
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

HARISH VIJAYAMOHAN

MASTER THESIS

A METRIC DASHBOARD FOR

INNER SOURCE

Submitted on 29 April 2019

Supervisor: Prof. Dr. Dirk Riehle, M.B.A., Maximilian Capraro, M.Sc.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 29 April 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 29 April 2019

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Inner Source is a software development approach that uses open source prac-
tices within an organization. The Collaboration Management Suite (CMSuite)
developed by the Open Source Research Group at the Friedrich-Alexander Uni-
versity Erlangen-Nürnberg supports the analysis and visualization of data about
the inner source. However, it lacked the feature to show visualizations for all
organizational units of different organizational dimensions. Also, a metric de-
signer could not get descendants of the selected organizational unit within a
single transformation. Consequently, One had to create duplicate steps to deal
with the hierarchical order of the organizational units.
In this thesis, the dashboard infrastructure is iteratively extended in the way
needed for the new metric implementations. It focuses on basic descriptive stat-
istics and patch-flow metrics. Additionally, it elaborates a Java-based REST-
service, which allows the user to execute metrics using the hierarchical data in-
jected via the Pentaho data integration tool. The result is then visualized in
Angular 6.0 client component for the metric dashboard. Now the metric calcu-
lations are performed for selected organizational units including its descendants.
Thus, this addition to CMSuite will enable a metric designer to define new metrics
without having to think about handling parent-child relations.

ii

Contents

1 Metric Dashboard 1
1.1 Previous Work . 2
1.2 Purpose . 2
1.3 Requirements . 2

1.3.1 Stakeholders . 2
1.3.2 Functional Requirements 3
1.3.3 Non-Functional Requirements 5

2 Architecture and Design 6
2.1 Design Decisions . 6
2.2 Third-Party Tools . 7

2.2.1 Pentaho Data Integration (Kettle) 8
2.2.2 Ngx-charts . 8
2.2.3 Rhino(JavaScript engine) and JavaMail 9
2.2.4 The Apache Commons Mathematics Library 9

2.3 Domain Model . 9
2.4 Persistence . 11

2.4.1 Persisting Transformations 11
2.4.2 Database schema . 11
2.4.3 Persisting Results . 12

2.5 Architecture . 12
2.6 REST Endpoints . 13
2.7 Server Components . 13

2.7.1 Transformation Manager 13
2.8 Webclient . 17

2.8.1 Transformation-Manager-Module 17
2.8.2 Analysis-Result-Module 17
2.8.3 Dashboard-Module . 17

3 Implementation 18
3.1 Kettle Transformations . 18

3.1.1 Types of Transformation 18

iii

3.1.2 Common Kettle Steps . 19
3.2 Transformation Manager . 25

3.2.1 RowListener . 25
3.2.2 DescendantLoader . 28
3.2.3 KettleTransformer . 32

3.3 Analysis-Result-Provider . 33
3.4 Web-client . 35

3.4.1 Analysis-Result-Module 35
3.4.2 Transformation-Manager-Module 37

4 Results 40
4.1 Metric Visualizations . 40

4.1.1 Single Value Result . 40
4.1.2 Time Series Result . 41
4.1.3 Categorized Time Series Result 47
4.1.4 Grouped Categorized Value Result 52
4.1.5 Categorized Value Result 54

5 Evaluation 56
5.1 Functional Requirements . 56
5.2 Non-Functional Requirements . 58

6 Future Work 60

7 Conclusion 62

Appendices 63
Appendix A Update Transformation 63
Appendix B Dashboard . 64
Appendix C Default KTR File Location 65

References 66

iv

1 Metric Dashboard

Inner Source (IS) is the use of open source software development practices and
the establishment of an open source-like culture within organizations(Capraro &
Riehle, 2017). In inner source, companies open up source code internally so that
all employees can see, reuse and contribute changes to it independently of their
team. Managers and other individuals in software industry show an increasing
interest in measuring inner source collaboration and showing metrics about it.
To better understand IS, researchers and practitioners need to measure IS col-
laboration(Capraro, Dorner & Riehle, 2018).
In order to analyze inner source collaboration, the Open Source Research Group
at the Friedrich-Alexander-University Erlangen-Nuernberg is developing the Col-
laboration Management Suite (CMSuite). Using this software, an organization
can retrieve patches and its related information from source code repositories like
Git. With this extracted data, it is possible to define different metrics, which
are a measure for inner source evaluation. By transforming the results of these
metrics into different visualizations, developers and managers can manage the
inner source process efficiently.

The contributions of this thesis are:

• The extension of CMSuite dashboard to display visualizations for all di-
mensions.

• The storage of transformation files in the database instead of file system.

• A feature to load default kettle transformation files on a fresh install of
CMSuite.

• The implementation of different inner source metrics, visualizations.

• A feature to update the transformation metadata.

• The categorization of visualizations for the whole organization and other
org. elements.

• A method to collect hierarchical information of the organization and then
inject it inside transformations at runtime.

1

1.1 Previous Work

CMSuite allows a user to extract data about code contributions from the reposit-
ories using the patch-flow crawler. These extracted patches were the only means
of information on which the measurements were carried out. Later, CMSuite is
extended to have a metric dashboard that enables the user to visualize results.
This was made possible by using a data integration tool Pentaho Kettle. The
dashboard is designed in a way such that it can display the results stored in
the database. These results are stored by running kettle transformation files in
CMSuite. Pentaho Kettle data integration tool provides the option to run the
transformations inside java application. However, there were no kettle transform-
ations implemented. There were only some examples which show how the data
integration tool executes the transformation and how the results are shown as
visualizations.

1.2 Purpose

Before this thesis, the metric designers were able to create transformations only
for leaf nodes(deepest org. element). Also, it was not known which metrics were
important for creating different kinds of visualizations. Therefore, it was thus
desirable to implement all possible metrics (Daeubler, 2017). In contrast, this
thesis focuses on the implementation of the metrics that help to measure inner
source instead of implementing all possible ones. The purpose of this work is to
extend the dashboard component of CMSuite to allow the user to add metrics
that would work for all org. elements agnostic of granularity. In order to inject
all the hierarchical data of the organization, CMSuite is extended to use row
listeners that are features provided by Pentaho data integration tool. The results
of metric calculations are visualized in Angular 6.0 dashboard component. Most
of the metrics to measure patch-flow across organization levels are implemented
based on ideas described in (Capraro et al., 2018). The metrics are uploaded
through web-client and stored in the database as well. Furthermore, it also
allows the user to modify some of the metadata of these metric files. In addition
to that, the web client is also extended to display the visualizations in a larger
size. As a result, it helps users to perform their analysis effectively.

1.3 Requirements

1.3.1 Stakeholders

The stakeholders of dashboard module are:

• A Developer, whose role is to develop new features of CMSuite.

2

• An Administrator, who monitors the operations of CMSuite.

• A Metric Designer, who defines new metric that facilitates the evaluation
of inner source process.

• An Inner Source Stakeholder, who is interested in knowing more about ISPs
within an organization.

In addition to the roles mentioned above, there are also other roles like contrib-
utor, committer, etc. However, defining metrics based on a particular role is not
the motivation of this thesis. Because there are no implementations based on role
till now, it is thus desirable to create all possible metrics. Therefore, all the above
roles are considered to be one role called ”Inner Source Stakeholder” throughout
this thesis.

1.3.2 Functional Requirements

Following are the functional requirements defined based on workshops and dis-
cussions.

1. As a metric designer, I want to store the KTR files in the database instead
of the file system, so that the files will be in sync with the tables in the
database.

2. As a metric designer, I want to be able to update the transformation, so
that I do not have to delete and then create a new one if any modifications
are required.

3. As a metric designer, I want to download the KTR file so that I can easily
bring out my changes to KTR file.

4. As an administrator, I would like to see all transformation available in
database after a fresh install, so that I do not have to load them one by one
manually every time.

5. As an inner source stakeholder, I want to display the visualization that
presents the number of code contributions over time, so that I can observe
if the contributions are increasing or decreasing over time.

6. As an inner source stakeholder, I want to see the number of code contribu-
tions made per month by namespace agnostic of Org. element granularity,
so that I can find out which namespace had most of the contributions over
time.

7. As a metric designer, I would like to have an option to choose if visualiza-
tions should be displayed only for root Org. element or other Org. elements,
so that I do not have to use separate steps inside the ktr file for segregating
it.

3

8. As an inner source stakeholder, I would like to view all the visualizations
in a larger size, so that the analysis can be carried out effectively. In this
larger tile the legend of the chart should be displayed.

9. As an inner source stakeholder, I want to see the number of code contribu-
tions received by an inner source project per month, so that I can see the
development activity and estimate the ISP’s survivability.

10. As an inner source stakeholder, I want to see the number of persons involved
over time so that I can estimate if the ISP is still alive.

11. As an inner source stakeholder, I want to see the number of persons making
their first code contribution agnostic of type and granularity, so that I can
find how many new persons are involved over time.

12. As an inner source stakeholder, I want to visualize the number of persons
that had their last contributions per month agnostic of type and granularity,
so that I can find how many persons have lost involvement in the inner
source.

13. As an administrator, I want to see the data completeness of the number
of code contributions received over time, so that I can have an overview of
how good and reliable the data is.

14. As an inner source stakeholder, I want to see the data completeness of the
number of code contributions contributed over time, so that I can investig-
ate where I need to manually tweak the data.

15. As an inner source stakeholder, I want to see the patch-flow by Org. levels
over time, so that I can measure how many code contributions were made
across organizational boundaries.

16. As an inner source stakeholder, I want to see the number of code contri-
butions received over time by Org. levels, so that I can find all the active
ISP’s that received patches across organizational units.

17. As an inner source stakeholder, I want to see the number of authors and
their code contributions made.

18. As an inner source stakeholder, I want to see the relative patch flow over
time, so that I can find the patch-flow relative to the total amount of code
contributions to the IS projects per month.

19. As an inner source stakeholder, I want to see the code contributed by teams
of selected org. element over time.

20. As an inner source stakeholder, I want to export the visualizations to PDF.

4

21. As a administrator, I want to have a better design for dashboard compon-
ents, so that the two different modules of dashboard can be merged into
one.

22. As an inner source stakeholder, I want to be able to personalize the dash-
board, so that I can pick specific org. element or inner source project to be
displayed.

1.3.3 Non-Functional Requirements

1. The response time of the dashboard module should stay within one to five
seconds.

2. The tool handles faulty results properly so that nobody has to restart the
broken system.

3. The steps implemented in the kettle transformation (ktr) files should not
be very complicated.

4. The transformations should execute for all types of datasets irrespective of
size of the dataset.

5. The visualizations should not be incomprehensible. That is, chart clutter
should be avoided.

6. The legends displayed in the chart should not show the id of org. element
or ISP. Only the name of the agent should be displayed.

5

2 Architecture and Design

2.1 Design Decisions

Prior to this thesis, the transformation manager module was implemented such
that it uses Pentaho data integration tool for metric definitions. This tool is
integrated into CMSuite, which lets the user execute the transformations from
Java. However, there were no metrics defined to display proper visualizations
agnostic of granularity. The spoon is a graphical user interface that allows users
to quickly design metrics with the help of predefined steps. But it lacked the
ability to perform loops over steps in a transformation, that were needed to be
repeated. CMSuite needed this feature so that it makes it easier for a metric
designer to deal with the hierarchical order of organizational units.

