain that the group
of core developers and co-developers would provide in this context high quality
code, care about fixing defects and reviewing code contributions.
In a case study of the Apache Server project, Rigby, German and Storey (2008)
study the peer review process for review-then-commit and commit-then-review
to determine its parameters and compare them to formal code inspections. Here
they focused on parameters like how many reviewers would respond to a review
or how long a review takes. By examining review threads, mailing lists and com-
mit logs, they found that most changes are reviewed by two individuals (despite
the Apache policy asking for three core-group members for a review) and over

4

80% of reviews are reviewed in less than 3.8 days. They state that in the case of
Apache, the ”early, frequent reviews of small, independent, complete contribu-
tions conducted asynchronously by a potentially large, but actually small, group
of self-selected experts leads to an efficient and effective peer review technique.”
Rigby (2011) extends the work of Rigby et al. (2008) by examining six OSS pro-
jects in terms of archival records of reviews and semi-structured interviews with
developers with focus on review practices. He comes to the conclusion that re-
views are often chosen by reviewers according to interest and skill, which also
defines their involvement. In terms of why patches tend to be rejected, the in-
terviewees state that mostly purely technical reason or violations of the project’s
scope are the issue. The latter often tends to spark lengthy, unproductive discus-
sions which threaten the effectivity of code reviews. All in all, OSS development
regards code reviews as most important quality assurance practice.
The work of McIntosh, Kamei, Adams and Hassan (2014) focused on software
quality in OSS in dependence of code review coverage and participation. In a
multiple case study of Qt, VTk and ITK projects, the authors found that soft-
ware quality might suffer because of a lack of participation and discussion in code
review, which can lead possibly more post-release defects. Furthermore they sug-
gested that high code review coverage rates do not necessarily hinder software
from becoming defect-prone, which leads them to the assumption that other in-
fluences are present.
Baum, Liskin, Niklas and Schneider (2016) formulated a classification scheme to
describe code review processes in industrial settings. To get their structure, they
studied reviews in 19 companies by interviewing software engineering experts and
augmented their findings with a semi-structured literature review. They conclude
that despite all interviewees having a common idea of code review, they deviate
in the details. Their scheme concentrates on describing facets like process em-
bedding (e.g. tools or RTC and CTR), reviewers (e.g. amount and population),
checking (e.g. interaction and roles), feedback (e.g. type of communication) and
overarching facets (e.g. tool specialization). Their results can be used to de-
scribe review processes accordingly, but do not make general statements about
the framework.
Sadowski, Söderberg, Church, Sipko and Bacchelli (2018) researched the code
review process at Google to investigate practices, motivations as well as satis-
faction and challenges with it. Not only is code readability and maintainability
more important than defect finding, also the review process focuses on being
lightweight and flexible and values code ownership by assigning only one single
reviewer. Despite mostly reviewing only small and iterative changes, developers
view code review as necessary and valuable. Hindrances in the process itself are
often due to geographical and organizational distance, social gradient between
the involved programmers and mismatches about the review subject (e.g. design
reviews) or the context of the change, for instance why it was introduced in the
first place. In general, Sadowski et al. observe that the bulk of reviewed changes

5

are small, have at most one reviewer and no comments beside an approval to
commit. About 70% of the changes are committed less than 24 hours after the
review process has been started.
Rigby and Storey (2011) investigate interaction between programmers and mech-
anisms in broadcast based peer review used in OSS projects. They found that
participation as a reviewer mostly depends on the personal interest in a change
and also that patches which fail to generate such, are rather ignored. Depending
on the nature of a patch, technical or in dependence of the project’s objectives,
different reviewers take interest and part, whereas there are no specific roles as-
signed to them. They also find reviewers’ personality and the general tone in a
review to take a major role, e.g. a negative contribution would be a rude one or
one that is too specific to be relevant in general. Furthermore they investigate
mailing lists for reviewers in the Linux project and find that, while it is allowed
to add specific reviewers, still others contribute which leads to advantages from
broadcast mailing lists as well as expert reviews.

Based on the related works given above, we can see that code review, and es-
pecially in OSS, is a field which attracted a good amount of attention. Often
questions are asked about the effectiveness of reviews, which parameters in gen-
eral are influencing the code review, who takes part and what makes a code review
process a good one. But seldom the question arises, what the projects behind
the code review process even expect, what they see fitting as a change or what
is considered something to make it accepted or rejected. These questions, which
will be defined in detail in chapter 2.3, are the ones we want to answer.

6

2.3 Research Questions

In this section we define our research questions. As we explained in our motivation
in the introduction, our overall goal is to analyze the theoretical framework of
how code review is expected to be done in OSS projects. To answer this, we want
to study the following research questions in relation to OSS projects:

RQ1: ”Which roles are involved in the review?”

Many developers interact together in an OSS project on their code. On the one
side is of course the author who wants to make a contribution or a change, but
who else is involved in the code review process? And if they are involved, on which
basis - maybe voluntarily or just because it is their respective responsibility? Or
have they even been picked by the author? With this question, we take a look at
all other roles in the code review who are involved.

RQ2: ”Which roles accept or reject a change?”

On some point in time the review might come to a positive end and no more
objections or concerns are left to deal with. But is the change now immediately
merged into the code base? Is it accepted without any further thought after
the review and applied? Or is there another instance, another check, who has
the final say about if a change is accepted or rejected, even if it passed the code
review? This question analyzes hints about the possible outcome of code reviews.
We examine what is stated about the actual possibility of implementation of the
change and whose decision it might be.

RQ3: ”What are acceptance and rejection criteria for a change?”

Changes are thoughtfully reviewed to maintain a certain quality in the code base,
such that it is necessary to apply standards of expectations in the review. But
which kind of criteria are usually applied when a change is proposed by an au-
thor? What kind of advice is given by the OSS project to meet these criteria and
make it more likely to be accepted? And what is considered a reason for rejection
from the beginning on? Here we analyze what is stated from the official sources
what might increase or decrease the chance of submitting successfully code and
passing the review.

7

RQ4: ”When does code review happen in the development process?”

Code review is a crucial part of software development and has direct influence
on what finally makes it to the code and what not. Merging an unstable or
error-prone piece of code too early might introduce therefore a risk for the rest
of the software, so the question arises how it is dealt in general with new code:
is the review done before the commit, called review-then-commit (RTC) or after,
called commit-then-review (CTR), as defined by Rigby (2011)? Are there maybe
any special situations, where exceptions might be applied? Here we analyze if
something is specifically stated about these situations and how the timeline of
the code process is defined normally.

RQ5: ”What is the coverage of reviewed changes?”

Code submissions might contain lots of changes, but do really all of them have
to be reviewed? Or are there some kinds of changes which are excluded per se,
and if yes, for what reason? With this question, we take a look at the general
review policy of OSS projects of what has to be reviewed at all.

In the following chapters of this thesis, we present the results related to these
research questions. We will come back to discuss these and their results in chapter
2.6.

8

2.4 Research Approach

To study how code review is expected to be done in OSS projects and their
similarities and differences, we performed a multiple case study as defined by Yin
(2014).

