
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Liping Wang

MASTER THESIS

A Wiki Framework for the Sweble
Engine

Submitted on 10.06.2014

Supervisor:

Dipl.-Inf. Hannes Dohrn

Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

[CITY], [DATE]

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license (CC-BY
3.0 Unported), see http://creativecommons.org/licenses/by/3.0/deed.en_US

[CITY], [DATE]

1

http://creativecommons.org/licenses/by/3.0/deed.en_US

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Mr. Hannes Dohrn, who
has given his constructive guidance both on my program implementation and thesis writing. I
would also like to express my great appreciate to Prof. Dirk Riehle for his inspiration and
support.
Last but not least, I would like to express my deepest gratitude to my family for their always
unconditional encouragement and support.

2

Abstract

Along with the popularization of wikis, the underlying wiki technologies become hot topics in
the research community. The open source research group1 developed a formal parser for
Wikitext, the wiki markup language of MediaWiki. The parser generates a high-level and
machine-accessible representation of wiki content so that it can be easily queried and
translated into arbitrary target formats. Furthermore, they proposed a framework based on the
wiki object model (WOM) to simplify and improve wiki content transformation and
refactoring. The WOM is a generalized data structure that uncouples from the syntactic
idiosyncrasies of wiki markup languages. The goal of this thesis is to develop a fully-
functional wiki engine, which connects the above mentioned components, adds a storage
solution with revision control and a web frontend. Meanwhile, the software implementation
should be well-structured and modularized in order to favor the further extensions in the
future.

Keywords: wiki, wiki software, Sweble, Wiki object model, WOM.

1 The open source research group, Computer Science Department, Friedrich-Alexander-
University (FAU) of Erlangen-Nuernberg.

3

Table of Contents

Versicherung...1

Acknowledgements..2

Abstract..3

1 Introduction...1

1.1 Original thesis goals..1

2 Research Chapter...2

2.1 Introduction...2

2.2 Related Work...3

2.2.1 Separation of concerns...3

2.2.2 Client server architecture...3

2.2.3 Three layer architecture...4

2.2.4 Dependency injection..4

2.2.5 Object-relational mapping...4

2.2.6 Domain specific language..5

2.2.7 Sweble Wikitext parser..5

2.2.8 Wiki object model (WOM)..6

2.3 Research Question...7

2.3.1 Homepage..7

2.3.2 View articles..7

2.3.3 Edit articles..7

2.3.4 Revision history...8

2.3.5 Search articles..8

2.3.6 Create articles..8

2.3.7 Hard deletion and soft deletion..8

2.3.8 Access control..9

2.4 Research Approach..10

2.4.1 Software architecture...10

2.4.2 Implementation of presentation layer...11

2.4.3 Implementation of logic layer..11

2.4.4 Implementation of persistence layer..12

2.4.5 Implementation of dependency injection...12

2.5 Research Results..13

2.6 Results Discussion...15

2.6.1 Discussion on extensibility..15

4

2.6.2 Discussion on content storage..16

2.7 Conclusions...17

3 Elaboration of Research Chapter...18

3.1 Introduction of Software frameworks..18

3.1.1 Introduction of Apache Wicket..18

3.1.2 Introduction of jOOQ..19

3.1.3 Introduction of Google Guice..20

3.2 Concrete implementation of presentation layer..22

3.2.1 Basic layout of Sweble wiki engine...22

3.2.2 Homepage..25

3.2.3 View articles..26

3.2.4 Edit articles..27

3.2.5 Revision history...28

3.2.6 Search articles..29

3.2.7 Create articles..29

3.2.8 Access control..30

3.3 Concrete implementation of persistence layer...34

3.3.1 JOOQ code generation with Maven...34

3.3.2 Transaction management with Spring..36

Reference..37

5

List of Figures

Figure 2.1: Sweble Wikitext parser processing pipeline...6

Figure 2.2: Three layer architecture of Sweble wiki engine..11

Figure 2.3: GuiceModule for Sweble wiki engine..13

Figure 2.4: Software architecture of Sweble wiki engine...14

Figure 2.5: Screenshot of edit page in Sweble wiki engine...14

Figure 3.1: Simple example of Wicket application: (a) SimplePage; (b)SimplePage.html; (c) final

HTML page rendered via browser..19

Figure 3.2: Comparison of plain SQL and jOOQ fluent API: (a) Plain SQL; (b) JOOQ fluent API in

Java...20

Figure 3.3: Dependency injection using Google Guice: (a) StorageClient; (b) StorageModule; (c)

StorageApp; (d) Modified StorageModule...22

Figure 3.4: Basic layout of Sweble wiki engine..23

Figure 3.5: Markup inheritance in Wicket..23

Figure 3.6: Page hierarchy of Sweble wiki engine in the initial stage...24

Figure 3.7: Reusability of Wicket panel..24

Figure 3.8: Screenshot of BasePage..25

Figure 3.9: Screenshot of HomePage..25

Figure 3.10: Screenshot of TitleViewPanel...26

Figure 3.11: Pass different page parameters under different situations...27

Figure 3.12: Screenshot of NoContentPanel...27

Figure 3.13: Screenshot of ContentEditPanel...28

Figure 3.14: Screenshot of revision history of the article “Germany”..29

Figure 3.15: Summary of the input fields and their corresponding validators.......................................30

Figure 3.16: Final page hierarchy of Sweble wiki engine...32

Figure 3.17: Authorization process of access control..33

Figure 3.18: Screenshot of HeaderPanel with UserPanel: (a) HeaderPanel before the user is logged in;

(b) HeaderPanel after the user is logged in...34

Figure 3.19: Configuration of jooq-codegen-maven plugin..35

Figure 3.20: The generated Java classes by jOOQ..36

6

1 Introduction

1.1 Original thesis goals

The wiki technologies and their business usages are the research fields of the open source
research (OSR) group in Computer Science Department, FAU. During the past years, OSR
has done extensive research work in this field and made significant progress in several
aspects.

First, OSR group developed a novel parser, which is called Sweble [11], for Wikitext.
Wikitext is the wiki markup language of MediaWiki, which is a wiki engine that drives
Wikipedia and many other wiki instances. Apart from converting the content to hypertext
markup language (HTML), Sweble also produces an intermediate format, namely, abstract
syntax tree (AST) to represent the page’s content in a high-level and machine-readable way
[11]. The data stored in AST can be easily queried and translated into arbitrary target formats.
OSR has also integrated the Sweble parser into MediaWiki such that the user can take
advantage of this alternative parser in the applications powered by MediaWiki [28].
Furthermore, in order to simplify and improve wiki content transformation and refactoring,
OSR proposed a framework for defining and performing transformations on wiki article [12].

However, it is difficult to make use of the above components directly. They can play a role
only when integrating to a wiki engine. Thus, the goal of this thesis is to develop and
implement a wiki engine which connects the above mentioned components. Since the above
components are developed in Java, the new wiki engine will be programmed in the Java as
well. It is named as Sweble wiki engine due to the new wiki engine is supported by the
Sweble parser. Besides integrating the novel components, the Sweble wiki engine also
attaches a storage solution with revision control and adds a web frontend to build a fully
functional wiki.

1

2 Research Chapter

2.1 Introduction

Wiki is essentially a type of web application that allows people to manage web pages
collaboratively by virtue of a web browser [26]. All the visitors or members within a
prescribed community have the right to create, edit or delete HTML documents. Whereas, the
HTML pages in previous web application are only managed and updated by the website’s
masters [28]. Moreover, the web editors of wiki are not required to master HTML knowledge.
Instead they are allowed to create or edit web pages through wiki markup language (WML),
which is a simplified substitute to HTML. Eventually, the wiki application lets users not only
read but also create or edit their own content in Internet [33].

A wiki engine (also called wiki software or wiki application) is a software that is designed to
manage documents collaboratively and powers a wiki system described as above [33]. The
first wiki system was ‘WikiWikiWeb’ which is developed by Ward Cunningham in 1994 [26].
During the past years, a great amount of wiki systems running with different kinds of wiki
software have emerged. Accompany with the development of technology, wiki systems are
playing more and more roles in people’s work and daily lives. Currently, Wikipedia is the
most famous wiki site with the slogan that the free encyclopedia that anyone can edit [33]. It
already has a worldwide influence and was rated as one of the top ten most popular websites
in 2007. The wiki engine of Wikipedia is called MediaWiki [3], which empowers the full-
blown features of Wikipedia. Besides Wikipedia, MediaWiki is also widely used to manage
many other wiki instances. Usually, each wiki engine defines its own WML. MediaWiki
defines its WML as Wikitext. Users of Wikipedia edit content by using Wikitext.