The fundamental question of design phase is how to get these hierarchical inform-
ation of oganizational units without affecting the execution speed of the kettle
transformations and without making the KTR files too complicated. Several
solutions are discussed in this chapter.

The first possible solution is to repeat the combination of steps inside the single
kettle transformation file to reach the depth of organizational tree. But to get
complete hierarchical order, one must know the number of levels present in the
selected organization. For example, if the depth of the organizational tree is 14
levels, then the metric designer would have to append the specific combination
of steps for 14 times. As a result, it makes the KTR file very complicated and
difficult to read. Moreover, it affects the execution speed of the transformation.

The next possible solution is to use SQL to extract the hierarchical information
of the selected organizational unit. They could be entered in the Table input step
provided by GUI spoon. However, it results in poor performance when the query
is executed for every output row from the previous step in spoon. Moreover, the
metric designer would have to be a programmer to create a recursive SQL to
extract the hierarchical order of organizations. Thus, it is not desirable to use
SQL to resolve this problem.

In contrast to previous solution, the User Defined Java Class step could be used

6

to improve the performance. This step allows the metric designer to write his own
step plugin in the form of Java code that is entered in the dialog of the step itself.
This code is compiled at run-time and executed at optimal performance (Casters,
Bouman & Van Dongen, 2010). It uses third party library called Janino to
compile the java code at runtime. Again here the problem is that metric designer
would have to be a programmer. Furthermore, this step supports only the older
version of java which does not have generics and other important features that
are available in latest versions(“User Defined Java Class”, 2019).

The another possbile solution is to execute kettle jobs instead of transformations.
It enables metric designer to create loops over transformations in spoon. How-
ever, it requires major changes to be done to the already existing architecture of
components related to dasboard. Moreover, if a metric designer needs to perform
a large number of iterations he would notice that the solution is slow. This per-
formance problem is caused due to the loading of the metadata for the job that
performs the actual work. All this extra work would slow down the job and run
the risk of running out of heap space (Casters et al., 2010).

The easiest possible solution for this problem is to extend the transformation
manager to use row listener interface of Pentaho data integration tool. Row
listener could be used for reading the data from the step at runtime. For the data
read from step, the required data could be gathered and then injected back into
the same step using StepInterface . For example, the descendant org. elements
could be injected into the step for the org. element read by the row listener. A
developer of CMSuite could implement different row listeners that would be used
for injecting data into step. A metric designer does not have to be a programmer
but he must know what attribute names should be used for getting this injected
data. Thus, CMSuite could be extended to use different types of row listeners
for injecting data into the step at runtime. It will be further explained how it is
integrated inside the transformation manager.

2.2 Third-Party Tools

Pentaho data integration(PDI Kettle), Ngx-charts, Rhino (JavaScript engine),
JavaMail and The Apache Commons Mathematics Library are the third party
tools used in this thesis. The PDI Kettle was already included in CMSuite prior
to this thesis. All others dependencies are newly added for this project. Below
are the license information about newly added third party dependencies.

• Rhino(JavaScript engine) - Mozilla Public License (MPL) MPL 1.1

• JavaMail - Common Development And Distribution License (CDDL-1.1)
and GNU General Public License, version 2 GPL-2.0

7

• The Apache Commons Mathematics Library - Apache License, Version 2.0

2.2.1 Pentaho Data Integration (Kettle)

Kettle contains a rich set of data integration functionality that is exposed to a set
of data integration tools (Casters et al., 2010). However, Kettle can also be used
as a library in own software and solutions (Casters et al., 2010). Kettle Java API
enables us to execute a kettle transformations to extract, transform and load the
data. As mentioned earlier, CMSuite now uses Pentaho Data Integration tool to
extract the raw patch-flow data from the database, transform the data and stores
it to persistent storage.

Kettle Transformations

A Kettle tranformation handles the manipulation of rows or data from database
tables. It consists of one or more steps that perform core ETL work such as
reading data from files, filtering out rows, data cleansing, or loading data into a
database. The steps in a transformation are connected by transformation hops.
The hops define a one-way channel that allows data to flow between the steps.

Injecting Data into Kettle Transformations

As mentioned earlier, the hierarchical data of organizational units has to be in-
jected for some metric calculations. In order to facilitate this injecting process,
current rows from the steps are needed to be read at runtime. This can be
achieved by using RowListener. Data can be read from a step in a streaming
fashion using row listener interface. Once the current rows are read, the corres-
ponding hierarchical data can be injected inside that particular step at runtime.

2.2.2 Ngx-charts

Before this thesis, the dashboard module was using chart.js to visualize the res-
ults. The problems in using chart.js with Angular is that they violate the single
point of DOM contact policy. Because the chart.js framework is not Angular2+
code, they would be touching the DOM independently. This can cause problems
when both Angular and the chart.js framework is manipulating the DOM simul-
taneously. To overcome this problem, it is replaced with ngx-charts. Ngx-charts
is a unique charting framework for angular because it is using Angular to render
and animate the SVG elements with all of its binding and speed goodness, and
uses d3 for the excellent math functions, scales, axis and shape generators, etc.
Ngx-charts is open source and is available under the MIT license, so it can be
used in this project.

8

2.2.3 Rhino(JavaScript engine) and JavaMail

Rhino is a JavaScript engine written in Java and managed as open source software
by the Mozilla Foundation. Rhino converts scripts from JavaScript into classes.
JavaMail is a Java API used to receive and send an email via IMAP, SMTP,
and POP3. In this thesis, the ModifiedJavaScript scripting step from spoon’s
menu is used to perform some metric calculations using javascript. However,
Pentaho data integration uses Rhino and JavaMail to support this scripting step.
Thus, it works well when the KTR file is executed in spoon. But when it is
executed through CMSuite, it breaks the execution by throwing classes not found
exception. Although JavaMail is not required for our thesis, it is added because
ModifiedJavaScript step of PDI requires it (“ModifiedJavaScript step requires
JavaMail”, 2019). In order to execute the KTR files successfully in CMSuite,
these dependencies are added to CMSuite as same as how kettle PDI uses it in
its pom.xml file (“PDI Kettle’s Third-party dependencies”, 2019).

2.2.4 The Apache Commons Mathematics Library

Commons Math is a library of mathematics and statistics components that helps
in solving the most common problems not available in the Java programming
language. In this thesis, the GroupBy statistic step is used from spoon’s menu to
perform some statistical calculations. As mentioned before, Pentaho data integ-
ration uses third-party dependencies to support this statistical step (“Groupby
step requires Apache math”, 2019). Thus, it works well when the KTR file is run
in spoon. But when it is executed through CMSuite, it breaks the execution by
throwing classes not found exception. In order to execute the KTR files success-
fully in CMSuite, this dependency is added to CMSuite as same as how kettle
PDI uses it in its pom.xml file (“PDI Kettle’s Third-party dependencies”, 2019).

2.3 Domain Model

Prior to this thesis, only three result types were there in the domain model of CM-
Suite dashboard. The SingleValueResult, CategorizedValueResult and TimeSer-
iesResult existed before, which was used for visualizing simple results. In order
to visualize complicated results from metric calculations, new types of results are
included in the already existing domain model as shown in figure 2.1. The newly
introduced domain classes are the following:

• CategorizedTimeSeriesResult: Contains a result with nested multiple key-
value pairs, with the parent key being a category. This is used to represent
results for metrics, that produce multiple date-value pairs for different cat-
egories of that particular EconomicAgent. For example: Metric for organiz-
ational units: ”Number of Code Contributions made to various namespace

9

Figure 2.1: Class Diagram of Results

per month”.

• GroupedCategorizedValueResult: Contains a result with nested multiple
key-value pairs, with parent key being a category. This is used to represent
results for metrics, that produce multiple string-value pairs for different
categories of that particular EconomicAgent. For example: Metric for or-
ganizational units: ”Number of code contributions received per ISP across
Org. levels”.

The modified domain classes are the following:

• Transformation: A metric is calculated by executing a transformation, that
defines the steps to create the results for this metric. The Transformation
class contains the meta-data about the transformation. Furthermore, it is
extended now to carry the Kettle Transformation File (.ktr) in the format
of a byte array. Also, it is extended to have the information about whether
the transformation must be displayed for root Org. element or other Org.
elements.

10

2.4 Persistence

2.4.1 Persisting Transformations

Before running the transformations in transformation manager, kettle transform-
ation(KTR) files have to be uploaded manually. Prior to this thesis, CMSuite
saves the uploaded files to a temporary directory. Consequently, the user had
to upload the transformation files on every fresh install. In order to avoid this
manual adding process, CMSuite has to persist the KTR files in a database. To
achieve this, the KTR files are converted to byte array format and then stored
along with transformation object.

2.4.2 Database schema

Figure 2.2: Database Schema

Prior to this thesis, the resultrow table was created with foreign key constraints
to maintain referential integrity with other tables like orgelement, innersource-
project, and person. However, the results were stored in the resultrow table
without considering organizational dimensions. In order to store the results with
respect to different dimensions, another constraint is added to relate resultrow
table and orgdimension table. As shown in figure 2.2, a column orgdimension id
is added to resultrow table with a foreign key constraint to have referential integ-
rity with orgdimension table. In addition to that, transformation table is altered
to have three new columns such as ktr file, displayforroot and displayfornonroot.

11

ktr file is used for storing the kettle transformation file as binary data. Other
two columns are of boolean data type and it is used to mark if the transformation
should be displayed for root Org. element or other Org. elements.

Storing Binary Data

PostgreSQL provides two separate ways for binary data to be stored. Binary data
can be stored in a table using the bytea data type or by using the Large Object
feature that stores the binary data in a special format in a separate table and
refers to that table by storing a value of type oid in the table. The Large Object
method for storing binary data is better suited only to store very large values
of more than 1GB (“PostgreSQL Storing Binary Data”, 2018). In contrast, a
column of type bytea data type is well suited for storing small amounts of binary
data. Since kettle transformation files are not going to be very large in size, the
bytea data type is chosen to store it in the transformation table.

2.4.3 Persisting Results

Similar to other three result types, the transformations that create Categorized-
TimeSeriesResult stores the category(parent-key) to label column, date(child-
key) to key column and value to the value column of resultrow table. Similarly,
the transformations that create the GroupedCategorizedValueResult also stores
category(parent-key) to label column, string(child-key) to key column and value
to the value column of resultrow table. The table below shows the layout of
result row table in which different types of results are stored. Additionally, the
dimension is also included to this resultrow table in this thesis. The dimension
column stores the orgdimension id of the corresponding result. With its help,
analysis result provider can retrieve the results based on dimension id that is
passed as a query parameter as shown in table 2.1.

tm run id tm id person id org id isp id dim id label key value

2.5 Architecture

CMSuite has two services that deal with transformations and results. The first
service only deals with transformations. That is storing them, deleting them or
running them. The second service, deals only with the results. So it generates
results from the result-rows and offers methods to retrieve them (Daeubler, 2017).

12

2.6 REST Endpoints

CMSuite implements a RESTful API to do its server-client communication. The
resources that were modified for this project are Transformation and Analys-
isResult. Within CMSuite the organizational hierarchy is logically segregated
into different perspectives, called organizational dimensions. Navigation of the
organizational hierarchy was implemented but was not used in the dashboard
module, i.e. organizational dimensions were ignored. While the ETL approach
is valid for computing metrics, it does not work well with data that is logically
segregated (by the org. dimensions)(Hansen, 2018). In order to overcome this
problem, the organizational dimension is also added as one of the query para-
meters in the existing URIs to retrieve results based on a specific dimension as
shown in table 2.1.

