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Abstract

Since mid 2017 the Deutscher Wetterdienst (DWD) has been obligated to provide
its weather data to the public for free. However, anyone who wants to access it
needs to click through a file system hoping to still be on the right path to the
desired weather data. Due to confusing folder names this turns into a frustrating
experience very quickly. The data then comes in various formats, making it hard
to automatically process it.

In order to stop this hassle, we present a microservice that adapts weather data
from the DWD server to a more user friendly REST interface. This thesis de-
scribes the architecture and implementation of the microservice. As a result,
users can fetch historical, current and forecast weather data of twenty different
weather parameters in an easy to process JSON format.
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1 Introduction

In Germany weather data is collected by the DWD. It is part of the Federal
Ministry of Transport and Digital Infrastructure. Its main task is warning against
dangers from extreme weather conditions such as storms or black ice. On 25th of
july 2017 a change to the Deutsche Wetterdienst law came into effect extending
the tasks of the DWD. These include changes to the Geodatenzugangsgesetz
obligating the DWD to provide most of its data for free to the public as stated
in their press release [DWD17]. This allows anyone to use the data for own
purposes. For instance this may be a hobby meteorologist who can now access
old weather data and analyse it. Another example may also be an entrepreneur
who uses solar data of previous years to convince customers to invest in a solar
roof.

While there are many ways to use the data, actually getting it is not as easy as
it should be. The DWD endeavors to give easy access to their data but none
of their access points is suitable for automated data processing. There are two
access points. One is the database reachable at https://opendata.dwd.de/. It
can be accessed via HTTP and also links to the old FTP server. Both servers
deliver equal data. Data is organized in several directories and stored in various
file formats. Most of them follow standardized data schemes, while others contain
tables in CSV format. Some of the files are compressed and multiple compression
methods are used throughout the data sets. The content and format of each file
is documented. Accessing a specific weather information from this database is
everything but intuitive. Therefore, the DWD has started developing the Climate
Data Center portal1. It allows the user to easily access and visualize parts of the
data through an interactive website. However, at time of this writing not all data
is accessible through this interface. For example there is a directory with solar
data in the database that contains information like the sunshine duration in a
ten minutes measuring interval of today. The portal does not offer any way to
access data that was measured in the ten minutes interval at all. Even worse
the only accessible sunshine duration data has been measured between 1961 and
1990, although there even is data from today.

1https://cdc.dwd.de/portal/
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So even though the data is provided for free, interested people have the choice
between finding, downloading, unpacking and interpreting the data from the data
base and a graphical interface that only provides a fraction of the data. This may
be good enough for some hobby meteorologist but certainly frustrating to anyone
who wants to make a business from it like the solar panel selling entrepreneur.
Since there is no Application Programming Interface (API), anyone who wants
to do data processing on the data needs to go through the same steps to get the
data off the server into a usable format.

This master thesis aims to solve this hassle. A new microservice is developed that
offers a simple to use API to the open weather data, that the DWD is lacking
of. Additionally, an adapter for the Open Data Service (ODS)2 is developed,
thereby extending it by a new source of data. The ODS is an open source software
project developed here at the Professorship for Open-Source-Software. It collects
heterogeneous data from various sources and makes this data easy to consume
through a unified programmatic interface. Moreover, the ODS can improve the
quality and availability of the data, and apply different operations to enhance
the data. Users will have the choice between directly accessing the microservice
API and using the ODS.

Similar efforts have been made by Borges et al. [BPP19] during time of this
writing. Their OpenSense.network aims to provide environmental sensor data
via a graphical interface and an API for developers. The weather data provided
by the DWD serves as one of their first data sources. However, their focus is
on providing raw sensor data for further processing. In consequence they only
provide actually measured data up until yesterday. We on the other hand want
to provide the weather information for a location to the user. This more specific
goal allows a simpler output format, which in turn is also easier to process for
the user. Furthermore we aim to provide forecast data as well and seamlessly
connect it with the weather of today and the past.

Another similar project is the OpenWeatherMap3. They do offer free weather
data for current weather and forecasts of the next four days. Access to historical
data and longer term forecasts need to be paid though. This pretty much reflects
the current situation for German weather data. But it also contradicts the idea of
open data. The DWD provides all necessary data for free, so why should anyone
have to pay for it just to be able to access the data through a proper API? Many
other countries, especially America, are way ahead of Germany in this territory.
Their data has been easily accessible from the National Weather Service4 through
a simple REST API since years.

2https://github.com/jvalue/open-data-service
3https://openweathermap.org
4https://www.weather.gov/documentation/services-web-api
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The next chapters describe the development of the microservice in detail. It starts
with a requirements specification that defines all functional and non functional
requirements to the artifact. Next the software architecture is designed and
different design choices are discussed. The Implementation chapter explains the
algorithms and data structures that are used. It also discusses pros and cons
compared to alternative solutions. Last the resulting artifact is evaluated with
the evaluation scheme that was defined during the requirements specification.
Additionally, we give an idea of how well the service performs based on four
typical use cases.
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2 Definition of requirements

2.1 Functional requirements

F1: Fetch DWD weather data

The microservice needs to be able to fetch current temperature and solar radiation
data provided by DWD on their server1 for a given location. Optionally forecast
and historical data for a given location as well as other weather parameters may
be fetched, too.

Additionally, a request that requires only a certain part of the data should not
require downloading all the available data but only those files that contain related
data. In order to evaluate this requirement, the microservice is supposed to log
every file name that it downloads. This way one can check whether a request
leads to a download of required files only.

F2: Transform DWD data to own weather model

The DWD data is organized in a way that measured data can be uploaded to
the server very easily and is human readable. It is not a suitable data format to
query weather information efficiently. To perform operations on the weather data
with low complexity and decent performance, the data needs to be abstracted
to a more suitable and consistent data format. Every measurement needs to
contain all relevant information about when and where it was measured, what
was measured and the measured value including a unit.

F3: Reasonable response time for weather requests

Users should not have to wait too long for requests of the current weather. The
response time should be reasonable for this standard request. To evaluate this,
one should be able to request the current weather 25 times per minute at one
location.

1https://opendata.dwd.de/
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Often requests to the microservice rely on the same data. One way to improve
response times of the system is to cache that data.

F4: Location specification

Weather is always related to a location. In order to specify a location in a
request the user can choose between GPS coordinates compound by latitude and
longitude, city name and zip code. The system needs to be able to translate the
given location representation to a uniform format that it can handle efficiently.
It is sufficient to resolve German city names and zip codes. Other countries don’t
need to be supported since the DWD provides German weather data only.

The functionality of the feature is tested by three requests of the same data using
the GPS coordinates, the city name and the cities zip code to specify the location.
If the requirement is met, the microservice delivers an equivalent response for all
three requests. Since there are changes to city names and zip codes constantly,
one should only test locations that have not been changed in the past 5 years.

F5: Provide a user interface

To make use of the microservice an easy to use REST interface needs to be
provided to the user. It needs to offer access to at least the following data for a
given location:

� Current temperature

� Current radiation

� Forecasts (Optional)

� Historical weather records (Optional)

The response should have a human readable but yet easy to process format. The
most wide spread way of achieving this is using a JavaScript Object Notation
(JSON) response with meaningful attribute names.

F6: Adapter for the ODS

The Open Data Service uses different adapters to access different types of data
sources. To ensure that the ODS can use all provided functionalities and data,
an adapter should be developed. It is evaluated by a test request for every one of
the interfaces that is offered by the microservice. All responses need to contain
equivalent data, where the output formats may differ.
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2.2 Non-functional requirements

Q1: Test coverage

Thorough testing of the developed software is an important part of software
development to gain trust in the reliability of the artifact. First, all software
components need to be structurally covered by unit tests. The focus here should
be more on proper edge case testing than on covering every single line. This is
because one could test every method with simple tests solely aiming for running
every line, without covering any edge case. This would fail the intend of building
trust, and hence is discouraged.

Second, integration testing needs to cover all system functionalities in its test
scenarios. To make the outcome of integration tests deterministic the required
DWD server with all its files needs to be mocked.

Third, interface testing shall ensure the interface of the DWD server hasn’t
changed. This can be used to trace down unexpected behavior to either a bug in
the microservice or a change on DWD server side. Changes on the DWD interface
can also be tracked via the provided change log file2.

Q2: Accessibility

All available system functions need to be documented and shall be easily access-
ible by the user interface. The user neither needs to be a computer scientist
nor needs to provide any meteorological knowledge. The user interface shall be
documented on Swagger3. The documentation should be sufficient to access the
desired data without any further help.

Q3: Deployment

The implemented microservice shall be easy to deploy in a controlled envir-
onment. This should eliminate inconsistent behavior on different platforms.
Docker4 is one popular way to do this.

2https://opendata.dwd.de/climate_environment/CDC/Change_log_CDC_ftp.txt
3https://swagger.io/
4https://www.docker.com/
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3 Architecture and design

This chapter explains what technologies are used to meet the requirements and
discusses alternatives to those, too. In addition to that, an overview of all created
software components and their relation to each other is explained. For orientation
figure 3.1 visualizes the role of the DWD adapter microservice that is developed
in this thesis. On one end it needs to access the DWD server to fetch all necessary
data. On the other end it provides a REST interface to it’s users, as it is required
by requirement F5, defined in section 2.1. The user can either use the REST API
directly or access it indirectly via the ODS, optionally enhancing the data with
functions of the ODS.

User 
DWD 
server 

DWD adapter 
microservice Open Data Serviceaccess use fetch 

data 

Figure 3.1: Overview of all involved services.

3.1 Definition of microservices

Before we start working on our microservice, we first need to know what actually
is a microservice? The term itself is not standardized yet, so everyone has an
own definition of it. One way to define it is this:

“A microservice [. . . ] is a small application that can be deployed
independently, scaled independently, and tested independently and
that has a single responsibility. It is a single responsibility in the
original sense that it’s got a single reason to change and/or a single
reason to be replaced. But the other axis is a single responsibility in
the sense that it does only one thing and one thing alone and can be
easily understood.” [Thö15]
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This very briefly enumerates the biggest advantages of microservices compared
to the conventional monolithic architecture. The only disadvantage is that mi-
croservices need to send messages over a network in order to communicate. This
adds overhead every time two parts of the application need to exchange data. In
a good design, however, most communication takes place within a microservice
and communication with other microservices is reduced to a bare minimum.

3.2 Base technology for the microservice

When it comes to choosing technologies for creating a new microservice, one is
spoiled for choice. Since it is a self contained system that uses the platform
independent REST standard for all its interfaces, it may be written in pretty
much any programming language, using any frameworks and libraries one could
possibly want to use. But instead of choosing an exotic language and some
barely documented frameworks and libraries, it is more reasonable to choose
conventional technologies. Because no matter how perfectly fine the system works
today, one day someone has to maintain it or wants to extend it.

In a multi case study from 2005 researchers analyzed the cost distribution over
the life cycle of 30 IT application systems.

“For a total production time of 5 years, the percentage of non-recurring
costs amounts on average to 21% of the total life cycle costs. There-
fore, 79% of the total costs are recurring costs, i.e. are further devel-
opment and production costs. For a projected production time of 8
years, the ratio changes to 15% vs. 85%. The ratio differs significantly
among application systems.” [ZB05]

While this study certainly is a bit outdated and is based on imprecise data, it
gives an idea of how important it is to minimize recurring cost. This denotes all
cost that occurs after the initial development covered by this thesis.

This project is going to be maintained by the same developers that also maintain
and improve the ODS. Hence, choosing the same technologies used by the ODS
reduces maintenance cost in the future. For that reason, we choose Gradle1 as
build tool, Java2 as programming language and Spring Boot3 as framework for
the microservice. All three are very well documented and established technologies
with huge communities, so there is no real argument to justify changing one of
them, anyway.

One must note that in parallel to this thesis the ODS is undergoing some struc-

1https://gradle.org/
2https://www.java.com
3https://spring.io/projects/spring-boot
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tural changes. It’s current monolithic structure will be split into microservices in
the future [Sch19]. At the time of this writing the ODS still uses Dropwizard4,
an alternative choice to Spring Boot. But it is going to move to Spring Boot for
the migration to microservices in the long term.

3.3 Resolving locations

To meet requirement F4, defined in section 2.1, one has to choose a uniform
representation of a location throughout the microservice first. Locations are used
in two places only. The first one being in the REST interface, where the user
should be able to specify a location either by its geographic coordinates, city
name or zip code. This is where the user input needs to be transformed to the
uniform representation of a location. The other one occurs when choosing the
weather stations that measure the requested data.

This anticipates chapter 4.5, which explains all the details on weather stations and
how they are selected. At this point it is sufficient to know that each weather
station has its location given by geographic coordinates. The algorithm that
chooses the right weather stations needs to calculate the distance to the requested
location for each station.

