
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

DUMITRU COTET

MASTER THESIS

CRAWLING CODE REVIEW DATA FROM
PHABRICATOR

Submitted on 4 June 2019

Supervisors: Michael Dorner, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Nuremberg, 4 June 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Nuremberg, 4 June 2019

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Modern code review is typically supported by software tools. Researchers use data
tracked by these tools to study code review practices. A popular tool in open-source
and closed-source projects is Phabricator. However, there is no tool to crawl all the
available code review data from Phabricator hosts. In this thesis, we develop a Python
crawler named Phabry, for crawling code review data from Phabricator instances
using its REST API. The tool produces minimal server and client load, reproducible
crawling runs, and stores complete and genuine review data. The new tool is used
to crawl the Phabricator instances of the open source projects FreeBSD, KDE and
LLVM. The resulting data sets can be used by researchers.

ii

Contents

1 Introduction 1

2 Requirements 2
2.1 Functional requirements . 2
2.2 Non-functional requirements . 3
2.3 Evaluation scheme for requirements . 4

3 Phabricator 5
3.1 Differential – review workflow . 6
3.2 Conduit API . 9

4 Design and Implementation 16
4.1 Design . 16
4.2 Implementation . 17

5 Evaluation 28
5.1 Requirements evaluation . 28
5.2 Dataset analysis . 30

6 Conclusion 33

Appendices 34
Appendix A Excerpt from a revisions file 34
Appendix B Excerpt from a transactions file 36
Appendix C Demo code for processing the code review data 37

References 38

iii

List of Abbreviations

API tab application programming interface

CLI command-line interface

FreeBSD free and open-source Unix-like operating system

HTTP hypertext transfer protocol

JSON JavaScript object notation

JSON-RPC Remote procedure call protocol encoded in JSON

KDE free and open source software community

LLVM low Level Virtual Machine, now a compiler infrastructure project

OSS open source software

REST representational state transfer

SCM source code management

iv

1 Introduction

Code review is an important practice in software quality assurance. The process is
that one or several people check a program mainly by reading parts of the source code.
Code reviews should be scheduled for new modules and major modifications of existing
code. and minor revisions should be reviewed solely by the change reviewer, rather
than multiple engineers (Kolawa & Huizinga, 2007). Kolawa and Huizinga (2007) also
state that the main goals of code reviews are to find defects, to find better solutions,
to help in knowledge transfer, and to generally improve internal code quality and
maintainability.

In order to facilitate the code review process, various code review tools are used.
These tools allow people to collaboratively inspect and discuss changes, storing the
history of the process for future reference. Phabricator is a suite of web-based software
development collaboration tools, including a code review tool. It is available as free
software under the Apache License 2.0. Phabricator is used in the development process
of a few big open source projects (e.g. LLVM, Freebsd, KDE), but also in some
companies (e.g. Asana, Quora, MemSQL) (Tsotsis, 2011).

Because of the significance and accessibility of code review data from Phabricator,
extensive research can be performed on that data. Phabricator provides a REST
API with JSON responses for straight forward access to the code reviews stored by
Phabricator. However, there are huge amounts of data to be downloaded and this
operation cannot be performed over one single API call.

At the moment, there are no publicly available code review datasets from any of the
projects using Phabricator. There are also no crawling tools for easy downloading of
this data. In order to easily access and download all the available code review data
from Phabricator, a small program was written that takes into consideration all the
unusual aspects of the Phabricator API. This Phabricator crawler was named Phabry.

The requirements Phabry are presented in the chapter 2 of this thesis. The code
review tool Phabricator and its API are described in chapter 3. Chapter 4 discusses
the design and implementation of the program. Chapter 5 focuses on the evaluation of
the crawler. Also, to determine the potential of the downloaded datasets, some data
analysis was performed in this chapter. Finally, chapter 6 summarises the thesis with
a conclusion.

1

2 Requirements

Writing effective product requirements is the first step towards a successful release.
The requirements act as a starting point for the product and outline its purpose and
how to use it. One of the most important aspects of the requirements is to identify
the relevant stakeholders. This thesis is a part of ongoing research that is still in its
early stages. Thus, the stakeholders are limited to the developers and researchers of
the project for the time being.

2.1 Functional requirements
The functional requirements define what the program must do. They describe the
behaviour of the program as it relates to its functionality.

F1: Crawler based on Phabricator

− The software downloads the code review data from a specified web resource
using Phabricator’s REST API

The crawler must also be flexible and require minimum adaptation to easily support
future modifications of the API.

F2: All available data is downloaded

− Download all available data and save it in text files

All code review data that is available via the provided API must be downloaded
and saved as is in text files, the only change accepted is formatting and indentation
according to JSON syntax.

F3: Complete data

− Store complete and unaltered data

The crawler must download and store the data in exactly the same condition as it
comes from the Phabricator server. This would ensure that the user receives the very
same data that is stored by Phabricator.

2

Requirements

F4: Single-threaded and minimal server load

− The crawler must be single-threaded for minimal server load and to not hinder
other users of the system.

F5: Reproducible behaviour

− Every run of the crawler must be reproducible

In order to make the behaviour reproducible, every crawling execution must be
accompanied by a configuration file and a log file. This way, both files can be attached
to the resulting data of the crawling and allow anybody to replicate the run.

F6: Incremental crawling

− The software must support incremental crawling, i.e. to crawl the content which
has been added/modified since last successful crawl.

As compared to full crawling, incremental crawling drastically reduces server and
network load in cases when it can be used. Also, it is usually a lot faster as well.

F7: Anonymisation of personal data

− Replace the names and emails with hashes in order to protect the identities
behind every person involved.

The purpose of the crawler is to download and save the code review data according to
some predefined criteria, while keeping the identities in the data anonymous.

2.2 Non-functional requirements
As opposed to the functional requirements, the non-functional ones define how the
program must perform. The non-functional requirements elaborate a performance
characteristic of the system.

N1: Efficiency

− The program must not be memory and CPU intensive.

Since the crawler does not effectively perform any CPU intensive tasks, an acceptable
CPU usage would be less than 20 %.

N2: Execution time

− One crawling run must be finished in a reasonable amount of time

In order to keep the program usable, the full execution time, i.e. the complete down-
loading of all available code review data, should be done in less than 24 hours.

3

Requirements

2.3 Evaluation scheme for requirements
Ensuring that the requirements set in the previous section are met is the primary goal
of this project. It is important to verify the functionality of each section of code in a
white box style using unit tests, particularly at function level, to guarantee a code
coverage of 100% or as high as possible. Additionally, a set of manual tests needs to
be performed in order to evaluate the program in a black box style. That is to test
that the crawler achieves the results expected by the stakeholders, that it is stable to
use and that it meets the requirements. It must be acknowledged, however, that each
Phabricator host may contain tens of thousands of code reviews, therefore the scope
of the crawler can not guarantee that Phabricator’s API will return all its available
data, as it depends solely on the implementation of the API.

4

3 Phabricator

This chapter covers the research of Phabricator and its API in order to identify its
possibilities and usage procedures.

Phabricator is a set of tools for developing software and includes applications for code
review, repository hosting, bug tracking, project management, and more (‘‘Phacility -
Home’’, 2019). Phabricator is powerful, fast, scalable, and completely open source. It
can be downloaded and installed on any hardware for free, or launch a hosted instance
with the company behind the product - Phacility (‘‘Phacility - Home’’, 2019).

Figure 3.1 shows the home page of Phabricator’s own instance of Phabricator, where
the development of Phabricator is tracked. Phabricator supports two similar but
separate code review workflows: ”review” and ”audit” (‘‘User Guide: Review vs Audit’’,
n.d.). According to the same page, a review occurs in the tool called Differential,
before changes are published, whereas an audit occurs in the Diffusion tool, after
changes are published. For the purpose of this thesis, only the reviews are considered.