Table 2.1: URIs of AnalysisResult resource.

URI
{agentId}/singlevalue/?dim={dimId}
{agentId}/categorizedvalue/?dim={dimId}
{agentId}/timeseries/?dim={dimId}
{agentId}/categorizedtimeseries/?dim={dimId}

These endpoints are modified to retrieve the different types of result for the
given dimension. As they are all just for retrieving, they all use the HTTP GET
method. Furthermore, a PUT method is added to transformation resource as
shown in table 2.2. It is used to modify the transformation object.

Table 2.2: URIs of AnalysisResult resource.

URI HTTP Method
/transformations/ PUT

2.7 Server Components

2.7.1 Transformation Manager

The transformationmanager component retrieves and stores the transformation.
In addition to this implementation, now it also retrieves and stores the kettle
transformation file (.ktr) in the byte array format. Furthermore, it manages the
execution of transformations, which includes keeping track of the current state
of running, finished or failed executions(Daeubler, 2017). However, it lacked the

13

ability to inject the hierarchical order of organizational units into the transforma-
tion during runtime. In order to fulfill this requirement, the transformation man-
ager is extended to have rowlistener package which deals with reading data from
current rows during runtime. As a result, the CMSuite injects the hierarchical
order information into the transformation step for the corresponding incoming
row. This hierarchical order details of an organization unit are collected using
Depth First Search(DFS) algorithm, which will be discussed in section 3.2. This
DFS method for traversing the tree is implemented in a separate class called
DescendantLoader, as it loads all the descendants of the given Org. element.
The figure 2.3 shows the class diagram of rowlistener package in transformation
manager.

Row Listener

RowListener is an interface provided by Pentaho data integration(PDI) tool,
which helps in reading the data from transformation while they are being ex-
ecuted (Casters et al., 2010). This Interface has three abstract methods called
rowReadEvent, rowWrittenEvent, and errorRowWrittenEvent. Among these three
methods rowReadEvent is considered to be a useful method for our project. It
reads the rows from the current transformation at runtime, which we use as
a parameter to gather hierarchical information of that current row. As shown
in figure 2.3, the AbstractRowListener implements the RowListener interface
provided by PDI. Following are the two rowlisteners that are extended from Ab-
stractRowListener and customized based on their purpose.

• DescendantRowListener: To collect all the descendants of orgelement read
from the current row that is being executed in the transformation step.

• SegregationRowListener: To segregate the external and internal Org. ele-
ments based on the comparand columns of the current row that is being
executed in the transformation step. As shown in figure 2.3, this rowlistener
is further extended to IspSegregationRowListener and PersonSegregation-
RowListener to perform segregation(Internal/External) process for ISPs
and Persons respectively.

Furthermore, the KettleTransformer is modified to create an instance of fact-
ory class RowListenerFactory, which helps in creating the different instances
of rowlistener based on the specific step names like cmsuite inject descendants,
cmsuite inject isp segregator and cmsuite inject person segregator that occur in
the current transformation. Finally, the rowlistener object created by RowL-
istenerFactory is attached to those specific step in the transformation at runtime
(“Executing a PDI Transformation”, 2019).

14

Figure 2.3: Class Diagram of Transformation Manager

Descendant Loader

A DescendantLoader class is created to collect all the descendants of a selected
Org. element during the execution of the transformation. As shown in class dia-
gram 2.3, an instance of DescendantLoader is created by RowListenerFactory and
then it is passed to AbstractRowListener through the constructor. Since Des-
cendantRowListener and SegregationRowListener are extended from Abstract-
RowListener, this instance of DescendantLoader can be used by them. As all the
row listeners require the same heirarchical information of organizational units,

15

only one instance of descendant loader is created per Transformation run. That
is, same instance is used by all the row listeners until the end of one transforma-
tion run.

Default Ktr File Controller

As mentioned before, the KTR files are stored as byte array along with the
transformation object in the database. Before this thesis, KTR files were handled
using FileHandler to retrieve it from a temporary directory. Now that all the files
are located in the default folder, a question arose how to retrieve the data from the
default folder to show it on the transformation page. A simple solution to resolve
this problem is to read all the KTR files from a default folder and then store it in
the database. To achieve this, the already existing FileHandler is replaced with
DefaultKtrFileController. As shown in figure 2.4, the TransformationResource
has an instance of TransformationService which will try to call getAll() method
to get list of transformations. In order to load the known transformations(KTR
files), an instance of DefaultKtrFileController is used in TransformationService.

Figure 2.4: Class diagram of transformation manager

16

2.8 Webclient

CMSuite’s web-client is built using a front end web framework called Angular
6.0. The modules that contains the functionality of dashboard are transforma-
tionmanager, dashboard and analysisresult. Changes made to these modules are
discussed in the following sections.

2.8.1 Transformation-Manager-Module

Transformationmanager-module allows the user to create new transformations,
run, and delete them as well. However, it lacked the feature to update the
transformations that were stored in the database. In order to allow user to modify
the transformation, TransformationCreationComponent has been replaced with
TransformationDetailsComponent, which has both add and edit functionality.

2.8.2 Analysis-Result-Module

Analysisresult-module is responsible for retrieving the results that were stored
in database after transformation run. Prior to this thesis results were already
classified into SingleValueResultComponent, CategorizedValueResultComponent
and TimeSeriesResultComponent. Additionaly, now CategorizedTimeSeriesRes-
ultComponent and GroupedCategorizedValueResultComponent are added to this
module, to display timeseries and grouped value results in categorized manner
respectively. Further details will be discussed in chapter 3.4.

2.8.3 Dashboard-Module

Dashboard-module is responsible for displaying the visualizations for the cor-
responding agent that are selected from the tree menu. Prior to this thesis, this
module had SingleValueResultTileComponent, CategorizedValueResultTileCom-
ponent and TimeSeriesResultTileComponent. In addition to these components,
now CategorizedTimeSeriesResultTileComponent and GroupedCategorizedValu-
eResultTileComponent is also added to display the CategorizedTimeSeriesResults
and GroupedCategorizedValueResults in it. Furthermore, it was also required to
display the results in a larger size. In order to fulfill this requirement, following
components were added.

• TimeSeriesResultModalComponent

• CategorizedTimeSeriesResultModalComponent

These modal components are implemented using package called Angular Mater-
ial. It provides material design components for Angular applications(“Angular
Material Dialog page”, 2019).

17

3 Implementation

In this chapter, the implementation of new modules and how they are integrated
inside CMSuite are discussed in detail. It also dicusses what are the changes made
to already existing classes so that new ones could be integrated. Additionally,
the most commonly used kettle steps inside all the transformations are explained.

3.1 Kettle Transformations

Kettle Transformations are implemented using the GUI called spoon which allows
the user to connect steps with hops, as mentioned earlier. Types of transformation
implemented and the common steps used in it are discussed in the following
sections.

3.1.1 Types of Transformation

The transformations are categorized based on the type of result that they are
going to store in the database. Every transformation has to map its output to a
resultrow table in database. Therefore, different types of results are required to
identify the stored rows so that it can be shown in the corresponding visualization
in webclient. For example, to visualize the stacked bar chart, the results should
be categorized and then grouped again. To show the multi line chart, the time
series result should be categorized. Thus, the result types GroupedCategorized-
ValueResult and CategorizedTimeSeriesResult are introduced in this thesis. It
will be further explained how these different types of results generated by metrics
are stored in database in chapter 4. Transformations implemented in this thesis
are as follows.

1. SingleValueResult

(a) Code Contributions made(Excluding Internal)

(b) Code Contributions made(Including Internal)

2. TimeSeriesResult

18

(a) Code Contributions made per month(Excluding Internal)

(b) Code Contributions made per month(Including Internal)

(c) Persons Involved per month

(d) First Time Contributors per month

(e) Last Time Contributors per month

(f) Code Contributions Received per month

3. CategorizedTimeSeriesResult

(a) Code Contributions made per month by namespace(Excluding In-
ternal)

(b) Code Contributions made per month by namespace(Including Internal)

(c) Data Completeness of Received Code Contributions

(d) Data Completeness of Contributed Code Contributions

(e) Patch-Flow by Org. Level

4. CategorizedValueResult

(a) Authors and their patch contributions

5. GroupedCategorizedValueResult

(a) Code Contributions Received per ISP across levels

3.1.2 Common Kettle Steps

The kettle steps are used for creating metric calculations in the Spoon. Following
are a few combinations of steps in the kettle transformation (KTR) files which
are most commonly used.

Getting Descendant Orgelements

Figure 3.1: Steps to get descendant orgelements

19

As stated in (Capraro et al., 2018), organizational units are modeled using the
composite design pattern and an organizational unit can be composed of child
organizational units. In order to deal with this organizational hierarchy in kettle
transformation files, the combination of steps as shown in figure 3.1 is used. At
first, all the org. elements with its dimensions are retrieved using a simple SQL
query in a Table input step. After that, all the descendants of the org. elements
are retrieved. There are many possible ways to get descendants. One among
them is by using a complex recursive query in the Table input step. However, it
affected the performance during the execution. In order to get the descendants
without recursive process, the DFS(Depth First Search) method is used. As
mentioned earlier, this method is implemented in the transformation manager
module which will be discussed in section 3.2. As a result, the descendants are
injected into the transformation without using a recursive query. As shown in
figure 3.1, cmsuite inject descendants is the dummy step in which the descendants
are injected. After this, it is sorted and then duplicates are removed if any
appears.

Retrieving Persons of Orgelement

Figure 3.2: Steps to retrieve persons of orgelement

As mentioned in (Capraro et al., 2018), for each code contribution, it contains
the person (Person class) authoring a code contribution and they are associated
with an organizational unit (OrgUnit class). With the help of steps shown in
figure 3.2, all the persons of given org. elements are retrieved. At first, the input
elements are sorted based on orgelementid and orgdimensionid, at the same time
all rows from personlink table are also retrieved and sorted based on same keys.
The Merge join step requires all the elements to be sorted based on the joining

20

key. Now that incoming rows from both directions are sorted, it is eligible for
entering Merge join step. In this step, left outer join is chosen to perform the
merge operation. As a result, all the persons of the org. element are placed in
the adjacent columns, which makes it easier for using it in further steps.

Retrieving Code Contributions of Persons

Figure 3.3: Steps to retrieve code contributions of persons

To find the patches contributed by a person, the combination of steps as shown
in figure 3.3 is used. A patch is a code contribution from an individual to an
inner source project(Capraro et al., 2018). At first, the null fields are filtered
out to make sure that all fields in person id column has a personid for further
steps. At the meantime, all patches are also retrieved from the patch table in the
database. Following this, data from both steps are sorted based on personid and
then output is passed to Merge join step. As a result of left outer join, all the
patches that were contributed by persons are retrieved.

Retrieving ISPs of Orgelement

Figure 3.4: Steps to retrieve ISPs of orgelement

21

According to the object oriented model presented in (Capraro et al., 2018), for
each code contribution, it contains the IS projects (InnerSourceProject class)
receiving it and is associated with an organizational unit (OrgUnit class). Thus,
for a few metric calculations, it is required to find all the inner source projects of
one or more org. elements. In order to retrieve all the inner source projects of
org. elements, the combination of steps as shown in figure 3.4 is used. At first
the input elements are sorted based on orgelementid and orgdimensionid, at the
same time all rows from innersourceprojectlink table are also retrieved and sorted
based on orgelementid and orgdimensionid. Now that we have both steps sorted
based on the same key, it is eligible for entering Merge Join step. In this step,
left outer join is the option which is chosen to perform the merge operation. As
a result, all the innersourceprojects of the orgelement are placed in the adjacent
columns, which makes it easier for us to use it for further steps.