Therefore, choosing geographic coordinates, consisting of latitude and longitude,
as uniform representation of a location is an easy decision. Given that, in con-
trast to zip codes and city names, there is a formula that calculates the distance
between two coordinates. Any other representation requires an additional trans-
formation back to geographic coordinates.

This brings us back to the actual challenge of requirement F4. If a user requests
the weather using coordinates, the microservice does not need to do any more
processing on that input. However, German city names and zip codes need to
be mapped to their respective coordinates first. This process is called geocod-
ing, transforming coordinates back to a city name and zip code is called reverse
geocoding. There are two ways to support geocoding.

First, one can utilize an existing data set that contains a mapping of city name
and zip code to its geographic coordinates. All of that data just needs to be
imported to a database that is then accessed by the microservice to find the
correct mapping for each request. While there are free data sets available, they
are not complete by any means. Resolving big cities is no problem with those, but
when it comes to tiny villages no free data set includes all of them. In addition to
that, one must consider that this data is constantly changing. For example new
villages may be founded or small villages merge into nearby cities. This indicates

4https://www.dropwizard.io/1.3.9/docs/
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someone would have to find the latest data and import all changes to the data
base on a regular basis, to keep the service up to date. In conclusion this solution
is far from optimal.

Resolving locations is not part of this microservices responsibilities anyway, which
is why creating a separate microservice for it is almost obligatory. This has been
done by others before, most prominently by the Google Maps Platform5. For
companies this is probably the best way to go, but it requires registering an
account and depositing a credit card because the service is not for free. Therefore,
this is not a viable option for this project.

Luckily there is the OpenStreetMap6 project which also provides all kinds of
geodata but does it for free. It includes the Nominatim7 service, which does geo-
coding and offers a REST API. Test villages that revealed lacks in other free data
sets all worked with Nominatim. The only downside of it is its restrictive usage
policy, limiting the amount of requests to a maximum of one request per second.
On the upside, one always has the opportunity to install an own instance of
Nominatim on a local machine. This should only be required if this microservice
becomes so popular that it violates the usage policy even when caching all results.
Thus, Nominatim is the best option for the microservice at time of this writing.

5https://cloud.google.com/maps-platform/
6https://wiki.openstreetmap.org/wiki/Main_Page
7https://wiki.openstreetmap.org/wiki/Nominatim
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3.4 Caching frequently used data

Using Nominatim as external geocoding service requires caching location inform-
ation due to their restrictive usage policy. A sequence diagram of such a request
to the cache is given in figure 3.2. Since there are too many locations to cache
all of them in memory, a simple lightweight Least Recently Used (LRU) cache
with a configurable size is used for this job. This caching strategy dumps the
element from the cache that has not been used for the longest time and thus
seems like a reasonable choice in this application. Not only is the cache part of
the implementation that prevents violating Nominatims usage policy because it
reduces the amount of necessary requests to the Nominatim service. But it also
improves response times of the microservice because the delay for the request to
the Nominatim service is replaced with a simple cache lookup.

Nominatim
Location
Resolver

User

Location
Resolver
Cache

addToCache

resolveCoordinates

cacheLookup

[cachedCoordinates == null]

cachedCoordinates

resolveCoordinates

Coordinates

Coordinates

alt

Figure 3.2: Sequence diagram of a User requesting a location. Only if the
location is not contained in the cache, the request is forwarded to the Nominatim
service and its result is cached for future requests.

It is not the only used cache, though. As explained in chapter 3.3 finding the
right weather station is the first processing step of every request. Because a list
of all weather stations takes longer to fetch than the current weather data, it
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only makes sense to cache it as well. Since there are only a few thousand weather
stations, it is no problem to keep the whole cache in memory all the time.

The cache is initialized on demand, which is why the very first request of a
weather parameter always takes a little bit longer after a restart. However, the
data changes from time to time whenever a new weather station is added or one
of them is closed. But it is not necessary to permanently check for the latest data.
As it turns out during implementation, the time a weather station is supposedly
active does not exactly match the time where it actually produces data. In fact
the first available data is usually measured a few days later. Therefore, it is
sufficient to refresh the weather station data once a day.

Both the cache for Nominatim and the weather stations are implemented using
the proxy design pattern. It has the intend to “provide a surrogate or placeholder
for another object to control access to it” [Gam+95]. The pattern makes use of a
common interface between the actual object and a proxy object. Figure 3.3 shows
how we use it to cache data that is fetched from an external provider. This class
diagram is just an abstracted example so it matches both our applications. The
original pattern does not use the interface to depend on the underlying service
but instead depends on the ServiceImpl directly. We modified this to be able to
switch the ServiceImpl without having to adapt the cache implementation to the
new one.

<<Interface>>
ComponentInterface

+ fetchSomething(): Value

CacheImpl

+ cache: Map<Key, Value>

+ fetchSomething(): Value

ServiceImpl

+ fetchSomething(): Value

service
1

Figure 3.3: Class diagram of a cached service.

Now one may be wondering about caching weather data, too. In order to cache
weather data one not only has to add a database to the microservice but also
add a routine that ensures the data is not outdated. Since the data does not
update within a fixed schedule, this requires constantly fetching the latest data
and replacing the old one in some way. Depending on the actual usage of the
microservice this introduces a constant load even if there is not a single request
actually fetching the data. To reduce the constant load one can think about
accepting outdated data up to a certain threshold, effectively trading data quality
for better response times.
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As it turns out during implementation, thanks to the small file size of current
and forecast weather data, requests for that data have response times of less than
200 ms even without caching applied on weather data. According to [Nie93] this
is fast enough for the user to only barely notice any delay at all.

So the bottom line is that, since caching data that constantly changes on an irreg-
ular basis is not trivial, and hence adds a lot of complexity to the microservice, we
decided to not cache any weather data at all. The improvement in response times
is not worth the introduced complexity and constant load of the microservice.
Even without this optimization, response times exceed our expectations already.

3.5 Software components

With all technologies setup we can start thinking about the structure of the
microservice. After figuring out what exactly the DWD server side offers, we
collect all components that are required to resemble and abstract all aspects
of it. Please note that in this thesis we only focus on a small fraction of the
provided data. The DWD provides way more data in various formats created by
many different measuring systems for different purposes. So keep in mind this is
only a small piece of the whole picture.

Following observations of the data provided by the DWD can be made:

� Forecast weather data is given in a different format and structure than all
current and historical records

� All measurements are tied to a weather station. A list of all weather stations
is given for forecast data as well as a separate list for each weather parameter

� From time to time weather stations are modified. For instance the measur-
ing instrument moves, or a new measurement method is used All changes
are logged in meta data files and may be important to some users

� Some of the files are compressed and the compression method varies

Adding dependencies to the resulting components leads to the component dia-
gram displayed in figure 3.4. Additionally to all DWD specific components, it
also includes the necessary SpringController that provides the REST API of the
new microservice as well as the LocationResolver discussed in chapter 3.3.

The SpringController is the interface between the microservice and the user.
Therefore, it needs access to all components that provide it with all the different
data requested by the user. This includes the WeatherStationListProvider, which
is responsible for providing all weather station lists, and the MetaDataProvider.

Even though it is not specified by any requirement it seems quite important
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to provide meta data to interested users. This kind of data may explain some
unexpected surprises in the data and hopefully helps understanding the data while
analyzing it. Meta data is basically just text explaining changes to the measuring
process. It is distributed over multiple files. The microservice simply maps each
file name to its plain text content. This way the user receives a response that
perfectly resembles all available meta data of a weather station. All of this is
handled by the MetaDataProvider component.

Of course the SpringController also needs access to the WeatherDataRequester,
which is the interface to fetching, processing and concatenating the actual weather
data. It hides all the complexity introduced by the variances in data and structure
on the DWD server. One can access it through a uniform interface delivering
uniform data no matter what weather parameter is requested during any time
span. Doing so, it seamlessly connects measured observation data with predicted
forecast data.

Since this is way to much complexity to handle in a single component, the Weat-
herDataRequester focuses on splitting the request into multiple smaller requests
that are then delegated to the ObservationDataProvider and the ForecastData-
Provider, depending on the requested time span. These in turn take care about
fetching the data from the right path and converting it into a usable data format.

As one can see in figure 3.4 all data providing components delegate the actual
fetching task to the Downloader component. This component does not just down-
load the data provided on a given path but also handles decompressing it auto-
matically depending on the file type. Files provided by the DWD are sometimes
not compressed at all and other times compressed using different compression
methods for different files. The Downloader component simplifies all other com-
ponents by encapsulating the complexity of handling all these different file types
seamlessly.

In addition to that it also handles different protocols, so files can be fetched by
either HTTP, FTP or even a local path. This enables fetching the data either
from the DWDs HTTP server or their FTP server, which hosts the same data
but is not as responsive and reliable. Alternatively, one can test new features
locally by downloading a snapshot of all necessary files and redirecting the path
to the DWD server to point to the snapshot. Spring boot offers great support
for configuration files where this can be done without touching the source code
of the microservice.
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4 Implementation

In order to fulfill all requirements defined in chapter 2 there are a bunch of
challenges to face. Fortunately the previous section 3.5 divides the responsibility
to solve them into smaller components already. This chapter presents the solution
to each individual problem. At the same time this is also supposed to serve as part
of the artifacts documentation. Hence, created data structures and developed
algorithms are explained in such a detail that one can not just comprehend how
everything works but also how it emerged from the requirements to it.

4.1 Finding the right files

The first problem that needs to be solved is actually not directly mentioned in the
requirements specification, although none of the previously defined components
could do anything without it. In order to be able to download, extract, parse and
further process data one first has to find out from where to download it. Data
on the DWD server is structured in a file system alike manner. Originally files
were only provided by a FTP server, the HTTP server was added later on, which
is probably responsible for this structuring.

After getting an overlook of what data is actually provided by the DWD, the files
contained in the Climate Data Center (CDC) directory1 are exactly what we are
looking for in this project. Unfortunately forecast data is not provided there but
is collected in a separate forecast directory2.

Finding the right forecast file is very simple because there is exactly one file
provided for each weather station. Each file contains all available weather para-
meters. With observation data, however, things get a little bit more difficult.
There are four dimensions in which the data is structured. First, one selects the
time interval of the measurements, ten minutes, hourly, daily, monthly and so
on. Next the parameter needs to be chosen. Unfortunately there is not simply
one directory for each weather parameter. Instead most directories, and in con-

1https://opendata.dwd.de/climate_environment/CDC/
2https://opendata.dwd.de/weather/local_forecasts/
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sequence the actual data file, accumulate a couple of parameters together to what
we call a combined parameter. At first glance this way of structuring seems reas-
onable but there is a catch. There are different weather parameters combined
together, depending on the time interval one chose in the previous step. This
randomness prevents any general approach to resolve the correct directory from
working. One has to create different mappings for each combination of weather
parameter and time interval.

The third decision depends on the measurement time of the data. Files are sorted
into historical, recent and now time spans. Now denotes data measured today
and is only available if one chose the ten minutes interval in the first step. Recent
is a sliding window of the last 500 days and historical collects everything ever
measured until the end of last year.

The last step is to choose the right file using the station id of the measuring
weather station, since it defines the file name. At least that is how it works for
now and recent files. Historical files sometimes are split into multiple smaller
files. Hence, their names are extended with a start and end date of the contained
data. Therefore, the filename can not be predicted solely by the station id. To
find the correct file names one has to first download all names and then filter
them for the ones of the required weather station.

To resemble this structure we create a DataSet for each combined parameter in
ten minutes and in hourly time interval. Each DataSet contains information on
how to find all files of a weather station and how to parse them. Finally, the
combination of a weather parameter and each of the three time spans, historical,
recent and now are mapped to the respective DataSet. This map enables us to get
all required information about where to find the right files and how to parse them
just by knowing the requested weather parameter and time span. We statically
create and insert all DataSet objects into the map upon startup.

Alternatively, one may also resemble the structure using configuration files. All
file paths and regular expressions could be defined in it, as well as a configuration
for a more generic parsing approach. As a result, all available weather parameters
and their mappings to the right configuration also need to be defined in a config-
uration file, effectively making the whole accessible data set fully configurable.

The static insertion method is definitely easier to implement and hence less error-
prone, whereas a configuration file offers the flexibility to be changed later on
without having to touch the code.