Figure 3.1: Phabricator home page. Retrieved May 29, 2019, from https://secure.
phabricator.com/

5

https://secure.phabricator.com/
https://secure.phabricator.com/

Phabricator

3.1 Differential – review workflow
The Phabricator ‘‘Differential User Guide’’ (n.d.) describes how reviews work:

− An author prepares a change to a codebase, then sends it for review. They
specify who they want to review it (additional users may be notified as well).
The change itself is called a ”Differential Revision”.

− The reviewers receive an email asking them to review the change.

− The reviewers inspect the change and either discuss it, approve it, or request
changes (e.g., if they identify problems or bugs).

− In response to feedback, the author may update the change (e.g., fixing the bugs
or addressing the problems).

− Once everything is satisfied, some reviewer accepts the change and the author
pushes it to the upstream.

Figure 3.2: The user interface of a differential revision. Retrieved May 12, 2019,
from https://reviews.llvm.org/D61786

Figure 3.2 shows the differential user interface with the summary of the differential
revision, retrieved from the public Phabricator host of the LLVM project. The top
of the page has the ID of the revision (D61786) and then right below it there’s the
title of the revision ([ASTImporter] Separate unittest files), the status (Accepted),
and the visibility (Public). Next below is the name of the author and the date and
time the revision was created. Then follows the ”Details” section with the reviewers
and a short summary of the revision. Lastly, on the bottom of the figure, there is the
”Diff Detail” that has the ”Repository” and the ”Build Status” of the code change

6

https://reviews.llvm.org/D61786

Phabricator

attached to this revision - called a ”Diff”. This screenshot did not fit the whole page
of the differential user interface and it is described further below.

Every Differential revision is an object in Phabricator. In order to preserve every
activity occurring with an object, like creation, edit, comment, etc., a ”transaction” for
each activity is created by Phabricator (‘‘Conduit - transaction.search’’, n.d.). Figure
3.3 shows all the transactions for the differential revision and is a continuation of the
same page shown in Figure 3.2.

Figure 3.3: The transactions of a differential revision. Retrieved May 12, 2019, from
https://reviews.llvm.org/D61786

One of the most useful features of Differential is the ”Inline Comments”. ‘‘Differential
User Guide: Inline Comments’’ (n.d.) explains how Differential allows reviewers to
leave feedback about changes to code inline within the body of the diff itself and can
be used to discuss specific parts of a change. An example of an inline comment is
shown in Figure 3.4. As it can be seen, the status of the comment is ”Not Done”,
which means that the author hasn’t updated the change according to the feedback
in the comment. After the author updates the change, the reviewer that made the
comment has to review the change again and comment accordingly. If the reviewer
accepts the change, they can mark the comment as ”Done”, see Figure 3.5. After the
changed is reviewed and accepted, the inline comments are preserved as part of the
activity in the transactions. Finally, the status of the revision changes to ”Published”
when the accepted changes are published in the main code.

7

https://reviews.llvm.org/D61786

Phabricator

Figure 3.4: An inline comment inside a ”diff”. Retrieved May 12, 2019, from
https://reviews.llvm.org/D61786

Figure 3.5: An inline comment after it was accepted. Retrieved May 20, 2019, from
https://reviews.llvm.org/D61786?id=199020#inline-548812

8

https://reviews.llvm.org/D61786
https://reviews.llvm.org/D61786?id=199020#inline-548812

Phabricator

3.2 Conduit API
According to ‘‘Conduit API Overview’’ (n.d.), Conduit is the HTTP API for Phab-
ricator and is roughly JSON-RPC: a JSON blob is usually passed, and a JSON blob
is usually sent back, although both call and result formats are flexible in some cases.
The ‘‘Conduit API Overview’’ (n.d.) also describes the primary ways to make Conduit
calls:

− Web Console: The Conduit application provides a web UI for exploring the API
and making calls;

− ConduitClient: This is the official client available in libphutil, and the one
used by arc;

− arc call-conduit: this arc command can be used to execute low-level Conduit
calls by piping JSON in to stdin;

− curl: a call can be formatted with basic HTTP parameters and cURL and the
console includes examples which show how to format calls;

− Other Clients: There are also clients available in other languages that can be
checked in the Community Resources1 page.

The Community Resources refers to a Python library that can work with Phabricator
Conduit API. It will be analysed for compatibility in the next chapter.

After consulting the list of available Conduit API methods2, two methods were selected
that provide the required functionality:

− differential.revision.search – read information about revisions;

− transaction.search – read transactions and comments for an object.

The first method provides a way to download the revision data with essential informa-
tion, but without the activity. In order to get all the available transactions for each
revision, the second provided method must be used.

3.2.1 The Conduit method – differential.revision.search

The page ‘‘Conduit - differential.revision.search’’ (n.d.) describes the usage of this API
method, it being the primary method to list, query or search for Difrential revisions. It
can be used, therefore, to get all the available revisions from the Phabricator database.
‘‘Conduit - differential.revision.search’’ (n.d.) indicates that the revision objects are
returned as a list of dictionaries in the data property of the results and each dictionary
has some metadata and a fields key, which contains the information about the object,
see Figure 3.6, while the result may look like in Listing 3.1.

1https://secure.phabricator.com/w/community resources/
2https://secure.phabricator.com/conduit/

9

https://secure.phabricator.com/w/community_resources/
https://secure.phabricator.com/conduit/

Phabricator

Figure 3.6: The result fields of a review from a call to
differential.revision.search. Retrieved May 20, 2019, from https:
//secure.phabricator.com/conduit/method/differential.revision.search/

{
. . .
” data ” : [
{

” id ” : 123 ,
” phid ” : ”PHID−WXYZ−1111” ,
” f i e l d s ” : {

”name ” : ” F i r s t Example Object ” ,
”authorPHID ” : ”PHID−USER−2222”

}
} ,
{

” id ” : 124 ,
” phid ” : ”PHID−WXYZ−3333” ,
” f i e l d s ” : {

”name ” : ” Second Example Object ” ,
”authorPHID ” : ”PHID−USER−4444”

}
} ,
. . .

]
. . .

}

Listing 3.1: The result of a review from a call to differential.revision.search.
Retrieved May 21, 2019, from https://secure.phabricator.com/conduit/method/
differential.revision.search/

10

https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/

Phabricator

By default, only basic information about objects is returned, but more extensive
information can be accessed by using available attachments to get more information
in the results, as shown in Figure 3.7 (‘‘Conduit - differential.revision.search’’, n.d.).

Figure 3.7: The attachments field of a review from a call to
differential.revision.search. Retrieved May 21, 2019, from https:
//secure.phabricator.com/conduit/method/differential.revision.search/

Another important aspect to consider is that queries are limited to returning 100
results at a time and if more results are required, additional queries need to be made
(‘‘Conduit - differential.revision.search’’, n.d.). The result structure contains a cursor
key with the information needed in order to fetch the next batch of results, according
to ‘‘Conduit - differential.revision.search’’ (n.d.), and after an initial query, it will
usually look like in Listing 3.2.

{
. . .
” cu r so r ” : {

” l i m i t ” : 100 ,
” a f t e r ” : ”100” ,
” be f o r e ” : nu l l ,
” order ” : n u l l

}
. . .