2.4.1 Multiple case study design

According to Yin (2014), a case study can be used to study a phenomenon in
its natural, real world context. Our overall question in this context is how code
review is expected to be performed in the context of OSS, therefore a case study
is a proper way to answer this question. Furthermore, we do not need any control
over the specific ”behavior” we want to research, in this case the way of perform-
ing code review: we can not and do not want to control how OSS projects review
their code changes, so a case study is still the best choice as compared to a con-
trolled experiment. Lastly, the subject we are focusing on, the code review, is a
contemporary topic and not entirely historical. Yin defines ”historical” as events
where no direct observation could be done anymore, but in the case of active,
alive OSS projects as the ones we have chosen (cf. chapter 2.5), this definition
does not apply.
The technique we are using is defined as a cross-case analysis (Yin, 2014). A single
case study in this context would produce only a singular contribution about how
a specific OSS projects would handle its code review and what expectations are
given. But because we want to differentiate between several OSS projects to get
an insight in their similarities and differences, we need several cases we can study.
Thus we need a multiple case study with different defined cases, where we can
analyze each ones theoretical frame work on code review, and after that a way
to compare these.

2.4.2 Case definition

The projects we want to study have to fulfill several criteria such that they can
be considered a valid case for our multiple case study:
First of all, they need to be an OSS project, meaning that it is a project which
permits non-exclusive commercial exploitation, availability of the work’s source
code and derivations of the work itself. (St. Laurent, 2004)
Second, we want to investigate code review as a contemporary topic and so we
need OSS projects that are still under development, although we allow them to
already have released versions. As long as there is still active development ongo-
ing we consider the project to be alive. Therefore projects which are completely
released and entirely finished would only provide entirely historical data.
Third, open collaboration and code review must be implemented in these projects.

9

Obviously it does not make sense to investigate an OSS project’s framework
if none exists. Because of this we ask our projects to have such kind of processes
defined and of course also accessible to us and potential new developers.
Fourth, to get a well-rounded profile, we want to define our cases as mix of literal
and theoretical replications (Yin, 2014) of each other, where we expect a common
ground in terms of the code review framework. Two variations are regarded in
this context, the one is the domain, which is covered by the project’s scope, e.g.
the project is an operating system or a browser. The other variation is the age of
the OSS project, where we want to get a range of older, more established projects
with potentially more sophisticated processes, and newer projects, which could
give insight into more recent processes and new approaches in code review. Our
main interest in selecting cases as theoretical replications is, that we want to cover
a good basis of OSS projects in general and not a single area of it, such that our
multiple case study is well-rounded. Literal replications give us the opportunity
to directly compare projects for common aspects.

All in all, we define our cases as contemporary, varied OSS projects with act-
ive development and code review process, to get a comprehensive insight into the
common practices and expectations of Open Source Software code review.

2.4.3 Case selection

According to our definition of possible cases, many projects would be possible can-
didates. As a mature and successful project to start with, we consider the Linux
Kernel, which is already running since 1992. From there on, we get FreeBSD as
a literal replication, and the newer projects listed as theoretical replications with
variation across age and covered domain. The complete list of selected cases is
given in Table 2.1.

Table 2.1: Selected cases for multiple case study

Project Age Domain
Linux Kernel 1992 Operating System
FreeBSD 1993 Operating System
LLVM 2000 Compiler
Chromium 2008 Browser
OpenStack 2010 Cloud computing
React 2013 GUI framework

We explain which data sources were used, the process of data collection and how
they connect to the research questions in chapter 2.5.

10

2.4.4 Analysis methods

The logical connection between the gathered data concerning the review pro-
cesses and the results has been made according to Mayring (2015). We ap-
plied qualitative content analysis methods to the data sources with the goal to
gather relevant information concerning our research questions, which is defined
as structural content analysis.
For this, we pre-defined categories on our built knowledge base around the topic,
which was derived from the related works on this topics (cf. chapter 2.2) and
the research questions per se. Then we applied these categories via coding to
the gathered material of the single cases and refined the categories in two iter-
ations to get to detailed assignments of material parts to emerging answers for
the research questions.
After coding the material, we determined the characteristics of the several cases as
it is suggested by Mayring for content-oriented structuring: the extracted, relev-
ant material has been paraphrased and then summarized according to categories.
From there on, we interpreted the found data of each single case and compared
them to the other cases with focus on common or differentiating aspects. Based
on this, we built our theory of what OSS projects expect as a framework for their
code review processes.
As a tool for gathering, categorizing, coding and comparing the data of the single
cases, we used MAXQDA2018 (2018).

11

2.5 Used Data Sources

The research questions in chapter 2.3 ask for investigations with focus on the
theoretical framework of how code review is expected to be done in OSS pro-
jects. The definition of the cases and which ones we want to study have already
been stated in 2.4.3. To get appropriate data for our research, we need valid data
sources which are within in the bounds of the case study. Yin (2014) defines six
different ”sources of evidence” for a case study: documentations, archival records,
interviews, direct observations, participant observation and physical artifacts.
Because of the limited time in which this work was written, we decided not to
gather evidence in form of interviews, direct observations or participant observa-
tions, although this direct interaction with developers and reviewers might yield
very deep insight into the code review process itself and how the participants
understand the expectations of their projects.
Physical artifacts are exemplary defined by Yin as ”technological device, a tool
or instrument, a work of art, or some other physical evidence”. None of these
categories can be applied to the expectations of code review, therefore we did not
consider them as source of evidence for this research.
Archival records would concern quantitative evaluations of code reviews, e.g. the
data base of a reviewing tool, which could give a good insight of how review is
actually done. This kind of source is often used by other researchers (e.g. in the
work of Rigby (2011)) who want to understand the effectiveness of reviews, but
in our case this does not apply. We want to investigate what is expected rather
than what is actually done, therefore this source is of little use for us and not
considered.
Finally, documentations yield the information we want to examine. The official
online wikis and web representations of the selected OSS projects often state rules
and hints for new developers about how the development process works and what
they have to bear in mind. This also concerns the review process, where often
is stated under which conditions patches or changes can be handed in, and also
sometimes mentioned what might be a benefit or what should not be done. We
consider these official statements, given in the online sources, as explicit declar-
ation in terms of what is expected on how code review has to be done and in
what kind of theoretical framework it is embedded. This is the main source of
evidence we have used for our research, but also linked sites and documentation
from these official websites where appropriate. References to the respective OSS
sources, which have been examined, are given in appendix A.
After getting to the official sources, the data collection and analysis methods
stated in chapter 2.4.4 have been applied. This means that the pre-defined codes
have been applied to the data and refined, afterwards extracted, paraphrased and
then summarized according to category concerning the research questions.

12

In regards of difficulties during the data collection process, we can report no
restrictions in terms of accessibility of the wikis or the linked sites. In the end,
OSS projects want to propagate their processes to new and interested developers.
Therefore they have to make their requirements publicly accessible and clear how
things work. Unfortunately, this information is often neither available in one spot
nor written in a manner that states specifically what is the gist. Examples, code
snippets or vague hints in the text can distort the core messages and different
terminologies for the same things exist among the various projects. By the means
of the distributed nature of wikis and beginner’s instructions, as well as possibly
bloated text, it might be possible that not all details in every single case could
have been gathered. But because we are investigating several OSS projects as
cross-cases and compare them to each other, we are confident that the respective
hints of evidence of the single cases complement each other to give a wholesome
picture.
Furthermore, it is seldom stated what exactly is considered as beneficial or hinder-
ing in a code review, but mere instructions on how a the process is working and
what is expected to be done or included. From this basis on, we had to interpret
the possible effects of such statements on the answers to our research question.
For instance, if it is stated in connection to code reviews that the styleguide has
to be respected in every contribution to the code base, we interpret this point as
it being beneficial for the change to be accepted. That means in this example,
if the styleguide is respected, the code change is more likely to be accepted than
rejected by the reviewer.
Lastly, it has to be considered that the online sources are used as they are presen-
ted officially by the OSS projects. We assume in our data collection process that
all these sources are up to date, well maintained and represent the truth and
very own intention of these projects. If this would be of course not the case
that, for example a wiki would be outdated by far and deviate from the current
expectations of its project, the gathered data would be invalid. To the best of
our knowledge, all the used data sources stated in appendix A are up to date.