Table 4.1 gives a list of all weather parameters that are available in the CDC
database. It ticks the box if the parameter is available in ten minutes and hourly
measuring interval during historical, recent, now and forecast time span. Only if
there is no hourly data available we fall back on using the ten minute data, due
to our targeted hourly data output format.
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For every used cell in this table one would have to define the regular expression
to the respective files, a configuration for the parser of those files and a mapping,
so one can find the right configuration by a weather parameter and a time span.
Besides the required implementation to interpret all these configurations, one
would create giant configuration files that no one would ever want to touch again.
Even worse, a structural change that can not be tolerated by the whole set of
configurations anymore, requires a complete rebuild of the configuration jungle.
Therefore, we decide to apply the Keep It Simple Stupid (KISS) principle and
simply hardcode the mappings using a class hierarchy to omit code duplications.
This yields a comprehensive definition of all weather parameters from table 4.1.

ten minutes hourly
name historical recent now historical recent forecast

air pressure - - 3 3 3 3

temperature200 - - 3 3 3 3

temperature5 3 3 3 7 7 3

humidity - - 3 3 3 7

dew point 3 3 3 7 7 3

precipitation duration 3 3 3 7 7 3

precipitation height - - 3 3 3 3

sunshine duration 3 3 3 7 7 3

diffuse solar radiation 3 3 3 7 7 7

total solar radiation 3 3 3 7 7 3

longwave downward
radiation

3 3 3 7 7 7

wind speed - - 3 3 3 3

wind direction - - 3 3 3 3

visibility 7 7 7 3 3 3

cloudiness 7 7 7 3 3 3

max temperature200 3 3 3 7 7 7

min temperature200 3 3 3 7 7 7

min temperature5 3 3 3 7 7 7

max wind speed 3 3 3 7 7 3

max wind
speed direction

3 3 3 7 7 7

Table 4.1: Available weather parameters provided in ten minutes and hourly
time interval.
3: value is used
7 : value is not provided
- : value is provided but not used because it is available in hourly
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4.2 Abstracting the weather model

As requirement F2 explains, the DWD focuses more on human readability than
on a weather model that is easy to process. They provide forecast data in a
standardized file format, which contains predictions for all weather parameters.
Observation data on the other hand is provided in table form, combining a few
weather parameters together in one CSV file. In order to be able to process the
data it needs to be abstracted to one uniform representation of each measurement
respectively each forecast prediction.

Therefore, we abstract the provided data to DataPoints. Each of these value
objects represents one measurement of a weather parameter at a certain time
from one weather station.

Additionally, it contains information from what time interval it was created. This
is the time that is covered by one measurement. There are various time intervals
used by the DWD. The microservice primarily deals with the ten minutes, hourly
and three hourly time intervals.

In order to estimate the precision of a measurement an origin field is carried as
well. The DWD uses a scale to define the quality of a measurement in their
observation data. Every index on the scale represents a processing step that
controls or corrects the accuracy of a measurement. This is simplified for users
of the microservice, since the index generally correlates with the time section the
measurement is located on the DWD server. Remember the time sections are:

� historical: earliest record until end of last year

� recent: last 500 days until yesterday

� now: today starting at 00:00 until now

� forecast: now until approximately 240 hours in the future

Measurements become more accurate the earlier the time section ends. Since the
time interval is not always constant for a parameter over several time sections,
multiple ten minutes DataPoints have to be accumulated to one hourly DataPoint
to match the standard hourly output of this microservice. This accumulation
process is covered in more detail by chapter 4.6. The accumulated values decrease
the precision, hence this needs to be noted. Together with the four time sections
this results in eight possible origins that are listed in table 4.2.
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DataPoint origin Quality level

HISTORICAL high
RECENT medium

NOW low
FORECAST very low / prediction

HISTORICAL ACCUMULATED accumulation of HISTORICAL values
RECENT ACCUMULATED accumulation of RECENT values

NOW ACCUMULATED accumulation of NOW values
FORECAST ACCUMULATED accumulation of FORECAST values

Table 4.2: Possible DataPoint origins and their rough quality level.

4.3 Parsing DWD data files

Data on the DWD server is organized in files, often compressed in archive files.
The data within those needs to be parsed and mapped to DataPoints, our ab-
stracted measurement representation. One has to differentiate between forecast
and observation data since they are provided in very different ways.

Parsing forecast data files

Every weather measurement created after the time of request on the microservice
is considered a forecast. The DWD provides multiple ways to deliver forecast
data. For instance one can access textual forecasts3. But this is not very useful
for our purposes. Fortunately they also provide Model Output Statistics-MIX
(MOSMIX) data. This is statistically optimized point forecast data available at
roughly 5400 locations worldwide4. Over 3000 of them within or very close to
Germany.

Users of the DWD server can choose between two sets of data. The MOSMIX S
dataset is updated hourly, covers 40 parameters and summarizes the forecast of
all locations in a single file. The MOSMIX L dataset is only updated four times
a day, theoretically covers about 115 parameters and is split into one file for each
location. Both datasets cover 240 hours of forecast data. Every update not only
appends more values but also increases accuracy of values that have already been
available in previous versions. The microservice has to download, unzip and parse
a 38 MB file for the MOSMIX S dataset but only 16 KB for each MOSMIX L
dataset. Since the expected use case is a weather request for a specific location,
the response time of the microservice is significantly lower compared to using the
MOSMIX L over the MOSMIX S dataset.

3https://opendata.dwd.de/weather/text_forecasts/
4https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_

mosmix.html
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A MOSMIX file is provided in the Keyhole Markup Language (KML) file format
compressed with zip to a Keyhole Markup Language Zipped (KMZ) file. One
can parse this file format very easily with the help of an XML parser. There are
two important elements in each file.

The first one is called dwd:ForecastTimeSteps. It lists all time stamps that this
file contains data for. Each time stamp is represented by an ISO 8601 [org04]
conform UTC time.

The second one, kml:ExtendedData, lists all parameters. Each parameter contains
a list of forecast values for it. The index of each value determines the index of
the time stamp it belongs to. In order to map it to DataPoints, each value is
combined with its time stamp. Further information like the used abbreviations
for the parameter names and the measuring unit of each parameter are located
in a separate file. We assume these will not change over time and forgo relying
on it. Parsing forecast data is handled by the MosmixDataParser class.

Parsing observation data files

Unfortunately parsing observation data is not so easy. Besides the higher com-
plexity behind finding the correct file, which is explained in chapter 4.1, the file
content doesn’t follow a predefined standard. It appears to be primarily made
with focus on human readability.

In general files contain a table with a header row in the first line. Columns are
separated with semicolons. Rows are separated by a newline character. Each file
usually combines multiple weather parameters to a combined parameter. The
first three columns contain the unique id of the weather station, the time stamp
of the measurement and the quality level. The remaining columns are specific to
the combined parameter.

In contrast to the time stamps defined in MOSMIX files, the ones defined in ob-
servation data files follow the short version of the ISO 8601 standard. It matches
the general pattern yyyyMMddHHmm of Java’s SimpleDateFormat5 class. The
letter y relates to the year, M to the month, d to the day, H to the hour and m to
the minute. For example November the ninth, 1989 at 5:57 pm is represented as
198911091757. If the exact minute is not required because the measurements are
taken hourly -always on a full hour-, the pattern will translate to yyyyMMddHH.
If it is measured on a daily basis, the hourly letters will be dropped and so on.

Parsing of these time stamp formats is required in multiple places but not both
are natively supported by Java. Thus the complexity is moved into an own
TimeStampParser class. This also allows the user to seamlessly choose between
ISO 8601 and its short version to define time stamps in requests.

5https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
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Besides the different time stamp formats there are more difficulties hidden be-
hind the table format. It took three approaches to find a parsing method that
tolerates all minor differences that may occur within each file and between files of
different combined parameters reliably. Since there are many different combined
parameters, only parsing of a single data row should be handled separately for
each combined parameter. The remaining complexity is bundled in the Obser-
vationDataParser class. This avoids code duplication for things like exception
handling and result collection.

The parser needs to be able to deal with an interruption in the table. This
appears very rarely and was revealed by a lucky coincidence only. In a few files
there is plain text explaining something in the middle of the table, where the
parser expects another data row. Hence, the first approach for the parser crashes
because the row doesn’t contain as many columns as expected.

Another small detail is an additional eor column. It marks the end of row ad-
ditionally to the newline. The problem is that it is not used for a combined
parameter throughout in all files but only occurs in some files. The most intu-
itive way to handle this case is to extract the columns by searching for the next
semicolon. With this second approach one could just skip everything after the
last expected column including the ’eor’ column. While this solution certainly
solves the issue, it introduces quiet a bit of overhead. With this implementation,
every single row needs to be iterated character by character to look out for the
next semicolon, before its content can be interpreted. This applies to all other
parser implementations that look for patterns, too. Since there are over a million
rows in some of the files, this is not an acceptable solution.

This is one of the most important performance critical parts of the whole mi-
croservice. Therefore, the ideal solution uses the fact that the width of each
column seems to be constant in every row. The third approach uses that know-
ledge to split the row into columns. By using the subString method of Java’s
String6 class all characters of each column are visited only once to copy them
into a separate String and one more time to parse the value from that copy. One
could eliminate the copy step with a custom implementation of subString but
we don’t want to trade too much code readability for performance. Tests have
shown that with this improved approach the limiting factor of the microservice
changed to the download speed of the file, anyway.

As the attentive reader may have noted the width of each column only seems to
be constant in every row. That is until the implementation is tested on some
example files just to notice that again a few files contain random shifts after
hundreds of thousands of perfectly aligned rows. Therefore, approach number
three is modified to support this case as well.

6https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
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In order to use the subString method one has to know the position of all semi-
colons. Instead of finding those positions before parsing the first row only, it also
updates the positions whenever a shift is detected. This leads to the control flow
shown in figure 4.1.

The only downside of approach three is that it can not tolerate inconsistencies
with the ’eor’ column within a file. One must assume it is used in every row if
it is used in the first one. This did hold true for all tested files and should be
a valid assumption because the ’eor’ column is also declared in the header line
whenever it is used.

Figure 4.1: Control flow diagram of the ObservationDataParser parsing an
observation data file.

Once all values are parsed from a row they are stored in an intermediate value
object. The next processing step transforms it to a DataPoint as section 4.6
explains in more detail.

Parsing lists of weather stations

In addition to the weather data files, one also needs some lists of all weather
stations, both forecast stations and observation stations. Section 4.5 explains the
usage of these lists in more detail. Fortunately the DWD provides a file of all
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MOSMIX stations as well as a file for each combined parameter of all observation
stations.

Parsing those files is very similar to parsing observation data. Each file con-
tains a table with a header row in the first line. Columns are separated with
semicolons. Rows are separated by a newline character. In contrast to parsing
observation data there is no ’eor’ column that randomly appears in some files.
But there are interruptions in the table that both the MosmixStationParser and
ObservationStationParser have to tolerate.

The provided information about each weather station is equal for MOSMIX and
observation stations except the active time that is missing for MOSMIX weather
stations. It defines the start and end date of when a weather station supposedly
measured data. The observation station list contains all stations that have ever
been active. The MOSMIX station list on the other hand only contains those
that are currently active. For later processing this information is supplemented.
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4.4 Time data structures

The microservice needs to deal with time in various places. Internally, time is
represented by an object of the Instant7 class. In this application it is always
interpreted as a UTC time time stamp.

4.4.1 Definition of time spans

A lot of the microservice‘s internal logic requires to composite two times to create
a time span. A time span is defined by its start and end time. This is represented
by an instance of the TimeSpan class. There are two main use cases for it. First
and foremost it is part of any request for a specific set of weather data. Users
define a TimeSpan to filter the queried data by its time of measurement. This
can be done explicitly by specifying a start date and time and an end date and
time. Alternatively, users can choose from a set of predefined TimeSpans. Table
4.3 lists all PredefinedTimeSpans and their explanation.

PredefinedTimeSpan Explanation

NOW today starting at 00:00 until now
RECENT last 500 days until yesterday

HISTORICAL earliest record until end of last year
TODAY today between 00:00 and 23:59

TOMORROW next day between 00:00 and 23:59
NEXT WEEK next seven days starting with tomorrow
FORECAST time of all available forecast (ca. 10 days)

Table 4.3: List of all PredefinedTimeSpans and their explanation, where now is
equivalent to the time of request.

In addition to that, TimeSpans are required due to the structure of the data
on the DWD server. It is split into three folders, each one contains data for
a certain timespan. Those are equivalent with the NOW, RECENT and HIS-
TORICAL PredefinedTimeSpans. The microservice figures out which of these
do overlap with the queried TimeSpan to decide what files are required to collect
the requested data. This excludes unneeded files and therefore is part of the
solution to fulfill requirement F1 defined in section 2.1.

Methods

Besides the method overlaps that checks for an overlap between two TimeSpans,
the class also offers a method covers which can be used to determine whether one
TimeSpan completely covers another one. That is exactly when the start is equal

7https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html
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or before the start of the other TimeSpan and the end is equal or after the other
TimeSpan. Additionally, the includes method is implemented so one can test
whether an Instant is between start and end of a TimeSpan. This is required to
filter the downloaded data for measurements taken during the queried TimeSpan.