Abundant research works have been done to push forward the technologies of wiki engines.
Recently, Dohrn and Riehle [11] developed Sweble Wikitext parser, which generates an
intermediate representation of Wikitext content. By using Sweble Wikitext parser, the content
stored in wikis can be accessed by machined easily. Furthermore, they proposed wiki object
model (WOM) in [12], which unlocks from the syntactic idiosyncrasies of Wikitext. With the
help of WOM, further operations such as transformation and refactoring, can be performed in
a standardized and simplified way.

The object of this thesis is to design and implement a web application, which combines the
above components and realizes the basic wiki functions, e.g., search, view, edit, revision
control, etc. In order to achieve this object, several tasks need to be accomplished. First,
suitable technologies and frameworks have to be adopted to ensure a modular and extensible
design. Second, a storage solution has to be designed to enable the content retrieval, searches
over the whole wiki and revision control. Third, a web application should be implemented as
a whole that connects and integrates the above mentioned components and the storage
solution.

The main contributions of this thesis include:
1. Implementation of Sweble wiki engine which makes use of Sweble parser and

empowers the basic wiki functions

2

2. Establish a well-structure software architecture to facilitate the further extensions in
the future.

The structure of this thesis is organized as follows. The related technologies are introduced in
section 2.2. The requirements of Sweble wiki engine is analyzed in section 2.3. To achieve
these requirements, the implementation process is described in section 2.4. Section 2.5
summarizes the research results and the results are discussed in section 2.6. Finally, the
conclusions of this thesis are drawn in section 2.7. Chapter 3 includes necessary elaboration
of research chapter. Section 3.1 introduces the software frameworks which are used in the
development process. The supplementary explanation of the concrete implementation on
presentation layer and persistence layer are presented in section 3.2 and section 3.3
respectively.

2.2 Related Work

2.2.1 Separation of concerns

In order to simplify the problem analysis and software design, the separation of concerns
(SoC) strategy is adopted throughout the development of Sweble wiki engine. In software
engineering, SoC is one of the important strategies introduced by Dijkstra [7] and Parnas [22]
to simplify the complexity in software design. By means of SoC, a global software system is
decomposed into separated and correlated modules, so that each module addresses its
“concern” or responsibility respectively and transparent to each other. As a result of SoC, the
individual modules are combined to work collaboratively to achieve the original goal.

Through proper SoC, a well-organized system can be built and better maintenance and
reusability can be achieved. Thus, various techniques are applied for the purpose of SoC
within the development of Sweble wiki engine. For example, Java is chosen as the
programming language. Its object-oriented nature can separate concerns into objects.
Furthermore, the whole project is basically divided into three layers to play different roles in
the system [16], which will be introduced in section 2.2.3. In particular, cross-cutting
concerns such as transactions, security, logging, etc. are difficult to be separated by object
oriented techniques, since they are scattered throughout multiple objects in the whole system.
Aspect-orientated programming (AOP) [14] is a programing pattern that proposed to separate
cross-cutting concerns from the core concerns. The interception-based approach of AOP is
applied in the process of transaction management and access control in my project. In
addition, Apache Wicket framework is selected for the web application development in my
project. It separates the web page construction into Java code and HTML markup, which leads
SoC to a new level.

2.2.2 Client server architecture

Since Sweble wiki engine is a web application, it is installed in a network environment. How
to deploy the web application in the network environment directly impacts the concrete
software design. First of all, it is decided that Sweble wiki engine is run in the form of client-
service architecture, which is a widely used coordination pattern in distributed systems [1]. In
this architecture, the client and server are separated physically. The client requests service

3

from the server, while the server plays a role as centralized resource, which performs service
according to the request and returns response to the client. In my case, the client is a browser
of any user, which is responsible to send request to the server, receive response and present
the content to the user. While the server hosts the software of Sweble wiki engine to provide
service to multiple clients.

2.2.3 Three layer architecture

Based on the above analysis, the development of Sweble wiki engine is to construct a server-
side application. It is commonly built by layering techniques, which separates the complicated
system into multiple layers according to different responsibilities. Sweble wiki engine will be
developed by using three layer architecture, which is a popular layering pattern [16]. It
divides the system into three independent layers, which are presentation layer, logic layer and
persistence layer. The presentation layer is used to provide user interface (UI) and handle the
interactions with the client (or browser). The business logic layer contains a set of business
rules for processing information. The back-end of the system is the persistence layer, which is
mainly composed of the data persistence objects and data access mechanisms.

2.2.4 Dependency injection

The three layer architecture decouples the system loosely. However, I need to address another
problem: how to wire up the layers? Traditionally, the objects create the dependencies in their
code, but this pattern lacks of modularity. On the contrary, dependency injection (DI) claims
that objects can ask an outsider to create the dependencies for them [24]. Thus, DI pattern is
preferable for my project. The dependencies exist between the layers are fixed by DI pattern.

Dependency injection (DI) [24], which was coined by Fowler in 2004, is a specific variation
of inversion of control (IoC) design pattern [17]. Its core idea is to manage object
dependencies in this way: push (inject) dependencies into objects at runtime, instead of
allowing the objects itself to pull (create or find) their dependencies from their environment
[24]. In a DI framework, the dependencies are offered by a container and injected into the
objects which need them. There are three forms to inject the dependencies, which are setter
injection, constructor injection and method injection. Some open source DI frameworks are
used widely, such as Spring[32] and Google Guice [19]. Google Guice is chosen as the DI
framework in my project.

2.2.5 Object-relational mapping

The software of Sweble wiki engine is developed by using Java language. It will be integrated
to an external relational database. There is a problem of object-relational impedance mismatch
in this situation. The approach of object-relational mapping (ORM) [4] is proposed to fix this
problem. In object-oriented programming, data management generally concerns the
manipulation of objects but not scalars. However, most of the existing databases are relational
databases, in which only scalar values can be stored and manipulated. By virtue of ORM, data
in relational databases are mapped into Java objects, which further make up a domain model.
The traditional ORM frameworks try to solve this problem from a stand point of Java. For
example, Hibernate [25] maps Java classes to database tables and shields from the underlying
SQL. As a result, its API is quite different from SQL and cannot support all the database
features. In contrast, Java object oriented querying (jOOQ) [8] stands on the opposite side.

4

SQL is put in the first place in the database integration. The closeness of SQL enables jOOQ
to support almost every features that database offers. Thus, jOOQ is chosen as the ORM
framework in my project.

2.2.6 Domain specific language

Since jOOQ is characterized by its internal DSL, which simulates the SQL statement in Java.
Before using it, it's necessary to explain the domain specific language (DSL) first. DSL, in
contrast to a general-purpose language (GPL), is usually a ‘simple’ computer language
designed to solve problems in a specific domain [18]. By properly using notations and
abstractions, a DSL can make the task of programming easier. Besides that, the usage of DSL
can also enhance the readability, maintainability and portability of a program.

The existing DSLs can be classified into the external and internal forms [18]. External DSL
has its own syntax and domain specific tooling so that it is parsed independently. A
representative example of external DSL is the plain structured query language (SQL). Internal
DSL is built on an existing host GPL through fluent application programming interface (API),
which is a particular form of API. For example, jOOQ embeds SQL into Java as an internal
DSL, by which users can build type-safe SQL queries.

2.2.7 Sweble Wikitext parser

Because Sweble wiki engine will make use of Sweble Wikitext parser, it's necessary to
introduce it in this section. The content of wiki system is generally written by the WML,
which is thought to be simpler than HTML. However, various WMLs are nowadays getting
more complex and without well-defined grammar [11]. A critical task of any wiki engines is
how to parse the WML precisely such that the content can be converted to different formats as
desired and further the generated results are well prepared for further operations.

However, the state of art of the parsing work is still far from a satisfactory level, e.g., the
parser of MediaWiki directly converts Wikitext into HTML without generating any high-level
representation [11]. This parsing approach may produce invalid HTML since it’s insufficient
to overcome the complexity of Wikitext. Thus, it’s highly desired that a new parsing approach
can be designed.

Recently, the Sweble Wikitext Parser is designed and implemented by Dohrn and Riehle [11].
Compared with the conventional parsers, Sweble parser is characterized by its ability to
construct a clean intermediate representation of Wikitext content. As shown in figure 2.1[28],
the Wikitext is first transformed into an AST, which is a well-defined machine-readable
structure. Further, the AST can be converted into different kinds of output format, e.g.,
HTML, document object model (DOM), PDF, or even converted back to Wikitext.

5

Figure 2.1: Sweble Wikitext parser processing pipeline

2.2.8 Wiki object model (WOM)

As mentioned before, by using AST, the Wikitext content is mapped into a well-structured
object model so that the purely textual content can be accessed and queried precisely by
software program. However, the nodes of above AST is defined according to the syntax of
Wikitext, which means that it still couples with the syntactic idiosyncrasy of the original
WML. In order to achieve a more universal object model that is applicable to all WMLs,
Dohrn and Riehle proposed wiki object model (WOM) in [12], which is the generalized
version of Wikitext object model as defined in [10].