The following part of the chapter presents our gathered data of each single case
which was stated in chapter 2.4.3. The results of the cross-case analysis and
answers to our research question will be given in chapter 2.6.

13

2.5.1 Linux Kernel

For Linux Kernel it is custom that each patch has to be reviewed for quality and
that it provides desired changes to the code base. This means there is a strict
review-then-commit (RTC) practice for normal patches, which is summarized by
the uncompromising statement:

’Patches do not go directly from the developer’s keyboard into the
mainline kernel. There is, instead, a somewhat involved (if somewhat
informal) process designed to ensure that each patch is reviewed for
quality and that each patch implements a change which is desirable
to have in the mainline. This process can happen quickly for minor
fixes, or, in the case of large and controversial changes, go on for
years. Much developer frustration comes from a lack of understanding
of this process or from attempts to circumvent it.’ - kernel.org

The only exemption from this process might be fixes for exploitable security
issues, which have to be deployed as quickly as possible. These are not handed
in over the regular public mailing lists for review, but instead given to a specified
email address and reviewed afterwards.
In terms of who is involved in the review process beside the contributor, we
identify the reviewers in early stages, who respond according to mailing lists where
potential changes are posted and their personal interest. Also maintainers, who
are defined as code owners and experts on the respective area which is changed,
and other developers who work on this code are informed and expected to review
the change. Especially for bug fixes, the original owners have to be contacted as
well.
After a review is finished and accepted, the final decision has still to be made
if the change will be merged into the code base, which does not automatically
apply. Instead, an approval of an appointed authority has to obtained. In general
this authority is defined as follows:

’There is exactly one person who can merge patches into the main-
line kernel repository: Linus Torvalds.’ - kernel.org

Linus Torvalds theoretically acts as central authority, which can decide about all
patches, but in reality he does not. He cannot manage all changes on his own,
therefore there exists a so called lieutenant system of appointed top-level main-
tainers who represent him in their respective subsystem of the kernel. The chain
leads further down in a ”chain of trust” to other maintainers with their respective
field, such that these experts are expected to only accept changes which conform
to the stated standards of the projects. If these lower positions accept a patch,
it is normally automatically approved by the higher positions in the hierarchy
because of this trust, and then merged into the code base. As a consequence
they are distinctively called gatekeepers. Therefore this whole systems relies on

14

a distributed system of authorities with mutual trust, acting together as a board
which controls the possible patches.
Criteria for the approval or rejection of a change are given in the Linux Kernel
wiki in form of hints and checklists. They tell developers how they can get their
submissions to be accepted more quickly. Next to points like technical compliance
(e.g. the patch is tested and has no compiler warnings or errors) and following
the style guide, it is also crucial to document all changes in the code. Interesting
for acceptance of the patch into the kernel is also that a documented endorsement
by reviewers, who are known to be specialists on the subject, increase the chance
of getting approved overall. Social interaction and communication between au-
thor and reviewer do also play a major role, where politeness and patience are
considered as very positive. Miscommunication and undesired behavior, like ig-
noring answers or trying to take shortcuts in this process, are regarded as severe
violation. To give an example of how sincere these inter-personal rules are for
Linux from a reviewer’s view, we would like to quote the subsystem maintainer
Greg Kroah-Hartman as an example.

’Here’s some very easy and simple steps that you can follow to en-
sure that you make a Linux kernel subsystem maintainer mad enough
to never want to read your patches again: [...]
- Send patches that ignore the well documented and established coding
style rules.
- After having the aforementioned coding style rules pointed out to
them, continue to send patches which ignore them. ’ - kroah.com

Beside these rules for basic interaction, it is also asked for that patch emails for
reviews are easy to read and quick to process. It is explicitly stated that if e.g.
a change is given as a MIME attachment, it would be impossible to comment
the code directly. Also it would take more time to process (especially for Linus
Torvalds), what on the other hand would decrease the chance for getting accepted.

15

2.5.2 FreeBSD

The official wiki of FreeBSD states that all ”non-trivial” changes have to be
reviewed before they can be committed to the code base (RTC), especially for
parts where the programmer is inexperienced with. However, if a developer is
working on a bug in an abandoned area of the system, commits can be made just
like that. The same applies for working on ones own code. For the case that
code is changed, which belongs to a certain other maintainer, the FreeBSD wiki
defines a coarse exemption from code reviews:

’Only if the maintainer does not respond for an unacceptable
period of time, to several emails, will it be acceptable to commit changes
without review by the maintainer. However, it is suggested that you
try to have the changes reviewed by someone else if at all possible’ -
freebsd.org

’If queries go unanswered or the committer otherwise indicates
a lack of interest in the area affected, go ahead and commit it. [...]
If there is any doubt about a commit for any reason at all, have it
reviewed before committing. Better to have it flamed then and there
rather than when it is part of the repository.’ - freebsd.org

This does not mean that no review will take place, just because no one obvious
is there to care about it, but rather that it is postponed. A review will therefore
take place.
Reviewers involved in this process are picked by the author via Phabricator, the
used reviewing tool. First of all the contributors are asked to refer to code owners,
defined as original authors of certain changed code pieces, or the maintainers who
took over. Also other committers to the same code are considered as potential
reviewers and lastly volunteers, which can be added or chosen by the author. All
in all the reviewer should at least be an expert to be really able to understand
the change and review it properly. This serves as a possibility of last resort.

’In some cases, no subject-matter expert may be available. In
those cases, a review by an experienced developer is sufficient when
coupled with appropriate testing.’ - freebsd.org

Beside being a first position as reviewers, maintainers also function as owners and
responsible authority for tracking changed code. Only if a maintainer agrees, the
code can be contributed. The only exemption is the above stated case that no
answer is given for a too long period of time. Beside this, code can also have a
group of developers act as equal maintainers and not only a single responsible.
New committers also have a mentor who has to give an approval for potential
changes to the FreeBSD repository and acts as a guide.
Criteria for the approval of a change and a positive code review are given in

16

statements concerning what to provide for a review. Formal points like handing
in a defect-free code, documentation of the change (e.g. proper description and
title) and a manageable workload, meaning several small changes which are fast
to review, are expected to be done. Also the declared style guide has to be taken
into account. Coding style and readability are topics which are quite endorsed by
FreeBSD and are referenced from the official wiki to the website of Julio Meroh
as an explanation to the FreeBSD review process culture.

’Code reviews exist to give someone else a chance to catch bugs
in your code; to question your implementation in places where things
could be done differently; to make sure your design is easy to read and
understand (because they will have to understand it to do a review!);
and to point out style inconsistencies. ’ - julio.meroh.net

As already mentioned, additionally the endorsement of a mentor is obligatory for
new committers.
What is explicitly emphasized as ”strongly discouraged” it the usage of advert-
ising clauses and new licenses in new code. Legal matters like these shall be
avoided and if they are nevertheless applied, it has to be inevitably approved by
the core development team.