4.4.2 Adding gaps to time spans

While a continuous time span is ideal for the user to request data, there are use
cases that need to extend the simple representation of a TimeSpan by gaps. This
extension is implemented by the CuttableTimeSpan subclass. It starts out as
an ordinary continuous time span but provides the functionality to cut out time
spans from it in order to create gaps.

Use cases

Weather stations measure the data that can be queried by this microservice. But
they are not a constant set of institutions that have always been there. The set
of weather stations constantly changes over time. Therefore, a weather station
has an active time. That is the TimeSpan starting with the date of when the
weather station started measuring data and ending with the date it was closed.

The active time is an important criteria when selecting the weather station for
a query. If a weather station has not been active during the requested time, it
obviously would not have measured any data that could be used to answer the
request. However, just because the requested time is covered by the active time
span, does not mean there is any data either. There are many reasons for gaps
in the measured data. For example there may have been maintenance work on
the measuring instrument or even a defect on it. These random events can cause
several hours or even days of missing data. This is quite common but occasionally
gaps are as big as multiple years.

The goal is to minimize gaps in the response data. To achieve this, the active
time needs to be represented by a CuttableTimeSpan that is not continuous but
includes gaps. Whenever the application detects a gap in the data it cuts the
missing TimeSpan from the active time.

In order to achieve an active time that perfectly resembles the continuity of the
measured data, one would have to iterate through all measurements. Since this
is too resource expensive, a TimeSpan is only cut from the active time if no data
could be fetched from the station during a requested TimeSpan. This way a user
never gets an empty response without a lot of extra effort for the microservice.
The downside is that if the requested TimeSpan covers more than the gap, the
active time is not cut and the response lacks the data during the gap. An explicit
request for the data during the gap yields a cut of the active time. As a result
all future requests query the missing data from an other weather station.
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CuttableTimeSpan is also used in case the active time of a single weather station
does not cover the requested TimeSpan. This scenario requires data from multiple
weather stations. The list of all required weather stations is created by cutting
the active time of a weather station from the requested TimeSpan until it is
empty. Empty means the entire CuttableTimeSpan has been cut away. Section
4.5 explains the solution to this scenario in more detail.

Requirements

CuttableTimeSpan needs to be a specialization of TimeSpan so they can be used
interchangeably. It needs to offer an additional cut method to introduce gaps
and empty it. A CuttableTimeSpan starts as a TimeSpan. They should behave
equal until cut is used. If the CuttableTimeSpan does not cover the TimeSpan
that shall be cut out or if part of it has been cut before, it will be useful to return
the TimeSpan that has actually been cut. The remaining TimeSpans should
be retrievable by the getTimeSpanFragments method. An isEmpty method is
required for the second use case to know whether a CuttableTimeSpan has been
cut entirely.

Data structure

There are multiple ways to build a data structure that can fulfill above require-
ments. We decide to use a tree structure for two reasons. First, it is fairly
simple to implement the non trivial cut operation on a recursive data structure.
A recursive algorithm is a lot less complex and therefore less error-prone than
an iterative solution. Secondly, it offers logarithmic run time in the average case
of cut operations. This is better than the linear run time of most list based
solutions. However, performance in this case is less important than readability
because not too many cut operations on a CuttableTimeSpan are to be expected.
The implementation is thread safe, since it is used by multiple threads.

The tree specifically is a binary search tree made from TimeSpanNodes. A node
consists of a TimeSpan and two fields for its children beforeChild and after-
Child. An inner node bridges the gap between exactly two TimeSpans. The
node covering the TimeSpan before the gap is assigned to beforeChild. The node
covering the TimeSpan after the gap is assigned to afterChild. The TimeSpans
covered by the two child nodes must not overlap. Leaf nodes represent the ac-
tual TimeSpans that have not been cut yet. In case a TimeSpan has been cut
entirely, a new empty node is inserted. It covers a TimeSpan where start and
end are equal. Once created, only leaf nodes are modified to add new children.

When applying these rules, the data structure looks like demonstrated in figure
4.2. The example shows an inner node covering the two TimeSpans (A - B)
and (C - D). It has a TimeSpan of (A - D) bridging the gap between B and C.
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Figure 4.2: Simple example of a CuttableTimeSpan initialized with a TimeSpan
from A to D and an added gap between B and C.

Its beforeChild has a TimeSpanNode assigned whose TimeSpan is (A - B) and
afterChild has a TimeSpanNode assigned covering the TimeSpan (C - D).

The recursive cut algorithm

Initially the root node is created with the TimeSpan of the CuttableTimeSpan.

There are four cases that can occur when cutting a TimeSpan from a leaf TimeSpan-
Node:

1. The TimeSpan overlaps the start but does not cover the end:

� Add an empty beforeChild

� Add an afterChild node covering the rest of the TimeSpan

2. The TimeSpan overlaps the end but does not cover the start:

� Add a beforeChild node covering the rest of TimeSpan

� Add an empty afterChild

3. The TimeSpan is between start and end similar to the example shown in
figure 4.2:

� Add a beforeChild node covering the TimeSpan between start of this
node and start of the TimeSpan that is cut out.

� Add an afterChild node covering the TimeSpan between end of the
TimeSpan that is cut out and end of this node.

4. The TimeSpan covers the entire TimeSpan of this node:

� Add an empty beforeChild

� Add an empty afterChild
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Note that the TimeSpan of any TimeSpanNode is not modified ever. Inner nodes
take advantage of the recursive data structure and the binary search tree property.
They direct any cut method call to their children provided the TimeSpan of the
child overlaps with the TimeSpan that shall be cut.

Figure 4.3: Example of a CuttableTimeSpan initialized with a TimeSpan from
A to F that is cut in 4 steps until it is empty.

Figure 4.3 displays another example CuttableTimeSpan. It is the result of four
cut operations. Each cut operation is considered a step. The CuttableTimeSpan
is initialized with the TimeSpan between A and F. Where A, F and all the other
following literals can be any point in time. No two literals may be the exact same
time and they need to be ordered according to the time beam.

The first step cuts the TimeSpan between C and D from the CuttableTimeSpan.
This adds two child nodes according to case three from above. The TimeSpan is
between start and end but includes neither of them. Therefore, the beforeChild
of the rootNode covers the TimeSpan between A and C where C is excluded. And
the afterChild of the rootNode covers the TimeSpan between D and F where D
is excluded. To exclude a point in time, a nanosecond is added to the start or
subtracted from the end of the TimeSpan. A nanosecond is the smallest unit of
time when represented by Java’s Instant class.

Step two and three target the cases one and two from above. One cuts a TimeSpan
from B to any point in time between C and D. The other one cuts a TimeSpan
that reaches from any point in time between C and D to E. This yields two child
nodes for each step. Both times one of them is empty, the other one covers what
is left from the parents TimeSpan.

The final fourth step cuts the entire TimeSpan that is covered by the rootNode.
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According to case four from above, this adds empty TimeSpanNodes to all non
empty nodes. One can create the exact same tree by cutting the remaining
TimeSpans separately. Once all leaf nodes are empty, the CuttableTimeSpan is
considered empty as well. Any additional cut operations on an empty Cuttable-
TimeSpan have no effect and return an empty TimeSpan.

In the entire application CuttableTimeSpan is the only data structure that may
be modified in parallel by multiple threads. This happens if two requests are
worked on simultaneously and both rely on the same weather station. Therefore,
TimeSpanNodes are implemented to be thread safe.

4.5 Managing weather stations

For every request one first has to find the correct weather station to fetch the
data from. That is because data on the DWD server is structured in a way that
there is a separate file for each weather station. A weather station is represented
by the equally named WeatherStation class. It combines all relevant information
such as its unique id, name and position. As explained in section 4.4.2 each
WeatherStation contains an active time during which it measured data. That
active time is modified to compensate gaps in the measured data.

The DWD only provides one list of stations for forecast data and one list for each
combined parameter. But because a gap in the data of one weather parameter
does not automatically indicate a gap in the data of an other parameter that is
part of the same combined parameter, a separate list of WeatherStations is re-
quired for every single weather parameter. Lists of WeatherStations are managed
by the class WeatherStationList. It provides all necessary functionality, whereas
WeatherStations are just value objects. In order to provide them as quickly as
possible, all weather stations are kept in memory all the time.

Use cases

One use case of WeatherStationLists is finding the WeatherStation object that
is referenced by a certain unique station id. This for example is used in requests
for meta data of a certain weather station.

Most importantly, it is a key element when selecting the data files that contain
the requested data. As explained in section 3.3 a request is always linked to a
location represented by coordinates. The user wants the weather data for the
requested location to be as accurate as possible. Hence, the data should have
been measured as close to the requested coordinate as possible. This translates
to the data of the closest WeatherStation. The WeatherStationList finds the
WeatherStations that will be used to fetch data from.
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Selecting the forecast weather station

Finding the closest WeatherStation for a request on forecast data is pretty simple.
One has to compute the distance between the stations coordinates and the re-
quested coordinates and select the one with minimum distance. This is done
by the findClosestStation method. Any station that is contained in the forecast
WeatherStationList should provide data suitable to the request. If it does not
provide any data for the requested parameter, it is removed from the list, and the
next closest station is used instead. This way a WeatherStation that does not
actually measure a parameter is not even considered in future requests anymore.

Currently all this takes place on a simple list, using linear reduction to find the
minimum. This can be done in one statement using Java Streams. The perform-
ance is sufficient for current needs but not optimal though. It could be improved
with a pretty cumbersome solution. One could store all WeatherStations in a
two dimensional grid. One dimension is sorted by latitude and the other one by
longitude. Performing binary search over both dimensions on that grid narrows
down the closest latitude and longitude in logarithmic run time. This alternative
solution has two obvious downsides. It requires more memory and it is way more
complex to implement.

Selecting observation weather stations

With a request for observation data the algorithm becomes a bit more difficult.
The catch is that one can not assume that the closest WeatherStation has been
active during the requested time span as it is with forecast data. WeatherStation-
Lists for observation data contain any weather station that has ever measured
any parameter of the combined weather parameter. Therefore, the requested
TimeSpan is an additional criteria next to the requested coordinate.

Filtering for all WeatherStations that have been active during the requested
TimeSpan does not work, since the requested TimeSpan may be longer than any
WeatherStation has ever been active. Even if there is one, the solution would
not be optimal because in the meantime there may have been a WeatherStation
that is closer to the requested coordinate, and hence could provide more accurate
data.

Required is an algorithm that finds all WeatherStations that are as close as pos-
sible to the requested coordinate and together cover the requested TimeSpan with
their active times. At any point in time there should not be any WeatherStation
that is closer to the requested coordinate than the found one. The results are
collected in TimeStationAssignments. Each one assigns a WeatherStation to a
list of TimeSpans during which it is supposed to provide data.

To solve this problem we come up with a three step algorithm that utilizes a
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CuttableTimeSpan to cover the requested TimeSpan. In order to demonstrate
how it works, let us suppose we need to solve the problem for an example request,
which is to fetch the temperature in Erlangen (49.5981187° : 11.003645°) between
the years of 1950 to 2000.

The first step is to sort all WeatherStations of the temperatures observation
WeatherStationList by their distance to Erlangen. The result is visualized in
table 4.4. One might have the idea to speed up sorting by filtering the list of
stations for those who are within a certain radius. This does not work that easily
because the density of stations has quickly been rising since the late 20th century.
Before that, the amount of stations in the early 20th century or even late 19th
century is too small to determine a radius that does not filter all stations that
were active during the requested time at all. At the time of this writing there
are about 650 WeatherStations, so sorting those is not too expensive yet.

WeatherStation Distance [km] Active time

Erlangen-Frauenaurach 4.27 1994-11-01 - 2001-05-01
Möhrendorf-Kleinseebach 5.74 1986-11-01 - now

Nürnberg 11.20 1951-01-01 - now
Gräfenberg-Kasberg 17.47 2006-10-01 - now
Nürnberg-Netzstall 26.33 2005-03-01 - now

Markt Erlbach-Mosbach 27.13 2004-11-01 - now
Bamberg 31.27 1961-01-01 - now

Bamberg (Sternwarte) 32.58 1947-01-01 - 1955-01-01
Pommelsbrunn-Mittelburg 40.66 2005-03-01 - now

Roth 43.06 2002-01-01 - now
... ... ...

Table 4.4: List of all WeatherStations sorted ascending by distance to Erlangen.

The second step is to create a CuttableTimeSpan from the requested TimeSpan.
This is easy using the constructor of the class.

