
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Ahmet Sitti

MASTER THESIS

Black-box investigation of the Ohloh

data source for OSS research

Submitted on 03.06.2014

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

2

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch

keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung

angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,

sind als solche gekennzeichnet.

Nürnberg, 03.06.2014

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license (CC-BY 3.0

Unported), see http://creativecommons.org/licenses/by/3.0/deed.en_US

Nürnberg, 03.06.2014

http://creativecommons.org/licenses/by/3.0/deed.en_US

3

Abstract

Thanks to the collected data by providers like Ohloh, research on open source software has

become both easier and popular. Ohloh is offering access to its database containing most of the

statistically relevant information collected by Ohloh from publicly available version control

systems. There have been many studies in open source software using the data provided by

Ohloh. In this study we wanted to investigate the reliability and validity of the data from Ohloh

by doing a black box investigation. We tested the reliability of the Ohloh data and found out

that the collected data was not reflecting the number of all open source projects due to method

changes by Ohloh. Therefore we decided to change the research question to “How to reduce

redundancy in R scripting by creating an interactive toolkit?”. For that purpose we develop a

generic, independent and extendable toolkit, that allows the user not to waste time on repetitive

tasks but rather concentrate himself on his research.

4

Summary - Zusammenfassung

Dank der von Ohloh gesammelten Daten über Open Source Projekte wird die Forschung in

diesem Bereich vereinfacht. Ohloh bietet Zugriff auf eine Datenbank, die einen Großteil der

von Ohloh gesammelten Informationen von öffentlich zugänglichen Versionskontrollsystemen

bereitstellt. Die Daten von Ohloh wurden in zahlreichen Studien über Open Source Software

eingesetzt. In dieser Studie wollten wir die Zuverlässigkeit und Gültigkeit der Daten von Ohloh

in einer Black-Box-Untersuchung testen. In unseren Tests fanden wir heraus, dass die Daten

nicht die Zahl aller Open Source-Projekte abbilden aufgrund von Änderungen der Sammel-

Methode von Ohloh. Daher entschieden wir uns, die Forschungs-Frage zu ändern in „Wie lässt

sich Redundanz beim Skripten in R durch die Erstellung eines interaktiven Toolkits reduzie-

ren?“ Dafür entwickeln wir ein generisches, interaktives, unabhängiges und erweiterbares Tool-

kit das dem Nutzer erlaubt, keine Zeit auf wiederkehrende Arbeiten zu verschwenden sondern

stattdessen sich auf die Forschung zu konzentrieren.

5

Keywords

 R,

 split,

 apply,

 combine,

 plyr,

 data processing,

 graphics,

 toolkit

6

List of Illustrations

Figure 1 Graph of total source lines of code [millions] (both approaches) 15

Figure 2 the Open Source Big Bang ... 16
Figure 3 Number of added lines of code (al1m) .. 19
Figure 4 Number of active contributors (activl1m) .. 20
Figure 5 Number of commits of all projects over time (commitsl1m) 20
Figure 6 Cumulative sum of added lines of code between 1995 and 2013 21

Figure 7 Cumulative sum of active contributors between 2000 and 2013 21
Figure 8 Cumulative sum of commits between 2000 and 2013 ... 22
Figure 9 Ohloh Database Schema .. 24
Figure 10 Teamsize vs Number of Projects with up to factor(s) contributors during a given

month. ... 27

Figure 11 Split-Apply-Combine work principle .. 29
Figure 12 Possibilities of splitting a 3D array .. 30
Figure 13 Data Warehouse and OLAP ... 31

Figure 14 Pivot/Rotate .. 32
Figure 15 OLAP Cube .. 33
Figure 16 Roll-up, Drill-down .. 34
Figure 17 Slice, Dice8 ... 34

Figure 18 Toolkit Components ... 37
Figure 19 fixed scales facet .. 38

Figure 20 free_x scales facet11 ... 39
Figure 21 free_y scales facet11 ... 39
Figure 22 Toolkit Architecture ... 41

Figure 23 ggplot2 example ... 45

Figure 24 ggplot2 with abline .. 45
Figure 25 Toolkit sequence diagram .. 47
Figure 26 data frame containing data generated by gfw.chart.testdata.generator class 50

Figure 27 Graph created using test data ... 50
Figure 28 Options for figure 29 .. 51

Figure 29 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code with no splitting. ... 52

Figure 30 Options for figure 31 .. 52
Figure 31 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code with prediction interval and confidence interval. 53
Figure 32 Options for figure 33 .. 53
Figure 33 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code split by licenses and version control systems. .. 54
Figure 34 Options for figure 35 .. 55

Figure 35 Shiny application using gfw.chart toolkit, logistic regression model showing

monthly added lines of code split by licenses ... 55
Figure 36 Options for figure 37 .. 56
Figure 37 Added lines of code over removed lines of code split by license with linear

regression line.x-axis and y-axis can be changed at will. .. 56

Figure 38 ... 58
Figure 39 ... 58
Figure 40 ... 60

Figure 41 ... 61
Figure 42 ... 62
Figure 43 ... 64

file:///C:/Private/Thesis/Thesis/Master%20Thesis%20Ahmet%20Sitti2.docx%23_Toc389091146
file:///C:/Private/Thesis/Thesis/Master%20Thesis%20Ahmet%20Sitti2.docx%23_Toc389091152

7

Figure 44 ... 64

Figure 45 ... 65

8

Glossary of Terms and Abbreviations

SAC : Split-Apply-Combine

SLoC: Source Lines of Code

OLAP: On Line Analytical Processing

R-OLAP: Relational OLAP

M-OLAP: Multidimensional OLAP

H-OLAP: Hybrid OLAP

API: Application Programming Interface

S-Curve: Sigmoidal curve

Goodness-of-fit: Wellness of a statistical model to the set of observations.

p-Value: Probability value for statistical tests.

Map-Reduce: Created by google it performs filtering and sorting in map operation and sum-

marizes the output of the map operation in reduce operation.

Black-box Testing: Testing without knowing the inner workings of an item.

9

Acknowledgements

I am particularly grateful to Prof.Dr.Dirk Riehle, Dr.Wolfgang Mauerer and Gottfried Hofmann

for their support in preparing this thesis.