2.5.3 LLVM

According to the LLVM developer policy, all changes by all developers have to be
reviewed before they can be committed (RTC), especially if significant changes
are introduced. Only small changes or patches in areas where the author owns
the code can be treated the other way round, meaning commit and then review
(CTR). In the same manner trusted contributors are allowed to commit their work
first and let it review afterwards. Nevertheless all code is required to be reviewed
at some point, hence there are no exceptions from this rule. The combination of
this process is called their formula for success by LLVM.

’The LLVM Project relies on two features of its process to main-
tain rapid development in addition to the high quality of its source
base: the combination of code review plus post-commit review for trus-
ted maintainers. Having both is a great way for the project to take
advantage of the fact that most people do the right thing most of the
time, and only commit patches without pre-commit review when they
are confident they are right.’ - llvm.org

The reviewing process is organized via Phabricator, where the author is asked
to pick one or two suitable reviewers. LLVM recommends to pick and include
the code owner of the respective area of code in each case. The role of the code
owner is exactly defined as the one who has to make sure that in the assigned are
all changes are reviewed. And even if the owner would not have enough time to

17

review any changes, it is still in the owner’s responsibility to make sure it is still
done. Furthermore, other contributors to the same code piece are recommended
as suitable reviewers because of their work in the same area. In general anyone
could act as a reviewer and also code review from anyone who is interested is
welcome. Of course the self-selected reviewers by the author are only asked to
review the patch, but not required to participate. They can also refuse to be
picked.
All changes require on the one hand the approval of the reviewers from the LLVM
community who review the code. Only if they actively give their agreement in
the end, the change can be further processed. LLVM states in this context, that
there exists nothing like a ”silent approval” or a request for ”active objections
to the patch with deadline”. The whole process is expected to be regarded as
iterative and as a consequence needs this specific agreement in the end. The final
approval of the change lies in the responsibility of persons with subversion write
access.
Changes are required to have a clean and readable documentation, such that it
can be clear what is tried to achieve with it. The same is valid for the coding style,
which should always follow the style guide to a source that is ”uniform and easy to
follow”. This is explicitly embraced. Also the provided code must be technically
compliant to be accepted (e.g. no errors or warnings on compiling) and should
include a testcase. In the same manner the provided tests from LLVM have to
be passed. If the commits fail to comply to the technical and quality standards
of LLVM, they are rejected, but the author is welcome rework the change and
trying again. Regarding the nature of the change and the inter-social aspects,
developers are asked to ensure beforehand that bigger contributions are discussed
with the community.

’The design of LLVM is carefully controlled to ensure that all the
pieces fit together well and are as consistent as possible. If you plan to
make a major change to the way LLVM works or want to add a major
new extension, it is a good idea to get consensus with the development
community before you start working on it.’ - llvm.org

Especially for big changes, it is desirable that code changes are as small as pos-
sible and split up into several patches which build on each other. This reduces the
workload for each code review, makes it faster and according to LLVM increases
the chance that a reviewer would take a quick look at it. In the same fashion this
tends to give code pieces a higher coding standard and reduces the chance to get
a negative feedback from reviewers.
As mentioned above, violations against the style guide or non-compliant technical
errors are clear reasons to reject a change. Also it is explicitly stated that includ-
ing legal matters, which conflict with the terms of the LLVM license, are a reason
to exclude and reject the contribution, too. This includes adding confidentiality
or non-disclosure notes.

18

2.5.4 Chromium

The development process of Chromium defines as default way that first a review
has to take place and then code can be committed (RTC) via the commit queue.
Beside this there are also defined steps where a commit can be made with a
review afterwards, called ”To Be Reviewed” (TBR) in this context, which is the
same as a commit-then-review (CTR). It is again emphasized that nevertheless a
review has to take place and cannot be omitted. There are two common reasons
where CTR can be applied, where the first one is to revert previous changes that
broke some important functionality, to get the system running again. The second
stated reason for TBR are emergencies which assume not enough time for proper
review. After code has been directly committed in this case, still the respective
code owners have to be informed and a review has to take place as defined in
TBR.
Regarding the part of what has to be reviewed, it is given several times that all
changes have to be reviewed, whether RTC or CTR is applied. The intention
behind this is simple:

’Code reviews are a central part of developing high-quality code for
Chromium. All changes must be reviewed.’ - chromium.googlesource.com

In the review involved are several roles. On one hand any committer can be
appointed as reviewer by the author and participate. On the other hand at least
one owner for each changed directory has to be included and give approval to
the changes in the review. In general it is embraced to choose reviewers who are
familiar with the code parts that are touched by the author or at least know the
low-level code parts.
Approval to a code change is given by the reviewers, when they are satisfied
with the patch, which is an incremental process. Beside the agreement of the
common reviewers, especially the approval of the code owners of the sections is
needed. Only if their mandatory assent is given, a contribution can be introduced
into their respective area. This means, if a patch touches several directories, all
owners have to agree in the end or the patch cannot be applied.
In this context it should be mentioned that the whole review process of Chromium
and the guideline for authors is captioned by the name ”Respectful Changes”.
Authors are asked to document their code well and give suiting descriptions with
the problem as well as what they are changing and why they are changing it.
This ensures readability and saves time. Following the sytle guide is required
and using respective tools to validate ones code is encouraged, which would save
again time and show respect to the reviewers. The usage of Clang’s formatting
is stated as something that should be always accepted by reviewer. In terms of
respect, authors are also reminded that code reviews are centered around code
and not the person behind it. A polite way of interaction is encouraged:

19

’Code reviews are in large part about having others watch your
back. Don‘t hesitate to say “Thank you” once the review is completed.
Additionally, if you’re new to code reviews, take a few moments to
reflect on what went well or didn’t.’ - chromium.googlesource.com

This is also encountered again in the demand to make small changes and hand
them in as a series or separate patches, to ”spare your reviewer time or cognitive
load”. Big patches on the other hand are unlikely to get reviewed quickly. Also,
authors have to make sure that their code is ready for review at all, which means
that it can compile without errors and passes all tests. Chromium ties this is
again to respect of reviewers who would expect code to be provided in such a
manner.

2.5.5 OpenStack

In OpenStack a contribution can only be made, if a review has been success-
fully carried out and approved (RTC). This also means that all changes and
contributions to the project have to be reviewed. The approval for a change
normally requires agreement from non-core reviewers as well as mandatory from
core reviewers, but it is sub-project dependent what was agreed upon. After
that approval is given, the change is merged automatically into the code base by
Gerrit, the used tool. This is the standard way for changes, but for certain cir-
cumstances, like trivial patches, this process can deviate. Although the approval
of core reviewers can be dropped or reduced, it still is an RTC process.
Involvement in the review process includes on one hand the already mentioned
core reviewers, whose expertise is crucial to the whole process. Beside them any
developer in the project can give comments or be a reviewer and give a vote for
the change, although it is not stated how the reviewers are picked.
The approval process for a change relies on a voting system, which gives regu-
lar reviewers the chance to give a +1 or -1 to a change during review. Positive
votes indicate agreement with the change as it is, negative votes the opposite.
Additional to this, core reviewers can give a +2 or -2 vote to indicate their opin-
ion in a same manner. Nevertheless of the sum of votes, which represents the
general consent of reviewers, at least one +2 vote is necessary for a change to
be approved and merged. Mind that a +2 vote and two +1 votes are not the
same. The authority of the core reviewers is very strong in this context and it is
convention that two +2 votes are needed. Their role as experts is underlined as
only merited members of the project’s community can be appointed:

’A core reviewer is a member of the OpenStack community that
has volunteered to dedicate time to reviews for a specific project. To be-
come a core reviewer, the interested person is required to have provided
enough reviews to the project in order to demonstrate the understand-
ing of the project structure, goals and policies.’ - docs.openstack.org

20

Once the change is reviewed and accepted by the reviewers and core team, it is
set to a respective state and added to the job queue. It will run through several
tests automatically and, if they are passed, be merged to the project’s code base.
OpenStack presents a list of several points to ”keep in mind when doing code
review”, which is addressed to developers. It is emphasized beforehand that
through reviews the social norms and development processes of OpenStack could
be learned. Beside this, review guidelines have also been stated which aim to
help identify issues, make the review easier and guide the interaction between
developers. An important point is documentation, which includes e.g. comments
in the code or in the commit message. Clear labels about what and where things
are fixed or at least a clear title and summary have to be given. Typos in
important key words of a commit message are for example considered as valid
reason to reject a change.