The third and final step is where it gets interesting. The sorted list of all Weath-
erStations is iterated, starting with the closest station. Each one of them cuts its
active time from the CuttableTimeSpan. We iterate the list until the Cuttable-
TimeSpan is empty, which is exactly when it is covered entirely by all stations.
Since an active time also is a CuttableTimeSpan, each fragment of it needs to be
cut separately. Remember from section 4.4.2 that the cut method returns a list
of TimeSpans that were actually cut from the CuttableTimeSpan. The results
are accumulated in a list.

If the active time does cut something from the CuttableTimeSpan, a new TimeSta-
tionAssignment is created from the current station and the TimeSpans that it cut
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away. It is then added to the resulting list of TimeStationAssignments and the
next iteration can begin until either all WeatherStations are iterated or the Cut-
tableTimeSpan is empty. The result of this final step executed on the example
request is listed in table 4.5. Note that multiple TimeSpans may be assigned to
a WeatherStation, even though this does not happen in the example.

WeatherStation Assigned time spans

Erlangen-Frauenaurach [1994-11-01 - 2000-01-01]
Möhrendorf-Kleinseebach [1986-11-01 - 1994-10-31]

Nürnberg [1951-01-01 - 1986-10-31]
Bamberg (Sternwarte) [1950-01-01 - 1950-12-31]

Table 4.5: List of all TimeStationAssignments in order of creation.

This greedy algorithm guarantees to choose the closest active WeatherStation for
any point in time. Moreover, it covers the entire requested TimeSpan without
any gaps provided there was an active WeatherStation at that time.
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4.6 Processing all fetched weather data

The previous chapters cover the most interesting steps on how to choose required
weather stations, find the right files containing their data and parsing them.

To give a good overview of the complete data flow that is triggered by a typical
request for one weather parameter, figure 4.4 visualizes it using a Data Flow
Diagram. One can comprehend all processing steps required to transform data
files provided by the Deutscher Wetterdienst server into the JSON response that
is sent to the user.

The goal is to create a list of DataPoints for the requested parameter, one point
per hour. The list must be sorted ascending by time and should not contain du-
plicate time stamps. As illustrated in the diagram, there are different processing
steps required for forecast data and observation data. Thus, the next sections
explain them separately until they are concatenated.

Processing of forecast data

The content of forecast files, or more precise MOSMIX files, satisfies almost all
requirements already, hence only a few processing steps are required. The first
two processing steps, unzipping the downloaded file and parsing it, are covered
in chapter 4.3 in more detail. The short version is the MOSMIX file is provided
in KMZ file format which needs to be unzipped to the KML format. That is a
Extensible Markup Language (XML) file with standardized elements, so it can
be parsed using any XML Parser. One file covers the prediction of the next 240
hours for all parameters at one MOSMIX station. This means after parsing, one
has a mapping of each parameter to 240 DataPoints.

The next step is to select the requested parameter from the map and use the
DataPoints for further processing. After that, they are filtered by the reques-
ted TimeSpan. Fortunately all forecast data is sorted ascending by time and
measured in an hourly or longer time interval, so there is no further processing
required to achieve the desired output format.

In case the selected MOSMIX station does not deliver any data, the application
detects that and repeats everything with another station. This is illustrated by
figure 6.3 in appendix A. Note though that this case should theoretically never
occur, since forecast data is not measured but computed. Therefore, there is
no such reason as a defect in the measuring instrument that could cause gaps
or missing data. Nevertheless, the case is covered should it ever appear in the
future.
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DWD server to create the JSON response for the user.
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Observation data processing

Processing forecast data is pretty much straightforward. Observation data on
the other hand requires significantly more processing because of the wide variety
of existing observation files. It starts similarly with downloading a data file and
unzipping it. This is also covered by section 4.3 in more detail. In contrast to
forecast, there are not all parameters contained in one file but only one combined
parameter per row in the table. Remember, a combined parameter is a collection
of a few parameters. A row is parsed into an intermediate CombinedDataPoint,
which collects all parameters and their values at the time stamp of the row. Just
like the forecast file, the table is sorted ascending already, so fortunately sorting
of the CombinedDataPoints is not necessary.

To minimize the amount of processed data as quickly as possible the Combined-
DataPoints are filtered by the requested TimeSpan next. This may be optimized
even further if parsing of the rest of the row was skipped as soon as the parsed
time stamp is not included in the requested TimeSpan. The implementation of
this performance optimization messes up the simplicity of the parser too much
to justify its use though. But if performance becomes a problem in the future,
this is the best opportunity to gain some.

After filtering by time, the CombinedDataPoints are mapped to their DataPoints.
There is one for each parameter that is included in the respective Combined-
DataPoint. Only the DataPoint of the requested parameter is kept, all others are
disregarded. Now having all DataPoints sorted ascending during the requested
TimeSpan there is just one little detail to be fixed. And that is the time interval
of the DataPoints.

Accumulating data

Observation data is provided in different time intervals by the DWD. Precipit-
ation for instance is measured and uploaded once every minute. But it is also
accumulated by the DWD to a measurement point every ten minutes and one
every hour. Other parameters on the other hand are provided in a ten minute
interval only and some only in an hourly interval. The goal is to deliver meas-
urements in an hourly interval to the user. Therefore, every measurement that
is not provided in an hourly or longer time interval, needs to be accumulated.

To be consistent with the DWD we use all DataPoints measured in one hour to
create the accumulated DataPoint of the next full hour. A DataPoint measured
exactly on a full hour is used for the accumulated DataPoint of the respective
hour. As a result all time stamps of accumulated DataPoints are on a full hour,
just like all forecast DataPoints and all hourly measured observation DataPoints.
Therefore, any measurement delivered to the user is on a full hour, no matter
where it originates from.
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A different AccumulationFunction is required depending on the parameter. The
function takes all DataPoints of an hour and computes a new accumulated Data-
Point from it. Our implementation supports:

� AVERAGE: used for air pressure, temperature and many more

� SUM: used for sunshine duration and precipitation height and duration

� MAX: used for maximum temperature and maximum wind speed

� MIN: used for minimum temperature

More functions can be added in the future by implementing the Accumulation-
Function interface.

Collecting all data sources

After normalizing the observation data by previous processing steps, the data of
all required sources needs to be collected. First up there can be multiple files on
the DWD server for each weather station in the historical time period. They split
the data by time, presumably to reduce file size. This is only done for historical
data that is measured in a ten minute or shorter time interval because those
usually contain the most measurements. Each file covers a different part of the
weather stations active time and needs to be concatenated again. To make sure
all DataPoints are sorted ascending by time, some properties of the DWDs file
structure are used. The files are sorted alphabetically. The name of each file
consists of the unique id of the respective weather station as well as the start and
end time of the measurements in the file. Therefore, the order of the listed files
of a weather station is equivalent to the order in which the DataPoints need to
be accumulated.

For each station there may also be a data file in recent and now time period in
addition to the historical file. The covered time of each period is listed in chapter
4.4.1. After concatenating all DataPoints of these files with the concatenated
ones from the historical files, one has all DataPoints from one station during a
requested TimeSpan. Since the historical and recent time period do overlap, the
DataPoints do as well. This is fixed later after another overlap is introduced. If
one removes all overlaps at this point, the work will be done twice.

However, more than one station may be required to cover the entire requested
TimeSpan due to the limited active time of weather stations. If a TimeSpan is
requested that exceeds the active time of the closest weather station, the mi-
croservice finds the next closest weather station that can cover at least a part of
the left TimeSpan. This is repeated until the whole TimeSpan is covered. The
algorithm doing this, including a concrete example case, is explained in chapter
4.5. As a result it creates TimeStationAssignments. Each of them assigns a
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TimeSpan to a WeatherStation. In the final processing step of observation data,
all assignments need to be concatenated as well. In order to ensure the concat-
enated result is sorted correctly, the assignments are sorted by their TimeSpans.
Since all assigned TimeSpans are disjoint, one can use their start time to sort
them. This way all DataPoints of the assignments only need to be concatenated
in the order of their assignments.

Finally, the observation DataPoints and the forecast DataPoints are concaten-
ated, too. This introduces another overlap in the data due to the compensation
that is done when fetching forecast data. To fill the gap to the latest observation
data we fetch forecast data starting six hours before the time of request. At this
point one has all requested DataPoints sorted ascending by time including some
overlaps that will be removed in the next step.

Removing time overlaps in data

The last processing step is to remove all overlaps in the data. Overlaps are
introduced in two places. The first one is caused by the time overlap of the
historical and the recent time period. Recent denotes the last 500 days until
yesterday. Historical denotes everything ever measured until the end of last year.
This theoretically means the longest possible distance between the last historical
measurement and yesterday is one year. This implies an overlap of at least 136
days and up to 500 days if the historical data was updated yesterday. In practice
though it is a few months shorter because the DWD does not move all the data
from one year into their historical data over night on the last day of the year. For
instance the move of data from 2018 has been completed around March 2019.

The second overlap is introduced between data from the now time period and
the forecast. Now data is measured at the day of the request. It is not updated
every time there is a new measurement but only every couple of hours. Forecast
data is updated in a similar way and therefore usually contains the data that is
missing between the last measurement in now and the actual time of the request.
If it may be required we fetch all available data from the forecast file. This does
not just close the gap but also leads to a possible overlap of a few hours.

Time overlaps contradict the goal to have no duplicate data. Since all DataPoints
are basically sorted ascending, one can use this property to remove all overlaps
very easily. No duplicates and an ascending order mean that every valid Data-
Point has a time stamp that is after the time stamp of the last valid DataPoint.
One can assume the first one is valid. Therefore every following DataPoint, that
does not meet the condition, is disregarded.

After this final processing step the DataPoints are transformed to a JSON re-
sponse, which is easy to parse for the user. This is explained in section 4.7.
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Improving performance

Finding the right files is almost negligible compared to actually downloading and
processing them when it comes to performance improvements. In the very early
stage of implementation all processing steps described in the previous section
were done one after another. The file was downloaded. Then it was unzipped
and parsed to a list of DataPoints. For every processing step the list was iterated
and the result was added to a new list. Concatenation of partial results was done
by adding them to a new bigger list. As list implementation we chose Java’s
LinkedList8.

While this solution is easy to debug, it brings some significant performance draw-
backs. On the one hand all created lists are in memory at the same time. De-
pending on the request there can be over 20 lists, if data from multiple stations
and time periods is required. This adds up to over 1.5 GB of system memory
usage for every request just for all the lists.

On top of that, concatenating partial results was computationally very expensive.
As it turns out this is caused by the implementation of LinkedList. This list
implementation was chosen because we assumed it could concatenate another
LinkedList with constant effort by using its addAll method. Apparently it does
not do so but rather just iterates the list and adds every single element one by
one. Just because it could be done in theory, doesn’t mean it is done in practice.
However, this can be improved by using Java’s ArrayList9 implementation. This
one at least uses System.arraycopy but requires transforming the list to an array
first. This again creates a shallow copy of the underlying array of the ArrayList.
Therefore, even this improved implementation is far from optimal.

There are two things that needed to be improved. First, ideally only the data
that is currently processed shall be kept in memory. As soon as it is filtered out,
mapped or accumulated it shouldn’t be kept in an old list anymore. And second,
concatenating data sources should be done with constant effort. The data size is
too large to be iterated every time it needs to be concatenated.

What we came up with is a data pipeline. One might already have guessed that
from the concept of processing steps, which are typical for pipelines. So instead of
downloading the whole data file, then parsing it line by line and then processing
the whole list of DataPoints, only a single line is downloaded at a time. The line
is parsed to a DataPoint which is then further processed before the next line of
the file is even downloaded. This can not be done with the small forecast data
files due to their format though.

8https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
9https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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All processing steps are lazy evaluated. This is implemented using Java Streams10

for parsing, filtering and mapping steps. Concatenation and the more com-
plex processing steps to accumulate DataPoints and to remove time overlaps
is done using Iterators11. Concatenating could also be done in constant time
with Streams but since accumulation yields an Iterator it would be inefficient to
transform it back to a Stream.

Streams are great for stateless processing steps like filtering or mapping. But even
though they do provide ways to do it, implementing processing steps that require
a state contradicts the functional programming idea of no side effects. Therefore,
we switch to traditional Iterators for these processing steps. Java provides a
method12 to transform a Stream into a lazy evaluated Iterator. Similarly the
accumulation of DataPoints and the removal of overlaps is implemented to only
process one DataPoint ahead.

Usually pipelines are constructed with each processing step running in parallel
but we decided against that. Processing each step in parallel means overhead
for every single step and every single DataPoint. The most obvious overhead is
introduced by thread safe queues that are required to move the data between
processing steps. Since each step does not require a lot of processing -and there
are literally a million DataPoints that need to go through a dozen of steps per
request- the overhead may become quite significant.