WOM is also a tree-like structure with the nodes to represent the elements commonly found in
all WMLs. The nodes are mapped into a set of Java objects in software programs and further
serialized as WOM extensible markup language (XML) for storage. With the help of WOM,
various WMLs can be represented in an easy, accessible and standardized way and meanwhile
the WML-specific information is retained.

Some new features, such as data analysis, content transformations, have emerged into the
world of wikis. They only require the semantic content of wiki articles but not the specific
syntax of the original WML [10]. The significance of WOM is that it provides a standardized
domain to such kinds of operations and unlocks them from the syntactic intricacies of the
underlying WMLs. Through a standardized high-level representation of WOM, further
operations are decoupled from the parsing process so that they can be designed and performed
in a standardized way [12].

6

2.3 Research Question
As mentioned in Chapter 1, my task is to implement Sweble wiki engine which invokes
Sweble parser, attaches a storage solution and adds a web frontend to build a fully functional
wiki engine. Thus, the research questions of this thesis are:

1. What are the features of Sweble wiki engine?
2. How to implement Sweble wiki and how to implement it in an efficient way?

In order to well define the first question, I perform the requirement analysis of Sweble wiki in
this chapter. The second question is related to selection of technologies and frameworks to
implement Sweble wiki engine, which I will address in the next section.

For a clear explanation, first I introduce the concepts of “article” and “revision” in the context
of wiki engine. A wiki article refers to a web page that contains title and content. Title
represents a well-defined topic, while the content describes relevant information around the
topic. As we know, articles can be continuously modified and improved by multiple users
through wiki’s collaborative editing function. Every time the modification is saved, a new
version of content, i.e. a revision of article, will be generated. As a result, one article has many
revisions, which have the same title but different content. The revisions can keep track of the
revising history of the article.

2.3.1 Homepage

As a wiki engine, Sweble wiki engine should hold a home page, which is used as the initial
portal of a wiki instance. This page presents the basic information of the wiki instance
website, such as its name, slogan, license, organization and brief introduction. In addition, the
navigation menu is also included. In order to let the user access the articles that the wiki
instance is holding, a search panel is provided in the homepage.

2.3.2 View articles

While the browser requests to view a wiki article, Sweble wiki engine should return the web
page by converting the content from Wikitext to HTML. We should notice that one article has
many revisions. The feature of “view an article” refers to returning the content of the most
updated revision. Besides that, the user also have opportunities to view the content of other
previous revisions through “Revision history” feature, which will be mentioned later. In the
case of no content is available to be displayed, a feedback message is returned instead.

2.3.3 Edit articles

The principle feature of the wiki engine is to allow users collaboratively edit the content of a
web page online. Besides changing the content, users can also structure or format wiki pages
through editing function. Usually, users edit wiki pages with simplified WML. Some engines
also provide visual editors to simply their work.

Sweble wiki engine also enables the user to edit a wiki page when he is reading it. If the user
shifts to a page for editing, he can edit the content in Wikitext directly. At the beginning, the
content of the latest revision is shown in the text edit box so that the user can continue his

7

editing based on the predecessor’s work, which facilitates the collaborative working. In the
process during editing, the user can preview his input when needed. He can also choose to
save his input as a new revision in the database. After that, this new revision is displayed to
the user so that he can check it in time.

2.3.4 Revision history

As mentioned before, the articles may undergo modifications frequently. One useful feature of
Sweble wiki engine is to summarize the revision history for any article. By virtue of the list of
changes, users can trace the overall evolution history of such article and evaluate whether the
current revision is acceptable. Furthermore, it also enables the user to revert to an older
revision, which is helpful if the latest revision is destroyed or any mistake is found. In the
page that lists revision history, each revision is expressed as the information of its creation
time and author. The creation time is rendered as a link that directs to the view page of this
revision. The user can choose to view any specific revision content by clicking one of the
links.

2.3.5 Search articles

To facilitate the user to search wiki articles according to their interests, Sweble wiki engine
also provides search function. As long as the user inputs keywords and clicks the search
button, Sweble wiki engine connects to the database and searches the keywords both in titles
and the contents of the most updated revisions. If some matching articles are found, their
corresponding titles are returned back. More specifically, every title is rendered as a link,
which directs the user to view the concrete wiki article. Otherwise, if no article matches the
keywords, a feedback message is presented to indicate that no article is found.

2.3.6 Create articles

If the user wants to raise a new topic, he can create a new wiki article through Sweble wiki
engine. There are two steps to accomplish the creation of an article. The first is to create a
new article title which must not duplicate to the already existing titles. If the title is duplicate,
the user will be informed and asked to view the existing article. If the title is created
successfully, the second step is to add article content. This step is similar to the feature of
“edit article” mentioned before. The only difference is that the user has to start the first
revision without previous content for reference.

2.3.7 Hard deletion and soft deletion

Sweble wiki engine also provides deletion features to help wiki instances to handle the
inappropriate contents. If the wiki article involves in copyright violations, vandalism, or law-
breaking issues, it should be deleted from database, which is called hard deletion. Compared
with this irreversible deletion, Sweble wiki also supports reversible deletion, which is the so-
called soft deletion. It is used in the situation that the article contains some inappropriate
contents that can be improved by adding new sources. Soft deletion means the article is
deleted logically but still existing in the database physically. If the article is softly deleted, all
the revisions of this article are hidden from the user. It can be later undeleted if the
inappropriate contents are fixed. The soft deletion concept can be also applied on revisions. If
some revisions are softly deleted, they will not appear in the revision history.

8

2.3.8 Access control

Wiki opens the web page creation and editing to users, which facilitates collaborative
working. However, meanwhile, it also leads the potential risks of vandalism or abuse. Thus,
how to manage the user behaviors effectively becomes an issue that wiki engines have to
address. Sweble wiki engine provides an access control policy to restrict creation and editing
of wiki articles. More precisely, it’s a role-based access control (RBAC), in which the
different behavior permissions are associated with roles [15]. Users are separated into groups
by assigning different roles, which stands for different levels of access.

a. Access control policy

In Sweble wiki engine, there are five kinds of roles, which are super admin, admin,
moderator, editor and viewer. Their privileges follow the role-based inheritance, which means
the editor inherit the privileges from the viewer and adds its own extra privileges, further, the
moderator inherits the privileges from the editor and adds some extra privileges, and so forth.
As a result, the super admin has the highest privilege whereas the viewer has the lowest
privilege.

Only the creation and editing features are restricted, which require the user at least has the
role of editor. Other features, i.e., search, view and revision history, are open to all users. In
order to identify who the user is, and further identify his role, the registration and login
procedure are necessary.

b. Registration

Registration is used to keep a record of user information. Specifically, the registration page
asks the user to fill in the information of username, password, confirm password and email
address. The inputs need to satisfy some preset conditions as follows: the username and email
address should be unique; password should be at least six characters long; password and the
confirm password should be the same. If the inputs fulfilled all these conditions, they can be
submitted. Afterwards, Sweble wiki engine sends a confirmation email to the email address
provided by the user. Consequently, the user data is saved in the database. By default, the
registered user is assigned as the role of editor. The administrators have the right to modify
the roles of users later.

c. Login

If the user wants to edit or add articles, he has to log in first. The login page requires the user
enter user name and password. If the inputs match one of the registered users’ information, the
user is logged in successfully. Otherwise, the login page stays and indicates the failure reason
to help him correct his credentials. Next, the role of the user is checked. If the user owns the
role more senior than editor, his intended action is allowed.

d. Show authentication status and logout

Sweble wiki engine also provides a panel to indicate the user’s authentication status. At first,
the “Register” and “Login” links is displayed, which link to the registration and login pages

9

respectively. After the user is logged in, his username is displayed instead. In addition, the
“Logout” link is displayed alongside. If the user clicks “Logout” link, he will be logged out
and redirected to the home page.

The above functional requirements are the targets of the implementation. Besides that, the
well-structured software architecture and appropriate selection of libraries also need to be
taken into consideration in the implementation process. The implementation of Sweble wiki
engine is discussed in the next section.

2.4 Research Approach
The functional requirements of Sweble wiki engine are proposed as the research questions in
section 2.3. In the research approach section, I will describe the software implementation to
fulfill the above requirements.

2.4.1 Software architecture

For the purpose of loosely decoupling and SoC, three layer architecture, which is introduced
in section 2.2.3, is taken as the software architecture of Sweble wiki engine. It can bring about
better maintainability, reusability, and flexibility for the future development.