10

Table of Contents

Contents
Glossary of Terms and Abbreviations .. 8

Table of Contents .. 10

1 Introduction ... 12

1.1 Research question ... 13

1.2 Delimitations ... 13

1.3 Importance and Contributions of this Theses ... 13

2 Related Works ... 15

3 Research .. 19

3.1 Introduction ... 19

3.2 Ohloh ... 23

3.3 Obtaining the data ... 24

3.4 Repetition of Experiments ... 26

3.5 The Toolkit ... 27

3.5.1 Toolkit Requirements .. 28

3.5.2 Split- Apply-Combine Strategy and Plyr Package .. 29

3.5.3 OLAP .. 30

3.5.4 OLAP vs Split-Apply-Combine .. 36

3.6 Toolkit Architecture ... 37

3.7 Toolkit Development ... 43

3.7.1 Plyr Package ... 43

3.7.2 ggplot2 Package ... 44

3.7.3 gfw.chart Component .. 46

3.7.4 gfw.chart.datasplitter Component .. 47

3.7.5 gfw.chart.testdata Component ... 48

3.7.6 Example Usage of the Toolkit: Shiny Integration .. 51

3.8 Traditional R scripting vs Toolkit usage ... 57

3.9 Conclusion and Future Plans ... 68

4 List of References .. 69

5 Appendixes .. 71

5.1 normalize.sql ... 72

5.2 ohlohdata.sql ... 72

5.3 gfw.chart Toolkit .. 76

5.4 R Topics Documented .. 77

11

5.4.1 gfw.chart .. 77

5.4.2 gfw.chart.model.processor.. 78

5.5 Parameter Classes: .. 78

5.5.1 gfw.chart.param .. 78

5.5.2 gfw.chart.param.aggregation .. 79

5.5.3 gfw.chart.param.dimension .. 79

5.5.4 gfw.chart.param.dimensions ... 80

5.5.5 gfw.chart.param.explanatory .. 80

5.5.6 gfw.chart.param.graph .. 81

5.5.7 gfw.chart.param.graphics .. 81

5.5.8 gfw.chart.param.facet ... 82

5.5.9 gfw.chart.param.model ... 82

5.6 Data Frame Splitter Classes: .. 83

5.6.1 gfw.chart.split .. 83

5.6.2 gfw.chart.splitset ... 83

5.6.3 gfw.chart.datasplitter .. 84

5.7 Test Data Generator Classes .. 85

5.7.1 gfw.chart.testdata ... 85

12

1 Introduction

In the last decade the number of open source projects has drastically increased and has become

a data set with huge amounts of information available for academic research concerning

software development. Although the amount of data has grown large, its storage is distributed

across many different repositories. In order to use this data in research for software

development, recently some companies such as Ohloh began collecting the distributed data

from all over the web and stored it in their data store in a structured manner so that the data

could be used for research purposes.

This thesis is about creating a black-box test for Ohloh data and verifying its reliability. Black-

box testing focuses on the external behavior of the system that is being tested. We started by

adjusting the existing code created by Carsten Kolassa to use the new database structure pro-

vided by Ohloh.net. After the adjustments had been made and we were able to analyze the data,

we found out that Ohloh had changed their crawling method and the interval for project changes

in the beginning of 2010. That meant data collected after the end of 2009 was not continuous

and it showed us that the data was not reliable enough to make predictions. Thus using that data

we could not validate the hypotheses by Riehle [5]. He built a mathematical model that de-

scribes the total growth of open source software development from January 1995 to December

2006. His model grows exponentially but should become at some point an S-curve.

Having determined in a timely manner that the data was not reliable, we decided to change the

research question and thus created a generic object oriented toolkit using R classes, which

makes it simple to create graphics based on parameters regardless of where the data comes from

and then embed those graphics into other projects.

Empirical studies use quantitative data and are interpreted by creating graphs. The goal of this

thesis is to provide a toolkit which reduces the overhead in statistical research and wraps re-

peating tasks so that researchers can save precious time and can focus on their research and

avoid getting lost in various statistical function implementation details.

None of the current tools can both efficiently manipulate data and generate graphics regardless

of the data source. Section 2 elaborates the currently available tools.

Data analysis requires the careful grouping and cleaning of data. It could need to be grouped,

aggregated, sorted etc. The common strategy for doing this is called split-apply-combine [9].

We are going to introduce this concept in later chapters in greater detail.

13

After the introduction section we will continue with related works in Section 2. We will go into

the details of our research method in Section 3. In Section 4 we will describe future plans and

present the conclusion. Section 5 contains references and appendixes.

1.1 Research question

During our research we found out that Ohloh had changed their crawling methods. Now they

do not crawl the entire internet for all open source projects anymore but rather add selected

projects into the Ohloh database.

Therefore there was no reason to further research the black-box testing of Ohloh data. Instead,

we decided to work on a toolkit that simplifies splitting, aggregating, applying statistical

functions to the data and visualizing the result similar to OLAP but going beyond it.

For that reason we changed our research question to: as “How to reduce redundancy in R

scripting by creating an interactive toolkit?”

The toolkit is intended to be used as a part of an application and not alone. Using just the toolkit

will process the data and generate graphs based on the dimensions which can be done also using

straight forward R scripting. The toolkit unfolds its benefit if it is being used as a part of an

application. For example we created a web based application using the toolkit. You can see the

examples in Section 3. The user can select the parameters and the rest is taken care of by the

toolkit. The user does not have to write a new script in order to process and create graphs based

on the selected parameter combinations.

To demonstrate it we created a scenario that compares the traditional ways of scripting to using

the toolkit and shows the advantages of the toolkit.

1.2 Delimitations

Due to the endless number of functions and their various implementation details we decided to

implement commonly used regression functions such as lm [1], glm [2], nls [3], arima [4] etc.

Although we implemented a limited number of functions the toolkit can be extended by adding

other functions to it. Although the toolkit supports creating confidence and prediction intervals,

not all functions support these features. Those ones which are not supported are omitted when

creating graphs and a warning message is shown to the user.

1.3 Importance and Contributions of this Theses

This work provides a toolkit which can be extended and reused in other statistical projects. The

toolkit makes it possible for them to generate graphs easily by wrapping existing functions such

14

as lm , glm , nls , arima etc. so that researchers save time in their research by not getting involved

with the implementation details.

15

2 Related Works

Our original research question was to do black-box testing on the current Ohloh data and test

and validate the integrity of the latest data from ohloh.net in order to update the results found

by Riehle.

In [5] it is shown, by processing the data using statistical methods that the total number of open

source projects and the total number of open source code was growing at an exponential rate.

He used a database snapshot from Ohloh containing data from roughly 1995 to December 2006.

Nothing in nature grows exponentially forever [6]. At the time when Riehle conducted his re-

search and published his paper the rate of growth was best described using an exponential

model. Using the latest snapshot of the data, researchers at the OSR group wanted to test

whether the model introduced by Riehle was becoming a sigmoid curve (S-Curve).

Figure 1 Graph of total source lines of code [millions] (both approaches)1

In “The Open Source Big Bang” [7] Riehle shows the relationship between the number of

open source projects and the number of committers using data served by Ohloh between 1995

1 http://dirkriehle.com/publications/2008-2/the-total-growth-of-open-source/

16

and 2008.

Figure 2 the Open Source Big Bang2

Gottfried Hofmann presents in his work [8] the total growth of source code licensed under two

distinct types of licenses. He also uses Ohloh data from 1995 to the end of 2007.

All of the previously mentioned research still require validation using the latest data provided

by Ohloh.

As we mentioned in the introduction section, we found out in a short time that the data served

by Ohloh was not continuously crawled and fell down abruptly by the end of 2009. Since our

goal was to test the Ohloh data we not only wanted to adjust the existing code by Carsten Ko-

lassa but also create a toolkit that combines processing data and generating graphics by reduc-

ing the complexity so the researcher can focus on his research and not on the details of manip-

ulating data and generating graphics.

In the following we briefly describe the packages and tools we examined throughout our re-

search that are related to our work.

There are numerous libraries and functions developed by researchers to perform data analysis

and plot the resulting data. The following section contains a list of tools and libraries we exam-

ined.