The benefit of parallel processing is that one can process different steps for mul-
tiple DataPoints and lines at the same time. But since a single request is limited
by the Internet bandwidth and responsiveness of the DWD server already, faster
processing at higher cost does not improve the microservices overall performance.
Because of the introduced overhead it might actually make it worse.

We do use parallelism where it makes sense though. For instance all download
requests of the required files are established in parallel, this way the delay between
request and start of the actual download does not add up with the number of
required files. This improves response times of the microservice by up to 200 ms
at a ping to the DWD server of about 15 ms depending on the amount of required
files.

10https://docs.oracle.com/javase/8/docs/api/java/util/stream/

package-summary.html
11https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
12https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.

html#iterator--
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4.7 Definition of the user interface

As stated in requirement F5 from section 2.1 the microservice needs to provide
a user interface. It should be realized by an easy to use REST interface with
responses in the well known JSON format. Users of the microservice benefit from
this technology stack because it sets the barrier to access the service to a very
low level. So low that interested users may even just use a web browser, type in
the address of the microservice, choose one of the routes below and try it out.
One does not need to be a computer scientist to do this.

This simplicity is owed to Roy Fielding, who created the Representational State
Transfer standard in the late 1990s [FT00]. Since then it has had a significant
impact on standardizing the Internet and has emerged as a standard for web
interfaces. For data serialization there are two commonly used standards in web
services, XML and JSON. However, according to a case study [Nur+09] by
Nurseitov et al. XML is “primarily used for remote procedure calls” whereas
JSON “is designed to be a data exchange language which is human readable
and easy for computers to parse and use”. In addition to this, results of the
case study “indicate that JSON is faster and uses fewer resources than its XML
counterpart”. Hence, JSON is the better choice for our needs.

Without further ado the rest of this section describes all endpoints provided by
the microservice. Since the service is an adapter to the read only DWD server,
HTTP GET is the only request method that is being used here.

This section is just a quick overview of all available routes and what they do.
For an extensive documentation including the exact format of the responses with
examples, check out the Swagger documentation provided by the microservice on
the “/swagger-ui.html” path. An excerpt is given in appendix B.

Info routes

API Route Description

/api/v1/info/timespans
Get a list of all

predefined time spans
/api/v1/info/parameters Get a list of all weather parameters

/api/v1/info/parameters/{parameter} Get detailed information
about a weather parameter

/api/v1/info/stations/{parameter} Get a list of all weather stations
/api/v1/info/stations/{parameter}/
{stationId}

Get meta data about
a specific weather station

Table 4.6: List of all info routes.
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As described in section 4.4 there is a set of predefined time spans (see table 4.3).
This set is provided by the very first route of table 4.6. Users can use the name
of a predefined time span instead of manually providing a start and end time in a
query. This makes the usage of the service more comfortable and helps querying
the latest data by using a static URL.

The next two routes help to acquire some extra information on weather paramet-
ers. Users can fetch the list of all supported parameters (also listed way back in
table 4.1), which comes in handy because most other routes require to know the
correct name of the desired parameter. And for each of those, a short description
of what the parameter measures and the unit of its measurements can be queried,
too.

A full list of all weather stations that measure a certain parameter can be fetched
using the fourth route. Each of the listed weather stations is composed of the
unique station id, the name of the weather station and its position. Where the
position is defined by latitude and longitude as well as the station height in meters
above sea level. This route combines forecast and observation weather stations.
As a general rule of thumb most forecast weather stations contain a letter in their
station id whereas all observation stations only use digits in their id. By adding
the station id of an observation station to the route, one can fetch its meta data.
There is no meta data for forecast weather stations available. Section 3.5 explains
a little bit more about meta data.

Standard routes

API Route Description

/api/v1/current Get the latest weather data of today
/api/v1/forecast Get the forecast weather data

Table 4.7: List of standard parameters routes.

Two very useful routes are listed in table 4.7. Even though the microservice
is focused on delivering data for one weather parameter at a time, the current
and the forecast routes allow to fetch a whole set of standard parameters in one
request. Those include the temperature, air pressure, precipitation, wind and
the sunshine duration parameters. The current route yields the latest available
measurement for each of these at a specific location. The forecast route on the
other hand yields the whole ten day forecast at a location.

Locations can be specified by setting the city query parameter to either the
locations name or its zip code. Alternatively, one can also use coordinates by
setting lat to its latitude and lon to its longitude. So for instance users can fetch
the current weather in Erlangen using the URL .../api/v1/current?city=erlangen.
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This request is equal to .../api/v1/current?city=91052 and may also be expressed
by using coordinates: .../api/v1/current?lat=49.5981187&lon=11.003645.

Historical routes

API Route Description

/api/v1/historical/{parameter} Get data for one
weather parameter of today

/api/v1/historical/{parameter}/
{time}

Get data for one weather
parameter at a certain time

/api/v1/historical/{parameter}/
{start}/{end}

Get data for one weather
parameter in a defined

time span

Table 4.8: List of historical routes.

This location specification needs to be used in all following historical routes,
too. They aim to provide weather data for a single weather parameter, during
a specified time at a certain location. Users can omit a time specification to
query data of today. This not only consists of measured data until now but is
supplemented with forecast data, yielding 24 values in total.

This is equal to using the predefined time span TODAY in the second historical
route. Of course the name of a predefined time span does not need to be in
capital letters to be recognized by the service. As an alternative, users can also
set the time parameter to a specific date. This is interpreted as a request for
data starting at the specified time and covering everything until now.

There are two valid formats to define a time. One way is to use the standard-
ized format defined by ISO 8601 [org04]. As an example February 3, 2001 at
4:56 am is denoted as 2001-02-03T04:56:00.00Z where the zeros for seconds and
milliseconds may be omitted. The other way is the short version of the standard
following the same pattern but without separators. The example date is denoted
as 200102030456 in the short version. The specified time is always interpreted as
a UTC time. Everything but the year may be omitted here and is replaced by
the earliest possible time that fits the given specification. For instance 2019 is
expanded to 201901010000, which represents January 1, 2019 at midnight.

The last route requires a start and an end time in addition to a weather parameter
and a location. This route fetches all available data from all known sources
and connects it to cover the complete defined time span. There are no limits
introduced by the microservice with this route. All weather data that is supported
by the microservice is accessible from this route.
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4.8 Testing the microservice

Testing a software is at least as important as actually developing it. There are
two typical work flows here. The first, and usually considered the better one,
is to develop software using the principles of Test-Driven Development (TDD).
Kent Beck, the inventor of TDD, defines two simple rules for it:

� Write new code only if an automated test has failed

� Eliminate duplication

Based on these, one can derive the whole idea of TDD. A new test is written
before the tested feature is implemented, ensuring it behaves according to its
specification. Then it is actually implemented until the test does not fail anymore.
Finally, the code is cleaned up. From there one continues with writing the next
test and so on [Bec03]. This development style shifts the main focus from the
application implementation to its testing. Thus, it solves the problem of tests
being written only to prove that a given peace of code works.

The other way to get a software tested is by doing it the other way around. A
feature is implemented first and subsequently tested. This is what a programmer
intuitively does if given the task to solve a problem. Programmers are problem
solvers. Thus it is tempting to build a solution and then verify that it indeed
works by adding biased tests that cover the inputs one had in mind during im-
plementation. In this order it is difficult to keep the idea of testing in mind.

“Testing is the process of executing a program with the intent of
finding errors.” [Mye+04]

Trying to break something, that one build just a few minutes ago, is simply
counterintuitive. Hence, tests written after implementation easily tend to only
prove that a given peace of code works.

Apart from that, there is one advantage of this method over the first one. If one
does not exactly know how the solution to a problem looks like before starting
the implementation, one often has to change the code multiple times before it is
clean and works properly. This may be caused for instance by extracting code
duplications into helper methods. If tests are written before the set of required
methods and their specification is completely clear, tests will have to be rewritten,
too. This can make the TDD method very time expensive. Sure, one can argue
this is only due to a bad design, but in reality there often is not enough time to
think about every little detail of the implementation before starting it.

This little introduction into the section only gives a brief summary of our mindset
on the topic of testing. One can fill books discussing best practices for software
testing, so theory aside, let us see how the microservice is tested.
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The microservice and its components are tested in three levels. First, all classes
and methods are covered by unit tests, as requested by requirement Q1 from
section 2.2. Second, the combinations of components are tested using integration
tests. Finally, interface tests ensure the compatibility of the microservice with
the interface of the DWD server. Tests are written using the well proven JUnit13

test framework, using its test suites to group related tests together. TDD was not
used, but as described above, tests are written with the intention to find errors.

Unit testing all components

The idea of unit testing is to test each component of the program individually
to ensure it works as specified. Unfortunately most components are tied into the
rest of the program in a way that they depend on other components to function
correctly. In order to properly unit test each component, one has to isolate it
from its environment. This can be done by creating Mock Objects to replace the
environment of the component under test.

“A Mock Object is a substitute implementation to emulate or instru-
ment other domain code.” [MFC00]

In the application of the microservice, access to every component is established
using Spring Beans. The Spring framework automatically injects these into all
dependencies of the components. Now that we want to unit test each component,
we theoretically only have to replace every Spring Bean with its Mock Object.
Unfortunately though, dependency injection in Spring only works for objects that
are provided as a Spring Bean themselves. After replacing all Spring Beans with
their Mock Objects, none of the components is able to inject their dependencies
automatically anymore. Therefore, it is necessary to manually set them when
creating the test object.

Our created Mock Objects implement the interface of the component it is mocking
in a very simple but highly configurable way. Before each test one can set it up
to deliver a specific result, count method calls or even throw a specific exception.
This allows testing scenarios that can usually not be created in a test environment
and only very rarely occur in production.

For example when testing the cache for the location resolver, the underlying
location resolver is mocked and set up to count method calls. Using this fully
controllable environment, the test can now query a request on the cache multiple
times and then check whether the cache actually works and only tries to fetch the
result from the location resolver once. Without mocking the location resolver,
one could not write such an important test unless the production code is extended
with functionality that is only required by the test, which is highly discouraged.

13https://junit.org/
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Using this technique our 365 unit tests can cover almost all lines and most of the
branches as shown in table 5.1 located in section 5.2.

Integration testing the microservice

After having tested each component to work as specified, now the integration
test shall ensure that all components work together as intended. This means one
at least has to test whether every API route actually delivers valid data. The
catch here is that all of this is supposed to happen without using any external
services like the DWD server and the Nominatim geocoding service in every test
run. This has several reasons. For one, every test run fetches several megabytes
of data from the services. Second, the provided data changes over time. If a test
fails and the data changes again, one may not be able to recreate the faulty test
scenario to debug it. Third, we do not want to test functionality of a service that
is not under our control here, since an integration test should not fail due to a
change on an external service.

This indicates that both these services need to be mocked. Therefore, we create
something similar to the Mock Objects used for unit testing, just as additional
REST services instead of objects. To make the microservice use the mock services
during testing, the service addresses are modified to point to localhost in the test
configuration file.

Unfortunately it is not as easy to generate mock data as it is with the little Mock
Objects during unit testing. Sure, one can set up the mocked Nominatim service
to always deliver the response for one location. But the mocked DWD service has
to provide dozens of proper files, each on a different route. Even if one invests all
the work to create the files, what if the DWD service changes its interface? No
one wants to manually adapt a route or a mock file in that case.

The easiest and least error-prone solution here is to do this automatically and
create a snapshot. On the first run of the integration tests all requests to the
mock services are forwarded to the actual services. The response is saved in a
snapshot directory. From there the path to the respective file is equal to the path
of the request. If one runs the integration tests again and the snapshot directory
exists already, the mock services return the respective file content.

This solution requires fetching all the data once, but also has some advantages.
First, the test data is real world data containing real world problems. Mocked
data files may cover little anomalies that may result in bad behavior. Second,
one can see what files are actually fetched from the server and what the content
of these files is, making debugging a failing test and fixing it a lot easier.

However, this solution does also have a big drawback. Since the test does not
know what the exact content of the files is, it can not check whether a specific
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value appears in the result or not. The same applies to gaps in data. They
may be valid because the microservice does not fill them with data from another
weather station unless the gap covers the whole requested time span. This limits
the tests in what they can assert. Nevertheless, they can test the functionality
of each API route, ensure no unexpected errors are thrown, data is overlap free,
sorted ascending by time, is not outside the requested time span and contains
measurements from all requested origins. The biggest integration test queries
data of the last 1000 days, today and three days of forecast for each of the twenty
weather parameters.

Very attentive readers may wonder now, how can one fetch weather data of today
and the forecast if all files are saved in a snapshot that may be days or maybe
even weeks old? By the time one schedules the requests, all the forecast data has
become recent data.