’For example, if there is a patch submitted which a reviewer can-
not fully understand because there are changes that aren’t documented
in the commit message or code documentation, this is a good time
to issue a negative score. Patches need to be clear in their commit
message and documentation.’ - docs.openstack.org

As clear as the documentation should be, also the code has to look like: the style
guide of the sub-project has to be followed, and if none exists the OpenStack’s
general style guide is valid. This requirement is strongly related to the demand
to give ”pythonic” code. The code should ”look like the code around it, to make
the code more uniform and easier to read”. Readability and maintainability are
both emphasized again in the general guidelines for reviews. Of course, technical
compliance is also demanded, e.g. that the code should built and pass all test
without errors, introduce no new bugs or that technical standards in the project
are followed. Examples for this are the logging standard or the support of py-
thon2. For general interaction, the guidelines summarize the gist in the short
sentence:

’Review is a conversation that works best when it flows back and
forth.’ - docs.openstack.org

Reviewers and submitters alike are addressed in this part of the guideline, but
submitters in particular are asked to be responsive to the comments of reviewers
and address their requests. Equally, reduced complexity in changes is preferred,
where patches focus only on solving one problem at a time. If the patch is too
big or complex, the change will be rejected and the contributor asked to split it
up or rework it to get multiple reviews for it.

21

2.5.6 React

Although the review process documentation of React is sparse, it is apparent in
the contribution guide that their process follows an review-then-commit process
(RTC). The pull-request, which is initiated and send out by the author, will be
reviewed by the core team of React. They will then decide about the status of
the change. Either it will be accepted by them and therefore merged, changes
requested or rejected.
Crucial to the submission is that the Contributor License Agreement for React
is accepted once - without it no pull request can be accepted. For the code itself,
React has stated a list of points to be checked before a changes are handed in.
What is considered important, is to follow the style guide and of course to provide
error free code. For the style guide criteria, React provides an automatic code
formatter name ’Prettier’ which should be used - also to get a good and readable
coding style. Technical compliance is also required, e.g. by asking the author to
include tests for fixed bugs. Distinctly marked is the point that React will not
consider violations against their core principles.

’We wrote this document so that you have a better idea of how
we decide what React does and what React doesn’t do, and what our
development philosophy is like. While we are excited to see community
contributions, we are not likely to choose a path that violates one or
more of these principles.’ - reactjs.org

These core points include things like interoperability, stability or the basic com-
position of React. All in all, the fundamental style of React may not be violated
at all. Issues like these or impacts like performance issues and features that in-
flict difficulties on building future applications, are reasons to reject a submitted
change, according to Alpert, software manager and core team member at React.

22

2.6 A model of code review practices

After we have presented the respective cases and their expectations to code re-
view, we want to consider these frameworks and their differences and similarities
to build our model of code review practices. This happens with respect to our
research questions, which we have defined in chapter 2.3, in the form of a multiple
case study. The given topics, concepts and expectations emerged by applying the
qualitative content analysis according to Mayring to the material, as stated in
chapter 2.4.4. A short overview over all findings with respect to their research
questions is given in figure 2.1 and explained later on in detail.

Figure 2.1: Overview over findings for each research question

RQ1: ”Which roles are involved in the review?”

Beside the author who wants to submit a change, there is a whole variety of
persons involved in the review process. Coarsely they can be split up into four
groups, which interact on several levels and can overlap even in persons and re-
sponsibilities: experts, owners, reviewers, and authorities. Not all projects state
these roles explicitly, but they make use of the responsibilities and parts they
represent in the review process.

Author
The author is the role which initiates the change and hands in code for review.
While all other stated roles can take directly part in the process by reviewing
the code, the author cannot be a reviewer. Nevertheless the impact of the role
is given by the general influence on the review, e.g. by selecting the reviewers or
the manner how the code is presented to them. In the end it is the author’s work
which is considered during review.

Experts
Experts are developers who have certain knowledge in some area of code, either
because they have already committed to that part, have appropriate expertise

23

about the functionality or are simply part of the maintainers of this area. They
are endorsed as reviewers by all projects and often stated together with owners
or authorities. Their judgment of the change can be considered crucial, as in
OpenStack, where merited core reviewers can block a change completely.

Owners
Owners act as roles which are responsible for the respective area and piece of
code which is altered by the change. They can also be experts and extend their
role by the fact that they are solely responsible for all that matters in their piece
of code. Often they are included as reviewers (e.g. in Chromium mandatory, in
FreeBSD and LLVM only recommended) or have to be at least informed about
the change, because they have to ensure that a review takes place (as in LLVM).
In any case they have to give their approval to the change.

Reviewers
Reviewers are the complete group of developers who review the changes and also
form a superordinate group for experts, because they are normally reviewers, and
owners, although they don’t have to actively review but still can choose to do
so. Reviewers can be self-selected by the author (e.g. experts), can get involved
voluntarily because of their own interest (regular developers) or because it is their
responsibility to do so (e.g. owners in Chromium). Self-selected reviewers are
addressed by the author directly, for example via personal mail or via the respect-
ive tool which is used and then expected to take part in the review. Criteria for
picking these reviewers are often given in a loose manner, but can be summarized
to choose experts and owners. Other reviewers, which are not self-selected, can
get active, because the change has to be announced via a special mailing list, like
in Linux. Then everyone in this mailing list has a chance to act as reviewer and
give comments. Other ways include that fixed group of reviewers exists, which
will always review all changes without any influence of the author, like the core
team in React.

Authorities
Authorities are persons which are not the respective owners or maintainers of a
piece of code and not otherwise directly involved in the review itself, but still
have to be considered in the process. While owners act as ”local” authority and
can take directly part as reviewers or even as expert, authorities only consider the
more abstract level of changes, f.i. if the philosophy or goals of the project are
touched by the change. While in the end all projects ensure that only changes are
merged which suit their goals, only the Linux project states Linus Torvalds and
the lieutenant system as single authority which act in this context as last decision
maker. The other projects distribute the authority of approving a change more

24

on the other, directly involved roles.

The common ground in the chosen OSS projects is therefore that review should
be done by someone who is directly involved in the changed code, either through
expertise or responsibility. However it is diverse how authors get their reviewers,
either because they pick them or because the reviewers get active on their own,
either voluntarily or by obligation.

RQ2: ”Which roles accept or reject a change?”