Figure 2.2 shows the software of Sweble wiki engine is separated into three layers with their
own responsibilities, which are presentation layer, logic layer and persistence layer [16]. From
the top down, every layer is only dependent on the layer below but not able to see the upper
layers. The presentation layer takes care of web UI, which contains all the web pages as well
as their dynamic behaviors. Usually, the logic layer aggregates data from persistence layer,
carries out the calculations, and then reports the results to the presentation layer. The
persistence layer is the back-end of the logic layer. Data is retrieved from databases and
converted to Java objects in this layer and then passed back to the logic layer. Besides that, an
external database is used to store relevant data, such as wiki articles, revisions and user
information. Moreover, several Java libraries are chosen to further simplify the
implementation. Apache Wicket [2] is be used as the framework for developing web UI;
JOOQ [8] is the ORM framework to for integrating the persistence layer and the database;
Spring framework [32] is responsible for transaction management; Google Guice[19] is
applied to wire up the layers. The implementation of every layer is introduced in detail as
follows.

10

Figure 2.2: Three layer architecture of Sweble wiki engine

2.4.2 Implementation of presentation layer

Apache Wicket framework is chosen to facilitate the implementation of presentation layer
[31]. It is a lightweight component-based web application framework. It makes it possible to
develop web applications using Java, which satisfies the original intension of Sweble wiki
engine. In addition, Wicket separates the web page development into writing just Java codes
and just HTML markups which helps to separate the concerns of logic and presentation
properly [5]. It also provides meaningful Java abstraction for web page components as well as
the context of web application. Wicket leaves me out of the complicated underlying
technology so that I can focus on the logic implementation [5]. Thanks to the object-oriented
nature, Wicket makes it easy to create reusable components. The concrete introduction of
Wicket will be presented in section 31.1.

In this layer, multiple web pages with dynamic behaviors are implemented to fulfill the
requirements mentioned in section 2.3. For example, the view page is implemented for the
view feature, the search page is for the search feature, the registration and login pages are for
the access control, and so on. The concrete implementations of these pages are elaborated in
section 3.2.

2.4.3 Implementation of logic layer

This layer plays a role as a service provider for presentation layer. In Sweble wiki engine,
three service classes are created in logic layer. Firstly, the features, such as view, edit and
search articles, involve retrieval, store and query data in database. Thus, the DBService class
is created to perform specific aggregations, calculations or other operations on the data
objects in persistence layer according to the requirements from the presentation layer.
Secondly, the ParserService class is created to make use of Sweble parser to parse the input
content to AST. Then the nodes of AST are rendered into HTML format. Thirdly, as

11

mentioned in section 2.3.8, Sweble wiki engine needs to send a confirmation email to the user
after registration. Therefore, the EmailService class is created to implement email sending
process.

Furthermore, to achieve better flexibility and independency, the service classes in logic layer
only expose interfaces to the classes in presentation layer. The interfaces are backed by their
concrete implementations.

2.4.4 Implementation of persistence layer

Persistence layer works as a data transporter between the logic layer and the database.
Typically, this layer concentrates on the ORM problem, which is mentioned in section 2.2.5.
In order to fix this problem, jOOQ is selected, which is an emerging lightweight ORM
software library [8]. The concrete introduction of jOOQ will be given in section 3.12. Here, I
only introduce its characteristics in brief. JOOQ is characterized by its internal DSL, which is
mentioned in section 2.2.6. With jOOQ, developers can write SQL in Java code just as it was
natively supported. Besides that, another useful characteristic is that jOOQ can reverse-
engineer the database schema to generate the mapping Java classes by some configuration
works [9]. The concrete code generation process through configuring the project object model
(POM) file in Maven will be introduced in section 3.3.1. As a result, some Java classes, which
model tables, records, plain old Java objects (POJOs) and data access objects (DAOs) are
generated to assist the data access in database. In order to make use of this characteristic, the
database schema should be designed first. Next, the database schema of my project is
introduced.

For Sweble wiki engine, wiki articles, revisions, and user information are the three most
important data that needs to be stored in an external database. As explained in section 2.3, in
the circumstance of wiki, one article may have many revisions, which have the same title but
different contents. To map this relationship to the design of table schema, an article table is
created to save the title and a revision table is created to save the different version of content.
Specifically, besides the title and content, these two tables also save other related metadata
respectively. For example, each article record always marks its latest revision while each
revision record stores some metadata, such as its creation time, author and previous revision,
which can be used to restore the revision history. In particular, to enable the soft deletion
feature mentioned in section 2.3.7, a flag which indicates whether this record is softly deleted,
is added both to article and revision tables. In addition, for the sake of access control, a user
table is created to save the information about users, i.e., the registration information and the
assigned role.

Since jOOQ lacks transaction management mechanism, Spring framework is also used in this
layer to remedy this problem. The transaction management of Spring will be introduced in
section 3.3.2.

2.4.5 Implementation of dependency injection

In three layer architecture, dependencies exist between two connected layers. For instance, the
objects in presentation layer depend on the objects in logic layer. DI pattern, which is
introduced in section 2.2.4, is selected to manage the dependencies between layers. In DI
pattern, objects ask an outsider to create and inject dependencies for them, rather than create

12

dependencies by themselves. In this way, objects in presentation layer don’t need to take care
of which implementation is used and also how it is obtained.

In the development of Sweble wiki engine, Google Guice is chosen as the DI framework,
which will be introduced in detail in section 3.1.3. Google Guice works as a central controller
of dependencies, which means it takes charge of which dependency is created and how many
dependencies are needed. In Google Guice [30], the object relationships are configured in a
Guice module. SwebleWikiModule is the Guice module for the project of Sweble wiki
engine, which is configured as figure 2.3. It tells Guice that IDBService is instantiated as
DBServiceImpl when it’s used. Similarly, IParserService is instantiated as Wom3NodeParser
and IEmailService is instantiated as SimpleEmailSender. In the future, if the interface is
bound to another implementation, it’s only necessary to change the configuration in this
module. After SwebleWikiModule is configured, the @Inject annotation can be used in the
objects in presentation layer, which indicates Guice to inject the dependencies.

Figure 2.3: GuiceModule for Sweble wiki engine

2.5 Research Results
As a research result, the software of Sweble wiki engine realizes the requirements listed in
section 2.3. The software implementation is structured into three layers, which are
presentation layer, logic layer and persistence layer (cf. Figure 2.4).

13

Figure 2.4: Software architecture of Sweble wiki engine

Figure 2.5: Screenshot of edit page in Sweble wiki engine

In the presentation layer, home page, view page, edit page, revision history page, search page,
article add page, registration page, and login page are implemented to achieve the features
proposed in section 2.3. For example, the screenshot of edit page is shown in figure 2.5. In
this page, the user can edit the content of wiki article online. In particular, the user can choose
to preview or save the content via the “Preview” and “Save” buttons. More implementation
results will be shown in section 3.3.2.

14

The dynamic logic of the above pages are supported by service objects in the logic layer. For
instance, the registration page requests IEmailService to send an email to the user in order to
finish the registration. The view page and the preview function in the edit page request
IParserService to translate the content to HTML for display. In particular, since Sweble parser
can generate AST with Wikitext nodes or WOM nodes, which are introduced in section 2.2.7
and 2.2.8. Different HTML renderers are needed to match different kinds of nodes. Thus, the
interface IParserSevice has two implementations, which are WtNodeParser and
Wom3NodeParser. Either of them can be chosen according to the needs. In addition, all the
pages request IDBService to query, store or retrieve data in the database. The implementation
of IDBService makes use of the data objects from persistence layer to provide the storage
service.

There are three kinds of data objects, which are article, revision and user, in persistence layer.
All the Java classes, such as tables, records, POJOs and DAOs, are generated by using the
source code generation function of jOOQ.

2.6 Results Discussion
The results discussion in this section is performed in two aspects, which are extensibility of
the software implementation and the comparison of different solutions of content storage.

2.6.1 Discussion on extensibility

As mentioned before, the implementation of Sweble wiki engine achieves the predefined
functional requirements. Besides that, the clear structure and modularization of the
implemented software can be regarded as another research result since it creates convenience
for the further extension.

A simple example is taken to show the extensibility of the implemented software. If a new
feature is raised, the further developer need to add a new page object in the presentation layer
firstly. According to the requirements, new service objects are added to the logic layer. If the
feature requires some database related functions, new methods should be added in IDBService
and DBServiceImpl classes. Furthermore, if the new methods involve extra data objects or
extra information of the existing data objects, the further developer have to modify or extend
the database schema and then use jOOQ to update the data objects in the persistence layer. We
can see that the three layer architecture helps the further developer to perform extension task
in a clear way.

In a word, the high extensibility thanks to the appropriate selection of technologies and
frameworks. The attempts of SoC are applied throughout the development process. Three
layer architecture leads a clear software structure, which facilitates the extension and
troubleshooting. Wicket separates the logic and presentation layout in a clean way, which also
simplifies further development. DI centrally manages the dependencies which are distributed
in the project. Guice brings compilation checking to the dependency configuration process
[19]. In virtue of Guice, dependencies can be changed or added easily without influence of the
source code. The source code generation feature of jOOQ reduces the workload for the
modifications in persistence layer.