2 http://dirkriehle.com/2011/06/21/the-open-source-big-bang/

17

Data Manipulation Packages

plyr[9] package eliminates the use of loops to focus concentration on key components

of the computation. It operates similar to the map-reduce technique recently introduced

by Google. Each split piece of data is processed independently of each other and finally

put together. Another important aspect of plyr is that it can run its operations in parallel

on multiprocessor environments. This package provides the most efficient and simple

implementation of the split-apply-combine strategy.

reshape2 [10] package allows the flexible rearrangement and modification of data. Ba-

sically it is the predecessor of plyr package. Plyr is more memory-efficient and faster

than reshape2.

doBy [11] package essentially does the same as plyr package, though it lacks support

for parallel processing.

sqldf [12] package makes it possible to manipulate data frames using SQL statements

within the R environment.

Graphics Packages

There are a number of packages for generating graphics using R data manipulated by the afore-

mentioned R packages. ggplot2[13], rCharts[14], googleVis[15]. We will explain them briefly

as follows:

rCharts package is an object oriented toolkit which wraps around existing popular web

based charting libraries such as highcharts, nvd3, polychart, xCharts, Morris etc. It

doesn’t handle data processing.

ggplot2 package provides functions to create professional looking graphics in a few

lines of code. Its layered design allows us to add layers iteratively. It is composed of

independent components which can be combined as desired.

googleVis package is an interface between R environment and the google chart tools.

The google chart tools is a web library that can create graphics using html and java

script.

None of the tools above can both manipulate data and generate graphics at the same time.

After evaluating the aforementioned packages we decided to use the plyr package for the data

manipulation and the ggplot2 package for generating graphics in our toolkit.

18

Developed by Hadley Wickham plyr is a data manipulation package that implements the split-

apply-combine strategy to process the data. Everything plyr does can also be done using R

functions but the good thing about the plyr package is that it simplifies the work. Usually you

need to write quite a few lines of code to achieve the same result which you can do using plyr

in just a couple of lines. It is able to deal with various types of data such as data frames, lists,

matrices, and arrays. plyr supports all the functions in base R and other R packages. Although

we use the plyr package in our toolkit, the toolkit can also handle data without grouping it.

ggplot2 is a generic graphics package again developed by Hadley Wickham that creates

graphics using layers. A layer consists of data, statistical transformations, mappings, and posi-

tion adjustment information. ggplot2 can create layer based graphics. Each layer may have its

own data, statistical transformations, geometric objects and position adjustments.

 Both plyr and ggplot2 will be explained in greater detail in Section 3.

19

3 Research

3.1 Introduction

Ohloh collects statistical information about open source projects from open source repositories

and stores it in its database. Using the latest data provided by Ohloh we plotted the graphs below

showing the behavior of monthly number of added lines of code, monthly number of contribu-

tors and monthly number of commits between 1995 and 2013.

Summing the total added lines of code for all projects in the new database we get the following

graph:

Figure 3 Number of added lines of code (al1m)

By the end of 2009 the monthly activities fall while they have grown roughly exponentially

up until then.

20

The situation is similar with total number of commits and active contributors:

Figure 4 Number of active contributors (activl1m)

Figure 5 Number of commits of all projects over time (commitsl1m)

21

When we apply our new toolkit to the total lines of code (and Active contributors or commits)

for each month we see an S-curve is emerging:

Figure 6 Cumulative sum of added lines of code between 1995 and 2013

Figure 7 Cumulative sum of active contributors between 2000 and 2013

22

Figure 8 Cumulative sum of commits between 2000 and 2013

If the latest Ohloh data was correct, then we would have found out that the growth of open

source software development has reached a maximum in 2009 and the total amount of open

source code developed would have been an S-Curve.

Yet the sudden fall in Figure 4 and Figure 5 at the end of 2009 looked suspicious so that we

decided to do a black-box testing using the latest Ohloh data.

When we started working on this thesis, we wanted to use the code developed by Carsten Ko-

lassa for our testing. He was using data from the old Ohloh database which only had data until

2008.

Since the existing code developed by Carsten Kolassa used the Ohloh data we had to extract

the data from Ohloh database again using ohloh-api and adjust his code to the new database

structure.

We stored the extracted data in a local postgre database. Figure 9 in section “Obtaining the data”

shows the schema of the local database. The reason for getting the data into the local data

storage was, that although we could query Ohloh database we couldn’t optimize it or modify

23

the structure of the data at will. Additionally, Ohloh restricts the maximum number of API re-

quest per day so the local storage in the database also works as an offline cache.

To extract the data from Ohloh and store the results in the database, we used the R-script “Co-

che” developed by Gottfried Hofmann [16].

The script developed by Carsten Kolassa was just a straight forward R script which had to be

adjusted every time if the data was changed. Instead of using one long script, we decided to

create a toolkit, which is modular and generic so that it would need only minimal adjustments

if the data was changed.

While adjusting Carsten Kolassa’s code we noticed that the sudden fall was too extreme and

therefore we decided to get in touch with Ohloh and investigate the reason for this steep fall.

We were told by Ohloh that they had changed their crawling methods. Now they are not crawl-

ing the entire internet for all open source projects but rather add selected projects into the data-

base.

Having gotten this information from Ohloh, there was no reason to conduct further research on

the black-box testing of Ohloh data. Instead, we decided to work on a toolkit that simplifies

splitting, aggregating, applying statistical functions to the data and visualizing the result similar

to OLAP but going beyond it.

3.2 Ohloh

We use the database of the open source analytics firm Ohloh Inc. [17]. Ohloh.net is a free and

open projects directory that provides various software metrics about both active and idle pro-

jects such as commits per month, added lines of code, removed lines of code, language etc. The

collected data is stored in relational databases and is publicly available through an API provided

by Ohloh[18]. The collected data contains not only high-level information such as project name

and author name but also low-level information such as every change to a project.

Based on the aforementioned metrics, Ohloh creates statistics about a project, which provides

a basis to do research with the data as well as allowing companies to make informed decisions

concerning whether to invest in free software or not.

Ohloh.net grew rapidly. It consisted of 99,977 people with 9,824 projects in 32 languages and

58 documented open source licenses in December 2007. In October 2009 there were already

399,334 people with 413,261 projects in 77 languages and 253 open-source licenses.

24

As of 6 July 2013, the site lists 590,310 projects, and 538,806 source control repositories3.

Ohloh is owned and operated by Black Duck Software.

Ohloh created an API and has made it public since 2007. Using the API we created a local

database containing a snapshot of the Ohloh database filled with the relevant data required in

our work.

Ohloh-api is a webservice which allows you to query the Ohloh database by using an API key.

The API key is provided by Ohloh upon registration at their website. The number of daily trans-

actions is limited to 100K maximum. There is a comprehensive documentation at the ohloh-api

website explaining all the details of the API usage and database structure of the Ohloh database.

3.3 Obtaining the data

Figure 9 Ohloh Database Schema

3 http://en.wikipedia.org/wiki/Ohloh

25

De-normalization

Before we could start using the snapshot of the Ohloh database, we de-normalized the data for

performance reasons. A project may have more than one language used in it. Since we were

interested in the main programming language used in the projects, we created an additional field

called main_language_id in the activity_facts table and populated it with the main_language_id

from analysis table. The scripts used to create this new field in the activity_facts table and

populate it with the main_language_id from the analysis table can be found in the appendixes.