}

Listing 3.2: The cursor key structure in a result from the first call to
differential.revision.search. Retrieved May 21, 2019, from https://secure.
phabricator.com/conduit/method/differential.revision.search/

The fields limit and order describe the effective limit and order the query was
executed with, and are usually not of much interest, but the after and before fields
give cursors which can be passed when making another API call in order to get the next
(or previous) page of results (‘‘Conduit - differential.revision.search’’, n.d.). To get the
next batch of results, the API call has to be repeated with all the same parameters as
the original call, but the after cursor received from the first call needs to be passed
in the after parameter when making the second call, as explained by ‘‘Conduit -
differential.revision.search’’ (n.d.), and the second call result would have a cursor
structure like in Listing 3.3.

11

https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/

Phabricator

{
. . .
” cu r so r ” : {

” l i m i t ” : 100 ,
” a f t e r ” : ”200” ,
” be f o r e ” : ”101” ,
” order ” : n u l l

}
. . .

}

Listing 3.3: The cursor key structure after a second call to
differential.revision.search. Retrieved May 21, 2019, from https:
//secure.phabricator.com/conduit/method/differential.revision.search/

Figure 3.8: The Web UI for calling the method differential.revision.search. Retrieved
May 21, 2019, from https://reviews.llvm.org/conduit/method/differential.revision.
search/

Finally, ‘‘Conduit - differential.revision.search’’ (n.d.) provides a Web UI for making
calls using this API method, but in order to use it, one has to be authenticated.
Unfortunately, new accounts cannot be registered (‘‘Phabricator Login’’, n.d.). How-
ever, this method can be also tested with another Phabricator source, like LLVM,
which provides a way to register as a new user. The functionality of the Conduit API
is the same and the the Web UI for the method differential.revision.search
can be found at https://reviews.llvm.org/conduit/method/differential.revision.search/.

12

https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://reviews.llvm.org/conduit/method/differential.revision.search/
https://reviews.llvm.org/conduit/method/differential.revision.search/
https://reviews.llvm.org/conduit/method/differential.revision.search/

Phabricator

Figure 3.8 shows the UI of calling the method, along with the type of each parameter.
Besides providing an easy way to make an API call, this UI also gives usage examples
with different clients, including encoding the parameters. This feature will be useful
later when designing the Phabricator crawler. For example, Listing 3.4 and Listing
3.5 show the provided examples after introducing the start and end dates of creation
as constraints, including all attachments.
$ echo ’{

” c o n s t r a i n t s ” : {
” c r ea t edS ta r t ” : 1552176000 ,
” createdEnd ” : 1552262399

} ,
” attachments ” : {

” s u b s c r i b e r s ” : true ,
” r ev i ewe r s ” : true ,
” p r o j e c t s ” : t rue

}
} ’ | arc c a l l−conduit −−conduit−u r i https : // rev i ews . l lvm . org / \
−−conduit−token <conduit−token> d i f f e r e n t i a l . r e v i s i o n . search

Listing 3.4: Usage example for arc call-conduit. Retrieved May 21, 2019, from
https://reviews.llvm.org/api/differential.revision.search

$ c u r l https : // rev i ews . l lvm . org / api / d i f f e r e n t i a l . r e v i s i o n . search \
−d api . token=api−token \
−d c o n s t r a i n t s [c r e a t edS ta r t]=1552176000 \
−d c o n s t r a i n t s [createdEnd]=1552262399 \
−d attachments [s u b s c r i b e r s]=1 \
−d attachments [r ev i ewe r s]=1 \
−d attachments [p r o j e c t s]=1

Listing 3.5: Usage example for cURL. Retrieved May 21, 2019, from https://reviews.
llvm.org/api/differential.revision.search

As seen in the previous examples, one would need an api-token in order to have
access to this method via other clients. This token can be generated in the Conduit
API Tokens panel in Settings (‘‘Conduit - differential.revision.search’’, n.d.).

3.2.2 The Conduit method – transaction.search
When an object (like a revision) is edited, Phabricator creates a ”transaction” and
applies it, then the list of transactions on each object is the basis for essentially all edits
and comments in Phabricator ‘‘Conduit - transaction.search’’ (n.d.). Since the method
differential.revision.search does not return any data on edits, comments, etc.,
transaction.search is a method that provides valuable for research information.
This method returns the transactions for one revision at a time, therefore since the
method differential.revision.search returns 100 revisions in one call, there are
needed to be made another 100 calls for each revision in order to get all the transactions
for this batch. Figure 3.9 shows the Web UI for calling the method.

13

https://reviews.llvm.org/api/differential.revision.search
https://reviews.llvm.org/api/differential.revision.search
https://reviews.llvm.org/api/differential.revision.search

Phabricator

Figure 3.9: The Web UI for calling the method transaction.search. Retrieved
May 21, 2019, from https://reviews.llvm.org/conduit/method/differential.revision.
search/

The description of the method ‘‘Conduit - transaction.search’’ (n.d.) does not provide
the object fields from the result like for differential.revision.search, but the
fields can be interpreted relatively easy from the result itself. Also, unlike the pre-
viously mentioned method, transaction.search has one mandatory parameter --
objectIdentifier, which can be found in the result of the previous call under the
name ”phid”. After calling the method, a result with a similar structure -- a list of
dictionaries in the data property and each dictionary has some metadata and a fields
key, which contains the information about the object, see Listing 3.6.
{

” data ” : [
{

” id ” : 1517222 ,
” phid ” : ”PHID−XACT−DREV−boih33ogvg63pcs ” ,
” type ” : ” s t a tu s ” ,
”authorPHID ” : ”PHID−USER−6i lmjx4 ipykswr2bg4ro ” ,
”objectPHID ” : ”PHID−DREV−6qktcmyat6okdtfht5k4 ” ,
” dateCreated ” : 1558769696 ,
” dateModi f ied ” : 1558769696 ,
”comments ” : [] ,
” f i e l d s ” : {

” o ld ” : ” needs−rev iew ” ,
”new ” : ” accepted ”

}
} ,
. . .

]
}

Listing 3.6: Example result from calling transaction.search in LLVM

14

https://reviews.llvm.org/conduit/method/differential.revision.search/
https://reviews.llvm.org/conduit/method/differential.revision.search/

Phabricator

As with the differential.revision.search method, the UI gives usage examples
of transaction.search with different clients, see Listing 3.7 and Listing 3.8.
$ echo ’{

” o b j e c t I d e n t i f i e r ” : ”PHID−DREV−6qktcmyat6okdtfht5k4 ”
} ’ | arc c a l l−conduit −−conduit−u r i https : // rev i ews . l lvm . org / \
−−conduit−token <conduit−token> t r a n s a c t i o n . search

Listing 3.7: Usage example for arc call-conduit in LLVM. Retrieved May 21,
2019, from https://reviews.llvm.org/api/transaction.search

$ c u r l https : // rev i ews . l lvm . org / api / t r a n s a c t i o n . search \
−d api . token=api−token \
−d o b j e c t I d e n t i f i e r=PHID−DREV−6qktcmyat6okdtfht5k4

Listing 3.8: Usage example for cURL in LLVM. Retrieved May 21, 2019, from
https://reviews.llvm.org/api/transaction.search

15

https://reviews.llvm.org/api/transaction.search
https://reviews.llvm.org/api/transaction.search

4 Design and Implementation

This chapter covers the design aspects and the implementation of the crawler and also
gives an overview of the workflow.

4.1 Design
The first important consideration regarding the design of the crawler is to choose the
programming language in which to develop it. A few aspects to consider are:

− needs to have a Conduit API implementation or, alternatively, HTTP function-
ality for API calls;

− cross-platform;

− ability to read and save files;

− easy to read and use.

Taking into consideration these aspects, Python was chosen based on its popularity as
a scripting language and that it’s also quite suitable for data mining. The last aspect
is important because the last chapter of this thesis will provide a demo analysis of the
downloaded datasets. ‘‘Phabricator - Community Resources’’ (n.d.) provides a list
of community-maintained clients for the Conduit API, one of which is for Python.
However, during the initial research, it became clear that this library for Conduit API
was not entirely suitable for all the use cases required by the crawler. Therefore, it
was decided to go with the direct requests using HTTP. The recommended Python
library for handling HTTP requests is requests.