Retrieving Code Contributions of ISPs

Figure 3.5: Steps to retrieve code contributions of ISPs

To find the patches received by the innersourceproject, the combination of steps
as shown in figure 3.5 is used. At first, the null fields are filtered out to make
sure that all fields in innersourceproject column has a innersourceprojectid for
further steps. At the meantime, all patches are also retrieved from the patch
table in the database. Following this, data from both steps are sorted based on
innersourceprojectid and then passed it for Merge join step. As a result of left
outer join, all the patches that were received by innersourceproject are retrieved.

Segregating Internal/External Agents

In OS, a patch is a code contribution from an individual external to an OS
project. A developer is considered external to a project if not a member of the
organizational unit owning the IS project (Capraro et al., 2018). Thus, for some of
the metric calculations, it is required to segregate the external agents for showing

22

only external activities. In order to get this external or internal information,
cmsuite inject isp segregator and cmsuite inject person segregator step is used
in a combination as showed in figure 3.6 and figure 3.7 respectively. These steps
injects the boolean value to the column is external isp and is external person.
The process of injecting this boolean value is explained later in this chapter.

Figure 3.6: Steps to segregate external innersourceprojects

Figure 3.7: Steps to segregate external persons

Appending Missed Agent

For some of the metric calculations, the agents who did not have any activity
to show would have got filtered out in initial steps. Consequently, the webclient
breaks when the user tries to see some visualizations for that particular agent.
In order to resolve this problem, this combination of steps as shown in figure
3.8 is used. The output values from Group by are the main output values of
every metric calculation. However, values for some agents would be missing
as mentioned earlier. In order to resolve this issue, distinct org. elements are
retrieved from the database and then Merge join operation is done with output
elements of Group by step. As a result, new rows will be added for each missing
agent. Following this, some values which are the main result of metrics are set
to zero. Finally, it is appended to the main results and then sent to further
steps. Now that we have all the agents in the result, it prevents webclient from
collapsing when the user tries to see visualizations for the missing agent.

23

Figure 3.8: Steps to append missing agent

Appending Complete and Incomplete data

(a) Missing Author (b) Missing ISP

Figure 3.9: Steps to append complete and incomplete data

In order to analyse the data quality of the code contribution, it is required to
visualize incomplete and complete data separately. The code contribution data
is considered to be incomplete if the following cases occur.

• Author missing

• Author’s org. element missing

• ISP missing

• ISP’s org. element missing

As shown in figure 3.9, combination of steps shown on left(a) is used to append
missing author and missing authors orgelement to complete data. And the com-
bination of steps shown on right(b) is used to append missing ISP and missing
ISP’s authors to complete data. As a result, the output rows from either of these
combination can be grouped into categories and stored in database.

24

3.2 Transformation Manager

As mentioned earlier, information about hierarchical oder of organizational units
were required to generate results by taking children, grandchildren and so on into
the account. At first, the kettle transformation (ktr) files were implemented to
collect descendants by repeatedly using the fixed number of complicated steps.
For reducing all those complicated steps into a single step in ktr files, an existing
interface from Pentaho data integration called RowListener is used. It enables
CMSuite to listen to the current rows in a step at the time of execution. With its
help, the hierarchical information of the current organization unit can be collected
using DescendantLoader and then injected in that step. In the following sections,
implementation of RowListeners, DescendantLoader and how it is connected to
KettleTransformer are discussed in detail. Furthermore, the methods to update
the already existing transformations are also added to this module.

3.2.1 RowListener

In order to reduce the complexity of ktr files, RowListeners are introduced in
CMSuite. They are customized according to the metric calculation which is
required to be performed. The two types of custom RowListeners that were
created in this project are DescendantRowListener and SegregatorRowListener.
They are explained in detail in following subsections.

DescendantRowListener

DescendantRowListener is responsible for reading the input org. elements for
which it has to collect all the descendants and then write it to output step.
This collecting descendant process is done using DescendantLoader which will be
explained in the next section. It injects all the descendant org. elements for the
incoming parent org. element.

As stated in (“Work with Rows”, 2019), a row in PDI is represented by a Java
object array, Object[]. Each field value is stored at an index in the row. The
row array itself does not carry the meta data. The RowMetaInterface contains
the row meta data of the current row. This interface provides methods such as
getInteger() which can be used to reach values directly in a row. As shown in
lines 5 and 6 of listing 3.1, the getInteger() method requires Object[](row data),
String(value name) and Long(default value) as arguments. With its help, the
value names OrgElementId and OrgDimensionId are identified from the row.
The only rule is that the name of a value needs to be unique in a row. When
a value with the same name is added twice to a row, the second occurrence will
be automatically renamed(Casters et al., 2010). Therefore, it is metric designers
responsibility to provide the input in right format i.e names as shown in line

25

5 and 6 of listing 3.1. The lines 11 to 14 are responsible for giving the list of
descendants of a parent org. element read from the current row. Finally, the
descendants are injected into the step as shown in lines 15 to 21.

1 @Override

2 public void rowReadEvent(RowMetaInterface _rowMeta, Object[] _row)

throws KettleStepException {

3

4 try {

5 currentOrgElementId = _rowMeta.getInteger(_row, "OrgElementId", null);

6 currentOrgDimensionId = _rowMeta.getInteger(_row, "OrgDimensionId",

null);

7 } catch (KettleException kettleException) {

8 throw new TransformerException(kettleException);

9 }

10

11 // Get DescendantIds of currentOrgElementId

12 List<Integer> currentDescendantIds = descendantLoader

13 .getDescendants(currentOrgElementId.intValue(), currentOrgDimensionId.

intValue());

14

15 // Insert row for each descendantId found under currentOrgElementId

16 for (Integer descendantId: currentDescendantIds) {

17 insertRow(_rowMeta.clone(), new Object[]

18 {currentOrgElementId, currentOrgDimensionId,

19 descendantId.longValue()});

20 }

21

22 }

Listing 3.1: DescendantRowListener.java

SegregatorRowListener

SegregatorRowListener is responsible for finding out if the incoming org. element
is external or internal org. element by comparing it with another comparand
column in the same row. Therefore, as mentioned earlier, it is the responsibility of
a metric designer to make sure the right format (column names as shown in lines 5-
6 of listing 3.2) is passed to this step. It is also mandatory that input rows should
have the existing column name called is external isp. It is used for carrying the
boolean value, which is helpful for segregating external or internal org. element.
So the process is as follows. For the given input org. element and isp orgelement
it checks if this isp orgelement is descendant of org. element. If it is not found,
then it assigns false to the field is external isp as shown in line 19. Obtaining
a value by index is always the fastest way of getting values from rows(Casters

26

et al., 2010). Thus, the method indexOfValue() is used to look up the index
of a field value is external isp in a row. The lines 13 to 16 is responsible for
getting the descendants only if a new isp orgelement is found. That is, it checks
if isp orgelement from the previous row is same as the one from the current row.
Thus, the performance is increased by allowing the descendantLoader to collect
descendants only when a new isp orgelement is encountered.

1 @Override

2 public void rowReadEvent(RowMetaInterface _rowMeta, Object[] _row)

throws KettleStepException {

3

4 try {

5 currentOrgElementId = _rowMeta.getInteger(_row,

6 "OrgElementId", null);

7 currentOrgDimensionId = _rowMeta.getInteger(_row,

8 "OrgDimensionId", null);

9 currentIspOrgElementId = _rowMeta.getInteger(_row,

10 "isp_orgelement", null);

11

12 } catch (KettleException kettleException) {

13 throw new TransformerException(kettleException);

14 }

15

16 if ((currentOrgElementId != previousOrgElementId) || (

currentOrgDimensionId != previousOrgDimensionId)) {

17 currentDescendantIds = descendantLoader

18 .getDescendants(currentOrgElementId.intValue(),

currentOrgDimensionId.intValue());

19 }

20 if ((currentOrgElementId.equals(currentIspOrgElementId))

21 || currentDescendantIds.contains(currentIspOrgElementId.intValue()))

{

22 _row[_rowMeta.indexOfValue("is_external_isp")] = false;

23 }

24 previousOrgElementId = currentOrgElementId;

25 previousOrgDimensionId = currentOrgDimensionId;

26

27 }

Listing 3.2: SegregatorRowListener.java

RowListenerFactory

RowListenerFactory is responsible for creating the instance of rowlistener based
on the step that was found in the transformation. As discussed in previous

27

chapter, specific names are given to dummy steps like cmsuite inject descendants,
cmsuite inject isp segregator and cmsuite inject person segregator. With the help
of these names, this factory class decides which instance of RowListener has to
be created as shown in listing 3.3.

1 public RowListener getInstance(StepMetaDataCombi _stepMetaDataCombi) {

2 if (_stepMetaDataCombi.stepname

3 .equals("cmsuite_inject_descendants")) {

4 return new DescendantRowListener(_stepMetaDataCombi.step,

5 descendantLoader);

6 }

7 if (_stepMetaDataCombi.stepname

8 .equals("cmsuite_inject_isp_segregator")) {

9 return new IspSegregationRowListener(_stepMetaDataCombi.step,

10 descendantLoader);

11 }

12 if (_stepMetaDataCombi.stepname

13 .equals("cmsuite_inject_person_segregator")) {

14 return new PersonSegregationRowListener(_stepMetaDataCombi.step,

15 descendantLoader);

16 }

17 return null;

18 }

Listing 3.3: RowListenerFactory.java

3.2.2 DescendantLoader

DescendantLoader is responsible for collecting all the descendants of the given
root node. It is implemented based on DFS(Depth First Search) method. To
describe it elaborately, it starts collecting the descendants from the depth of
the tree, so that finally when it reaches the root node, it will be having all the
descendant nodes collected in it. One of the possible solution to get descendants
from the tree is a recursive method. However, it consumes more time as it gets
called every time for each input row. The recursive method has higher space
requirements than the iterative method as all functions will remain in the stack
until reaching the base case. It also has more time requirements because of
function calls and returns overhead. In order to avoid this high overhead, the
Depth-First Search method is used. It collects all the nodes and its descendants
when it traverses once through the tree from leaf nodes(Depth) to the root node.
As a result, it avoids the repeatedly using recursive method to collect descendants
for each node. A recurring theme in data structures and algorithm design is the
ability to trade space for time(Weiss Mark, 2014). Thus, DescendantLoader is
created such that it uses some space for collecting descendants in a map. So it

28

has the advantage that tree traversing can be made faster.

Tree Structure

The two convenient ways of representing tree structure are Adjacency List and
Adjacency Matrix. As the organizational units in CMSuite are modeled using the
composite design pattern(Capraro et al., 2018) and the parent-child relationships
between organizational units are stored as adjacency list in the database, already
existing OrgElement objects are used as adjacency list for performing depth-first
search tree traversal method. The figure 3.10 shows an example organization
tree and its adjacency list representation of the parent-child relationship between
organizational units. As described in (Jan Pahl & Damrath, 2012), a directed
graph G=(V,E) is defined as set V of vertices and a set E of edges. It is suitable
for describing relationships between the vertices. The relationships between the
vertices are called edges.