26

Creating ohlohdata table and Metrics Employed

The data we used contains the following metrics:

Column Description

dates: Activity month

projected: Id of the project

teamsizes: Twelve month contributor count

al1m: SLoC of added lines in the past month

rl1m: SLoC of removed lines in the past month

commitsl1m: Number of commits in the past month

activl1m: Number of active commiters in the past month

vcs: Version control system

language: Name of the main programming language

license: Name of the license

projectname: Name of the project

id: Auto incrementing primary key

We created a script called ohlohdata.sql which can be found in the appendixes. The script

gathers relevant information from the snapshot ohloh-api database and merges them into the

ohlohdata table.

3.4 Repetition of Experiments

As mentioned before we started working on this thesis by adjusting the code written by Car-

sten Kolassa. We were able to generate a few plots using Carsten Kolassa’s code. At some

point we couldn’t move forward since the old data used by the code employed many support-

ing tables which were extracted and created by Carsten Kolassa and were not documented

well enough, so we could not recreate them. Figure 10 shows an example we created using

Carsten Kolassa’s code.

27

Figure 10 Teamsize vs Number of Projects with up to factor(s) contributors during a given

month.

The steep decline in Figure 10 looked even more suspicious than in the graphs shown in section

xx. Having noticed this we contacted Ohloh for more information and clarification. Ohloh told

us that by the end of 2009 they had changed their parsing and crawling strategy. Before, they

used to crawl the web and add all new repositories they could find into their database. Now they

are parsing and crawling rather selected projects of interest. Therefore we see a sudden fall in

Figure 10.

3.5 The Toolkit

Empirical research uses collected data or observations in order to answer research questions.

Our toolkit helps researchers to search and extract patterns within empirical data by pro-

cessing and visualizing it.

In the following section we describe the requirements for the toolkit and clarify concepts such

as split-apply-combine and OLAP. Finally we will go into the details of the toolkit develop-

ment and toolkit architecture.

28

3.5.1 Toolkit Requirements

The toolkit should be developed using object oriented techniques so that it can be reusable and

generic. By generic, we mean no code repetition and independent from the passed parameters.

Instructions are passed into the toolkit using parameters. Data is passed into the toolkit as R

data frame.

Requirements:

 Apply pre-defined statistical functions to data

it should be able to apply statistical functions such as regression functions, aggregation

functions.

 Possibility to extend the toolkit with more statistical functions

it should allow the user to add more functions without modifying the whole toolkit.

 Plotting the pure data and / or the results of the statistical methods

it should be able to use not only aggregated but also data without aggregation.

 Unified data structure for plotting

it should produce a common data structure after processing data so that the plots look

consistent.

 Optional aggregation of data

it should allow the user whether to aggregate the data or use it without aggregation.

 Independently assign dimensions to axis for plotting

The explanatory and response columns should be exchangeable and be propagated

throughout the process, for both statistical analysis and plotting.

 Object oriented parameter handling for simple integration into GUIs/web frontends

 Possibility to split the data by given dimensions and apply the statistics to the resulting

chunks of data

it should be able to apply statistical functions such as sum, mean, avg, lm, glm , nlm to

grouped data

 Independent of data source

it should allow to use any type of data source provided that the data is in a data frame.

 Generic

it should be internally generic so that it would execute for any type of data and dimen-

sion.

29

3.5.2 Split- Apply-Combine Strategy and Plyr Package

Most of the time R is used to modify data frames, matrixes, and data tables with grouped data.

The "apply" functions (apply, sapply, lapply) are a very powerful suite of tools for looping

through data and returning the combined results. Although these functions are very useful,

they can be difficult to work with. Returned data must be adjusted and processed again most

of the time to have it in the expected format.

Hadley Wickham developed a package called plyr which makes the aforementioned tasks easy

to code and fast performing by implementing a SAC (Split Apply Combine) strategy. The

SAC approach breaks up the data into smaller pieces, processes those pieces individually and

finally puts them back together. This strategy is well known and there are functions within R

you can implement this strategy with. What Hadley Wickham did is unifying the abstraction

to the existing functions.

From the documentation:

"plyr is a set of tools that solves a common set of problems: you need to break a big problem

down into manageable pieces, operate on each piece and then put all the pieces back together.

It's already possible to do this with split and the apply functions, but plyr just makes it all a bit

easier..."

Split

Apply

Combine

Figure 11 Split-Apply-Combine work principle

The “plyr” package eliminates the use of loops and concentrates on key components of the

computation. It operates similar to the map-reduce technique recently introduced by Google.

Each split piece of data is being processed independently of each other. Therefore it cannot be

used with overlapping data.

The plyr package greatly simplifies many lines of code for a computation into one line of code

where the details are taken care of.

Data

Chunk Chunk Chunk Chunk Chunk Chunk

Chunk Chunk Chunk Chunk Chunk Chunk

30

Figure 12 Possibilities of splitting a 3D array4

3.5.3 OLAP

Today's businesses are faced with a flood of data of various types, from many different sources.

These huge databases consist of valuable data for the company. This data can be used to better

position the company in the market to uncover problem areas or to optimize its production

processes. Information is becoming an increasingly important factor for companies. Only those

who will have current, detailed and meaningful information can create a better long term

position for their company.

In particular, management can perform better analysis and provide better predictions for the

future, and thus also make better business decisions with accurate data. Therefore, it is crucial

for the success of the company to have an efficient data analysis system and to integrate it into

the company's IT structure. However, the task to filter out useful information from the huge

amount of data is very complex.

4 Figure from [11], page 7

31

Figure 13 Data Warehouse and OLAP5

OLAP (OnLine Analytic Processing) helps us to explore, visualize and model large amounts

of complex data using a multidimensional data model. It simply deals with mountains of data

by splitting, slicing, and aggregating the data into manageable results, where you can see a

tendency or a pattern and make your decision based on that summarized information. OLAP’s

data model is usually described as a cube since it consists of multidimensional data.

OLAP technologies are divided into three categories on the basis of the used server-side data

management:

1. R-OLAP (Relational OLAP)

Relational data is stored in the core data warehouse, using either star or snowflake schemas.

R-OLAP accesses this relational data, and prepares the requested multidimensional results.

ROLAP is sometimes referred to as a focused version of MOLAP.

2. M-OLAP (Multidimensional OLAP)

Multidimensional On-Line Analytical Processing (MOLAP) uses proprietary database

systems, which are optimized for multidimensional data. The data is stored in data marts and

5 http://www.elml.uzh.ch/preview/fois/DSSII/en/html/lu2_learningObject2.html

32

by doing so the flexibility increases and the response time gets faster.

3. H-OLAP (Hybrid OLAP)

Hybrid OLAP combines the advantages of both R-OLAP and M-OLAP. When the user pushes

forward through drill-down navigation into more detailed data areas, relational data is used.

Due to ever increasing data volumes, the queries can lead to bad performance. For this reason,

the data is distributed company-wide into smaller data pools, containing data for a specific

department or subject (data marts).

OLAP Operations:

1. Pivoting/Rotating

this operation rotates the cube by swapping the dimensions on its own axis and allows

grouping data with different dimensions. The data can be analyzed from different an-

gle.

Figure 14 Pivot/Rotate6

6 http://www.cis.drexel.edu/faculty/song/courses/info%20607/tutorial_OLAP/operations.htm

33

Figure 15 OLAP Cube7

2. Roll-up , drill-down and drill-across

 Roll-up aggregates the current aggregation one level upwards on one or more

dimensions. Drill-down is the opposite of the roll-up operation. Drill-across combines

OLAP cubes on a common dimensions in both OLAP cubes.