Next step is to comply with the requirement F5. In order to do this, the functionality
to read the input parameters from configuration files has to be implemented first. This
can be achieved using a combination of reading json formatted files and the library
argparse. Then, the logging of errors can be implemented using logging library.

The functionality of the system does not involve extremely complex classes and
interdependencies. The intention is to have one class that covers all the functionality for
downloading and saving the code review datasets according to some input parameters,
while the logging and parsing of the configuration file and command line arguments

16

Design and Implementation

would be performed outside of the said class. The class was named also Phabry and
the UML class diagram is shown in Figure 4.1. This makes the code easier to read
and understand, but also makes it reusable so that anyone willing to use a specific
part of the class can import it in their code.

Figure 4.1: UML Class diagram

Figure 4.2 shows the UML activity diagram of the system with the overall work flow.
The general idea is that the script loads the configuration parameters, requests the
first batch of 100 revisions and saves them into a file. Then for every revision ID, it
requests the transactions, saves them into a file, checks if there are any transactions
left and requests and saves them again. Then if there are any revisions left to download
it goes through the same process until done. Also, if at any step there happens to be
an error, it is logged into the log file saved in the same base directory.

4.2 Implementation
This section will describe the implementation details of the source code, along with all
the complications that arose during development and the ways they were overcome.

The first action in the script is loading the input parameters from configuration file or
from command line arguments. An important aspect to consider in this situation is
the approach to loading the parameters. For example, they could be loaded exclusively
from either a configuration file or from command line arguments, or they could be
loaded from both. In the latter case, it would be also necessary to decide the order of
choosing the loading methods. The chosen approach for Phabry is to load the input
parameters from both a configuration file and command line arguments. The next few
paragraphs describe this procedure more thoroughly.

17

Design and Implementation

Figure 4.2: UML Activity diagram

At the beginning of the script, a constant is defined with the name of the configuration
file: CONFIG_FILE = ’config.json’ When running the script, the user can also
provide a different config file by using the -c command. Therefore, if both files exist,
then the one provided by the user is the one used, see Listing 4.1

1 # Parse any conf_file specification
2 # add_help =False so it doesn ’t parse -h and print help.
3 conf_parser = argparse . ArgumentParser (
4 description =__doc__ , # printed with -h/--help
5 formatter_class = argparse . RawDescriptionHelpFormatter ,
6 # Turn off help , to print all options in response to -h

18

Design and Implementation

7 add_help =False)
8 conf_parser . add_argument ("-c",
9 dest=’conf_file ’,

10 default = CONFIG_FILE ,
11 help=" Specify config file",
12 metavar ="FILE")
13 args , remaining_argv = conf_parser . parse_known_args ()

Listing 4.1: Setting the config file as a command line argument

It was written this way, so that the script can show the option to provide a config
file along the other options, but also be able to load the parameters from the file and
then parse any other arguments from the command-line, if they exist.

The next step is reading the parameters from the configuration file, if the file exists.
The code snippet in Listing 4.2 shows how the script opens the file and tries to load
a json object as a python dictionary. The keys are also converted to lower case for
convenience. If the file is not properly formatted, then a helpful error message is shown
to the user.

1 defaults {}
2 if args. conf_file :
3 try:
4 with open(args. conf_file) as f:
5 config = json.load(f)
6 defaults . update ({k.lower (): v for k, v in config .items ()}

)
7 except FileNotFoundError :
8 print (’Config file not found: ’ + args. conf_file)
9 except json. decoder . JSONDecodeError as e:

10 print (’Config file parsing failed . Please format it as json
object ’)

Listing 4.2: Loading of the config file

It is then time to create the parser for the command line arguments. The dictionary
defaults with any values from the previous step are passed as defaults to this
new parser. This means that if a specific parameter is provided as a command line
argument, it overwrites the value found in the config file. There are also provided
helpful information for each argument to be shown in the help message. Because it
was not possible to specify the required arguments in the function add_argument()
so that it would work for both command line and config arguments, additional checks
for the required arguments name, url and token were written. If any of the required
arguments is missing, an error is thrown and a help message is displayed, see the
implementation in Listing 4.3.

1 # Parse the rest of arguments
2 parser = argparse . ArgumentParser (parents =[conf_parser])
3 parser . set_defaults (** defaults)

19

Design and Implementation

4 parser . add_argument (’--name ’, help=’REQUIRED Directory name for the
Phabricator source ’)

5 parser . add_argument (’--url ’, help=’REQUIRED Phabricator api URL ’)
6 parser . add_argument (’--token ’, help=’REQUIRED Phabricator api token ’)
7 parser . add_argument (’--basedir ’, default =’./ phabry_data /’,
8 help=’Base directory name ’)
9 parser . add_argument (’--start ’, default =None , help=’Start date dd -mm -

yyyy ’)
10 parser . add_argument (’--end ’, default =None , help=’End date dd -mm -yyyy ’

)
11 args = parser . parse_args (remaining_argv)
12 if None in (args.name , args.url , args.token):
13 parser . print_help ()
14 print (" phabry .py: error: the following arguments are required :",

end=’’)
15 if args.name is None:
16 print (" --name", end=’’)
17 if args.url is None:
18 print (" --url", end=’’)
19 if args.token is None:
20 print (" --token", end=’’)
21 exit ()

Listing 4.3: Setting the input parameters from command line arguments

After the input parameters are collected and normalized, they are passed further to
an object to be used as constraints for the API calls. In order to make the code
less convoluted and more importantly reusable a class named Phabry was written to
encompass all the functionality. The next paragraphs will describe the attributes and
methods of the class.

The class diagram was shown in Figure 4.1, but the detailed code of the constructor
can be seen in Listing 4.4. The constructor method is used to initialise an instance of
the class Phabry with the given values. It is also used here to create the directory
structure using the basedir value and the name of the Phabricator data source. If
the arguments for start and end date are provided, it is needed to convert them to
the UNIX epoch format using the function timestamp(), and since the Conduit API
accepts only integer but the function returns a float, it is also needed to convert them
to integer. It is also important to mention that the datetime has to be converted
to the UTC timezone first, because they are saved in this format on the server. The
function for configuring the logging is called, which is further described in Listing 4.5.

1 def __init__ (self , name , url , token , from_date =None , to_date =None ,
basedir =’./ phabry_data /’):

2 self.name = name
3 self.url = url
4 self.token = token
5 self. directory = os.path.join(basedir , name)
6 if from_date :
7 from_date = datetime . datetime . strptime (from_date , ’%d-%m-%Y’)

20

Design and Implementation

8 self. from_date = int(from_date . replace (tzinfo = datetime .
timezone .utc). timestamp ())

9 else:
10 self. from_date = None
11 if to_date :
12 to_date = datetime . datetime . strptime (to_date , ’%d-%m-%Y’)
13 self. to_date = int(to_date . replace (tzinfo = datetime . timezone .

utc). timestamp ())
14 else:
15 self. to_date = None
16 if self.url == "https :// phabricator .kde.org/api/" and (self.

from_date or self. to_date):
17 print (’KDE does not accept a date range. Proceeding to get

all revisions .’)
18 self. from_date = None
19 self. to_date = None
20 os. makedirs (os.path.join(self.directory , ’revisions ’), exist_ok =

True)
21 os. makedirs (os.path.join(self.directory , ’transactions ’),

exist_ok =True)
22 configure_logging (self. directory)

Listing 4.4: The constructor method of the class Phabry

Since the logging functionality is covered by the requirement F5, it is considered
important for this project. The function configure_logging() is defined outside of
the class definition and defines the format and logging levels of the messages, creates
a log file in the data directory and saves all the messages there.