A

B

D

H

E

I J

C

F

K L M

G

Figure 3.10: Depth-First Search Tree Traversal

Adj[A] = B → C

Adj[B] = D → E

Adj[D] = H

Adj[E] = I → J

Adj[C] = F → G

Adj[F] = K → L → M

Adj[H,I,J,K,L,M,G] = null

Tree Traversal

As described in (Khuller & Raghavachari, 2014), DFS is a fundamental tree
traversal technique. The algorithm first initializes all vertices of the graph as
being unvisited. Processing of the graph starts from an arbitrary vertex, known
as root vertex. Each vertex is processed when it is first discovered (also referred
to as visiting a vertex). It is first marked as visited, and its adjacency list is then
scanned for unvisited vertices. The process is repeated until all the descendants
are visited, as shown in algorithm 1. A vertex n is processed as soon as it is
encountered, and therefore at start of depth first search, visited[n] is false. Since
visited[u] is set to true as soon as DFS starts execution, each vertex is visited
only once. DFS processes each edge of the graph exactly twice, once from each
of its incident vertices. Since the algorithm spends constant time processing each

29

edge of tree, it runs in O(—V—+—E—) time (Khuller & Raghavachari, 2014).

Algorithm 1: Depth-First Search

Data: N := all nodes in a tree. Adj := Adjacency List.
Result: List of all descendant nodes of input node n

1 Start with any n ∈ N ;
2 for n ∈ N do
3 visited[n] = false;
4 end
5 S = EmptyStack;
6 S.push(n);
7 while Stack is not empty do
8 Take top node u from S;
9 visited[u] = true;

10 Mark visited all children of u as true;
11 for w in Adj[u] do
12 if not visited[w] then
13 S.push(w);
14 visited[w] = true;
15 Mark visited all children of u as false;
16 break;

17 end

18 end
19 if visited all children of u then
20 remove top element u using stack.pop();
21 collect u in descendant list;

22 end

23 end

As shown in listing 3.4, the method traverse() accepts the root node element
and its dimension as input arguments. It traverses once from depth of the tree
to the root. At the end of this tree traversal process, it will be having all the
nodes with its descendants in memory. Thus, this collected information is used
by rowlisteners to inject required details, as mentioned earlier.

The process is as follows:

1. Begin processing at root orgElement (line 1).

2. Initialize visited and stack(lines 3-6).

3. Select the org. element that is at top of stack (elements in stack are inserted
and removed according to the last-in first-out (LIFO) principle) (lines 10-
11).

30

4. Mark this orgElement as visited(line 13).

5. Push one child of this org. element to stack and mark it as visited.(Only
one child is considered here in order to move till depth of the tree)(lines
22-23)

6. If all the children of this org. element are visited or a leaf node is found, pop
the orgElement from stack. Also, store this org. element with its children
in a map, so that it can be added as descendants when parents are getting
processed.(lines 29-39)

7. Repeat the above steps from 3 to 6 until the stack gets empty(line 8).(Re-
peating the process until it visits all the children of a node is called back-
tracking)

1 public void traverse(OrgElement _rootNode, OrgDimension _dim) {

2

3 Boolean[] visited = new Boolean[adjacentList.size()];

4 Arrays.fill(visited, false);

5 Stack<OrgElement> stack = new Stack<OrgElement>();

6 stack.push(_rootNode);

7

8 while (!stack.isEmpty()) {

9

10 OrgElement parentNode = stack.pop();

11 stack.push(parentNode);

12 int parentIndex = adjacentList.indexOf(parentNode);

13 visited[parentIndex] = true;

14

15 OrgElement currentOrgElement = orgElementDao

16 .getRichWithChildren(parentNode.getId());

17 Set<OrgElement> currentChildren = currentOrgElement

18 .getChildren(_dim , null);

19 Boolean visitedChildren = true;

20

21 for (OrgElement childNode : currentChildren) {

22 int childIndex = adjacentList.indexOf(childNode);

23 if (!visited[childIndex]) {

24 stack.push(childNode);

25 visited[childIndex] = true;

26 visitedChildren = false;

27 break;

28 }

29 }

30

31 if (visitedChildren) {

31

32 stack.pop();

33

34 tree.computeIfAbsent(_dim.getId(), value ->

35 new HashMap<Integer, List<Integer>>())

36 .put(currentOrgElement.getId(),

37 new ArrayList<>(getChildrenIds(currentOrgElement, _dim)));

38

39 for (OrgElement child: currentChildren) {

40 List<Integer> descendants = tree.get(_dim.getId())

41 .get(child.getId());

42 tree.get(_dim.getId()).get(currentOrgElement.getId())

43 .addAll(descendants);

44 }

45 }

46 }

47 }

Listing 3.4: DescendantLoader.java

3.2.3 KettleTransformer

KettleTransformer is used for executing the transformations that are stored in
the database. For this project, it is modified to attach a RowListener object
to a step copy for obtaining the data from that step. When a RowListener is
attached, CMSuite gets notified when a row is read or written, or when a row
is written to an error handling step. This notification happens in sync with the
execution of the transformation. This allows CMSuite to handle the records in a
streaming fashion, as same as how it is handled in the spoon.

The changes are implemented in KettleTransformer class. It creates a Trans-
Meta object from the InputStream, that comes from the opened transformation
file. This object will then be used by the Kettle engine to run the transform-
ation(Daeubler, 2017). Prior to this thesis, transformations were executed us-
ing trans.execute() method. Now it is replaced with trans.prepareExecution()
method to allow addition of rowlisteners before actual execution is started using
trans.startThreads() method. The trans.prepareExecution() method prepares
the transformation for execution. This includes setting the arguments and para-
meters as well as preparing and tracking the steps and hops in the transforma-
tion(“Trans pentaho javadoc”, 2019).

In addition to this previous implementation, now rowlisteners are created using
RowListenerFactory and then attached to the particular step by iterating over all
the steps in that transformation. RowListenerFactory creates a suitable instance
based on the steps that are defined with particular names as mentioned before.

32

As shown in line 6 of listing 3.5, the method trans.getSteps() returns all the steps
as a list of StepMetaDataCombi instance. This instance returns a StepInterface
by calling StepMetaDataCombi.step. This interface handles the actual execution
of the functionality described in the metadata (Casters et al., 2010). Finally,
an instance of row listener is attached to step using method addRowListener()
of stepInterface (“StepInterface pentaho javadoc”, 2019). This idea of attach-
ing row listener for reading data from step is obtained from (“Executing a PDI
Transformation”, 2019).

1 Trans trans = new Trans(transMeta);

2 // Preparing the execution of the transformation (instead of simply

executing)

3 trans.prepareExecution(null);

4

5 // Iterate over steps to add rowListener

6 for (StepMetaDataCombi stepMetaDataCombi : trans.getSteps()) {

7 RowListener rowListener = factory.getInstance(stepMetaDataCombi);

8 if (rowListener != null) {

9 stepMetaDataCombi.step.addRowListener(rowListener);

10 }

11 }

12

13 // Starting the threads once preparation is done

14 trans.startThreads();

15

16 trans.waitUntilFinished();

Listing 3.5: KettleTransformer.java

3.3 Analysis-Result-Provider

As mentioned earlier, AnalysisResultProvider is responsible for retrieving the
results based on type of result that we chose while saving transformation. Prior
to this thesis, this module had only three result types. Now it is extended to have
CategorizedTimeSeries and GroupedCategorizedValue result type also. While
the types of required result were decided, it was unclear what are the datatypes
that should be chosen for attribute of these results. Easiest possible solution is
to use the nested map types. Since the key and value are just primitive types,
memory issues will not be caused by the nested map. Therefore, based on the
values that are needed to represent these results, the corresponding map types
are chosen.

33

Categorized Time Series Result

• Attribute type : Map<String, SortedMap<Date, Integer>>

• Definition : Map<Category, SortedMap<Date, Value>>

• Example : values: {Category1:{2018-11: 34, 2018-12: 25},
Category2:{2018-09: 26, 2018-10: 34}
}

Grouped Categorized Value Result

• Attribute type : Map<String, Map<String, Integer>>

• Definition : Map<Category, Map<Name, Value>>

• Example : values: {ISP1:{Level-1: 34, Level-2: 25},
ISP2:{Level-1: 26, Level-2: 34}
}

Apart from this inclusion, methods related to time series lacked functionality to
fill the missing time period for which values has to be zero. For this reason,
changes has been done so that it fills the missing keys(date) with values as zero.
Listing 3.6 shows the code snippet which fills the missing date in Categorized-
TimeSeriesResult.

The code snippet works like this.

• Gets all the childValues in a SortedMap to find start date and end date
(line 1-3).

• Gets all months between start and end date (line 5-6).

• Fills the missing months for all categories. For each category(key) in a map,
it sets the value filled with missing date value pairs (line 7-9).

• The method doFillMissingDates accepts the list of dates between start and
end date and a map of date value pair. It returns the map with missing
dates included in it (line 11-22).

• For each datesInRange it checks if date is present in a map’s key. If not
present then it puts that date(key) with zero(value) in map (line 14-18).

1

2 SortedMap<Date, Integer> allChildValues = new TreeMap<Date, Integer>();

3 values.values().forEach(value -> allChildValues.putAll(value));

4

5 List<Date> datesInRange = DateUtil.getMonthsBetween(allChildValues.

firstKey(), allChildValues.lastKey());

6

34

7 values.entrySet().forEach(

8 category -> category.setValue(doFillMissingDates(datesInRange,

category.getValue()))

9);

10

11 public SortedMap<Date, Integer> doFillMissingDates(List<Date>

_datesInRange, SortedMap<Date, Integer> _values) {

12

13 _datesInRange.forEach(

14 date -> { if (!_values.containsKey(date)) {

15 _values.put(date, 0);

16 }

17 });

18

19 return _values;

20

21 }

Listing 3.6: AnalysisResultFactory.java

3.4 Web-client

3.4.1 Analysis-Result-Module

The components in analysisresult-module of webclient are responsible for convert-
ing the retrieved result into the format that can be used for displaying visualiz-
ations. For these visualizations, ngx-charts are used. As discussed in previous
sections, the same data type is used in the models of newly introduced result
types in webclient. However, the chosen data type does not match the types
required by the ngx-charts. Therefore, the retrieved key value pair data should
be converted into another format that can be used as input for charts.

Listing below shows the example data format that is required by line chart
of ngx-charts. It requires field name(string) and series[] which is an array of
value(number) and name(string). It is clear that, the datatype of result retrieved
from CMSuite’s server does not match the format shown below. Thus, the re-
trieved data is required to be converted into format required by ngx-charts.

1 {

2 "name": "Category1",

3 "series": [

4 {"value": 34, "name": "2018-11"},

5 {"value": 25, "name": "2018-12"}

6]

35

7 },

8 {

9 "name": "Category2",

10 "series": [

11 {"value": 26, "name": "2018-09"},

12 {"value": 34, "name": "2018-10"}

13]

14 }

Listing 3.7: Format required by ngx-charts

As shown in listing 3.7 , the convertData() method uses the retrieved key value
pairs to collect them in chartData in different format. At first, the fields are
initialized as shown in lines 2-4. Afterwards, for each category found in retreived
result, the values are stored in chartData as name and value as shown in line 6-
14. Initially, the name(category) with series(empty array) is pushed inside chart
data. Following this, for each child map name(Date) and value(Integer) is pushed
inside the chart data. The captured index in the forEach function of parentdata
is used here to identify for which parentData the child data should be pushed.
Finally, the format as shown above is created inside the chartData. Thus, the
result data from server are converted to another format.