7 http://www.elml.uzh.ch/preview/fois/DSSII/en/html/lu2_learningObject3.html

34

Figure 16 Roll-up, Drill-down8

3. Slice and dice

Individual views on multidimensional data cubes can be achieved by Slice and Dice. A

slice is the view of a part of the cube achieved by holding one dimension, resulting in a

sub-cube.

Dice are considered partial cubes for specific combinations and thus corresponds to ad-

hoc requests. The Dice operation results in a sub-cube selecting one or more dimensions.

Figure 17 Slice, Dice8

8 http://www.cis.drexel.edu/faculty/song/courses/info%20607/tutorial_OLAP/operations.htm

35

Data mining is a further analysis approach and aims to use, relationship patterns, such as

regularities and irregularities in the underlying data to identify models and map them by

logical or functional relationship contexts.

Data mining allows you to carry out analysis and correlations of the data. The analysis in data

mining is determined by questions such as ' What is the trend in sales of groups of countries?'

It leads to the identification and mapping of relationship contexts in the form of a model. The

analysis is being done using the following methods:

1. Clustering

aims to collect the underlying data into groups based on their characteristic values.

2. Classification

assigns the underlying data set to classes.

3. Regression

is used to determine the relationship between individual characteristics of the underly-

ing data set.

4. Dependency

identifies relationships between different forms of characteristics of the underlying da-

taset.

5. Deviation

determines whether the characteristics in the underlying data differ distinctively from

other values of the characteristics.

The main difference between OLAP and data mining is that OLAP is an analysis method,

which allows the user to summaries data and generate rich calculations, where data mining is

a method that discovers hidden patterns in data and it operates at the detail level and not at a

summary level.

Data mining and OLAP can complement each other. Where OLAP reveals the problems with

sales of products, data mining could be used to find out the customers’ habits in a particular

region.

36

3.5.4 OLAP vs Split-Apply-Combine

Although both OLAP and SAC have similar operations, SAC is better if you want not only to

group, aggregate or select the data but also apply statistical functions to the data. In OLAP

you can split and aggregate the data but the result will be still a multidimensional dataset

which in turn has to be processed again in R using SAC techniques in order to apply statistical

functions.

Our toolkit uses the plyr package and also provides the capabilities of an OLAP tool9 in the R

environment. The toolkit processes data, runs statistics on the data and returns the plots in one

step directly in the R environment.

OLAP uses pre-calculated cubes and it needs a special environment with specialized data

structures to store that data. The data has to be prepared before it can be analyzed. For

example using R-OLAP you need to change your database schema to either the snowflake or

star schema10.

 Using S-A-C in R we can run statistics not just on the whole dataset but on subsets based on

dimensions. We can easily select, aggregate, put data into relation, and apply statistics on

chunks of data. This is all achieved simultaneously, interactively, and on-the-fly.

9 Although not all of the OLAP operations can be found in the toolkit they can be implemented with little effort.
10 Using the new Ohloh data we had de-normalized the data a little due to better performance.

37

3.6 Toolkit Architecture

The toolkit is composed of parameter classes, the gfw.chart class and the gfw.chart.model.pro-

cessor class.

Parameters

Executor

Model Processor

Parameters
List

Dimension
Parameters

Aggregation
Parameters

Model
Parameters

Facet
Parameters

Graphics
Parameters

Explanatory
Parameters

Initialize

creategraph

preparedata makegraph

lm processor nls processor glm processor
arima

processor

Figure 18 Toolkit Components

The execution process is being illustrated as a sequence diagram in Figure 25.

Parameter classes hold the instructions about what the toolkit should do with the data during

execution. They derive from the gfw.chart.param base class. There are five parameter classes

which derive from the gfw.chart.param class and are as follows:

 gfw.chart.param.dimensions

Holds dimensions and Boolean values that determine whether confidence intervals and

prediction intervals should be used or not.

38

 gfw.chart.param.aggregation

Holds the aggregation columns and aggregation function which are implemented in the

first pass of data preparation within preparedata method in gfw.chart class.

 gfw.chart.param.model

Hold the model function and model formula. Additional parameters can be used due to

(…) in class initialization.

 gfw.chart.param.facet

Holds the facet function and facet scale values. The Facet function splits up the data

by one or more variables in subsets and plots them together. By default the axis scales

are fixed but by using the facet scale value it can be changed to one of the following

values: free, free_x, free_y. free indicates that each plot will have its own scales.

Figure 19 fixed scales facet11

11 http://www.cookbook-r.com/Graphs/Facets_(ggplot2)

39

free_x allows each plot to have its own x-axis values and free_y does the same for the

y-axis.

Figure 20 free_x scales facet11

Figure 21 free_y scales facet11

40

 gfw.chart.param.explanatory

Holds the column name which will be used on x-axis if there is no aggregating column.

 gfw.chart.param.graph

Holds list of gfw.chart.param.graphic objects which define the layers of ggplot function.

First layer has parameters for ggplot function itself. Additional parameters are the layers

of the plot and each layer may have its own “aes”, “data” and “legend” parameters.

The “Executor “ gfw.chart class uses the parameters from “Parameters” in order to extract the

needed data from the data frame, aggregate it, pass it to the gfw.chart.model.processor class for

statistical processing and finally pass it to the graphing function for graph generation. When all

the data for all dimensions is processed, the result is a list of graphs ready for plotting.

As mentioned before the gfw.chart.model.processor class in “Model Processor” gets the pre-

processed data from gfw.chart class and applies statistical functions to the data based on the

parameters and returns it back to the gfw.chart class for graphing.

The object oriented manner of the toolkit is limited to the capacity of object oriented develop-

ment in the R environment. It does not support the full range of OOP features and therefore it

does not support the full strength of OOP-based design patterns.

As an example limitation of R’s object oriented programming capabilities let us consider inter-

faces. In R you do not have interfaces which makes it difficult to implement most of the OOP-

Design Patterns.

In R a class can be declared an abstract class by using the keyword “VIRTUAL” in the definition

of the class. This keyword makes the class abstract and it cannot be instantiated.

The toolkit builds on top of two packages plyr and ggplot are discussed further in the following

section.

For aforementioned reasons we could not utilize design patterns as they were supposed to be

but rather we ended up with simplified pseudo patterns.

One of the most important requirements of the toolkit is that it should be independent of data

source and generic so that the toolkit need not be changed when the data structure, column

names, and etc. change. The data might come from a relational database server or from a text

file or OLAP database etc. As long as the data is in data frame format the toolkit will be able to

handle the data. The toolkit is generic since the only thing that needs to be done to adjust the

41

parameters. Unless you want to add more functions to the toolkit and need to make modifica-

tions in the graphing function, there is no need to modify the source code. The toolkit kit con-

verts the parameters internally to generic names and uses them.

We also utilized a concept called split-apply-combine by using the plyr package. The Split Ap-

ply Combine Strategy is a well-known strategy to process statistical data. SAC allows you to

analyze data based on groups defined by dimensions. Instead of working with a huge chunk of

data at once, the data is being split into smaller chunks and is processed independently from

other chunks. Finally the processed chunks are recombined and returned. This way you can

process multidimensional data very efficiently.