1 log = logging . getLogger (’phabry ’)
2
3 def configure_logging (data_dir):
4 global log
5 log. setLevel (logging .DEBUG)
6 log_name = os.path.join(data_dir , ’phabry .log ’)
7 formatter = logging . Formatter (’%(asctime)s %(levelname)-8s %(

message)s’)
8 file_handler = logging . FileHandler (log_name)
9 file_handler . setFormatter (formatter)

10 log. addHandler (file_handler)
11 return log

Listing 4.5: The logging configuration

The next function handle_exception() is defined within the class Phabry and is used
to log different messages depending on the type of Exception, see Listing 4.6. One
notable thing is that the method is defined with the function decorator @staticmethod,
which transforms the method into a static method to not receive an implicit first
argument. In this case, the argument self, i.e. the object instance, is not implicitly
passed as the first argument because it is not needed here.

21

Design and Implementation

1 @staticmethod
2 def handle_exception (exception , object_type):
3 if isinstance (exception , requests . exceptions . RequestException):
4 if exception . response is not None:
5 log.error(’%s failed with http status %i’,
6 object_type , exception . response . status_code)
7 elif exception .errno is not None:
8 log.error(’%s failed with error: %s - %s’,
9 object_type , exception .errno , exception .

strerror)
10 else:
11 log.error(’%s failed with error: %s’, object_type ,

exception)
12 elif isinstance (exception , json. JSONDecodeError):
13 log.error(’Reading JSON for %s failed ’, object_type)
14 elif isinstance (exception , Exception):
15 log.error(’Unknown error occurred for %s: %s’, object_type ,

exception)

Listing 4.6: The method handle_exception()

Figure 4.3 shows a few lines from the log file after a real run of the script on the
FreeBSD Phabricator instance.

Figure 4.3: The log file

It was described earlier in subsection 3.2 that calls of the Conduit API methods
differential.revision.search and transaction.search can return maximum
100 objects at a time, which means that each of these API methods will be called
hundreds or even thousands of times, because a Phabricator database for the biggest
projects contains tens of thousands of revisions. As a result, it was decided to split
each API method call into separate class methods.

The first described method is get_revisions(), which acts as an abstraction layer for
the API method differential.revision.search. The method described in Listing
4.7 has three parameters: after_cursor , order, limit, last of which has the default
value 100. The parameter after_cursor holds the value of the ’after cursor’
received from the previous API call and used to make the next API call to retrieve the
next batch of 100 revisions. In order to make the API call, the requests library is
used. After a lot of frustrating attempts to make the API call using the obvious choice
of HTTP method GET, which is usually used to request data from a specified resource,
it became clear that the only way to make it work is using the HTTP method POST,

22

Design and Implementation

which is normally used to send data to a server to create/update a resource. This is
an undocumented feature of the Conduit API and has no obvious reasoning behind it.
One supposition is that Conduit has all the API calls implemented with the HTTP
POST method for the sake of simplicity. As a result, the function requests.post()
is used to make a POST call, taking the API URL and data as arguments. The data
in this case are the arguments for the Conduit method.

Taking as a basis the example given by the Conduit API Web UI for cURL, see
subsection 3.2, the data argument was composed. The order is used so that it would
be possible to to call the method with "newest" to get the id of the most recently
created revision for displaying the download status, which is described later, and also
with "oldest" for the usual calls to get all the revisions starting from the oldest. The
limit is also used for downloading the newest revision when it is set to 1 so that
it wouldn’t download unneeded data, in the rest of the cases it is set to the default
100. The createdStart and createdEnd constraints are not mandatory for this API
method, therefore they are added only when the user decides to specify a time frame.
Without specifying these dates the method returns all the revisions available in the
database.

1 def get_revisions (self , after_cursor , order , limit=100):
2 data = {’api.token ’: self.token ,
3 ’attachments [subscribers]’: 1,
4 ’attachments [reviewers]’: 1,
5 ’attachments [projects]’: 1,
6 ’order ’: order ,
7 ’after ’: after_cursor ,
8 ’limit ’: limit
9 }

10 if self. from_date is not None:
11 data[’constraints [createdStart]’] = self. from_date
12 if self. to_date is not None:
13 data[’constraints [createdEnd]’] = self. to_date
14 response = requests .post(self.url + ’differential . revision . search

’, data=data)

Listing 4.7: The method get_revisions()(first part)

If for some reason the request was bad, i.e. a 4XX client error or 5XX server error
response, it can be raised with raise_for_status() which will raise a Python
exception with the appropriate message, see Listing 4.8. If the request is successful,
the success code 200 is returned and this function does nothing. If there was no
exception raised, then the result contained in response.text should contain a string
instance containing a JSON document, which is de-serialised to a Python object using
json.loads(). If Conduit encountered an error, then the HTTP response is still 200,
but the error_code and error_info from response.text are not empty and contain
the error message. This error can be raised using the same exception as for HTTP -
requests.exceptions.RequestException for simplicity and then it will be handled

23

Design and Implementation

accordingly in the code that calls this method get_revisions. Finally, if there are
no errors, ’revisions’ is returned. json.loads(response.text.

1 response . raise_for_status ()
2 revisions = json.loads(response .text)
3 if revisions [" error_code "] is not None:
4 raise requests . exceptions . RequestException (
5 revisions [" error_code "], revisions [" error_info "])
6 return revisions

Listing 4.8: The method get_revisions() (second part)

The next method described in Listing 4.9 is get_transactions(), which handles the
Conduit API method transaction.search. It uses the revision_phid returned in
the previous function and since there also could be more than 100 of transactions for
a revision, the after_cursor is passed as well. The rest is similar to the previous
function with de-serialising the response, raising the exceptions and returning the
transactions.

1 def get_transactions (self , revision_phid , after_cursor):
2 data = {’api.token ’: self.token ,
3 ’objectIdentifier ’: revision_phid ,
4 ’after ’: after_cursor
5 }
6 response = requests .get(self.url + ’transaction . search ’, data=

data)
7 response . raise_for_status ()
8 transactions = json.loads(response .text)
9 if transactions [" error_code "] is not None:

10 raise requests . exceptions . RequestException (
11 transactions [" error_code "], transactions ["

error_info "])
12 return transactions

Listing 4.9: The method get_transactions()

The last method discussed is run(), which runs the whole crawling process. Listing
4.10 shows how the variable after_cursor is defined as an empty string so that on
the first call it would not act as a constraint and return the very first available objects.
The variable first_rev_id is used to store the ID of the oldest revision to display
the progress correctly. In order to show the progress, the total number of revisions is
needed. This can be retrieved using the method get_revisions() with an empty
after_cursor, the newest order and the limit set to 1 for a bit of micro-optimisation
to get only the needed latest revision. The method call is enclosed in a try and
except block to catch any exception and print a message that the process cannot
continue if this first call failed. This is because if this initial call fails, it means that
every other call regarding the revisions would fail as well. Therefore, some input data
must be changed. The ID is stored in a variable called last_rev_id.

24

Design and Implementation

1 def run(self):
2 after_cursor = ’’
3 first_rev_id = 0
4 print (’Writing revisions to ’ + self. directory)
5 try:
6 last_revision = self. get_revisions (’’, ’newest ’, 1)
7 last_rev_id = last_revision [’result ’][’data ’][0][’id’]
8 except Exception as exception :
9 print (" Getting the latest revision failed . Cannot continue

further .")
10 raise exception

Listing 4.10: The method run() (first part)

The next calls to actually retrieve the revisions starting from the oldest should continue
until there are no more revisions left, when the after_cursor will be returned as
null by the last API call, therefore the whole process is enclosed in a while loop
with after_cursor as a condition to not be None, the Python keyword for null. The
code snippet from Listing 4.12 is also enclosed in a try and except block to catch
the HTTP and JSON decoding exceptions and stop the whole execution, because it
cannot continue further, see Listing 4.11.