Fixing this problem is actually quite easy because the time of request has been
very important throughout all data providing components. Getting the current
time is simple but one must ensure different components do not mix up differ-
ent request times for the same request. This may lead to inconsistent results.
Thus, the time of request is determined only once. Subsequently it is distributed
through all method calls. Additionally, wrapping the query for the current time
in a Spring Bean allows mocking it in the test. This in turn allows setting the
current time to any time one wants. In addition to the snapshot, the mocked
service also remembers the time of the request, enabling us to successfully mock
the time for the microservice. The dedicated Spring Bean to query the current
time is the only required modification on the production code for all tests.

In conclusion we implement 42 integration tests that cover all provided function-
ality of the microservice as demanded by requirement Q1.

Interface testing third party services

In order to recognize and locate interface changes on either the DWD server or the
Nominatim service, interface tests are added. These do not test our microservice
but the compatibility with the services that it relies on. For example if the DWD
decides to change the file path to one of its station list files, the microservice can
not function correctly anymore. Therefore, a parameterized test is created that
tries to fetch all station list files from the expected path for each known weather
parameter. If one of them can not be fetched but all unit and integration tests
do not detect any errors, one can determine the file path that must have changed
very quickly.

This is not just done for station list files but for all other required files, too.
The tests assert that there is at least one measurement for every parameter in
NOW, RECENT, HISTORICAL and FORECAST time span, except we know
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the parameter is not available in that time span. The Nominatim geocoding
service is easier to test. We send a request to geocode Erlangen and expect
the resulting Coordinates to be in a reasonable range around the city. Any
compatibility issues will yield an exception and cause the test to fail.

Summing up, a total of 127 test cases ensure none of the used external inter-
faces changes. In case of a failing test this helps to quickly identify the changed
resource.

4.9 Deploying the microservice

After implementing and testing all the microservices functions, it is time to think
about deploying the application. Basically one can deploy it in any environment
that has access to the Internet, Java 1214 installed and about a gigabyte of system
memory left. That is all it takes for the microservice to function.

At least that is the theory. Even though Java is platform independent and back-
wards compatible there are still many pitfalls that can cause malfunctions of the
service. Some of them even appeared during development. For example the file
path to the snapshot directory, used in the integration tests, initially could not
be found on Linux systems but worked just fine on Microsoft Windows. Another
problem occurred due to different Java compiler versions. A library, used for a
practical Pair implementation, could not be resolved by the new compiler ver-
sion because it apparently was excluded from Java’s standard libraries in a recent
update. All those problems are just too familiar to system integrators, who reg-
ularly experience effects like these after a software update or the migration of a
system and its services.

Fortunately one can solve these problems using virtualization. There are two
options, container virtualization using for instance Docker15 or a hypervisor based
virtualization technique like Xen16.

Docker allows creating a container image of the application and its required en-
vironment.

“A Docker container image is a lightweight, standalone, executable
package of software that includes everything needed to run an ap-
plication: code, runtime, system tools, system libraries and settings.”
[Inc19]

The container image can then be executed in virtualized containers on top of the
host kernel, allowing the application to run in a different environment than the

14https://www.java.com
15https://www.docker.com/
16https://xenproject.org/

48

https://www.java.com
https://www.docker.com/
https://xenproject.org/


rest of the system. From the outside, a running container appears to be a normal
process just like any other application.

Additionally, using a two-stage Dockerfile17 allows to build the whole application
without any build dependencies, like the Java Development Kit (JDK), installed.

Hypervisor based virtualization runs virtual machines, which do not rely on the
host kernel but include a separate operating system with an own kernel. A
hypervisor running on the host operating system manages the virtual machines
with their guest operating systems. In general this approach introduces more
overhead in form of system resources during execution as well as image size than
container virtualization. While a Docker image only contains the application and
the software for the environment, the image of a virtual machine also needs to
include an entire operating system [Bui15].

Docker is available on Linux, Windows and macOS. Installation is not much more
difficult than of any other program. It comes with all required tools and a great
documentation to create and deploy containers very easily. In contrast, creating
a virtual machine image and setting up an environment to deploy it is not that
easy. Hence, it should be obvious now why there is a literal hype around Docker
in the tech world. It serves the perfect platform for web services such as our
microservice, which is why we also choose to use it.

17https://docs.docker.com/develop/develop-images/multistage-build/

49

https://docs.docker.com/develop/develop-images/multistage-build/


4.10 Adding an adapter to the ODS

As part of this thesis the ODS shall be extended to use the new microservice as
an additional data source. The ODS is an open source software project developed
and maintained here at the Professorship for Open-Source-Software. It collects
heterogeneous data from various sources and makes this data easy to consume
through a unified programmatic interface.

In a typical use case one defines the name of a new data source first. Next a
filter chain for the data source is added. It contains the name of the adapter to
the data of interest and all required input parameters. Additional filters and an
execution interval can be specified, too. This way a user can improve fetched data
and tell the ODS to fetch new data once every hour. Finally, users can query the
data, that is stored in a database once it is fetched from the data source.

Extending the ODS by an adapter to a new data source is very easy. After
specifying the name of the input parameters and implementing an interface, the
new adapter only needs to be registered, so the ODS can map the adapter name
from the user input to the adapter class.

Due to the way the ODS works, it does not really make much sense to adapt to
all functionalities of the microservice as requested by requirement F6 specified
in section 2.1. Specific requests for one weather parameter at a location within
a certain time span will usually not be queried more than once. However, the
ODS would store the possibly huge result in its database waiting for someone to
request it again. On the other hand, requests for current weather and forecasts
are perfect for the ODS. For example users can setup a data source that yields the
latest weather for Erlangen by adding a filter chain that schedules a new request
for the current weather once every hour. The result is stored in the database and
hence, can be queried by all citizens of Erlangen without creating a huge load on
the microservice or the DWD. This way the ODS complements the microservice
with a cache layer only for data that is actually worth caching it. Appendix C
gives an example of how this can be done.
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5 Evaluation

In chapter 2 we define the requirements to the microservice that is created as
subject of this thesis. Here in this chapter we want to look back and evaluate our
implementation of the microservice. If applicable we apply the evaluation scheme
that is formulated with the requirement and check which of the requirements are
fulfilled, exceeded and missed by our solution.

5.1 Functional requirements

Requirement F1: Fetch DWD weather data

This requirement set the expectations low because at the beginning of this thesis
it was unclear what data is actually provided by the DWD. Therefore, only the
current temperature and solar radiation must be available. All other data from
the DWD server may also be supported as an option.

Fortunately we were able to find and support twenty different weather paramet-
ers. Most of them are available as historical, recent, now and forecast data.
A complete list of the supported parameters is given in table 4.1 way back in
section 4.1. So in this regard we were able to exceed the expectations. How-
ever, total solar radiation is the only solar radiation parameter that is available
at the same day of measurement. At time of this writing the other two, dif-
fuse solar radiation and longwave downward radiation, are not provided in now
time by the DWD. Maybe this will change in the future. In that case it is very
easy to add support for those in the microservice.

Additionally, the microservice should only download required files from the DWD
server instead of crawling all files for the requested data. In order to be able to
evaluate this, the URL to every downloaded file is logged.

The logs prove that the requirement is fulfilled for single weather parameter re-
quests, using one of the historical routes. But they also reveal an inefficiency
when it comes to requests of current and forecast data. As explained earlier, a
single file usually contains measurements of more than one parameter. The mi-
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croservice simply ignores this and downloads one file for each of the parameters,
that are included in forecast and current requests. This possibly makes it down-
load the same file more than once to get all data for one request. Especially in
case of forecasts because every file contains all available parameters. This could
be optimized in the future. Because all parameters are fetched in parallel and
the files are very small, the optimization will not noticeably improve response
times but only decrease the amount of used system resources. Even though this
scenario has not been optimized, we still consider this second part of requirement
F1 as fulfilled.

Requirement F2: Transform DWD data to own weather model

Requirement F2 is addressed in section 4.2. The implemented parsers extract all
information from the data file and create a DataPoint object for each measure-
ment. Each object combines:

� the time stamp of the measurement

� a reference to the weather station that measured it

� the measured weather parameter

� the time interval of measurements in order to accumulate it to hourly

� the origin of the measurement:
FORECAST, NOW, RECENT or HISTORICAL. If the time interval of the
DataPoint is modified, it changes to ... ACCUMULATED

� the measured value

The unit of the measurement is included in the WeatherParameter class as each
one defines the unit of all its measurements. Forecast and observational data sets
may have different units for each parameter. This inconsistency is managed by
the WeatherParameter class itself. It knows what unit is used in which Data-
Set. When parsing a value it is directly converted to the standard unit of the
microservice for that weather parameter.

This format has proven its ease of use throughout the implementation of the
microservice. Responses send to the user only omit fields that are redundant
with the request and optimize the output JSON format to serialize fields like the
weather station only once. The conversion to the specific response format has a
performance impact of linear time and space complexity. It is the only processing
step that requires holding all DataPoints, that are included in the response, in
memory at the same time. Additionally, the constructed response object and the
serialized JSON need to be in memory, too, causing a peek in memory usage for
every big request. Fortunately though, memory usage during all other processing
steps is negligible as every downloaded and parsed line is immediately processed
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all the way until this very last step usually filtering out most of the data as soon
as possible.

Since each DataPoint carries all information, is easy to use and performs well in
the microservice, we consider requirement F2 as fulfilled.

Requirement F3: Reasonable response time for weather requests

At beginning of this project we could not really estimate how long it would
actually take to fetch several files from the DWD server. There were many
possible bottlenecks like the response time and bandwidth of the DWD server,
the complexity of the required processing steps and so on. Requirement F3
was added in order to ensure response times for requests of current weather are
reasonable. Users should be able to query the current weather for one location
25 times per minute.

In section 3.4 we explain how locations of the Nominatim service are cached and
how the lists of weather stations are cached to improve response times. Addition-
ally, we added a couple of performance optimizations such as the data pipeline,
explained in section 4.6, and parallel fetching of files. It also turned out the DWD
server performs surprisingly well. This way, we were able to improve response
times of the microservice to be far better than expected at the beginning of this
thesis. Section 5.3 gives an impression of response times for typical requests.

To evaluate requirement F3 we restart the microservice and send a request for the
current weather of Erlangen so the location and all required weather station list
caches are filled. Then we run a loop sending a request for the current weather
of Erlangen and receiving its response in every iteration. The microservice is
running on the same system as during the performance evaluation in section 5.3.
The loop is interrupted after one minute. As a result we counted more than 400
iterations in each of the three test runs, thereby easily exceeding the goal of 25
requests per minute.

Requirement F4: Location specification

To make our microservice more user friendly, one should be able to specify a
German location either by a city name, a zip code or directly using coordinates
compound by latitude and longitude. Fortunately we did not have to reinvent the
wheel and create our own geocoding service to meet this requirement. Instead we
rely on the Nominatim service, which is explained in section 3.3. It is capable of
translating a city name or a zip code to coordinates. To find the closest weather
station one has to compute the distance between the specified location and the
weather stations, which is only possible with coordinates. Therefore, they are
the standard format for the microservice to deal with locations, all other inputs
are directly converted to coordinates.
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Requirement F4 is verified by three requests of the same location, using city name,
zip code and coordinates. This indeed yields equal data for an example request of
todays temperature in Erlangen, 91052, (49.596361°, 11.004311°). Erlangen, as
many big cities, actually has multiple zip codes causing the geocoded coordinates
of the city name to vary a little from the coordinates of the zip code. As long as
the variance does not lead to different weather stations being selected, the data
will always be equal. Therefore, we consider requirement F4 to be fulfilled.

Requirement F5: Provide a user interface

Requirement F5 is similar to F1 in regards of what data shall be available using
the user interface. It at least should provide access to measurements of current
temperature and current radiation. Optionally forecasts and historical weather
records may be provided as well, depending on what is actually provided by the
DWD.

As explained in more detail in section 4.7 the API supports all twenty weather
parameters in all time spans where measurements are provided by the DWD.
Additionally, to make it more user friendly, a list of all weather parameters, a list
of all weather stations for a parameter and a list of all predefined time spans is
provided by the info routes. And because it may be important to some users of
the microservice, one can also fetch all meta data of a parameter for observation
weather stations. In conclusion the API allows access to all supported data,
thereby exceeding requirement F5.

Requirement F6: Adapter for the ODS

After the microservice is done, an adapter shall be added to the ODS so it can
make use of the new data source. Requirement F6 wants to enable the ODS to
access the entire functionality of the microservice.

At time of requirements specification it was not clear what functionality the
new service can actually offer. Requirements F1 and F5 only specify it shall at
least provide access to current temperature and current radiation data. Since
we exceed both requirements there is a lot more functionality than what was
expected when specifying F6.