Display /
Graph Creation Layer

Statistics Layer Aggregation Layer

Execution Process

Multiple Graph
Display Engine

Graphing Engine

Display
Options

Statistics
Calculation

Data Access

Statistics Options
Aggregation

Options

Split-Apply-Combine

Figure 22 Toolkit Architecture

Figure 22 shows the conceptual architecture of the toolkit. The green box shows the execution

of the toolkit using parameters. The yellow boxes are the individual layers where the data gets

selected, aggregated and statistically analyzed. The blue boxes represent the methods and their

parameters of the toolkit.

42

The toolkit takes list of parameters that contain the instructions about what the toolkit should

perform with the data. The execution process goes through the layers and applies the instruc-

tions using the corresponding parameters. The toolkit eliminates unnecessary data by selecting

data based on dimensions and aggregation parameters from the input data. The selected data is

aggregated in the aggregation layer. The data can also be used without aggregating it. Then it is

passed to the statistics layer where statistical functions are applied to the data. Finally the graph

creation layer gets the processed data and creates a list of graphs. The resulting list of graphs

are displayed by the multiple graph display engine.

3.7 Toolkit Development

In this section we will explain our methodology and go into the implementation details of this

work. Before we started the development of the toolkit we decided to develop using object

oriented design for the sake of maintainability and simplicity.

The toolkit consist of three main components: gfw.chart, gfw.chart.datasplitter and gfw.testdata.

As mentioned earlier in Related Works the toolkit uses two packages, plyr and ggplot. Both plyr

and ggplot2 packages were developed by Hadley Wickham and will be explained as follows.

3.7.1 Plyr Package

plyr simplifies modifying data in R. The following shows an example of how plyr makes the

same task much simpler than using the traditional way in R. Below is an example from the plyr

paper, which shows how plyr eliminates the complexity of the code and neatly uses all the data

types and corresponding labels of the data in just two lines of code.

Complex code12

SPLIT/APPLY
agg.cor<-tapply(1:nrow(orangedf), orangedf$Tree, FUN=function(x) cor(or-
angedf$age[x], orangedf$circumference[x]))
agg.cov<-tapply(1:nrow(orangedf), orangedf$Tree, FUN=function(x) cov(or-
angedf$age[x], orangedf$circumference[x]))
Convert arrays to tables, then dfs
agg.cor<-(as.data.frame(as.table(agg.cor)))
agg.cov<-(as.data.frame(as.table(agg.cov)))
COMBINE
chart <-merge(agg.cov, agg.cor, by=c("Var1"))
colnames(chart) <-c("TREE", "COVARIANCE", "CORRELATION")

Plyr code

library(plyr)
Define 2 new functions to be used with ddply
ncor<-function(newdf) {chart <-cor(newdf[, 2],newdf[, 3]); return(chart)}
ncov<-function(newdf) {chart <-cov(newdf[, 2],newdf[, 3]); return(chart)}
chart <-ddply(odf, .(Tree), c("ncov", "ncor"))
colnames(chart) <-c("TREE", "COVARIANCE", "CORRELATION")

plyr function names are not trivial names and have a meaning. For example dlply means the

functions takes a data frame as parameter, processes it and returns data in a list. ldply does the

opposite, it takes a list as parameter and returns a data frame.

All together there are 12 functions in plyr package as shown below13:

12 [9], page 10,13
13 [9] , page 5

44

 a*ply(.data, .margins, .fun, ..., .progress = "none")

 d*ply(.data, .variables, .fun, ..., .progress = "none")

 l*ply(.data, .fun, ..., .progress = "none")

 m*ply(.data, .fun = NULL, ..., .expand = TRUE, .progress = "none", .inform =

FALSE, .print = FALSE, .parallel = FALSE, .paropts = NULL)

“*” can be an a (array), l (list) or d (data frame)

Last but not least plyr functions are able to run in parallel mode. The setting .parallel =

TRUE runs any plyr function in parallel.

 data frame list array nothing

data frame ddply ldply adply d_ply

list dlply llply alply l_ply

array daply laply aaply a_ply

Table 1 plyr naming conventions

For plotting, the underscore (_) (a_ply, d_ply etc.) option is useful. It will process the data and

then throw away the output instead of keeping it in the R environment.

3.7.2 ggplot2 Package

Developed by Hadley Wickham, ggplot2’s popularity has grown in a very short time among

users because of its simple layer based usage. A ggplot2 graph can be stored in a variable and

additional features can be added to it just by using the (+) operator. That makes it very flexible

and comfortable for the user. Below are a couple of examples created using the ggplot2 pack-

age.

Example.

p<-ggplot(subset(subset(alldatwithLicenseLanguage,dates%in%unique(
alldatwithLicenseLanguage$dates)[c(20,40,60,80,100,120,140)]), teamsizes%in%
c(1,5,20,50,100,200,400)),aes(x=dates, y=al1m))
p<-p + facet_wrap(~teamsizes, scales="free_y")
p<-p + geom_point(colour="red",size=2)
p<-p + geom_smooth(aes(x=dates, y=al1m), method="loess",colour="blue")
p<-p + geom_point(aes(x=dates, y=al1m), size=1.1)
show(p)

45

Creates the following graph:

Figure 23 ggplot2 example

The data must be in data frame format in order to use it with ggplot2. Graphs are created by

layers. By using layers it is possible to put different types of graphs on top of each other. Each

layer may have a different data source, different type of geometric object, different mappings

and different positioning.

If we wanted to add a line as in Figure 23 that is specified by slope and intercept, then we can

simply add to the previous example the following line:

p <- p + geom_abline()

Figure 24 ggplot2 with abline

46

3.7.3 gfw.chart Component

 gfw.chart is essentially an object oriented interpreter which takes class based parameters as

instructions and generates graphs based on those parameters.

The toolkit is written in R and is object oriented. We designed the toolkit so that the user can

generate graphs just by supplying parameters, without knowing the fine details of the imple-

mentation.

gfw.chart class derives from gfw.chart.base class which has two main properties; data, a data

frame holding the data being processed and params, an object collection holding the parameter

objects needed to process the data. Parameter classes derive from the gfw.chart.param class.

There are 9 parameters:

 gfw.chart.param.dimensions: Class for a vector of objects of type gfw.chart.param.di-

mension.

 gfw.chart.param.dimension: Class containing the dimension and Boolean parameters for

confidence/prediction intervals.

 gfw.chart.param.model: Class containing the model function and formula.

 gfw.chart.param.graphics: Class containing a list of gfw.chart.param.graph objects.

 gfw.chart.param.graph: Class containing the information of a layer in the graph.

 gfw.chart.param.aggregation: Class containing the aggregation column, aggregation

row and aggregation function.

 gfw.chart.param.facet: Class containing the facet function, facet scale and facet formula.

 gfw.chart.param.exploratory: Class containing the column name for the x-axis in case

no aggregation column is defined.

gfw.chart class makes use of these aforementioned parameters in order to decide internally what

to do. After supplying the parameters and the data source the user calls the creategraph() method

of the gfw.chart class and receives a list of graphs as a result. The user then can plot the graphs

in his preferred environment like in shiny server or in R.