1 while after_cursor is not None:
2 try:
3 ...
4 except (requests . exceptions . RequestException , json.

JSONDecodeError) as
exception :

5 after_cursor = ’0’ if after_cursor == ’’ else
after_cursor

6 print (" Getting revisions after {}. Cannot continue
further .". format (
after_cursor))

7 raise exception

Listing 4.11: The method run() (second part)

The code snipped in Listing 4.12 is enclosed in the try statement from List-
ing 4.11. The first step is calling the method get_revisions() with the last
available after_cursor and the ’oldest’ order. The variables after_cursor,
current_first_rev_id and current_last_rev_id are set to their corresponding
values from the revisions. The download status shows the ID range of the currently
downloading revisions, the total number of revisions and the progress in percentage.
Figure 4.4 shows the progress status as displayed after starting the phabry.py script.
The lines 12-14 from the Listing 4.12 show how the revisions file name is formed from
the IDs of the first and last revisions from the last call, and how the contents of
revisions are saved as JSON format with an indentation of 2 to a text file in the
revisions folder.

25

Design and Implementation

1 revisions = self. get_revisions (after_cursor , ’oldest ’)
2 after_cursor = revisions [’result ’][’cursor ’][’after ’]
3 current_first_rev_id = revisions [’result ’][’data ’][0][’id’]
4 current_last_rev_id = revisions [’result ’][’data ’][-1][’id’]
5 if first_rev_id == 0:
6 first_rev_id = current_first_rev_id
7 print (’Revisions ’, str(current_first_rev_id) + ’-’ + str(

current_last_rev_id),
8 ’from ’, str(last_rev_id), ’(’ +
9 str ((current_first_rev_id - first_rev_id) * 100 //

10 (last_rev_id - first_rev_id)) +
11 ’%) ... ’, end=’\r’)
12 file_name = str(current_first_rev_id) + ’-’ + str(current_last_rev_id

) + ’.json ’
13 with open(os.path.join(self.directory , ’revisions ’, file_name), ’w’)

as json_file :
14 json.dump(revisions , json_file , indent =2)

Listing 4.12: The method run() (third part)

Figure 4.4: The progress status shown during the process

After receiving one batch of 100 revisions and saving them to a file, the transactions for
each revision have to be retrieved under a for loop. The code snippet from Listing 4.13
follows the same pattern as the one for getting revision with a few notable differences.
First difference, there is a file_count to be used when saving multiple transactions
files for the same revision. Another one is that if any Exception happens to be caught,
the process is not stopped, but continues further and only the error message with the
current revision ID are saved in the log file using the previously described method
handle_exception().

1 for rev in revisions [’result ’][’data ’]:
2 after_cursor_transactions = ’’
3 file_count = 0
4 while after_cursor_transactions is not None:
5 try:
6 ...
7 except Exception as exception :
8 Phabry . handle_exception (exception , ’transactions of

revision ’
9 + str(rev[’id’]))

10 after_cursor_transactions = None

Listing 4.13: The method run() (fourth part)

26

Design and Implementation

The code snippet from Listing 4.14 follows the try statement from Listing 4.13.
As can be seen, the procedure is very similar to the one for revisions, with the
difference that if a revision has more than 100 transactions, then more than one call of
get_transactions() is needed and then every file name has the form of transaction
ID plus file count. For example, if the revision with ID 45 has 123 transactions, the
file names would be 45_0 and 45_1. The transaction files are saved in the directory
transactions.

1 transactions = self. get_transactions (rev[’phid ’],
after_cursor_transactions)

2 after_cursor_transactions = transactions [’result ’][’cursor ’][’after ’]
3 file_name = str(rev[’id’]) + ’_’ + str(file_count) + ’.json ’
4 with open(os.path.join(self.directory , ’transactions ’, file_name),
5 ’w’) as json_file :
6 json.dump(transactions , json_file , indent =2)
7 if after_cursor_transactions is not None:
8 file_count += 1

Listing 4.14: The method run() (fifth part)

This concludes the implementation of Phabry. The script can be run in the command
line with Python. As described above, the input parameters can be provided in a
configuration file or via command line arguments. The source code of the script, the
test file and an example config file were uploaded on Github in a public repository1.

1https://github.com/dimonco/Phabry

27

https://github.com/dimonco/Phabry

5 Evaluation

5.1 Requirements evaluation
The section 2.3 mentions that the requirements have to be met and therefore they
need to be verified with tests. The Phabry script covers a list of Phabricator data
sources, each with thousands of revisions and even more transactions. It is practically
impossible to guarantee a test coverage of all the possible outcomes and circumstances.
Nonetheless, a set of unit tests were written to assess the basic functionality of the
script. Unit testing is done by testing each class method separately and independently
from others.

The unit testing was performed using Python’s unittest. The tests use real input
parameters and download actual data from a Phabricator host, but use method stubs
and mock objects to assist with testing a method in isolation. Listing 5.1 shows the
main class of the unit test file, which is also called Phabry.

1 class Phabry (unittest . TestCase):
2 @patch (’os. makedirs ’)
3 @patch (’phabry . configure_logging ’)
4 def setUp(self , mock_makedirs , mock_logging):
5 mock_makedirs . return_value = True
6 mock_logging . return_value = True
7 self. phabry = phabry . Phabry ("llvm",
8 "https :// reviews .llvm.org/api/",
9 "api -token", "11 -05 -2019",

10 "12 -05 -2019")

Listing 5.1: The unittest class definition

Listing 5.1 shows how the functions os.makedirs and phabry.configure_logging
are substituted with mock functions in order to control the values and to not use any
real files. The setUp() method is defined so that the test runner will run it prior to
each test. One test example is provided below. The method test_get_revisions()
tests the Phabry method get_revisions() by calling it with the provided parameters
and asserting that the result is the same as the one expected, see Listing 5.2. This
method does not require any other mock functions or values.

28

Evaluation

1 def test_get_revisions (self):
2 revisions = self. phabry . get_revisions (’’)
3 self. assertEqual (len(revisions [’result ’][’data ’]), 6)
4 self. assertEqual (revisions [’result ’][’data ’][0][’id’], 20236)

Listing 5.2: The unittest class definition

The class Phabry from the main script contains 4 main methods, all of which are
covered by individual tests. However, covering the main script with unit tests is
only a part the whole testing process. The rest of the functional and non-functional
testing was performed manually. In the following paragraphs it is described how each
requirement defined in the chapter 2 was tested.

F1: Crawler based on Phabricator The main script can download code review
data defined as ”differential revisions” in Phabricator from any publicly available
repository that supports the Conduit API. It was tested with 3 Phabricator hosts:
LLVM, FreeBSD and KDE. The script is also flexible and should require minimum
modifications in case of future API changes.

F2: All available data is downloaded This requirement is a bit tricky to test
because there is no way to test how much data there is in the database and that
indeed all the data was provided during the API calls. Nonetheless, there were taken
measures to ensure that the API methods used by the script use the right parameters
to download all the data that the Phabricator host provides, in particular the correct
use of the ’after cursor’ parameter that acts as a bridge between every API call
until there are no more revisions or transactions left to download. Also, the response
from each API call was saved in separate files as is, thus minimizing the possibility of
data loss.