When it was time to implement the adapter, we figured it does not make much
sense to add certain functionalities to the ODS because of the way it works. It is
not designed for one time requests of huge amounts of data but rather to query
repetitive requests like the current weather or forecast for a city. As explained
in section 4.10, this is why we decide to only support access to the current and
to the forecast route of the API and not support any of the info or historical
routes. It is not difficult to add support for those routes, too, but we accept to
miss requirement F6 due to these circumstances.
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5.2 Non-functional requirements evaluation

Requirement Q1: Test coverage

Of course the implemented software needs to be tested, too. Requirement Q1 was
added, in order to define a guideline of how it should be tested. It asks for struc-
tural coverage by unit tests, integration tests that cover all system functionalities
as well as interface tests that ensure compatibility with all third party services.
Section 4.8 explains the implementation details of the tests.

Structural coverage comprises 100 % line and branch coverage. A line is covered
if it is executed during at least one test. A branch is created by conditional
statements like if conditions and loops. In order to cover a branch the condition
has to be evaluated to both true and false by the tests. It is not covered if all
tests cause the condition to be evaluated to only one of the two.

During development a total of 365 unit tests have been written achieving the
coverage listed in table 5.1. Each line in the table contains the coverage of one
of the top level packages, where total sums them all up.

Package Method Line Branch

crawler 99 % (333/334) 99 % (1281/1293) 59 % (118/197)
model 99 % (188/189) 99 % (590/593) 77 % (104/134)
request 100 % (43/43) 100 % (197/197) 88 % (31/35)

rest 100 % (54/54) 100 % (195/195) 48 % (13/27)
spring 95 % (23/24) 97 % (42/43) 100 % (0/0)

util 100 % (10/10) 100 % (34/34) 72 % (8/11)
total 100 % (651/654) 99 % (2339/2355) 68 % (274/404)

Table 5.1: Structural test coverage from unit tests.

The unit tests can almost cover all lines but not all branches, thereby not quite
reaching the full structural coverage we aimed for. Covering the missing branches
just seems unreasonable for this project, since it is not a safety-critical system.
We consider the software to be well unit tested, so we see the first criteria to be
fulfilled.

In addition to the unit tests there is a total of 42 integration tests. These test all
API routes querying every single weather parameter as well as all location input
methods. The tests cover all the way from fetching the right file and parsing
it to the assembly of the finished response. This fulfills the second criteria of
requirement Q1.

Finally, 127 interface tests ensure none of the used DWD file paths or file formats
has changed. Because we additionally rely on the Nominatim service, it is checked
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to deliver responses in the expected format for our requests, too. These tests will
notify us if there is a major change at one of the external services that might
break the compatibility with them, requiring a change on the microservice. This
fulfills the third criteria of requirement Q1.

In conclusion we fulfill Q1 with a total of 534 test cases.

Requirement Q2: Accessibility

The service shall be easy to use and accessible for as many people as possible.
Thus, requirement Q2 asks for documentation of all system functions and an easy
to use interface.

This thesis is part of the documentation. Especially section 4.7 explains all routes
of the REST interface. Additionally, users can query the Swagger documentation
provided by the service on the “/swagger-ui.html” path. It contains an explan-
ation and an example response for each route. Every information one needs to
send requests is documented there. Appendix B shows an example excerpt of the
Swagger documentation.

The easiest way for users to access the microservice is using a simple web browser.
One only has to type in the address of a running service instance together with
a valid route and the response will show up as human readable JSON text. This
can be done by anyone and does not require any special knowledge. Therefore,
we consider requirement Q2 to be fulfilled.

Requirement Q3: Deployment

Section 4.10 covers more details on the deployment of the microservice. Re-
quirement Q3 wants the deployment to be easy and makes the service run in a
controlled environment. To address this requirement we add a Dockerfile to the
project which can be used to create a Docker image that in turn can be run in
a virtualized container. Docker is available on all common platforms and is very
user friendly. The container guarantees the software environment of the running
service to be the same no matter on what machine it is running. This satisfies
requirement Q3.
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5.3 Microservice performance evaluation

Finally, we want to evaluate the performance of the microservice. There is no
requirement with an acceptance threshold because one really could not estimate
what to expect at time of requirement specification. In order to evaluate the
performance of the service there are two crucial metrics:

� The response time, measuring the time that passes between sending a re-
quest and starting to receive a response

� The size of the response, determining how long it will take to fully receive
it depending on the bandwidth of the user and the service

We test these with four different routes to get an impression of what users can
expect. Due to significant fluctuations in response times for different locations
and parameters one would have to test far more scenarios to get a precise per-
formance measure. For each route we send five subsequent requests. The service
is restarted before the first request is send, so all caches are empty.

The first request queries Berlin as location, the other four query data for Erlangen.
We do this because the very first request has to fetch all weather stations for
every requested weather parameter. These are cached for all following requests.
We then change the location to Erlangen, so the second request has to resolve
the coordinates of the location. The final three requests can make full use of
the cached data and optimizations like the modified active times for required
weather stations. This prevents the algorithm from fetching data of a station
that apparently has a gap covering the requested time span. In that scenario it
reselects the weather stations and fetches all data again.

We choose four typical routes to be requested:

� The current weather

� A ten day forecast

� Air temperature between five years ago all the way until ten days in the
future, covering historical, recent, now and forecast data (combined)

� Air temperature between the years 1980 and 2000 (historical)

For this evaluation the requests are sent from the system the service is running
on, eliminating additional latency between service and user. The system features
Windows 10 (version 1803), an Intel Core i7 8700K and an Internet Bandwidth
of 35 MBit per second in download direction. The ping to the DWD server is
15 ms.

Figure 5.1 shows the results grouped by the requested route. The bars are sorted
from first request to last.
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Figure 5.1: Response times of current, forecast, combined (about 5 years in
all time sections) and historical (1980 - 2000) requests. One request for Berlin
followed by four requests for Erlangen.

In general one can see that the very first request yields a significantly higher
response time than its subsequent requests because the list of all weather stations
needs to be fetched first. The second request is also a little bit slower than the
final three because the location changes to Erlangen. This requires querying the
Nominatim service and in case of the historical route a modification of a stations
active time along a second fetching iteration. Once all that is done, the following
three requests yield the best and pretty constant response times.

Especially current and forecast response times are very fast. Due to response
sizes of 2.5 KB for current and 142 KB for the ten day forecast most users will
have to wait less than 200 ms to finish receiving the results. According to [Nie93]
this is fast enough to barely notice any lag at all.

The combined request queries temperature data of over five years. The response
is about 3.5 MB in size. We consider downloading this plus half a second response
time is still very well acceptable for the amount of data the user receives.

The historical request queries data of twenty years. The very first request for
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data from Berlin is almost twice as fast as the second one from Erlangen. For
Berlin a single weather station covers the entire twenty years, whereas Erlangen
requires data of three stations. This is actually not the cause of the much higher
response time because all files are fetched in parallel and the Internet bandwidth
is not bottlenecking.

In fact one of the three selected stations does not deliver any temperature data
during the time span it should have covered. Therefore, its active time is modified,
the stations are reselected and fetched again. The second attempt relies on two
weather stations, which both deliver data. So the second iteration of fetching is
responsible for the almost doubled response time. The three following requests
do not need to reselect any stations, so they are almost twice as fast again.

The request for Berlin yields a response size of 14.1 MB but the request of Er-
langen only 6.4 MB. It turns out one of the two selected weather stations for
Erlangen does not provide any measurements between the years of 1988 and
2006. One can find that out by querying the stations meta data as explained in
section 4.7. This gap in data can be closed by sending a request for temperature
data in Erlangen between 1989 and 2000. This way the microservice recognizes
the station does not deliver any data and modifies its active time. After that
a request for temperature between 1980 and 2000 in Erlangen also yields about
14 MB of data.

This example request shows that historical routes have a higher response time
but the response size outweighs this because downloading the response takes
a lot longer than that. This reveals the disadvantages of choosing a human
readable response format like JSON. However, we consider the response size to
be acceptable for these kind of requests. They are not meant to be queried on a
regular basis but more likely be queried once and then analyzed.

Summing up one can say the microservice performs far better than we anticipated.
Common requests for current and forecast data are responded almost free of
noticeable delay and even requests for data from multiple years are responded
within seconds instead of minutes.
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6 Conclusion

We implemented a new microservice that adapts the complicated and inconsistent
interface provided by the DWD to an easy to use REST interface. Furthermore,
we presented all steps of the development process as part of this thesis.

First, we specified functional and non-functional requirements that the created
software should fulfill at the end of the project. Chapter 3 then explains what
technologies are used and how the systems architecture has been designed. De-
tails about the implementation process are revealed in chapter 4. We thoroughly
explained the problems that occurred during implementation and presented cus-
tom algorithms and data structures that solve them. After implementation was
finished we evaluated the previously specified requirements.

Overall we met most requirements and even exceeded in some points. We only
missed requirement F6. The developed ODS adapter does not provide access to
all functions of the microservice as demanded in the requirement. We figured
some of the functions do not fit the design of the ODS, and hence should not be
added. Therefore, the ODS adapter is limited to requests of current and forecast
weather, whereas the microservice additionally gives access to historical and meta
data.

In section 5.3 we gave an impression on how well the service performs for some
typical requests. We showed that users can request current and forecast weather
for any location in Germany in a fraction of a second and only have to wait a few
seconds for queries of data covering multiple years.

Users can query a total of twenty different weather parameters and use either the
city name, zip code or coordinates to specify the location. Data is delivered in
an hourly time interval starting from whenever the DWD provides data all the
way to a ten day forecast. The provided JSON responses are human readable
and easy to process for data analysis. All this makes open weather data easy to
consume for both humans and systems like the ODS.
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Appendix A Sequence diagrams of a request

Observation
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Data

Requester

concatenate
DataPoints

observation DataPoints

request forecast data

forecast DataPoints
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request

Service
Controller

DataPoints

Http GET

JSON

Figure 6.1: Sequence diagram of a user request being forwarded down to the
ObservationDataPointRequester (illustrated in more detail by figure 6.2) and
ForecastDataPointRequester (figure 6.3.)
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Appendix A: Sequence diagrams of a request
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Figure 6.2: Sequence diagram of the ObservationDataPointRequester fetching
assignments using the ObservationDataProvider until all assignments provide
usable data.
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Figure 6.3: Sequence diagram of the ForecastDataPointRequester fetching the
forecast using the ForecastDataProvider until usable data is found.
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Appendix B: Swagger documentation excerpt

Appendix B Swagger documentation excerpt

Figure 6.4: Excerpt from the Swagger documentation of the meta data route.
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Appendix C Get current weather using the ODS

1. HTTP PUT {{ods url}}/datasources/currentErlangen

{
”domainIdKey ” : ”/ l o c a t i o n ” ,
”schema ” : {} ,
”metaData ” : {

”name” : ”ExampleName” ,
” t i t l e ” : ”ExampleTitle ” ,
” author ” : ”” ,
” authorEmail ” : ”” ,
” notes ” : ”” ,
” u r l ” : ”” ,
” termsOfUse ” : ””

}
}

2. HTTP PUT {{ods url}}/datasources/currentErlangen/filterChains/mainFilter

{
” p r o c e s s o r s ” : [

{
”name” : ”DwdWeatherServiceSourceAdapter ” ,

”arguments” : {
” l o c a t i o n ” : {

” c i t y ” : ”Erlangen”
} ,
” time” : ” cur rent ”

}
} ,
{

”name” : ” Db In s e r t i onF i l t e r ” ,
”arguments” : {

”updateData” : t rue
}

}
] ,
” e x e cu t i on In t e r v a l ” : {
” per iod ” : 60 ,
” un i t ” : ”MINUTES”
}

}

3. HTTP GET {{ods url}}/datasources/currentErlangen/data?count=100
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[Thö15] Johannes Thönes. “Microservices”. In: IEEE software 32.1 (2015),
pp. 116–116.

[ZB05] Ruediger Zarnekow and Walter Brenner. “Distribution of Cost over
the Application Lifecycle - a Multi-case Study”. In: Jan. 2005, pp. 68–
79.

67


	Introduction
	Definition of requirements
	Functional requirements
	Non-functional requirements

	Architecture and design
	Definition of microservices
	Base technology for the microservice
	Resolving locations
	Caching frequently used data
	Software components

	Implementation
	Finding the right files
	Abstracting the weather model
	Parsing DWD data files
	Time data structures
	Definition of time spans
	Adding gaps to time spans

	Managing weather stations
	Processing all fetched weather data
	Definition of the user interface
	Testing the microservice
	Deploying the microservice
	Adding an adapter to the ODS

	Evaluation
	Functional requirements
	Non-functional requirements evaluation
	Microservice performance evaluation

	Conclusion
	Appendices
	Appendix Sequence diagrams of a request
	Appendix Swagger documentation excerpt
	Appendix Get current weather using the ODS

	References