15

2.6.2 Discussion on content storage

The characteristic of Sweble wiki engine is the usage of Sweble parser. Through Sweble
parser, the representation of wiki content is converted from Wikitext to AST/WOM and
further rendered into HTML. It produces a problem: which representation is the best choice
for the content storage? To answer this problem, the strengths and weaknesses of these three
representations are compared in this section.

a. evaluation criteria

To make a comprehensive comparison, the performance impact of choices on various
common operations are taken into account, such as rendering, software processing, and
system migration. Consequently, the evaluation is conducted according to the following four
criteria.

1. Restoration of the original information
The retrieved data should have the capability to restore the original user input content.
Otherwise, it means that some original information is lost.

2. Complexity of HTML generation.
In order to display wiki content via web browser, the stored data needs to be converted to
HTML file. This process should be keep as simple as possible.

3. Machine accessibility
As mentioned in [11], a machine-accessible representation is a prerequisite for efficient
software processing on wiki content.

4. Ease of data migration
The database storage of wiki content is independent of the wiki software. It’s possible to
migrate the storage data to different wiki engines or wiki software. If the representation is not
WML dialect-specific, it can be processed by multiple software in a standardized way [12].
The data migration is straightforward and easy under this situation. Otherwise, the data
migration needs a lot of extra processes.

b. Comparison of different representations

In this part, the storage solutions of Wikitext, WOM/AST document and HTML are compared
based on the above criteria.

Wikitext:
1. It preserves the original information completely.
2. The conversion of Wikitext to HTML needs a complicated parsing process [11].
3. It is a purely textual representation, which is extremely difficult to be processed by

computer program.
4. It requires specific wiki engine or at least specific parser. If the data is migrated to a

wiki engine that is unaware of its markup, an appropriate parser must be added.
WOM/AST document:

1. The rigorous specification of WOM filters out some invalid Wikitext content, which
implies the possibility of losing original information. To remedy this problem, WOM

16

uses round-trip data to fully preserve WML-specific information.
2. It is convenient to generate HTML through traversing the AST/WOM.
3. It is machine-accessible.
4. WOM/AST is independent of syntactic idiosyncrasies of WML so that it is easy to

migrate the data when it is saved as WOM/AST document.

HTML:
1. It’s possible that HTML loses the original information heavily if the parsing process is

error-prone. In addition, it also misses the syntactic idiosyncrasy of the original WML.
To re-engineer HTML back to the original WML is a non-trivial process [11].

2. It can be directly rendered by web browser.
3. It is machine-accessible.
4. The data migration is easy owing to the standardized specification of HTML.

In conclusion, WOM/AST document is the best choice for storage owing to its fully
restoration of original information, easiness of HTML generation, machine accessibility and
easiness in data migration. However, due to the time constraint I cannot implement the storage
solution in WOM/AST any more.

2.7 Conclusions
In this thesis, I have implemented a web application, which integrates Sweble parser, attaches
a storage service solution and a web frontend to empowers the basic wiki functions, e.g.,
search, view, edit, show revision history, etc. At the same time, the proper selection of
technologies and frameworks guarantees the software is extensible in the future.

Based on the above discussion, AST/WOM document is the best choice for storage. In the
future, the wiki content can be saved as AST/WOM document instead of Wikitext. The
change of storage format leads a problem of database selection. The further developers need
to consider which kind of database is most suitable to store the tree structure of AST/WOM.
With the right choice, it can achieve high performance on data retrieval, query and update.
Besides that, Sweble parser is the main asset of Sweble wiki engine. Therefore, the engine can
be extended by adding some powerful functions which are supported by Sweble parser, for
instance, such as data analysis, transformation and refactoring, visual editor and semantic
wikis.

17

3 Elaboration of Research Chapter

This chapter mainly focuses on the implementation of Sweble wiki engine. In order to make
the implementation description easy to understand, section 3.1 introduces the software
frameworks by several simple examples. In section 3.2, the concrete implementation of
presentation layer is elaborated. The section 3.3 presents the concrete implementation of
persistence layer.

3.1 Introduction of Software frameworks

3.1.1 Introduction of Apache Wicket

Apache Wicket is an open source project of Java web application framework started in 2004
by Jonathan Locke [2]. It has merits of simplicity, separation of concerns and ease of
development. By means of Wicket framework, web applications can be developed through
using regular object oriented (OO) Java programming.

Wicket is a component based framework. Web pages are constituted of web UI components
[5]. In order to illustrate how a web page is created by using Wicket, a simple example is
shown in figure 3.1. In Wicket, every web page is created by a pair of Java and HTML files,
which should have the same name. In the example, SimplePage class (cf. figure 3.1(a)) is the
Wicket page component and SimplePage.html (cf. figure 3.1(b)) holds the markups for the
SimplePage class. In particular, a Label component, which is provided by Wicket, is added to
SimplePage as its child component. The Label component has an identifier “message”. Wicket
automatically matches it to the associated markup, <h1> fragment, because it has an attribute
wicket:id = “message”. Furthermore, the Label component attaches a model to yield a string
“Hello, Sweble!”. The content of <h1> element is replaced by this model. As a result, the
browser will receive a HTML file with <h1>Hello, Sweble!</h1> as its body (cf. figure
3.1(c)).

The component-oriented development in Wicket achieves some benefits. Firstly, Wicket
provides meaningful abstractions for all the visible widgets (like buttons, text fields, and
links, etc.) and the context of web application (like applications, sessions, pages, etc.) so that
the workload is reduced greatly [6]. Wicket lets the developers focus on the logic
implementation of the components without considering the underlying technology, e.g.,
hypertext transfer protocol (HTTP). In addition, the object oriented nature of Wicket enables
the developers to reuse the components easily [31].

Secondly, the separation of logic and presentation in Wicket takes the separation of concerns
to a new level [5]. Generally, Wicket component is responsible for the logic aspect. It
describes the behaviors of the web application on the fly, such as form handling, dynamic
content processing and so on. On the other hand, the HTML file takes charge of the static
presention of components. Wicket requires the HTML file should not contain any script or
logic but only the clean markup code and some placeholders for the components.

18

(c)

Figure 3.1: Simple example of Wicket application: (a) SimplePage; (b)SimplePage.html; (c)
final HTML page rendered via browser

3.1.2 Introduction of jOOQ

JOOQ is an open source ORM software library developed by Data Geekery GmbH [8]. It
proposed an innovation solution to fill the gap of interaction between Java data types and SQL
data types. JOOQ lets the software developers get back in control of the SQL. With the help
of jOOQ, it’s easy to build type safe database queries through its fluent API and obtain the
Java codes from the database schema. JOOQ provides an internal DSL to simulate the SQL
statement in Java. JOOQ API looks very similar to SQL [9]. For instance, if we want to search
all authors who are born in 1970 and order them by their last names, the plain SQL statement
is showed in figure 3.2 (a) and the version of jOOQ fluent API in Java is showed in figure3.2
(b).

19

(a)

(b)

Figure 3.2: Comparison of plain SQL and jOOQ fluent API: (a) Plain SQL; (b) JOOQ fluent
API in Java

We can see that, with jOOQ DSL, the developers can write SQL statement in Java just as it
was natively supported. Besides that, jOOQ can also take advantage of the Java compiler to
conduct compile-check on SQL codes, including checks for column type, row value
expression type and SQL syntax [9]. The closeness of SQL enables jOOQ to support almost
every features that database offers. Furthermore, jOOQ also can be used as a standalone
typesafe SQL builder and executor. On top of these capabilities, the feature of source code
generation is developed and it becomes one of the jOOQ’s powerful assets. Using jOOQ code
generator, the database schema is reverse-engineered into a set of Java classes. Once the Java
compiler detects some changes of database schema, it throws compilation errors [9]. The
process of source code generation of jOOQ is presented in section 3.3.1.

In addition, jOOQ still provides features like traditional ORM frameworks, such as
standardization of SQL dialects, active records and so on. It simplifies the process of Java
application and relational database integration so that the developers can focus on their
business logic [8].

3.1.3 Introduction of Google Guice

Google Guice is an open source software framework for supporting DI. It is developed by
engineers in Google since 2006 and released under the Apache License [19]. It is the first
generic framework which handles DI using annotations to configure Java objects. With Guice,
developers don’t need to build factory classes or use new in Java code to create dependencies,
Guice’s @Inject is able to inject the dependencies instead [30].