For some of the selected organizational unit, it is possible that they have no code
contributions received or contributed. Such cases are already handled inside the
kettle transformations as shown in section 3.1.2. However, webclient has to be
in sync with these manually appended result in ktr files. For this reason, the
conditions to check if chart data is valid or not is performed. It checks if result
has only one category and only one key and value is zero. If all of them are true,
then result is set as invalid i.e hasValidResult is set as false. With the help of this
variable, the template of this component is informed to show the alert message
”Nothing to see” in the tiles instead of blank chart. Furthermore, predefined
colors are set for this chart.

1 private convertData(): void {

2 let parentData = this.result.values;

3 let chartData: any[] = [];

4 let hasValidResult: boolean = true;

5

6 Object.keys(parentData).forEach(function(parentKey, index): void {

7 chartData.push({name: parentKey, series: []});

8 let data = parentData[parentKey];

9 Object.keys(data).forEach(function(key): void {

10 chartData[index].series.push(

11 {’name’: new Date(key),

12 ’value’: data[key]});

36

13 }

14)

15 });

16 this.chartData = chartData;

17 if ((this.chartData.length === 1) // Has only one category

18 && (this.chartData[0].series.length === 1) // Has only one key(month

)

19 && (this.chartData[0].series[0].value === 0)) { // Has value zero

20 hasValidResult = false;

21 }

22 this.colorPaletteService.getColorPalette().forEach((col) => {

23 this.colorScheme.domain.push(col.hexValue)

24 });

25 this.hasValidResult = hasValidResult;

26 }

Listing 3.8: categorized-time-series-result.component.ts

Similar to this component, other components like TimeSeriesResultComponent,
GroupedCategorizedValueResultComponent and CategorizedValueResultCompon-
ent are also modified to use ngx-charts instead of using previously implemented
chart.js. It converts the retrieved result data into data that can be fed to ngx-
charts.

3.4.2 Transformation-Manager-Module

The transformation manager module is responsible for uploading and executing
the transformations. Prior to this thesis, the components like TransformationList-
Component, TransformationRunComponent and TransformationCreationCom-
ponent existed. The requirement 2 states that the transformations should be
able to be updated. Thus, the already existing transformationCreationCompon-
ent is modified to have functions to update the transformations.

As the name suggests, transformationCreationComponent is used for creating the
new transformations by entering the name, resulttype, agenttype and uploading
file in the existing form. While the update functionality has to be added some-
where in transformation manager, the question arose if the creation component
can be modified to use it for updating. As all the required variables and template
were already existing, this idea of modifying the creation component to include
update functions was chosen.

As shown in listing below the TransformationCreationComponent is renamed
into TransformationDetailComponent. The basic functions are split to be used
by both edit and create functions as shown in line 32-40. The form fields used are
same for both functionality. Thus, the logic related to form handling are used as

37

a common method. Please note that listing 3.9 omits certain lines of code that
did not undergo any changes, as they are not relevant for this thesis. When the
life cycle hook method ngOnInit() is triggered, it calls the getTransformation()
which is used for placing the values in the Form to make it available for editing.
This is achieved by using the inbuilt function FormGroup.patchValue(). However,
the KTR file retrieved in the format of bytearray is not sufficient for making it
downloadable. To resolve this, the bytearray are converted to Uint8Array format
so that they can be used to construct a Blob object. As ktr file is basically a
xml file, the type application/xml is chosen. Finally, the File object is created
using this Blob. Now it can be downloaded using the method getDownloadUrl()
as shown in line 43-47.

1 export class TransformationDetailComponent implements OnInit {

2

3 @Input(’create-mode’)

4 isInCreateMode: boolean = false;

5

6 uploadForm: FormGroup;

7 submitted: boolean;

8 isLoaded: boolean = false;

9 transformationPromise: Promise<Transformation>;

10 oldFile: File;

11

12

13 ngOnInit(): void {

14 if (!this.isInCreateMode) {

15 this.getTransformation(this.transId);

16 }

17 }

18

19 getTransformation(id: number): void {

20 this.transformationPromise = this.transformationService.getById(id);

21 this.transformationPromise.then(transformation => {

22 this.uploadForm.patchValue(transformation);

23 let bytes = new Uint8Array(transformation.ktrFile);

24 let blob = new Blob([bytes], {type: ’application/xml’});

25 this.oldFile = new File([blob], transformation.token + ’.ktr’);

26 this.isLoaded = true;

27 }

28);

29

30 }

31

32 onSubmit(): void {

33 this.submitted = true;

38

34 let formData = new FormData();

35 formData = this.appendFormData(formData);

36 if (this.isInCreateMode) {

37 this.uploadTransformation(formData);

38 } else {

39 this.updateTransformation(formData);

40 }

41 }

42

43 getDownloadUrl(): any {

44 return this.sanitizer

45 .bypassSecurityTrustResourceUrl(window.URL

46 .createObjectURL(this.oldFile));

47 }

48

49 }

Listing 3.9: transformation-detail.component.ts

39

4 Results

4.1 Metric Visualizations

Metric visualizations are categorized based on type of result that were stored in
the database. In this chapter, different kinds of metric visualizations that were
implemented will be discussed. Before discussing about the different visualiza-
tions, it is important to understand the Patch-Flow Phenomenon. Below are the
following concepts defined by (Capraro et al., 2018).

• A code contribution is any code change performed on a software component.

• A patch is a code contribution made by a developer who is external to a
project.

• Patch-flow is the flow of patches across organizational boundaries such as
project or organizational unit boundaries within a company.

4.1.1 Single Value Result

Following table shows how single value results generated by the metrics are
mapped to columns in database.

Table 4.1: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value

Code Contributions made(Excl. Internal)

This metric shows us how many contributions were made by an organizational
unit. Of course, this metric is applied for all available organizational units. When

40

designing the transformation for this metric, a question arose, if the code contri-
butions made to ISPs that are owned by the unit itself should be considered or
not. In order to show the difference between internal and external, visualizations
are split into two types. Including Internal and Excluding Internal. This metric
shows us the code contributions made by organization unit excluding internal
contributions i.e patches. As this metric just sums up all the code contributions
made, This metric is visualized as a single value result.

Code Contributions made(Incl. Internal)

In contrast to previous metric, this metric considers the internal code contribu-
tions also. It adds up all the code contributions made by an organization unit
without excluding internal contributions. That is, code contributed to the ISPs
that is owned by this organizational unit is also considered.

4.1.2 Time Series Result

Code Contributions made per Month(Excl. Internal)

Figure 4.1: Code Contributions made per month(Excl Internal)

This metric shows the number of code contributions made by an organizational
unit for each month. As mentioned before, here it is calculated by excluding
internal contributions. Since the internal contributions are excluded in calcula-
tions, this metric can also be called as patches contributed per month. With
the help of this metric, the user can find if the organizational unit’s contribu-
tion is increasing or decreasing over time. As shown in figure 4.1 , the x-axis
presents time (i.e months) and the y-axis presents number of code contributions

41

or patches. For example, by looking at the figure 4.1, we can say that more than
33 patches were contributed by a selected org. element in Feb-2018.

Table 4.2: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
commit date key

Code Contributions made per Month(Incl. Internal)

This metric is calculated as same as the previous one except that the internal
contributions are also taken into consideration. This metric is of interest to
users who want to see the pattern of data not only for code contributions that
are flowing to external but also to internal ISPs. As shown in figure 4.2, the
number of code contributions are more than what was found in figure 4.1. That
is, code contribution per month is huge in contrast to the previous metric because
internal contributions are also considered. For example, by looking at the figure
4.2, one can find that, the total code contributions made per month by selected
org. element has declined over the period.

Figure 4.2: Code Contributions made per month(Incl Internal)

42

Table 4.3: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
commit date key

First Time Contributors per Month

Figure 4.3: First Time Contributors per Month

Table 4.4: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
contributors value
commit date key

This metric shows us the number of authors who made their first contribution
in a month. It is calculated by finding the least commit date from the list of

43

contributions made by an author. Of course, all persons of the selected organiz-
ation unit will be taken into account for this calculation. Here there is no need
for segregating contributions as internal or external because the main purpose
is just to find the first time contributors irrespective of which project does that
contribution goes to. As shown in figure 4.3, y-axis presents the number of au-
thors and x-axis presents time(months). By looking at the figure 4.3, one could
observe that the number of first-time contributors of a selected org. element has
decreased over time.

Persons Involved per Month

Figure 4.4: Persons involved per Month

Table 4.5: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
receiving innersourceproject id innersourceproject id
orgdimensionid orgdimension id
persons value
commit date key

This metric helps the user to find how many persons are involved in a particular
inner source project. This metric applies to all the inner source projects i.e when
the user picks an inner source project from a tree menu, this visualization will be

44

shown. As shown in figure 4.4, the x-axis presents time in months and the y-axis
presents the number of persons who contributed to this project. This metric is
calculated irrespective of internal or external persons. That means, it simply
adds up all the persons from whom the code contributions are received.

Code Contributions received per Month

This metric is implemented to show how many code contributions have been
received by an inner source project per month. It helps the user to see the
development activity of the selected ISP. So that he can estimate the ISP’s sur-
vivability. Moreover, it helps in identifying if the ISP is still alive. It is calculated
by grouping the patches by month and then adding up all the patches that were
received by an inner source project for that month. By looking at the figure 4.5,
one can find that the selected ISP had been inactive during the last three months
of the year 2017.

Figure 4.5: Code Contributions received per month

Table 4.6: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
receiving innersourceproject id innersourceproject id
orgdimensionid orgdimension id
patchcontri value
commit date key

45

Last Time Contributors per Month

Figure 4.6: Last Time Contributors per Month

This metric is implemented to visualize the number of persons who had made their
last contribution in a month. With this visualization, users can find how many
persons have stopped contributing in a particular month. As shown in figure 4.6,
for the selected org. element the number of persons who had made their last
contribution has increased over time. That means they haven’t contributed after
a certain month. If they contribute later, then this number will be reduced from
this month. It is calculated by sorting the patches in descending order based on
commit date and then the first one is picked from that row which is basically
the last contribution from that particular person. Once this picking process is
carried out for all the persons, it is grouped with respect to the month to find
the number of persons.

Table 4.7: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
contributors value
commit date key

46

4.1.3 Categorized Time Series Result

To get detailed information about code contributions, it is not sufficient to simply
count code contributions over time. For this reason, here the time series results
are categorized further to identify and compare the pattern in the data. Thus,
in the following charts, the lines with different colors will be displayed.

Code Contributions made per Month by Namespace(Excl. Internal)

This metric groups the number of code contributions based on the namespace
that received it. Furthermore, the internal contributions are excluded in this
metric in order to visualize only the code contributions that were made to ex-
ternal namespaces. Here the namespace indicates the name of one or more ISP’s
code repository. This metric helps the user to make comparisons between code
contributed by a selected organizational unit to different namespaces.

Figure 4.7: Code Contributions made per month by Namespace(Excl. Internal)

Table 4.8: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
commit date key
namespace label

47

For calculating this metric, namespace details are taken from the inner source
project table.

In the original data, the data has the following format:

• repository location:

http://github.faucompany.de/api/v3/repos/[namespace]/[name]

• inner source project name: [namespace]/[name]

Since it is easier to extract the namespace from inner source project name, the
name column is chosen instead of repository location of inner source project.