Of course the reviewers, consisting of experts, owners and other developers, have
to decide during the review, if a change can be accepted or not. But beside these,
the change itself also has to be approved such that it can be merged into the code
base. This is part of the authority role, which is also involved in the process.
The common ground is that in all cases the authority is held by a respective group
of people, which decide if an approval can be given and act together as a board.
This can be the core reviewers in OpenStack, the sum of owners in Chromium,
the chain of trust in Linux, the core team in FreeBSD and React or the person
responsible with subversion write access in LLVM. Normally one of these group
members has then an area of responsibility, where such approval is given on behalf
of the group. All in all, these authorities have also a common background: they
are designated by merit and trust. First, it is very beneficial if someone is given
such authority, if they have worked for some time for the project in a constructive
way, and second, they are given trust in terms of decision making about whether
or not a new change can be merged into the mainline.
The main difference is however, how far this authority goes: whereas in Linux
subsystem maintainers have far more rights in terms of merging and feature
decisions, core reviewers in OpenStack have just their focus on reviewing changes.
This if of course inherent to the role behind the authority - if it is only defined
as a role to review and not to decide about the future of the project, one cannot
expect it to have more rights.

RQ3: ”What are acceptance and rejection criteria for a change?”

Five big common points emerge from the stated criteria of the OSS projects,
about what is expected as beneficial for a code review. These criteria are tech-
nical criterion, documentation criterion, style criterion, social criterion and con-
tribution structure.

Technical criterion
Not only code without any defects, bugs or mistakes is considered as technical
compliant. Also if current or correct libraries are used, the compilation has

25

neither warnings nor errors, and all provided tests are passed, then code is con-
sidered as functional and compliant with the technical standards of the project.
This is a core expectation of all projects and without it, no change will be accep-
ted in the code base. Strong rejection criteria are changes that contain defects
or lead to regressions, instabilities, and performance issues.

Documentation criterion
As important as correct code is considered, is also the need to document it prop-
erly. This applies on the one hand for documentation in the code, like comments,
on the other hand also for commit documentation and messages about the patch
itself. Certain parts like the title, a description of the features and what code
parts are touched are also essential as documentation for the commit itself. The
benefit is simple, because if reviewers can easily read what a change should do
and what the code does, it is far more easy to understand it and to give appro-
priate feedback. Code which is not or only very sparsely documented tends to
be very hard to understand and therefore is likely to be rejected until everything
has been explained properly.

Style criterion
Even if the code is functional and the documentation for the patch is done, the
manner of the code itself is important to the project. The projects aim to get
readable and maintainable code, such that the sources are easy to understand and
have a uniform style. This is also ensured by the common request to follow the
style guide and coding conventions. It is beneficial if the reviewers see that the
change follows these requests and is easy to understand, although small, justified
deviations are often allowed.

Social criterion
Beside the change itself, the general interaction with reviewers and other involved
persons must be considered. OSS projects expect their authors to be aware of
social norms and manners, especially during reviews. This involves core traits like
being polite and patient, and to support the reviewing process by being open to
communication and discussing about the code. Self reflection and an open mind
for the opinion of others help avoiding a deadlock. On the other hand, things
like trying to work around the review process, being impatient or not responding
to comments during review are not beneficial and also considered rude towards
reviewers and the OSS project.

Contribution structure
What also has to be kept in mind is the workload which is generated by handing
in a change. It is embraced that breaking up bigger patches into smaller parts

26

makes reviews faster and reviewers likelier to take a look at it. Also it is stated
that smaller changes are easier to understand and therefore are more likely to be
accepted. In short, if authors are aware how they structure their contribution into
smaller workloads, they can influence the likelihood of their reviewers accepting
these smaller patches.

The stated points are common to all selected OSS projects. Beside this, some
projects also explicitly state that the introduction of non-applicable legal matters,
f.i. new licenses or non-disclosure notices, are reasons to reject changes. On the
other hand of course, the OSS’s license has to be agreed to such that a contributor
can even hand in code. These issues are also important but only rarely stated
directly in relation to review criteria.

RQ4: ”When does code review happen in the development process?”

All OSS projects implemented an review-then-commit process as standard way
to commit a change to the code base. This means that an author has to give the
change to one or more reviewers, potentially self-selected or involved by other
circumstances, get their approval and only then it will be merged into repository.
Beside this regular process, some projects have defined commit-then-review pro-
cesses for special reasons. These include the ”to-be-reviewed” (TBR) process of
Chromium for emergency commits or reverting patches that have broken the core
functionality, or less urgent reasons, like for very trivial changes, as it is defined
by LLVM, or if simply too much time has passed and a request for reviews goes
unanswered by the responsible maintainer, like FreeBSD rules. But in every case
it is assured and explicitly explained, that even if the commit goes first, in every
case a review will take place and nothing is left out.

RQ5: ”What is the coverage of reviewed changes?”

The common consent of the chosen OSS projects is that all significant changes
must go through a reviewing process at some point in time. The only part where
the projects differ, is the definition of their minor exceptions of this process. E.g.
if code is considered orphaned, FreeBSD states that a commit can take place
without checking with other developers, or that only non-trivial changes should
be reviewed. But nevertheless, it is stated often in all cases that all changes
have to be reviewed, independent of RTC or CTR, emergency or incident. The
reason for this is simple and has already been given as a citations from LLVM and
Chromium in their respective cases: via reviews, the projects expect to maintain a
high quality in their code, and to achieve this they defined their review processes.

27

2.7 Discussion

In this chapter, we discuss the limitations of our multiple case study as well
as concerns which could arise. To address this, we use the four common quality
criteria for case study research as defined by Yin (2014). These tests are construct
validity, internal validity, external validity and reliability.

2.7.1 Construct validity

Construct validity tries to identify whether the correct operational measures for
the studied concept have been applied. In our research this measure for studying
the review model of OSS projects is that we gathered their published descrip-
tions of their review processes and then analyzed them. All used data sources
are directly related to the OSS projects and therefore represent insights into the
definition of their processes. Concerns about the measure to get our results are
therefore addressed by this fact, because our chain of evidence is established.
Furthermore we use multiple sources of evidence in our multiple case study. Al-
though we were only able to use process documentation from online sources in
our study, we have documentation of several different cases. These complement
each other to give a wholesome of sources about the review processes in general.
Data triangulation with respect to other sources, like interviews etc., could not
be established. The reasons for this are stated in chapter 2.5.

2.7.2 Internal validity

Internal validity tests the causal relation between a studied effect and a possible
explanation which is given by an explanatory study. The method we used is a
multiple case study, which concentrates on analyzing and describing the frame-
work in which OSS projects define their review process. With this we describe our
code review model. Because our research is therefore purely descriptive, and not
explanatory or causal, we do not address rival explanations or pattern matching.
We study what is expected to be done in these review processes and do not try
to explain why.
The gathered raw data needed interpretation to be evaluated during cross-case
analysis, which means researcher bias might be possible. The risk of introdu-
cing own expectations towards the research and its results is reduced by using
content-oriented structuring. This helps as analytic strategy to find emerging
answers and topics based on the data itself and not mainly influenced by our
assumptions.

28

2.7.3 External validity

External validity addresses the possibility to generalize our findings. Since our
research is not based on a survey or other quantitative methods, we cannot use
the argument of statistical generalization to generalize our findings to some kind
of population where a respective sample would be picked from. Rather we use
analytic generalization to justify the possibility to generalize our findings with
respect to our replication logic. Since we chose our cases as literal and theoretical
replications, we got well-rounded cases we could study. Furthermore, by applying
a cross-case analysis to these cases and considering all cases with respect to each
other, we get robust findings.