Calling the creategraph() method of gfw.chart class triggers a chain reaction. The data frame is

prepared per dimension before the graph is even created. First the preparedata() method is called

to prepare the data frame and aggregate it depending on the aggregation parameter. The

gfw.chart.model.processor class is used to apply the model functions and formula to the data

47

frame and is returned by the preparedata() method. gfw.chart.model.processor class does not

return the model itself but it extracts relevant data for plotting.

Figure 25 Toolkit sequence diagram

After these two phases of data preparation the makegraph() method is called to create the graph

and add it to the “plotlist”. “plotlist” is a list which holds the generated graphs and is used as

the return value of the creategraph() method.

3.7.4 gfw.chart.datasplitter Component

The gfw.chart component is able to group and process the data but for ease of use it is desirable

to have the ability to split the data on the fly by a group of values. For this purpose, the

gfw.char.datasplitter class splits a data frame based on groups of grouping values. As an exam-

ple we can use the data from the Ohloh database. In our data we have version control systems

such as “CvsRepository”, “SvnRepository”, “HgnRepository”, “GitRepository”, “BzrRe-

poistory”, SvnSyncRepository”. Instead of grouping by all of the available repositories, we may

want to see the data in two groups such as “vcsgroup1” composed of “CvsRepository”, “SvnRe-

48

pository”, and “HgnRepository” and “vcsgroup2” composed of “GitRepository”, “BzrRe-

poistory”, and SvnSyncRepository”. We call the new dimension “vcstype”. In this case if we

generate graphs grouped by “vcstype” the toolkit will generate two plots instead of six.

Below is an example of splitting data described as above.

Example.

vcssplit1 <- gfw.chart.split(splitvalue = "vcsgroup1", setvalues =
c("CvsRepository", "SvnRe-pository", "HgRepository"))
vcssplit2 <- gfw.chart.split(splitvalue = "vcsgroup2", setvalues =
c("GitRepository", "BzrRe-pository", "SvnSyncRepository"))

languagesplit1 <- gfw.chart.split(splitvalue = "languagegroup1", setvalues =
c("c", "cpp"))
languagesplit2 <- gfw.chart.split(splitvalue = "languagegroup2", setvalues =
c("java", "python", "php"))

splitset1 <- gfw.chart.splitset(splitcolumn = "vcstype", datacolumn =
"vcs", splitset = list(vcssplit1, vcssplit2))
splitset2 <- gfw.chart.splitset(splitcolumn = "languagetype", datacolumn =
"language", splitset = list(languagesplit1, languagesplit2))

datasplitter <- gfw.chart.datasplitter(splitsets = list(splitset1, splitset2))
df <- datasplitter$getSplitData(alldatwithLicenseLanguage)

gfw.chart.datasplitter uses parameters which contain the instructions concerning what it has to

do. These parameters are as follows:

 gfw.chart.param.split

required to define the new column and values to be grouped.

 gfw.chart.param.splitset

list of splits of type gfw.chart.param.split

3.7.5 gfw.chart.testdata Component

The toolkit has also a data generator class called gfw.chart.testdata. Similar to gfw.chart class

parameters, it also uses parameters to generate test data in data frame format. The parameters

are composed of a list of options which are as follows:

 “dimensions”: List of default columns

 “columns”: List of columns which are going to be used to name and populate the column

with data.

 “columnindex”: Index of the column in the dimensions list.

 “columntype”:Type of the column such as “date”, “character”.

49

 “columnname”: Name of the column. Used to rename the column in the dimensions list

using “columnindex”.

 “columnfactor”: Boolean value to decide whether the column is a factor or not.

 “values”: list of values to fill the column with.

 “filldata”: fill the corresponding column with “columnindex” in “fillwith” list with data

as per the values in the values list.

 “numberofrows”:total number of rows of the new data frame

 “saveas”: optional parameter to save the data frame on hard drive for later use.

The following code shows an example usage of gfw.testdata class:

Example.

source("gfw.chart.testdata.R")
paramsSSlogis = list(dimensions = as.list(paste("var", 1:10, sep = "")), columns =
list(list(columnindex = 1, columntype = "date",
 columnname = "time", columnfactor = F, values =
as.Date(c("2000-01-01"))), list(columnindex = 2,
 columntype = "character", columnname = "license",
 columnfactor = T, values = c("academic", "gpl"),
filldata = list(columnindex = 2,
 fillwith = list(expression(100/(2 + exp((12500
-as.numeric(df$time))/200)) + rnorm(length(df$al1m))),
 expression(1/(1002 + exp((3 –
as.numeric(df$time))/4)) + rnorm(length(df$al1m)))))),
 list(columnindex = 3, columntype = "integer", columnname
= "al1m", columnfactor = F,
 values = c(1000:2000))), numberofrows = 100,
 saveas = "df.dat")
generator <- gfw.chart.testdata(params = paramsSSlogis)
df <- generator$getdataframe()

50

The example above generates the following data frame

Figure 26 data frame containing data generated by gfw.chart.testdata.generator class

If we create a graph using the test data it looks like as follows:

Figure 27 Graph created using test data

51

3.7.6 Example Usage of the Toolkit:
Shiny Integration

The toolkit is designed to be used generi-

cally and independently of data sources.

To demonstrate this, we developed a shiny

application 14 that uses the toolkit to pro-

cess and visualize the data in a web envi-

ronment.

Shiny is an R package that allows us to

develop web based R applications and

makes user interaction simple over the

web. We will not go into the details of the

shiny package since it is beyond the scope

of this work.

The application sources can be found in

the appendices. In the following pages we

display a couple of screenshots from the application showing different features and use cases

of the toolkit.

Figure 28 shows a linear regression graph of the sum of added lines of code between 2001

and 2003 over all projects. The Shiny user interface allows the user to select various options

such prediction interval, confidence interval and parameter confidence interval.

If the data has multiple columns they can simply be selected as x- or y-axis and the graph will

be shown using the selected options. Even if the database structure or the dimensions change

there is no need to change the toolkit itself but just the parameters.

14 The application was developed by Gottfried Hofmann.

Figure 28 Options for figure 29

52

Figure 29 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code with prediction interval and confidence interval and no splitting.

The data can be split by dimensions if

there is factorial data in one or more of

the columns. This way comparison is

made easy.

Figure 30 Options for figure 31

53

Figure 31 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code with prediction interval and confidence interval, split by licenses.

The shiny demo application uses the facet

options provided by ggplot2 which allow

for splitting of at most two dimensions.

Internally the toolkit provides a plotting

function for an arbitrary number of

dimensions.

Figure 32 Options for figure 33

54

Figure 33 Shiny application using gfw.chart toolkit, linear regression model showing monthly

added lines of code split by licenses and version control systems.

55

No regression curve is shown for

“academic” because no model could be

fit. Confidence intervals are selected but

not shown because they could not be

computed, either. Errors are being

omitted in the results.

Figure 35 Shiny application using gfw.chart toolkit, logistic regression model showing

monthly added lines of code split by licenses

Figure 34 Options for figure 35

56

X- and Y-axis can be set arbitrarily. In this

example added lines of code are plotted

over removed lines of code split by license

type.

Figure 36 Options for figure 37

Figure 37 Added lines of code over removed lines of code split by licenses with linear

regression line. X-axis and y-axis can be changed at will.