F3: Complete data Phabry downloads and saves the data in exactly the same
condition as it comes from the Phabricator host. The only exception is that the JSON
data comes as one line of text that is very hard to visually inspect, therefore it was
saved as one key-value pair per line with proper indentation.

F4: Single-threaded and minimal server load The main script uses only one
process and makes the API calls synchronously, i.e. each next call was made only after
the previous one was finished. Thus, the impact on the Phabricator host was kept to
a minimum.

F5: Reproducible behaviour Phabry supports the supplying of input parameters
through command line arguments or via a configuration file. Each error encountered
during the process is saved in a log file or shown directly on the screen, depending on
the severity of the error. These points ensure a reproducible behaviour.

29

Evaluation

F6: Incremental crawling Incremental crawling was not implemented because
it was considered as over-optimisation due to these two aspects: the script normally
needs to be run only once to download the whole dataset and doesn’t necessarily need
daily updates. And then even if an update is needed at some point, it takes only a few
hours to download the whole dataset again, therefore making the incremental crawling
redundant, especially since it is cumbersome to implement correctly. Nonetheless, it is
possible to specify a time frame as input parameters and download only a subset of
the data, thus being able to update the dataset with the latest data.

F7: Anonymization of personal data Then data downloaded by the script does
not contain any personal data such as names or emails, only the authors hashed ID’s
are available.

N1: Efficiency Phabry is very lightweight and uses the CPU at 1-2% and maximum
20 MB of RAM. The downloaded data has the size of 1 KB − 200 KB per API call,
therefore the impact on network usage is minimal.

N2: Execution time The execution time depends on the Phabricator host and
on the total number of revisions and transactions. Three hosts were tested and the
results are provided in the Table 5.1.

Phabricator host FreeBSD KDE LLVM

Number of revisions 20400 21500 62700

Size 290 MB 295 MB 1170 MB

Download time 3 hours 1 hour 14 hours

Table 5.1: Overview of datasets downloaded in May 2019

5.2 Dataset analysis
Phabry was used to collect code review data from 3 open source Phabricator hosts.
Table 5.1 shows a brief overview of the datasets from each instance. Appendices A
and B show excerpts from the files with the corresponding data. The dataset from
FreeBSD was chosen for the analysis. The main tools used to analyse the data are
Jupyter Notebook1 for live code execution and visualisation of text via browser, and
pandas2 as a high-performance tool for data structures and data analysis. The aim
is to get an insight into the data and to create a demo Jupyter notebook on how to
process Phabricator data for further analysis.

1https://jupyter.org/
2https://pandas.pydata.org/

30

Evaluation

One important aspect of pandas is that it works best with two-dimensional heterogen-
eous data, however the review data crawled from Phabricator does not perfectly fit the
two-dimensional criterion. For example, while every revision comes as a dictionary,
the ’fields’ key is itself a dictionary that can contain another dictionary. Also, the
’attachments’ key contains dictionaries with lists of other dictionaries. The same
goes for the transactions. Therefore, it is required to do some preprocessing in order
to be able to analyse the data with pandas. One way to achieve the desired structure
is to create new tables from the nested dictionaries. For example, a table reviewers
was created with every reviewer attached to each revision in a many to one relation.
See Appendix C for the demo code. As with any demo, it can be further improved
and adapted to the desired functionality.

Phabricator host FreeBSD KDE LLVM

Number of revisions 20479 21477 62721

Date of the first revision 17-12-2013 05-02-2015 09-07-2012

Percentage of closed revisions3 91,9 % 93,1 % 90,6 %

Percentage of published over closed revisions4 88,6 % 89,9 % 89,3 %

Number of reviewers 682 759 1664

Mean value of reviews per reviewer 30,3 28,3 37,7

Number of authors 675 1201 2509

Table 5.2: Dataset statistics and metrics

The demo code was used to import the revisions and transactions into pandas data
frames and analyse the code review data to get some statistics. Table 5.2 shows the
gathered metrics for a general overview of the datasets. Another metric that can be
tested is the workload for individual reviewers. Figure 5.1 shows the distribution of
revisions per reviewer and it follows the Pareto distribution, as would be expected.
These results reinforce the that a small group of experienced reviewers can handle the
review process. It can also be observed that out of the three projects, KDE seems
to be the most extreme and even if the total numbers of reviewers and revisions are
comparable to those of FreeBSD, there are a lot fewer reviewers that deal with the
absolute majority of revisions.

3Open revisions - in review or accepted but not published yet
4Closed revisions can be either published or abandoned

31

Evaluation

Figure 5.1: Number of reviews per reviewer

32

6 Conclusion

Code review is an important part of the development of a product. It is widely
recognised as one of the best methods to improve code quality, to reduce the number
of bugs and to help in knowledge transfer. Nonetheless, It is crucial to continue the
research of code review and ways to improve it.

The purpose of this thesis was to develop a tool that crawls code review data from
Phabricator instances of open source projects that support it. All the requirements
were took in consideration when developing the crawler, named Phabry, and a set
of unit tests was written and manual testing was performed for quality assurance.
Phabry can crawl code review data from the supported hosts and saves all the data
formatted as JSON into text files for further analysis.

The Phabricator datasets crawled from 3 open source projects: FreeBSD, KDE and
LLVM were used for an initial data analysis. An overview of the analysis was presented.
The demo on how to process Phabricator code review datasets was provided as a
Jupyter notebook to help in future research.

33

Appendix A: Excerpt from a revisions file

Appendix A Excerpt from a revisions file
{

"result": {
"data": [

{
"id": 2,
"type": "DREV",
"phid": "PHID-DREV-rcox32omctpd3g5pzqsj",
"fields": {

"title": "Enable LLDB by default on platforms where we build Clang",
"authorPHID": "PHID-USER-axkijn4pfdxlezgbnt7g",
"status": {

"value": "published",
"name": "Closed",
"closed": true,
"color.ansi": "cyan"

},
"repositoryPHID": null,
"diffPHID": "PHID-DIFF-lazxnqfctfserhgzysxg",
"summary": "",
"testPlan": "Check that lldb is built if no WITH_ or WITHOUT_ in src.conf",
"isDraft": false,
"holdAsDraft": false,
"dateCreated": 1387310092,
"dateModified": 1557876634,
"policy": {

"view": "public",
"edit": "users"

}
},
"attachments": {

"subscribers": {
"subscriberPHIDs": [

"PHID-USER-sfbxp2cksgub2ywlvupr",
"PHID-USER-q5lmute3rwskeizvu5gf"

],
"subscriberCount": 4,
"viewerIsSubscribed": false

},
"reviewers": {

"reviewers": [
{

"reviewerPHID": "PHID-USER-iv3vop5y36l265phkqzr",
"status": "accepted",
"isBlocking": false,
"actorPHID": null

},
{

"reviewerPHID": "PHID-USER-sfbxp2cksgub2ywlvupr",
"status": "accepted",
"isBlocking": false,
"actorPHID": null

}
]

},
"projects": {

"projectPHIDs": []
}

}
},
...