2.7.4 Reliability

Reliability ensures that the findings of this thesis can be repeated by another
researcher with the same cases again. We ensure this by using MAXQDA2018
as a tool which saves our raw data and coding in a database, such that all used
data and their analysis can be understood. Also the documentation of our used
methods and processes is given in the methods section (chapter 2.4) of this thesis.
Together with the used data sources and shown limitations in chapter 2.5, we are
confident that our research can be repeated.

29

2.8 Future Works

After our research has been presented and its limitations have been discussed, we
would like to take a look at possible future works.

In general we described a theoretical framework of code review practices which
contains expectations of OSS projects. This does of course only describe how
a process should ideally look like, but not necessarily how they are practiced in
reality. A next step would therefore be to evaluate the model towards the pro-
cesses and how they are realized by authors and reviewers. Interesting points in
this would be differences and similarities between model and reality as well as
potentially why they occur. The ratio of how these expectations are actually met
could be an indicator if these processes are defined in a realistic and proper way
or if they do not meet real world issues at all.

The review processes are defined as they are because of specific reasons, mostly
because several benefits are expected. These expected benefits are already covered
by current research, f.i. Bacchelli and Bird (2013). A new aspect would be to
study how the defined framework of these processes influences these presumed be-
nefits or quality in a positive or negative way. For example, changes are expected
to fulfill the style criterion to make code readable, but on the other hand might
force authors to change their own style in a drastic way. An interesting aspect
of this point would be if therefore also the change’s code quality is different as
compared to no enforced style.

Another point to compare with this model would be the expectations of indus-
trial software projects towards their code review processes. The circumstances of
how code is written could differ very much in terms of potential reviewers, role
distribution and acceptance criteria. Therefore it might be interesting to see how
a potential model of industrial code review might look like and how it relates
to the one of OSS. Another approach could involve comparisons to inner source
techniques. And in the end, of course it is interesting to see why these differences
or similarities occur between the several models.

30

2.9 Conclusion

In current research, code reviews are a topic that are studied often with respect
to questions like efficiency, influencing parameters or general motivation and be-
nefits. The formal framework, how a code review is expected to be done in OSS
projects, has not been described up to now. Points like involved roles and their
responsibilities, criteria for assessing changes, the timeline and coverage of the
general process were treated by this thesis.

We performed a descriptive multiple case study among six alive OSS projects,
which were chosen by us according to the stated criteria to get a well-rounded
selection. To get to our findings, we first analyzed statements from online docu-
mentation of these projects about their formal definitions of their review processes
and how they should be done. Then we took the results of these six projects and
made a cross-case analysis to get common and separating points which answer
our stated questions. Together, these answers build a theoretical model of code
review processes in OSS projects. This includes findings like that the standard
review process is an RTC process, or that beside technical, documentation and
style criteria, also social aspects and the contribution structure play an influence,
if a change is accepted or not.

Although case studies cannot be directly generalized, we are confident that by
analytic generalization the built model from our research can be. Overall, the
findings can be considered as robust, because of the number of cases and the
complement of each other. This is achieved by cross-case analysis and the per-
formed structural content analysis.
With this described model on OSS code review, further steps can be taken to
use and refine it. The realizations of the review process could be checked, if it
is implemented according to this model. Also, how the process or stated criteria
for accepted or rejected changes influence the software quality. A comparison to
other processes in industrial settings is likewise imaginable.

All in all, code review is a topic that already gets a lot of attention, but unfortu-
nately, this attention is very concentrated on few aspects. Efficiency, effectivity
and influences of special characteristics of review are often considered. The gen-
eral structure, the framework, behind the processes is on the other hand just
assumed to be there and existent. We believe that by researching this overall
framework, other, new processes could also be defined and in the end the pre-
sumed influences better identified and validated and therefore new statements
about code reviews made.

31

Appendix A: Used Data Sources

Appendix A Used Data Sources

Table 2.2 gives the respective references to the data sources for each single case.

Table 2.2: Data Sources for all cases

Case Accessed on URL
Linux Kernel 12.02.2019 https://www.kernel.org/doc/html/v4.14/process/2.

Process.html
12.02.2019 https://www.kernel.org/doc/html/v4.17/process/5.

Posting.html
12.02.2019 https://www.kernel.org/doc/html/v4.17/process/6.

Followthrough.html
13.02.2019 https://www.kernel.org/doc/html/v4.17/process/

submitting-patches.html
12.02.2019 https://www.kernel.org/doc/html/v4.17/process/

submit-checklist.html
13.02.2019 http://www.kroah.com/log/linux/maintainer.html
13.02.2019 http://www.kroah.com/log/linux/maintainer-02.

html
13.02.2019 http://www.kroah.com/log/linux/maintainer-03.

html
13.02.2019 http://www.kroah.com/log/linux/maintainer-05.

html
13.02.2019 http://www.kroah.com/log/linux/maintainer-06.

html
FreeBSD 18.02.2019 https://www.freebsd.org/doc/en US.ISO8859-1/

books/developers-handbook/policies-maintainer.
html

18.02.2019 https://www.freebsd.org/doc/en/articles/
committers-guide/conventions.html

18.02.2019 https://www.freebsd.org/doc/en/articles/
committers-guide/pre-commit-review.html

18.02.2019 https://www.freebsd.org/doc/en/articles/
committers-guide/pref-license.html

18.02.2019 https://www.freebsd.org/doc/en/articles/
committers-guide/developer.relations.html

18.02.2019 https://wiki.freebsd.org/action/show/Phabricator?
action=show&redirect=CodeReview

25.02.2019 https://wiki.freebsd.org/BecomingACommitter
25.02.2019 http://julio.meroh.net/2014/05/

code-review-culture-meets-freebsd.html

32

https://www.kernel.org/doc/html/v4.14/process/2.Process.html
https://www.kernel.org/doc/html/v4.14/process/2.Process.html
https://www.kernel.org/doc/html/v4.17/process/5.Posting.html
https://www.kernel.org/doc/html/v4.17/process/5.Posting.html
https://www.kernel.org/doc/html/v4.17/process/6.Followthrough.html
https://www.kernel.org/doc/html/v4.17/process/6.Followthrough.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/submit-checklist.html
https://www.kernel.org/doc/html/v4.17/process/submit-checklist.html
http://www.kroah.com/log/linux/maintainer.html
http://www.kroah.com/log/linux/maintainer-02.html
http://www.kroah.com/log/linux/maintainer-02.html
http://www.kroah.com/log/linux/maintainer-03.html
http://www.kroah.com/log/linux/maintainer-03.html
http://www.kroah.com/log/linux/maintainer-05.html
http://www.kroah.com/log/linux/maintainer-05.html
http://www.kroah.com/log/linux/maintainer-06.html
http://www.kroah.com/log/linux/maintainer-06.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/policies-maintainer.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/policies-maintainer.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/policies-maintainer.html
https://www.freebsd.org/doc/en/articles/committers-guide/conventions.html
https://www.freebsd.org/doc/en/articles/committers-guide/conventions.html
https://www.freebsd.org/doc/en/articles/committers-guide/pre-commit-review.html
https://www.freebsd.org/doc/en/articles/committers-guide/pre-commit-review.html
https://www.freebsd.org/doc/en/articles/committers-guide/pref-license.html
https://www.freebsd.org/doc/en/articles/committers-guide/pref-license.html
https://www.freebsd.org/doc/en/articles/committers-guide/developer.relations.html
https://www.freebsd.org/doc/en/articles/committers-guide/developer.relations.html
https://wiki.freebsd.org/action/show/Phabricator?action=show&redirect=CodeReview
https://wiki.freebsd.org/action/show/Phabricator?action=show&redirect=CodeReview
https://wiki.freebsd.org/BecomingACommitter
http://julio.meroh.net/2014/05/code-review-culture-meets-freebsd.html
http://julio.meroh.net/2014/05/code-review-culture-meets-freebsd.html