In this section, a simple example is taken to illustrate how to realize DI pattern by using Guice
framework. Let’s assume that an interface IStorageService is created and it is backed by the
concrete implementation DatabaseStorageService. Figure 3.3 (a) shows a DI way to
implement StorageClient class, which is the client of IStorageService. StorageClient accepts
its dependent interface IStorageService in its constructor. This constructor injection is a good
option because it makes StorageClient independent, i.e., it doesn’t need to take care of which
implementation is used and also how it is obtained. However, when a new StorageClient is
constructed, its dependency IStorageService should be instantiate first. Guice plays a role in
this situation. The @Inject annotation is written in front of this method to ask Guice to inject
the service variable. If Guice detects the annotated constructor, it takes in charge of the
instantiation of its dependencies.

20

Obviously, we need to tell Guice which implementation should be used to map the interface.
In order to configure the mapping, a concrete implementation of Module interface needs to be
created. Specifically, if StorageClient is constructed using DatabaseStorageService, the
StorageModule is configured as figure 3.3 (b). In many other DI frameworks, the object
relations are configured in an XML file, which is without compilation checking. In contrast,
Guice module is a Java object using fluent and English-like method calls to describe the
bindings, which is easy to master and can be checked in compilation [30].

Finally, an injector is created according to StorageModule in main method (cf. figure 3.3 (c)).
The injector is used to get an instance of the bound class. After the injector is created,
StorageClient can be constructed. If we want to store data in a file later, we only need to
create FileStorageService to implement IStorageService and modify the configuration in
StorageModule as figure 3.3 (d). Other codes stay the same. DI framework makes the code
more flexible.

(a)

(b)

21

(c)

(d)

Figure 3.3: Dependency injection using Google Guice: (a) StorageClient; (b)
StorageModule; (c) StorageApp; (d) Modified StorageModule

3.2 Concrete implementation of presentation layer
The concrete implementation of presentation layer is presented in this section. This layer
includes all the web pages that fulfill the requirements proposed in section 2.3. Since the
dynamic logic of the pages are supported by the service objects from logic layer, the
implementation explanation also contains the related methods from the objects in logic layer.

3.2.1 Basic layout of Sweble wiki engine

By using Wicket framework, every feature mentioned in section 2.3 is implemented as a
Wicket page components. How to organize these pages together to achieve friendly user
experience needs to be considered first. It’s easy to find that reading, editing and revision
history are the functions focus on one specific article. Users may want to shift among these
functions frequently. For instance, the user perhaps wants to edit the content after reading. Or
he sometimes wants to trace the revision history after reading or editing the article. To achieve
better user experience, the portals to these three pages should be always provided in the title
panel. On the other hand, searching and adding functions are not specific on one article. Their
underlying processes are searching records and adding a new record in the database. They
should be separated from the aforementioned functions. The links of homepage, search article
and add article should be provided in the panel of navigation menu. Therefore, the basic
layout of Sweble wiki engine is given as figure 3.4.

22

Figure 3.4: Basic layout of Sweble wiki engine

From the analysis of basic layout, we can see that some parts of the layout appear in all pages
repeatedly. In order to reduce the duplication, I want to find a way to put the common parts
together and let the common parts be reused as a whole. This intention can be realized by
using the markup inheritance of Wicket. As show in figure 3.5, on one hand, with the Java
extends keyword, both Page1 and Page2 classes can share the common codes in BasePage
class. On the other hand, Wicket also enables the markup inheritance in HTML by introducing
special tag of <wicket:child> and <wicket:extend> [6]. This feature lets the inheritance in
markup be in light of the inheritance hierarchy in the Java classes.

Figure 3.5: Markup inheritance in Wicket

In my project, BasePage is created firest, which includes all the common portions. Then all
the pages in the application extend the BasePage with the help of markup inheritance in
Wicket, as shown in figure 3.6. Consequently, every concrete pages shares the common layout
of BasePage and adds its particular content in the child area.

23

Figure 3.6: Page hierarchy of Sweble wiki engine in the initial stage

In Wicket, The complex page is usually constructed by several panels, which are usually used
to group the components together as a unit and this unit can be reused in any pages (cf. figure
3.7) [6]. Therefore, the BasePage and other pages in my project are constructed by panels to
achieve a well-organized and flexible structure.

Figure 3.7: Reusability of Wicket panel

Figure 3.8 shows the screenshot of BasePage. It contains HeaderPanel, MenuPanel and
FooterPanel. The HeaderPanel shows the title and slogan of a wiki instance. The UserPanel
which indicates the user’s login status will be later added to this panel. The MenuPanel
comprises a group of direct links to homepage, article searching page and article adding page.
They are implemented by using BookmarkablePageLink, which is a Wicket component and
used to give a direct access to the internal pages of the application [5]. Finally, the relative
information of the wiki instance such as license and organization can be displayed in the
FooterPanel.

24

Figure 3.8: Screenshot of BasePage

3.2.2 Homepage

HomePage is the first page come to users. Besides the layout inherited from BasePage, it also
contains an introduction of the wiki instance (cf. figure 3.9). Furthermore, a SearchPanel is
added here so that the user can start his travel of the website.

a. SearchPanel

It contains one component of SearchForm. It is an instantiation of Wicket Form, which is used
receive and handle the user inputs. In particular, SearchForm includes a text field and a
button. The input keywords in text field are passed to SearchResultPage (cf. Section 3.2.6) if
the “Search” button is pressed. SearchPanel is reused both in the Homepage and
SearchResultPage.

Figure 3.9: Screenshot of HomePage

25

3.2.3 View articles

ArticleViewPage is designed to display articles according to the requirements mentioned in
section 2.3.2. It generally contains TitleViewPanel and ContentViewPanel. Sometimes, the
NoContentPanel is applied to handle the special case that no content is available for this
article.

a. TitleViewPanel

This panel contains the title and another three icons as shown in figure 3.10. The title is the
identification of an article and the icons are the portals to the three basic functional pages, i.e.,
reading, editing and revision history. Since this panel is reused in the basic functional pages, it
should always pass the identical page parameters to ensure that the latest revision is always
returned if the user clicks the “View” icon.

Figure 3.10: Screenshot of TitleViewPanel

b. ContentViewPanel

This panel is used to read the revision contents out from the database and convert them into
HTML format. There are three ways to access ArticleViewPage: i) clicking the link in search
result page (cf. section 3.2.6); ii) clicking the view icon in the TitleViewPanel (cf. figure
3.10); iii) selecting a specific reversion in the ArticleHistoryPage (cf. figure 3.14). Through
the first two ways, the latest revision is shown, whereas a specific reversion (not necessary the
lastest one) is displayed through the third way. The adaptability of showing different revisions
is supported by passing and receiving different page parameters (cf. Figure 3.11). If the
received page parameter contains a specific revision id. It is designated to the
getContentByRevisionId method. Otherwise, the getLatestContentByArticleId method is

26

Figure 3.11: Pass different page parameters under different situations

invoked. In addition, as the content retrieved from the database is written in Wikitext. The
renderHtml method in IParserService is called to convert the content into HTML format.

c. NoContentPanel

If no content is available for this article, the NoContentPanel is displayed just like figure 3.12.
In order to encourage the collaborative editing, it suggests the user to edit the article. A link
which connects to the ArticleEditPage of this article is provided. This panel is also used in the
ArticleHistoryPage in the same case.

Figure 3.12: Screenshot of NoContentPanel

3.2.4 Edit articles

ArticleEditPage is used to implement the article editing requirements mentioned in section
2.3.3. It consists of the TitleViewPanel (cf. figure 3.10) and the ContentEditPanel.

a. ContentEditPanel

Figure 3.13 shows the screenshot of the ContentEditPanel, which includes a preview area and
a ContentEditForm. In order to receive and process the user’s input, the ContentEditForm is
constituted of a text area and two buttons: preview and save. The text area is used to receive
the user’s input. At the beginning, it is initialized by the latest content through invoking the
getLatestContentByArticleId method. If the preview button is pressed, the renderHtml method
is called to translate the input content from Wikitext to HTML format. The result is shown in
the preview area. Whereas if the save button is pressed, the createRevision method is invoked
to save the input content as a new revision record in the database. Besides the content, the

27

Figure 3.13: Screenshot of ContentEditPanel

information of current article id, user id and current timestamp is also collected to set up a
revision record. Once a new revision is created, the latestRevisionId of the corresponding
article record is updated. Finally, the user will be redirected to the ArticleViewPage to view
their work.

3.2.5 Revision history

The RevisionHistoryPage is used to show the revision history of a specific article. This page
is composed of TitleViewPanel, ListView and NoContentPanel. The NoContentPanel is only
visible when this article doesn’t possess any revision.