{
"id": 104,
"type": "DREV",

34

Appendix A: Excerpt from a revisions file

"phid": "PHID-DREV-4apqrggjn2p534ndkram",
"fields": {

"title": "Add DOCS and EXAMPLE options to biology/mafft",
"authorPHID": "PHID-USER-lwgald3qwndle6ytbupv",
"status": {

"value": "published",
"name": "Closed",
"closed": true,
"color.ansi": "cyan"

},
"repositoryPHID": "PHID-REPO-kevfhl5245mevhmor36u",
"diffPHID": "PHID-DIFF-zfhql5h3s5tyep65mdon",
"summary": "Add DOCS and EXAMPLE options to biology/mafft\n\nPR: ports/190161",
"testPlan": "http://poudriere.ircmylife.com:13780/data/latest-per-pkg/mafft/7.149/",
"isDraft": false,
"holdAsDraft": false,
"dateCreated": 1401295492,
"dateModified": 1401509954,
"policy": {

"view": "users",
"edit": "users"

}
},
"attachments": {

"subscribers": {
"subscriberPHIDs": [],
"subscriberCount": 0,
"viewerIsSubscribed": false

},
"reviewers": {

"reviewers": [
{

"reviewerPHID": "PHID-USER-26snrek27a4tph6sxbot",
"status": "accepted",
"isBlocking": false,
"actorPHID": null

},
{

"reviewerPHID": "PHID-USER-7dwczumdatyyxdjeiazl",
"status": "added",
"isBlocking": false,
"actorPHID": null

}
]

},
"projects": {

"projectPHIDs": []
}

}
}

],
"maps": {},
"query": {

"queryKey": null
},
"cursor": {

"limit": "100",
"after": "104",
"before": null,
"order": "oldest"

}
},
"error_code": null,
"error_info": null

}

35

Appendix B: Excerpt from a transactions file

Appendix B Excerpt from a transactions file
{

"result": {
"data": [

{
"id": 10234,
"phid": "PHID-XACT-DREV-gqh6xxdp6quyp27",
"type": null,
"authorPHID": "PHID-USER-ycbrujqwoepzdb6clww2",
"objectPHID": "PHID-DREV-m7b22drp5cp77n7ydrew",
"dateCreated": 1408547665,
"dateModified": 1408547665,
"comments": [],
"fields": {}

},
{

"id": 29,
"phid": "PHID-XACT-DREV-hwcq3sbpvtaect6",
"type": "comment",
"authorPHID": "PHID-USER-ycbrujqwoepzdb6clww2",
"objectPHID": "PHID-DREV-m7b22drp5cp77n7ydrew",
"dateCreated": 1399735586,
"dateModified": 1399735620,
"comments": [

{
"id": 10,
"phid": "PHID-XCMT-lybeamzvp7zbtehwtigm",
"version": 3,
"authorPHID": "PHID-USER-ycbrujqwoepzdb6clww2",
"dateCreated": 1399735620,
"dateModified": 1399735620,
"removed": false,
"content": {

"raw": "Ah, well, ‘USES=perl5‘ should have gone the argument way to begin with, but doesn’t matter.\n\n
Also, I only put this here because I wanted to test ‘arc‘ and see how it worked, and it was the first
thing handy 0:-)\n\n‘USES‘ right now is missing the ability to do:\n\n USES=perl5:build\n
.if ALSO_RUN\n USES+=perl5:run\n
.endif\n\nand a few ports need to do things like this before this could even go further."

}
},
...

],
"fields": {}

},
...

],
"cursor": {

"limit": 100,
"after": null,
"before": null

}
},
"error_code": null,
"error_info": null

}

36

Appendix 6.3: Demo code for processing the code review data

Appendix C Demo code for processing the code re-
view data

import pandas as pd
import os
import json
from datetime import datetime

revlist = []
reviewerslist =[]
revdir = os.path.join(’phabry_data’, ’freebsd’, ’revisions’)
for filename in os.listdir(revdir):

if filename.endswith(’.json’):
with open(os.path.join(revdir, filename)) as f:

rev = json.load(f)
rev = rev[’result’][’data’]
for row in rev:

for key in row[’fields’].keys():
if key in [’title’, ’authorPHID’, ’repositoryPHID’, ’diffPHID’, ’summary’]:

row[key] = row[’fields’][key]
if key in [’dateCreated’, ’dateModified’]:

row[key] = datetime.utcfromtimestamp(row[’fields’][key]).strftime(’%Y-%m-%d %H:%M:%S’)
if key == ’status’:

row[key+’Value’] = row[’fields’][key][’value’]
row[key+’Name’] = row[’fields’][key][’name’]
row[key+’Closed’] = row[’fields’][key][’closed’]

row.pop(’fields’, None)
for r in row[’attachments’][’reviewers’][’reviewers’]:

r[’phid’]=row[’phid’]
reviewerslist.extend(row[’attachments’][’reviewers’][’reviewers’])
row.pop(’attachments’, None)

revlist.extend(rev)
revisions = pd.DataFrame(revlist)
reviewers = pd.DataFrame(reviewerslist)

transdir = os.path.join(’phabry_data’, ’freebsd’, ’transactions’)
tralist = []
for filename in os.listdir(transdir):

if filename.endswith(’.json’):
with open(os.path.join(transdir, filename)) as f:

rev = json.load(f)
rev = rev[’result’][’data’]
for row in rev:

row[’dateCreated’] = datetime.utcfromtimestamp(row[’dateCreated’])
row[’dateModified’] = datetime.utcfromtimestamp(row[’dateModified’])

tralist.extend(rev)
transactions = pd.DataFrame(tralist)

37

References

Conduit - differential.revision.search. (n.d.). Retrieved May 21, 2019, from https:
//secure.phabricator.com/conduit/method/differential.revision.search/

Conduit - transaction.search. (n.d.). Retrieved May 21, 2019, from https://secure.
phabricator.com/conduit/method/transaction.search/

Conduit API Overview. (n.d.). Retrieved May 20, 2019, from https : / / secure .
phabricator.com/book/phabricator/article/conduit/

Differential User Guide. (n.d.). Retrieved May 10, 2019, from https : / / secure .
phabricator.com/book/phabricator/article/differential/

Differential User Guide: Inline Comments. (n.d.). Retrieved May 12, 2019, from
https://secure.phabricator.com/book/phabricator/article/differential inlines/

Kolawa, A. & Huizinga, D. (2007). Automated defect prevention: Best practices in
software management. (p. 260). Wiley-IEEE Computer Society Press.

Phabricator - Community Resources. (n.d.). Retrieved May 22, 2019, from https:
//secure.phabricator.com/w/community resources/

Phabricator Login. (n.d.). Retrieved May 22, 2019, from https://secure.phabricator.
com/auth/start/?next=%2F

Phacility - Home. (2019). Retrieved May 10, 2019, from https://phacility.com/
Tsotsis, A. (2011). Meet phabricator, the witty code review tool built inside facebook.

Retrieved from https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-
penned-these-words/

User Guide: Review vs Audit. (n.d.). Retrieved May 10, 2019, from https://secure.
phabricator.com/book/phabricator/article/reviews vs audit/

38

https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/differential.revision.search/
https://secure.phabricator.com/conduit/method/transaction.search/
https://secure.phabricator.com/conduit/method/transaction.search/
https://secure.phabricator.com/book/phabricator/article/conduit/
https://secure.phabricator.com/book/phabricator/article/conduit/
https://secure.phabricator.com/book/phabricator/article/differential/
https://secure.phabricator.com/book/phabricator/article/differential/
https://secure.phabricator.com/book/phabricator/article/differential_inlines/
https://secure.phabricator.com/w/community_resources/
https://secure.phabricator.com/w/community_resources/
https://secure.phabricator.com/auth/start/?next=%2F
https://secure.phabricator.com/auth/start/?next=%2F
https://phacility.com/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://secure.phabricator.com/book/phabricator/article/reviews_vs_audit/
https://secure.phabricator.com/book/phabricator/article/reviews_vs_audit/

	Introduction
	Requirements
	Functional requirements
	Non-functional requirements
	Evaluation scheme for requirements

	Phabricator
	Differential – review workflow
	Conduit API

	Design and Implementation
	Design
	Implementation

	Evaluation
	Requirements evaluation
	Dataset analysis

	Conclusion
	Appendices
	Appendix Excerpt from a revisions file
	Appendix Excerpt from a transactions file
	Appendix Demo code for processing the code review data

	References