LLVM 18.02.2019 https://llvm.org/docs/CodingStandards.html
18.02.2019 https://llvm.org/docs/Contributing.html
18.02.2019 https://llvm.org/docs/Phabricator.html
18.02.2019 https://llvm.org/docs/DeveloperPolicy.html

Chromium 12.02.2019 https://www.chromium.org/developers/
contributing-code

12.02.2019 https://chromium.googlesource.com/chromium/src/
+/master/docs/code reviews.md

12.02.2019 https://chromium.googlesource.com/chromium/src/
+/master/docs/cl respect.md

12.02.2019 https://dev.chromium.org/developers/
contributing-code/direct-commit

12.02.2019 https://chromium.googlesource.com/chromium/src/
+/master/styleguide/c++/c++.md

12.02.2019 https://chromium.googlesource.com/chromium/src/
+/master/styleguide/c++/c++-dos-and-donts.md

OpenStack 16.02.2019 https://docs.openstack.org/infra/manual/
developers.html

18.02.2019 https://docs.openstack.org/infra/manual/core.html
18.02.2019 https://docs.openstack.org/project-team-guide/

review-the-openstack-way.html
18.02.2019 https://docs.openstack.org/project-team-guide/

open-development.html
18.02.2019 https://docs.openstack.org/openstack-ansible/

latest/contributor/code-rules.html
React 25.02.2019 https://reactjs.org/docs/how-to-contribute.html

25.02.2019 https://reactjs.org/docs/design-principles.html
25.02.2019 https://www.youtube.com/watch?v=wUpPsEcGsg8

33

https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/Contributing.html
https://llvm.org/docs/Phabricator.html
https://llvm.org/docs/DeveloperPolicy.html
https://www.chromium.org/developers/contributing-code
https://www.chromium.org/developers/contributing-code
https://chromium.googlesource.com/chromium/src/+/master/docs/code_reviews.md
https://chromium.googlesource.com/chromium/src/+/master/docs/code_reviews.md
https://chromium.googlesource.com/chromium/src/+/master/docs/cl_respect.md
https://chromium.googlesource.com/chromium/src/+/master/docs/cl_respect.md
https://dev.chromium.org/developers/contributing-code/direct-commit
https://dev.chromium.org/developers/contributing-code/direct-commit
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/core.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/open-development.html
https://docs.openstack.org/project-team-guide/open-development.html
https://docs.openstack.org/openstack-ansible/latest/contributor/code-rules.html
https://docs.openstack.org/openstack-ansible/latest/contributor/code-rules.html
https://reactjs.org/docs/how-to-contribute.html
https://reactjs.org/docs/design-principles.html
https://www.youtube.com/watch?v=wUpPsEcGsg8

References

Bacchelli, A. & Bird, C. (2013). Expectations, outcomes, and challenges of mod-
ern code review. In Proceedings of the 2013 international conference on soft-
ware engineering (pp. 712–721). ICSE ’13. San Francisco, CA, USA: IEEE
Press. Retrieved from http://dl.acm.org/citation.cfm?id=2486788.2486882

Bahamdain, S. S. (2015). Open source software (oss) quality assurance: A survey
paper. (Vol. 56, pp. 459–464). The 10th International Conference on Fu-
ture Networks and Communications (FNC 2015) / The 12th International
Conference on Mobile Systems and Pervasive Computing (MobiSPC 2015)
Affiliated Workshops. doi:https://doi.org/10.1016/j.procs.2015.07.236

Baum, T., Liskin, O., Niklas, K. & Schneider, K. (2016). A faceted classifica-
tion scheme for change-based industrial code review processes. In 2016 ieee
international conference on software quality, reliability and security (qrs)
(pp. 74–85). doi:10.1109/QRS.2016.19

Galin, D. (2018). Software quality. concepts and practice. Hoboken ; Hoboken ;
Hoboken, NJ, USA: IEEE Computer Society ; IEEE Press ; Wiley.

MAXQDA2018. (2018). Qualitative Datenanalyse mit MAXQDA - Software für
Win und macOS - MAXQDA - the Art of Data Analysis. Retrieved from
https://www.maxqda.de/

Mayring, P. (2015). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Wein-
heim: Beltz Pädagogik.

McIntosh, S., Kamei, Y., Adams, B. & Hassan, A. E. (2014). The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
working conference on mining software repositories (pp. 192–201). MSR
2014. doi:10.1145/2597073.2597076

Prokop, M. (2010). Open-Source-Projektmanagement. Softwareentwicklung von
der Idee zur Marktreife. changes. München: Open Source Press.

Rigby, P. C. (2011). Understanding open source software peer review: Review
processes, parameters and statistical models, and underlying behaviours and
mechanisms. ProQuest Dissertations and Theses.

Rigby, P. C. & Bird, C. (2013). Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th joint meeting on foundations of

34

http://dl.acm.org/citation.cfm?id=2486788.2486882
https://dx.doi.org/https://doi.org/10.1016/j.procs.2015.07.236
https://dx.doi.org/10.1109/QRS.2016.19
https://www.maxqda.de/
https://dx.doi.org/10.1145/2597073.2597076

software engineering (pp. 202–212). ESEC/FSE 2013. doi:10.1145/2491411.
2491444

Rigby, P. C., German, D. M. & Storey, M.-A. (2008). Open source software peer
review practices: A case study of the apache server. In Proceedings of the
30th international conference on software engineering (pp. 541–550). ICSE
’08. doi:10.1145/1368088.1368162

Rigby, P. C. & Storey, M.-A. (2011). Understanding broadcast based peer review
on open source software projects. In Proceedings of the 33rd international
conference on software engineering (pp. 541–550). ICSE ’11. doi:10.1145/
1985793.1985867

Sadowski, C., Söderberg, E., Church, L., Sipko, M. & Bacchelli, A. (2018). Mod-
ern code review: A case study at google. In Proceedings of the 40th interna-
tional conference on software engineering: Software engineering in practice
(pp. 181–190). ICSE-SEIP ’18. doi:10.1145/3183519.3183525

St. Laurent, A. M. (2004). Understanding open source and free software licensing
- guide to navigating licensing issues in existing and new software. O’Reilly.

Yin, R. K. (2014). Case study research - design and methods. Sage.

35

https://dx.doi.org/10.1145/2491411.2491444
https://dx.doi.org/10.1145/2491411.2491444
https://dx.doi.org/10.1145/1368088.1368162
https://dx.doi.org/10.1145/1985793.1985867
https://dx.doi.org/10.1145/1985793.1985867
https://dx.doi.org/10.1145/3183519.3183525

	Introduction
	Research Chapter
	Introduction
	Related Work
	Research Questions
	Research Approach
	Multiple case study design
	Case definition
	Case selection
	Analysis methods

	Used Data Sources
	Linux Kernel
	FreeBSD
	LLVM
	Chromium
	OpenStack
	React

	A model of code review practices
	Discussion
	Construct validity
	Internal validity
	External validity
	Reliability

	Future Works
	Conclusion
	Appendices
	Appendix Used Data Sources

	References