The getRevisionTreeOfArticle method is invoked to acquire a tree of all revisions. It takes
advantage of the previousRevId of each revision record to connect the revisions in reverse
chronological order. Only the revisions that are not softly deleted are added to the tree.
Afterwards, a Wicket ListView component is applied to show the result list. Concretely, the
revision’s creation time and its author are listed. The creation time is rendered as a link
connecting to the ArticleViewPage to display the content of the specific revision. Figure 3.14
shows the revision history of the article “Germany”. RevisionHistoryPage gives the user an
opportunity to view all the previous revisions. While through other portals, the user always
accesses the latest revision.

28

Figure 3.14: Screenshot of revision history of the article “Germany”

3.2.6 Search articles

To fulfill the requirement of search function mentioned in section 2.3.5. While the
SearchPanel (cf. section 3.2.2) receives the user input keywords, SearchResultPage is used to
return the search results to the user.

a. SearchResultPage

Once SearchResultPage receives the keywords, the method searchByKeyword is called to
find the articles to match the keywords. The search algorithm looks up the article and revision
tables. If the keywords appear either in the title or in the most updated content, such an article
is regarded as the matching one and returned to the user. If no article satisfies the matching
conditions, a feedback information is shown. Whereas if some articles are found, the results
are showed through a Wicket ListView. The title of each article is rendered as a link which
connects to its corresponding ArticleViewPage.

3.2.7 Create articles

ArticleAddPage is developed to take care of the first step of article creation mentioned in
section 2.3.6. It contains two forms: ArticleAddForm and FeedbackForm. At the beginning,
only the ArticleAddForm is visible, which is used to get the input title. Once the title is
submitted, the checkExistenceOfArticleTitle method is called. The task of this method is to
query the database and check whether the input title already exists. According to the check
results, four different situations could happen. Then the FeedbackForm is rendered to show
the check result and lead the user to the next step.

The first situation indicates the title doesn’t exist. If the user confirms the title, a new article
record with this title is created and saved in the database. Then the user is redirected to the
ArticleEditPage to continue with the content. The second situation indicates that the title
exists, but there is no revision belongs to it. The user can choose to add the first revision of
this article. The third situation indicates the title exists and at least one revision belongs to it.

29

The user can choose to view the existing contents. The fourth situation indicates the article
with this title is softly deleted for some reasons. It cannot be viewed or edited for the user
temporarily.

3.2.8 Access control

a. Registration

RegistrationPage contains a RegistrationForm with four text fields to receive the user
information. The normal text fields are used to receive the username and email address. while
the password text fields are used to receive the password and confirm password. the password
text field is different from the normal one. The input in the password text field is presented as
dots instead of the real characters to guard against peep. Moreover, the password text field is
reset every time when it is rendered.

To ensure the inputs conform the predefined conditions specified in section 2.3.8, I set up five
validators for the input fields. According to its validation rule, each validator can filter out the
unsuitable input and report the associated error. Figure 3.15 summarizes the input fields and
their corresponding validators. The customized validators, which are the UsernameValidator
and the EmailValidator, are used to check whether the input username and email address
already exist in the database. EmailAddressValidator is assigned to the email field to check
whether the input fits the format of email address. StringValidator is assigned to password
field to guarantee the length of password is longer than six characters.
EqualPasswordInputValidator is assigned to the confirm password field to check whether the
confirm password is the same as the password.

Figure 3.15: Summary of the input fields and their corresponding validators

30

Once the inputs satisfy all the validation rules, they can be submitted. The program first sends
an email to the email address offered by the user. If the email is sent successfully, the user
data are saved in the database. The sending email function is implemented by using JavaMail
(javax.mail) API [20] as the following steps:

1. Instantiate a SenderAuthenticator to provide the authentication information;
2. Configure the parameters of SMTP server;
3. Create a session with the information of SMTP server and authentication information

to sign in the sender email account;
4. Instantiate a multipurpose internet mail extensions (MIME) message to set up a

concrete email message, including subject, content, date, sender address, sender name,
and the email address of recipient;

5. Send email with the MIME message.

b. Authentication

In Wicket, the access control for several pages or components is implemented in two steps:
authentication and authorization. In my design, the first step is to authenticate whether the
user has registered in the application. The second step is to authorize the user to access the
ArticleEditPage and the ArticleAddPage according to his role.

The authentication process is realized through LoginPage. Since LoginPage is the public area
of a website that always opens to users. It should be implemented as a Wicket stateless page,
which means it is independent of the user session. The statelessness of LoginPage brings
about several benefits, such as improving user experience, saving resources and avoiding
security weakness [5]. In particular, LoginPage requires the user to input his username and
password. Similar to the RegistrationPage, the password field also has a StringValidator to
make sure the password is longer than six characters.

The username and password are checked in the authenticate method in LoginSession, which is
an instantiation of Wicket AuthenticatedWebSession. In the authenticate method, the
getUserByUsername method is called to retrieve a user record against the username. If no
record is found or the password is not matched, the LoginPage is sent back with the indication
of failure reasons. Otherwise, if a record is found and the password is matched, the user is
authenticated successfully. After that, a new user session is created and the user information is
stored in it. The user is in the stateful circumstance, which means the user's information and
behavior can be stored in the session and the stored information is available in the whole
session. If the user wants to access the protected pages, it is not enough to only pass the
authentication. He needs to be authorized according to his role.

c. Authorization

In the next step, the authorization process is used to determine whether the user is allowed to
access the protected pages. To protect ArticleAddPage and ArticleEditPage from the
unauthorized accesses, they need to be distinguished from the unprotected pages. As a result
shown in figure 3.16, the ArticleAddPage and ArticleEditPage are inherited from the
ProtectedWebPage, while the other pages extend the BasePage directly.

31

Figure 3.16: Final page hierarchy of Sweble wiki engine

IAuthorizationStrategy interface is provided by Wicket to manage authorization in cross-
cutting concern mechanism. In particular, isInstantiationAuthorized method is responsible for
authorization on the component creation and isActionAuthorized method takes care of
authorization on specific actions on components after creation [6].

Every time the user requests a new page, the application first checks whether this page can be
created according to the isInstantiationAuthorized method in AuthorizationStrategy. If the
requested page is not the protected pages or the current session is signed in, the requested
pages can be instantiated. Otherwise, if the requested page extends ProtectedWebPage and the
current session is not signed in yet, the user is redirected to the LoginPage. Further, if the user
is signed in successfully, the original requested page is constructed. The concrete instantiation
authorization process is shown in figure 3.17.

According to the requirements in section 2.3.8, only the users who own the “editor” role or
senior have the privilege to edit or add wiki articles. Thus, after the requested page is
instantiated, it is necessary to check whether this page can be enabled to the user according to
his role. The role-based action authorization is conducted in isActionAuthorized method. If
the logged in user owns the “editor” role or even senior, he can access the ArticleAddPage or
ArticleEditPage and undertake the associated add or edit operation. Otherwise, an access
denied page is returned to the user.

d. Show authentication status and logout

UserPanel is added to the HeaderPanel to indicate the user’s authentication status (cf. figure
3.18). The UserPanel includes the “Register” and “Login” links, which connect to the
RegistrationPage and the LoginPage respectively. The panel also contains a username label
and a “Logout” link. The visibility of every component is controlled by overriding its
isVisible method. The “Register” and “Login” links are visible when the session is not signed
in, whereas the username and “Logout” link are visible after the user is logged in. Logout
functionality is realized by clicking the “Logout” link, which invalidates the session and
redirects the user to HomePage.

32

Figure 3.17: Authorization process of access control

33

(a)

(b)

Figure 3.18: Screenshot of HeaderPanel with UserPanel: (a) HeaderPanel before the user is
logged in; (b) HeaderPanel after the user is logged in

3.3 Concrete implementation of persistence layer
JOOQ is the ORM framework for persistence layer. In figure 2.2, Postgresql database [23] is
chosen as the external storage. All the Java classes in this layer are generated by using jOOQ
code generation, which process is presented in section 3.3.1. In addition, since jOOQ lacks
mechanism for transaction handling, Spring is used as the framework for transaction
management, which is introduced in the section 3.3.2.

3.3.1 JOOQ code generation with Maven

Firstly, I create a database schema of “sweble-wiki” by SQL script according to the
description in section 2.4.2. After it is to be executed by the Postgresql database, the sweble-
wiki database with article, revision and user tables are created.

The next step is to generate codes from database. By using the official jooq-codegen-maven
plugin, the source code generation is integrated in the Maven build process. It should be
noticed that the source code generation is only necessary when something is updated to the
database schema. Thus, the plugin should be put into a build profile so that the generation
only activates when it’s needed.

The configuration of jooq-codegen-maven plugin is shown in figure 3.19. Firstly, the <jdbc>
fragment are a set of JDBC connection parameters, including the database driver class, url,
username, and password. Secondly, the <generator> fragment is separated into three parts,
which are <database>, <generate> and <target> fragments. The <database> fragment tells
the code generator which database is used as the source. In my case, the database dialect is
Postgresql and the source includes all the tables under the public schema. The <generate>
fragment asks the generator to generate classes for database tables and records by default and
generate POJOs and DAOs in addition. The <target> fragment specifies the target package
and directory for the created classes. Finally, I also add the Postgresql database as the
dependency of this plugin although it is not shown in figure 3.19.