Code Contributions made per Month by Namespace(Incl. Internal)

This metric is same as previous one except that internal contributions are also
taken into consideration. That is, it adds up all the code contributions made by
selected organizational unit to the namespace of internal projects also. As shown
in figure 4.8, it shows us the variation between number of code contributions made
to different namespaces. This metric is of interest to users who want to see the
pattern of data not only for code contributions that are flowing to external but
also to internal ISPs. As shown in figure 4.8, the number of code contributions
are more than what was found in figure 4.7. That is, code contribution per month
is huge in contrast to the previous metric because internal contributions are also
considered.

Figure 4.8: Code Contributions made per month by Namespace(Incl. Internal)

48

Table 4.9: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
commit date key
namespace label

Patch-Flow by Org. Level

When measuring the patch-flow, it is not sufficient to simply count patches
over time. One must address the organizational structure contextual to the
patch(Capraro et al., 2018). Therefore, this metric is implemented to calculate
the number of patches contributed by Org. elements per month and categor-
ized it based on highest orglevel crossed by the patches. As shown in figure 4.9,
x-axis presents the time and y-axis displays the number of patches contributed
by a selected orgelement. Each color indicates the highest level crossed by the
patches.

The concept of levels is applied to the organizational hierarchy in order to distin-
guish patch-flow between organizational units of different granularity. In a tree,
each node’s level is n+1 with n being its parent’s level. The level 0 is always
the root node. The organization itself has level 0 translated into organizational
hierarchies and its top organizational units have level 1. Their children units
have level 2 etc. Level 0 is considered the highest level.

(Capraro et al., 2018) defined the following terms:

• The lowest common ancestor (LCA) of two organizational units is the lowest
node that has both as descendants.

• Patch-flow crosses level n if and only if n < nlca with nlca being the level
of the lowest common ancestor of the contributing and the receiving organ-
izational unit.

Code contributions between descendants and ancestors are not considered as
patch-flow. Patch-flow crossing level n always crosses level n+1. The highest level
crossed of a patch-flow (n=nlca-1) serves as a metric for the distance between the
two involved organizational units.

49

Figure 4.9: Patch-Flow by Org. Level

Table 4.10: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
commit date key
maxlevelcrossed label

Data Completeness of Received Contributions Over Time

This metric calculates the number of code contributions received by a selected
orgelement per month and then the results are categorized based on data quality.
That is, it categorizes the contributions based on complete and incomplete data.
In this metric , the missing author and missing author’s org. element is considered
as an incomplete data. This visualization helps user to analyse how good and
reliable the data is, so that he can investigate where he can manually tweak the
data. It is displayed on dashboard for all the org. elements including root org.
element. In figure 4.11, the red line presents missing author’s org. element, the
purple line indicates complete data and blue line presents missing author. By
observing that the red line is close to the purple line, once can fix all the missing
author’s org. element so that both lines merge together. Similarly, this metric
can be used to fix the missing authors data also. If all three lines are merged

50

together then it means that all the data that we have for the selected org. element
is complete.

Figure 4.10: Data Completeness of Received Contributions Over Time

Table 4.11: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchreceived value
commit date key
category label

Data Completeness of Contributed Contributions Over Time

In contrast to previous metric, here the data quality analysis is carried out on code
contributions made by selected org. element. In this metric, data is categorized
into complete, missing innersource project and missing inner source project’s org.
element. With this result, user can analyse how good the data is. This metric
is applied for all the org. elements including root org. element. In figure 4.11,
red indicates missing inner source project, purple shows inner source project’s
org. element is missing and the blue line presents complete data. As mentioned
before, if all the three lines merge together then the data we have for a selected
org. element is complete. For example, in this figure, the red line and the blue

51

line is merged. It means that there is no missing inner source project for the
selected org. element. However, on september 2017 we can see that for few code
contributions the inner source projects doesnt have org. element associated to it.

Figure 4.11: Data Completeness of Contributed Contributions Over Time

Table 4.12: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchreceived value
commit date key
category label

4.1.4 Grouped Categorized Value Result

Code Contributions received per ISP Across Levels

This metric is used to visualize the number of code contributions received by
ISP across different levels in an organization. As shown in figure 4.12, x-axis
shows number of patches received and y-axis shows the top 20 ISPs of selected
orgelement. The different colors represents the highest orglevel crossed by the
patches. Only top 20 ISPs are chosen in order to make the chart comprehensible.
For example, root orgelement can have more than 100 ISPs which makes the chart

52

incomprehensible to read. The top 20 ISPs are chosen based on total number
of patches received by the ISP. Internal contributions are also considered in this
metric. For example, the red bar indicates contributions that do not constitute
patch-flow (contributions by the team running the IS project).

The inner source projects receive a varying number of code contributions. For ex-
ample in figure 4.12, two inner source projects (namespace1/963, namespace3/1688)
received very less code contributions. In contrast, other two inner source projects
(namespace2/784, namespace1/7) received more than 600 code contributions.
Figure 4.12 displays only the top 20 projects we consider active.

Table 4.13: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
patchcontributed value
maxlevelcrossed key
isp name label

Figure 4.12: Code Contributions received per ISP across levels

As mentioned before, With an increasing amount of received code contributions,
such a graph can quickly become incomprehensible when there is no categoriza-
tion based on organizational levels. Thus, As shown in figure 4.12, received code

53

contributions are categorized based on hierarchical level of organization. Here the
level unknown shows that the patch received from an person had no org. element
associated to it. Thus, the level from where the patches are received is unknown.

4.1.5 Categorized Value Result

Authors and their Patch Contributions

This metric shows the histogram of authors and their patch contributions. It
calculates how many number of authors have contributed a specific range of
patches. For example, if 3 authors had contributed more than 35 patches, then
those 3 authors will fall under interval 31-62 patches. As shown in figure 4.13,
x-axis presents number of patches in intervals and y-axis presents number of
authors. As there were no predefined histogram in ngx-charts library, usual bar
chart is used to visualize this histogram. Freedman rule is used to determine the
bin widths of the histogram.

Figure 4.13: Authors and their Patch Contributions

Table 4.14: Mapping of metric fields to resultrow table

Output Fields from Metric Columns of ResultRow Table
TRANSFORMATIONRUN ID transformationrun id
TRANSFORMATION ID transformation id
orgelementid orgelement id
orgdimensionid orgdimension id
numofpersons value
comparand key

54

A bin is called as interval and it is a way of sorting data in a histogram. When
the data is put into categories, they are put without any thoughts about how that
data might tell us something. when it comes to histogram the aim is to analyse
how the data is spread out. Therefore categories should be carefully chosen. That
is, right amount of bins has to be chosen to get the information we need.

It is difficult to choose bin intervals for large dataset. To find the bin intervals,
various types of approach were applied to dffierentiate the results and choose the
best one out of it. At the end of this analysis Freedman-Diaconis’s Rule is chosen
for finding bin intervals. Advantage of this approach is that the bin intervals are
chosen by finding interquartile range(IQR). IQR is the range where the most of
the values lie.

Rule : Choose the bin interval as twice the interquartile range of the data, divided
by the cube root of the sample size(Freedman & Diaconis, 1981). Below is the
formula to find the bin interval.

BinWidth = 2
IQR

3
√
n

IQR = Q3−Q1

Example to find IQR:

Step 1: Sort the number of patches.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 2: Find median.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 3: Split the numbers into two category (left and right) by finding the median.
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27).
Step 4: Q1 = median of left and Q3 = median of right
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27). Q1 = 5 and Q3 = 18.
Step 5: Subtract Q1 from Q3 to find the IQR.
18 – 5 = 13.

55

5 Evaluation

This chapter evaluates whether the initially defined requirements are fulfilled.
Along with the requirements described in section 1.3, the ways how to verify
them in the webclient is also explained.

5.1 Functional Requirements

Store KTR files in database

After uploading the KTR file in the transformation page of web-client, it gets
saved in the database when the save button is clicked. This fulfills requirement
1.

Update transformation

When Transformation tab is clicked in the web-client, the list of transformations
are shown with edit button next to it. On clicking the edit button, it leads us
to Update Transformation page. On this page, the changes can be made to the
transformation using the form fields. Finally, the transformation gets updated in
database on clicking the update button. So requirement 2 is implemented.

Download KTR files

In Update Transformation page, a link appears above the save button. The KTR
file of the selected transformation will get downloaded when this link is clicked.
Thus, the requirement 3 is fulfilled.

Load transformations on fresh install

After fresh install there will be no existing transformation in the database. On
clicking transformation tab, it loads all the default transformation from source
folder and then saves it in database and finally displays them in the list. Hence,
the requirement 4 is satisfied.

56

Choose metrics for root or other org. elements

In the Update Transformation and Create Transformation page, two check boxes
appear when the Organizational Element is chosen as economic agent. First one
is to choose if the visualization should appear for whole organization. Second one
is to choose if the visualization should be shown for other orgelements. Thus, the
requirement 5 is fulfilled.

View charts in larger tile

When any one of the tile is selected from dashboard tab, it maximizes to larger
size. This is achieved using angular material. As a result, the chart is viewed in
the bigger tile. Thus, the requirement 6 is fulfilled.

Reduce complexity of KTR files

At the beginning of this thesis, the certain steps were repeatedly used to get all
the descendants of selected org. element. These combination of complicated steps
are now reduced to single step in which the hierarchical information of selected
org. element is injected. Thus ths requirement is also fulfilled.

Apply transformation for all the agents of selected type

With the help of cmsuite inject descendants step , metric calculation can be
performed on all the organizational units agnostic of granularity. This is achieved
by integrating rowlisteners in java classes. Therefore, this requirement is satisfied.

Metrics

The remaining functional requirements are to implement different types of metric
transformations. That is, for each metric calculation a kettle transformation file
should be created. the implemented ktr files are located in the default folder of
transformation manager. In the webclient, one can execute all these transforma-
tions by clicking Run Transforamtion button from Transformation Run tab. The
metrics marked with X� are implemented in this thesis. The results of these met-
rics are already discussed in previous chapter. Hence these requirements are also
satisfied.

Single-Value-Result

X� Code contributions made(Excl. Internal)

X� Code contributions made(Incl. Internal)

57

Time-Series-Result

X� Code contributions made per month(Excl. Internal)

X� Code contributions made per month(Incl. Internal)

X� Persons Involved per month

X� First Time Contributors per month

X� Last Time Contributors per month

X� Code Contributions Received per month

Categorized-Time-Series-Result

X� Code Contributions made per month by namespace(Excluding Internal)

X� Code Contributions made per month by namespace(Including Internal)

X� Data Completeness of Received Code Contributions

X� Patch-Flow by Org. Level

� Code Contributions made by teams per month

� Relative patch flow over time

Grouped-Categorized-Value-Result

X� Code Contributions received per ISP across levels

5.2 Non-Functional Requirements

Response Time

First non functional requirement states that response time should stay within
one to five seconds. Although many visualizations are shown in dashboard, the
response time stays within 5 seconds. Therefore, this requirement is met.

Fault Handling

There are cases in which there are no values to be shown in visualization for
particular agent. In such cases, dashboard should notify user that there were no
values for this metric instead of showing error message. The fault handling of
null values are fulfilled and thus this requirement is met.

58

Comprehensibility

All the visualizations are implemented without having any clutters in the chart.
For example, in the metric ”code contributions received per ISP across levels”, it
is nearly impossible to show all the ISP’s of selected organizational unit. There-
fore, only top 20 ISP’s are displayed. Similarly it is taken care for other metrics
also when chart clutter was encountered. As a result, it is comprehensible. Thus
this requirement is fulfilled.

Complexity of Kettle Transformations

The kettle transformations are implemented such that it does not have any com-
plicated steps which could affect the performance or readability. As the complex-
ity of the KTR files are reduced, this requirement is fulfilled.

Chart Legends

The ktr files are implemented such that it passes the suitable legend information
in the final result. For some metrics, the categories on legend are org. element or
ISP. When the name of these agents are not retreived during metric calculation,
then the id of these elements will be shown as legends. In order to avoid id as
legend, the combination of steps are included which takes care of merging the
names to corresponding rows. Thus this requirement is also fulfilled.

59

6 Future Work

Time Interval

Currently, all the metrics are implemented such that entire time is taken into
consideration. That is, at what time interval the particular metric should be
displayed for, is not yet decided. For example, there could be options like Recent
(this month. or maybe rolling last month) , Something long run (this business
year, or maybe rolling last year), All of time. CMSuite could let user to choose
any one from this option, so that he can get results only for the selected time
interval.

Chart Labels

The chart labels that are displayed on both the axes are same for all the visu-
alizations of same result type. For example, in time series results the label on
x-axis is month and y-axis is ”Number”. However, this number could have dif-
ferent meaning for each metric like number of persons, number of patches etc.
Thus, in order to use customized chart labels for each transformation the label
information can be stored in transformation table of the database. As a result,
when transformation are retrieved for particular tile in dashboard, the label can
be assigned for the corresponding chart.

Granularity

Until now, all the metrics were implemented agnostic of granularity. For ex-
ample, if the transformation was saved with orgElement as agent type, then that
transformation computes the result for all the orgelements found in database.
Thus, CMSuite could have a feature that enables user to pick the granularity for
a transformation.

Personalization

Currently, the dashboard shows all transformations in a arbitrary sequence and
size. It is applied for all the agentType that is chosen. There could be a feature

60

that allows user to pick specific agents(OrgElement/InnerSourceProject/Person)
for which the visualizations should be shown. For example, in a transformation
that computes result for orgElement, a list of orgElements could be chosen, so
that it computes result only for these specific ones.

Export visualizations to PDF

At present, the visualizations can be viewed in a larger tile to perform any ana-
lysis. However, the user will have to open the application everytime when he
wants to see the same visualization. Therefore, the feature to export these visu-
alizations to PDF would be beneficial for users to carry out their analysis even
when they logged out from the application. There are plenty of library which
supports exporting the html content to PDF. But the easiest possible solutions
is by using CSS @media print rules to customize the printing styles of the web
page which is required to be exported. As a result, the browser will adapt to
these rules and produce the document when it is saved as pdf.

Complete vs Incomplete Data

In a metric ”Data completeness over time”, only three categories were shown in
the chart. One is to see the code contributions with complete data, other with
missing authors and no orgElement associated with author. There could also be
other possibilities like missing ISP, no orgElement associated with ISP. For the
whole organization, showing different categories for each of this incomplete data
could be considered as future work.

Relative Patch Flow over time

This metric could help the user to see the patch-flow relative to the total amount
of code contributions to the IS projects per month. This can be achieved by
using groupby step from spoon’s menu. GroupBy step of spoon allows the metric
designer to calculate percentile, ratios etc. This metric can be easily implemented
by simply extending the already existing metric ”Patch-flow by Org. level”.

Code Conributed by teams over time

This metric would help user to analyse how many code contributions have been
contributed by the teams of selected org. element. Here teams does not have to be
only the org. units that has person attached to it. For a selected Org. Element,
stepping down to one level downwards in a organization hierarchy will lead us to
all child units. When all the descendants of these child units are agreggated, this
could act as a teams for this metric calculation.

61

7 Conclusion

In this work, the CMSuite’s dashboard infrastructure is extended iteratively in
the way needed for new metric implementations.

Earlier, it was difficult to create transformations that stores results for every
agent. Moreover, there were no metric implemented that helps measuring the
inner source collaboaration. Furthermore, collecting descendants of all the or-
ganizational units was creating huge overhead when recursive method was used.
Consequently, the transformations were runnning for hours.

Decisions were made to use rowInterface and stepInterface of Pentaho data integ-
ration tool to inject required data at runtime. As a result, the execution speed
of transformation is increased. Usage of fundamental graph search techniques
(Depth First Search), suitable datastructures and other memory management
concepts to reduce the computational complexity has facilitated the process of
collecting the descendants efficiently without affecting the performance and exe-
cution speed.

After applying the above mentioned ideas, now the CMSuite enables the met-
ric designer to easily create the clean and comprehensible kettle transformations
without facing trouble of handling parent-child relationships within single trans-
formation. As a result, many new metrics were implemented and executed using
the introduced architecture.

Advantages of the results that we get from this work are that the user can visualize
the metrics in webclient for all the organizational units. That is, if a metric is
defined for particular purpose and if it is applicable for one organizational unit
then it gets executed for all the organizational units. This includes other economic
agents, that are part of the organizational hierarchy. Thereby, user does not have
to create metrics for each organizational units separately.

62

Appendix A Update Transformation

Figure 7.1: List of transformations with edit button next to it.

Figure 7.2: Page to update transformation

63

Appendix B: Dashboard

Appendix B Dashboard

Figure 7.3: Tiles in dashboard

Figure 7.4: Maximized view of single tile

64

Appendix C Default KTR File Location

Figure 7.5: Default KTR File Location

65

References

Angular Material Dialog page. (2019). https://material.angular.io/components/
dialog/overview. Accessed on 2019-01-09.

Capraro, M., Dorner, M. & Riehle, D. (2018). The patchflow method for meas-
uring inner source collaboration. International Conference on Mining Soft-
ware Repositories.

Capraro, M. & Riehle, D. (2017). Inner source definition, benefits, and challenges.
ACM Computing Surveys, 49 (4).

Casters, M., Bouman, R. & Van Dongen, J. (2010). Pentaho kettle solutions.
In Building open source etl solutions with pentaho data integration. John
Wiley and Sons.

Daeubler, A. (2017). Design and implementation of an adaptable metrics dash-
board. Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Executing a PDI Transformation. (2019). https://wiki.pentaho.com/display/
EAI/Executing+a+PDI+transformation. Accessed on 2019-01-12.

Freedman, D. & Diaconis, P. (1981). On the histogram as a density estimator: L
2 theory.

Groupby step requires Apache math. (2019). https : / / github . com / pentaho /
pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/
steps/groupby/GroupBy.java. Accessed on 2019-02-12.

Hansen, M. (2018). An accounting tool for inner source contributions. Master’s
thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Jan Pahl, P. & Damrath, R. (2012). Mathematical foundations of computational
engineering: A handbook. In Graphs from: Mathematical foundations of
computational engineering: A handbook (pp. 489–580). Springer Science
Business Media.

Khuller, S. & Raghavachari, B. (2014). Computing handbook, computer science
and software engineering. In Graph and network algorithms from: Com-
puting handbook, computer science and software engineering (pp. 5-1–5-5).
CRC Press.

ModifiedJavaScript step requires JavaMail. (2019). https://github.com/pentaho/
pentaho - kettle/blob/master/engine/src/main/ java/org/pentaho/di/

66

https://material.angular.io/components/dialog/overview
https://material.angular.io/components/dialog/overview
https://wiki.pentaho.com/display/EAI/Executing+a+PDI+transformation
https://wiki.pentaho.com/display/EAI/Executing+a+PDI+transformation
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/groupby/GroupBy.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/groupby/GroupBy.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/groupby/GroupBy.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/scriptvalues_mod/ScriptValuesAddedFunctions.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/scriptvalues_mod/ScriptValuesAddedFunctions.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/scriptvalues_mod/ScriptValuesAddedFunctions.java

trans/steps/scriptvalues mod/ScriptValuesAddedFunctions.java. Accessed
on 2019-02-12.

PDI Kettle’s Third-party dependencies. (2019). https://github.com/pentaho/
pentaho-kettle/blob/master/engine/pom.xml. Accessed on 2019-02-12.

PostgreSQL Storing Binary Data. (2018). https://www.postgresql.org/docs/7.
4/jdbc-binary-data.html. Accessed on 2018-12-12.

StepInterface pentaho javadoc. (2019). https://javadoc.pentaho.com/kettle530/
kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/step/StepInterface.
html. Accessed on 2019-01-24.

Trans pentaho javadoc. (2019). https://javadoc.pentaho.com/kettle530/kettle-
engine-5.3.0.0- javadoc/org/pentaho/di/trans/Trans.html. Accessed on
2019-01-24.

User Defined Java Class. (2019). https://wiki.pentaho.com/display/EAI/User+
Defined+Java+Class. Accessed on 2019-01-06.

Weiss Mark, A. (2014). Computing handbook, computer science and software en-
gineering. In Data structures from: Computing handbook, computer science
and software engineering (pp. 3–17). CRC Press.

Work with Rows. (2019). https://help.pentaho.com/Documentation/6.0/0R0/
0V0/010/000/020/010. Accessed on 2019-01-12.

67

https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/scriptvalues_mod/ScriptValuesAddedFunctions.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/src/main/java/org/pentaho/di/trans/steps/scriptvalues_mod/ScriptValuesAddedFunctions.java
https://github.com/pentaho/pentaho-kettle/blob/master/engine/pom.xml
https://github.com/pentaho/pentaho-kettle/blob/master/engine/pom.xml
https://www.postgresql.org/docs/7.4/jdbc-binary-data.html
https://www.postgresql.org/docs/7.4/jdbc-binary-data.html
https://javadoc.pentaho.com/kettle530/kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/step/StepInterface.html
https://javadoc.pentaho.com/kettle530/kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/step/StepInterface.html
https://javadoc.pentaho.com/kettle530/kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/step/StepInterface.html
https://javadoc.pentaho.com/kettle530/kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/Trans.html
https://javadoc.pentaho.com/kettle530/kettle-engine-5.3.0.0-javadoc/org/pentaho/di/trans/Trans.html
https://wiki.pentaho.com/display/EAI/User+Defined+Java+Class
https://wiki.pentaho.com/display/EAI/User+Defined+Java+Class
https://help.pentaho.com/Documentation/6.0/0R0/0V0/010/000/020/010
https://help.pentaho.com/Documentation/6.0/0R0/0V0/010/000/020/010

	Metric Dashboard
	Previous Work
	Purpose
	Requirements
	Stakeholders
	Functional Requirements
	Non-Functional Requirements

	Architecture and Design
	Design Decisions
	Third-Party Tools
	Pentaho Data Integration (Kettle)
	Ngx-charts
	Rhino(JavaScript engine) and JavaMail
	The Apache Commons Mathematics Library

	Domain Model
	Persistence
	Persisting Transformations
	Database schema
	Persisting Results

	Architecture
	REST Endpoints
	Server Components
	Transformation Manager

	Webclient
	Transformation-Manager-Module
	Analysis-Result-Module
	Dashboard-Module

	Implementation
	Kettle Transformations
	Types of Transformation
	Common Kettle Steps

	Transformation Manager
	RowListener
	DescendantLoader
	KettleTransformer

	Analysis-Result-Provider
	Web-client
	Analysis-Result-Module
	Transformation-Manager-Module

	Results
	Metric Visualizations
	Single Value Result
	Time Series Result
	Categorized Time Series Result
	Grouped Categorized Value Result
	Categorized Value Result

	Evaluation
	Functional Requirements
	Non-Functional Requirements

	Future Work
	Conclusion
	Appendices
	Appendix Update Transformation
	Appendix Dashboard
	Appendix Default KTR File Location

	References