When the profile for this plugin is trigged, jooq analyzes the database schema and generates
classes to the target directory and package [21]. Figure 3.20 shows the generated Java classes
according to the configuration in figure 3.19. The classes of keys, public, sequences and

34

tables, which are under the org.sweble.wiki.db.persistence package contains the global
metadata of the database. Every table in database generates a table classes which are under the
tables sub-package. Further, record classes are used to map every record in the table. Like the
traditional ORM framework, the generated POJO and DAO classes can be used to facilitate
the data access process. All of these Java classes can be used by the DBServiceImpl class in
logic layer.

Figure 3.19: Configuration of jooq-codegen-maven plugin

35

Figure 3.20: The generated Java classes by jOOQ

3.3.2 Transaction management with Spring

JOOQ can only be used for SQL building and SQL execution, which means that jOOQ
doesn’t take charge of transaction handling, i.e. it doesn’t close connection, rollback or
commit transactions [9]. However, the transaction management is necessary if multiple data
sources are involved. One example of this situation is the connection pooling technology [27],
which dynamically opens and maintains database connections for the users of a web
application. It is commonly used to improve the database connection efficiency, which is also
applicable in Sweble wiki engine. Thus, the transaction management should be taken into
account in the situation that connection pooling technology is used.

Spring framework is chosen to manage transactions between Sweble wiki engine and the
database. In order to make jOOQ, Google Guice and Spring to work together, some
configuration steps are needed [13]. After the configuration, the jOOQ exception and Spring
DataAccessException are in the consistent exception hierarchy so that Spring framework can
manage the underlying SQL execution. Further, @Transactional annotation can be used in the
methods in DBServiceImpl to ensure the SQL statements in each method are executed in one
transaction, which means that either all of them are committed or all of them are rolled back.

36

Reference

[1] R. M. Adler. Coordination models for client/server. Computer, volume 28, Issue 4, Apr.
1995, pp.14-22.

[2] Apache Software Foundation. Apache Wicket. Available at: http://wicket.apache.org/,
accessed on 20th May 2014.

[3] D. J. Barrent. MediaWiki. O'Reilly, 2008.

[4] D. Barry and T. Stanienda. Solving the Java object storage problem. Computer, Nov. 1998,
pp. 33-40.

[5] A. D. Bene, C. Hufe, C. Kroemer, D. Bartl and P. Bor. Apache Wicket user guide –
reference documentation. Available at: http://wicket.apache.org/guide/guide/single.pdf,
accessed on 20th May 2014.

[6] M. Dashorst and E. Hillenius. Wicket in action. Manning, 2009.

[7] E. W. Dijkstra. A discipline of programming. Prentica Hall, Englewood Cliffs, NJ, 1976.

[8] Data Geekery GmbH. Java object oriented querying (jOOQ). Available at:
http://www.jooq.org/, accessed on 10th May 2014.

[9] Data Geekery GmbH. The jOOQ user manual. Available at:
http://www.jooq.org/doc/3.3/manual-pdf/jOOQ-manual-3.3.pdf, accessed on 20th May 2014.

[10] H. Dohrn and D. Riehle. Wom: An object model for Wikitext. Technical report CS-2011-
05, University of Erlangen, Dept. of Computer Science, July 2011.

[11] H. Dohrn and D. Riehle. Design and implementation of the Sweble Wikitext parser:
unlocking the structure within Wikipedia. Proceedings of the 7th International Symposium on
Wikis and Open Collaboration, 2011, Mountain View, CA, USA.

[12] H. Dohrn and D. Riehle. Design and implementation of wiki content transformations and
refactorings. Proceedings of the 9th International Symposium on Wikis and Open
Collaboration, 2013, Hong Kong.

[13] L. Eder. JOOQ-Spring-Guice-Example. Available at:
https://github.com/jOOQ/jOOQ/tree/master/jOOQ-examples/jOOQ-spring-guice-example,
accessed on 1st June 2014.

[14] T. Elrad, R. E. Filman and A. Bader, Aspect-oriented programming: introduction.
Communications of the ACM, Volume 44, No. 10, 2001.

[15] D. F. Ferraiolo, D. R. Kuhn and R. Chandramouli, Role-based access control. Artech
House, Inc. Norwood, MA, 2003.

37

[16] M. Fowler, D. Riche, M. Foemmel, E. Hieatt, R. Mee and R. Stafford. Patterns of
enterprise application architecture. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[17] M. Fowler. Inversion of control containers and the dependency injection pattern.
Available at: http://www.martinfowler.com/articles/injection.html, Jan. 2004, accessed on 30th

May 2014.

[18] M. Fowler. Domain specific languages. Addison-Wesley Professional, 2010.

[19] Google Development Group. Google Guice. Available at:
http://code.google.com/p/google-guice/, accessed on 20th May 2014.

[20] JavaMail API documentation. Available at: https://javamail.java.net/docs/api/, accessed
on 10th May 2014.

[21] P. Kainulainen. Using jOOQ with Spring: Code generation. Available at:
http://www.petrikainulainen.net/programming/jooq/using-jooq-with-spring-code-generation/,
11th, Jan. 2014, accessed on 1st, June 2014.

[22] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, Volume 15, No. 12, 1972.

[23] PostgresSQL Global Development Group. PostgreSQL. Available at:
http://www.postgresql.org/, accessed on 10th May 2014.

[24] D. R. Prasanna. Dependency injection. Manning Publications Co., 2009.

[25] Red Hat Developers. Hibernate. Available at: http://hibernate.org/, accessed on 20th May
2014.

[26] W. Richardson. Blogs, wikis, podcasts and other powerful Web tools for classrooms.
Thousand Oaks, CA: Corwin Press, 2006.

[27] SQL Server Connection Pooling (ADO.NET). Available at:
http://msdn.microsoft.com/en-us/library/8xx3tyca(v=vs.110).aspx, accessed on 1st June 2014.

[28] J. Tang. Improving the Wikipedia parser. Diplomarbeit, Friedrich-Alexander University
of Erlangen-Nuernberg, 2011.

[29] Transaction management. Available at:
http://docs.spring.io/spring/docs/2.0.8/reference/transaction.html, accessed on 1st June 2014.

[30] R. Vanbrabant. Google Guice: agile lightweight dependency injection framework.
Springer, 2008.

[31] I. Vaynberg. Apache Wicket cookbook. PACKT Publishing, 2011.

[32] C. Walls and R. Breidenbach. Spring in action. Manning Publications, 2005, pp. 10-150.

38

[33] J. A. West and M. L. West. Using wiki for online collaboration: the power of the read-
write web. San Francisco, CA: Jossey-Bass.

[34] Wikimedia Foundation. Wikipedia. Available at: http://en.wikipedia.org/wiki/Wikipedia,
accessed on 20th, May, 2014.

39

	Versicherung
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Original thesis goals

	2 Research Chapter
	2.1 Introduction
	2.2 Related Work
	2.2.1 Separation of concerns
	2.2.2 Client server architecture
	2.2.3 Three layer architecture
	2.2.4 Dependency injection
	2.2.5 Object-relational mapping
	2.2.6 Domain specific language
	2.2.7 Sweble Wikitext parser
	2.2.8 Wiki object model (WOM)

	2.3 Research Question
	2.3.1 Homepage
	2.3.2 View articles
	2.3.3 Edit articles
	2.3.4 Revision history
	2.3.5 Search articles
	2.3.6 Create articles
	2.3.7 Hard deletion and soft deletion
	2.3.8 Access control

	2.4 Research Approach
	2.4.1 Software architecture
	2.4.2 Implementation of presentation layer
	2.4.3 Implementation of logic layer
	2.4.4 Implementation of persistence layer
	2.4.5 Implementation of dependency injection

	2.5 Research Results
	2.6 Results Discussion
	2.6.1 Discussion on extensibility
	2.6.2 Discussion on content storage

	2.7 Conclusions

	3 Elaboration of Research Chapter
	3.1 Introduction of Software frameworks
	3.1.1 Introduction of Apache Wicket
	3.1.2 Introduction of jOOQ
	3.1.3 Introduction of Google Guice

	3.2 Concrete implementation of presentation layer
	3.2.1 Basic layout of Sweble wiki engine
	3.2.2 Homepage
	3.2.3 View articles
	3.2.4 Edit articles
	3.2.5 Revision history
	3.2.6 Search articles
	3.2.7 Create articles
	3.2.8 Access control

	3.3 Concrete implementation of persistence layer
	3.3.1 JOOQ code generation with Maven
	3.3.2 Transaction management with Spring

	Reference