3.8 Traditional R scripting vs Toolkit usage

For the demonstration we used a subset of the Ohloh data snapshot. The structure of the data

is as follows:

 dates month based date of when the project was recorded

 teamsizes team size measured as the number of committers who have carried out

 a commit since the Project start to the snapshot date.

 projectid Project id number

 al1m Number of added lines of code in the last month.

 rl1m Number of removed lines of code in the last month.

 commitsl1m Number of committed lines of code in the last month.

 activl1m Number of committers who have performed at least one commit in

 the last month

 license Project license

 language Project language

 vcs Version control system

 name Project name

The data contains data for a subset of projects between 1995 and 2010. The list of projects se-

lected in the data is as follows:

 Apache HTTP Server

 OpenSSL

 U-Boot

 Linux Kernel

 Mozilla Firefox

 QEMU

 JBoss Tools

 Git

 jQuery

 Samba

 Eclipse Linux Tools

 Project bootstrap

58

 JDepend plugin for Eclipse

 Filesync plugin for Eclipse

Using the shiny application in conjunction with the toolkit the following options generate the graph

in Figure 39.

Figure 38 Options for figure 39

Figure 39 monthly total added lines of code per version control systems

59

The example above shows the linear regression of version control systems over added lines of

code between 1995 and 2010.

If we want to create this graph using traditional R scripting then we can create a script as fol-

lows:

library(plyr)
library(ggplot2)
load("databyprojects19952010.Rdata") # load the subsetdat
dat<- subsetdat
selectcolumns <- c()
selectcolumns <- c('al1m','license','time')

Make a copy of data frame
data <- dat[, selectcolumns]

modeldata <- ddply(data,.(license,time),.parallel=FALSE, function(df)
sum(df$al1m))

names(modeldata)[which(colnames(modeldata) == "V1")] <- c(paste("al1m", sep = ""))

resultdf <- ddply(modeldata,.(license),function(df){
 model<-lm(al1m~time,data=df)
 df$fitted<-fitted(model)
 predicted<-predict(model, interval = "prediction")
 df$plwr<-predicted[,c("lwr")]
 df$pupr<-predicted[,c("upr")]

 confidence<-predict(model,interval = "confidence")
 df$pclwr<-confidence[,c("lwr")]
 df$pcupr<-confidence[,c("upr")]

 df$clwr<-confint(model)[[1]] + as.numeric(df$time)*con-
fint(model)[[2]]
 df$cupr<-confint(model)[[3]] + as.numeric(df$time)*con-
fint(model)[[4]]
 return(df)
 })
p<-ggplot(data=resultdf,aes(x=time,y=al1m))+geom_point(aes(x = time, y =
al1m))+facet_grid(license ~.,scales="free_y")
if (("pclwr" %in% colnames(resultdf)) && ("pcupr" %in% colnames(resultdf))) {
 p <- p + geom_ribbon(aes(x = time, ymin = pclwr, ymax = pcupr), colour =
"gray30", alpha = 0.3)
}
if (("clwr" %in% colnames(resultdf)) && ("cupr" %in% colnames(resultdf))) {
 p <- p + geom_ribbon(aes(x = time, ymin = clwr, ymax = cupr), colour =
"gray20", alpha = 0.2)
}
if (("plwr" %in% colnames(resultdf)) && ("pupr" %in% colnames(resultdf))) {
 p <- p + geom_ribbon(aes(x = time, ymin = plwr, ymax = pupr), colour =
"gray50", alpha = 0.2)
}
if (("fitted" %in% colnames(resultdf))) {
 p <- p + geom_line(aes(x = time, y = fitted))
}
Show graph
show(p)

Example Code 1, Script creating graph for added lines of code per month split by language

60

The code above generates the following graph:

Figure 40 monthly total added lines of code per version control systems (traditional)

Suppoes we wanted to show two groups of grouped licenses as follows:

 Licensegroup1

o apache_2

o BSD-3-Clause

o bsd

o gpl

o eclipse

 Licensegroup2

o gpl

o GNU_General_Public_License_v2_0_only

o lgpl

o mit

o gpl3

o mozilla_public_1_1

o Public_Domain

61

In case of using the toolkit, only three lines of code have to be added:

Example.
licensesplit1<-gfw.chart.param.split(splitvalue="licensegroup1",
setvalues=c('apache_2','BSD-3-Clause','bsd','gpl','eclipse'))
licensesplit2<-gfw.chart.param.split(splitvalue="licensegroup2",
setvalues=c('gpl','GNU_General_Public_License_v2_0_on-
ly','lgpl','mit','gpl3','mozilla_public_1_1','Public_Domain'))
splitset3<-gfw.chart.param.splitset(splitcolumn="licensetype",

datacolumn="license",splitset=list(licensesplit1,licensesplit2))

When the UI is used, one additional line of code would be needed to make the new set availa-

ble from the UI:

"License Type" = c("licensetype"),

Note that the process of adding new sets is streamlined and simple. Now the user can select

the option and generate the graph. The result can be seen as follows:

Figure 41 Options for figure 42

62

Figure 42 total monthly added lines of code per licensetypes

In case of adding the changes to the custom script, the code had to be changed as follows, the

changes are marked in yellow background:

library(plyr)
library(ggplot2)
load("databyprojects19952010.Rdata")
dat<- subsetdat
selectcolumns <- c()
selectcolumns <- c('al1m','license','time')

Make a copy of data frame
data <- dat[, selectcolumns]

#Create a new column for splitting and assign split values
setvalues<-c('apache_2','BSD-3-Clause','bsd','gpl','eclipse')
for(j in 1:length(setvalues))
{
 setvalue<-setvalues[j]
 #print(setvalue)
 data[which(data['license']==setvalue),'licensetype']<-'licensegroup1'
}
setvalues2<-c('gpl','GNU_General_Public_License_v2_0_on-
ly','lgpl','mit','gpl3','mozilla_public_1_1','Public_Domain')
for(j in 1:length(setvalues2))
{
 setvalue<-setvalues2[j]
 #print(setvalue)
 data[which(data['license']==setvalue),'licensetype']<-'licensegroup2'
}
selectcolumns <- c()
selectcolumns <- c('al1m','licensetype','time')

63

modeldata <- ddply(data,.(licensetype,time),.parallel=FALSE, function(df)
sum(df$al1m))
names(modeldata)[which(colnames(modeldata) == "V1")] <- c(paste("al1m", sep = ""))
resultdf <- ddply(modeldata,.(licensetype),function(df){

 model<-lm(al1m~time,data=df)

 df$fitted<-fitted(model)

 predicted<-predict(model, interval = "prediction")

 df$plwr<-predicted[,c("lwr")]

 df$pupr<-predicted[,c("upr")]

 confidence<-predict(model,interval = "confidence")

 df$pclwr<-confidence[,c("lwr")]

 df$pcupr<-confidence[,c("upr")]

 df$clwr<-confint(model)[[1]] + as.numeric(df$time)*con-

fint(model)[[2]]

 df$cupr<-confint(model)[[3]] + as.numeric(df$time)*con-

fint(model)[[4]]

 return(df)

 })

p<-ggplot(data=resultdf,aes(x=time,y=al1m))+geom_point(aes(x = time, y =

al1m))+facet_grid(licensetype ~.,scales="free_y")

if (("pclwr" %in% colnames(resultdf)) && ("pcupr" %in% colnames(resultdf))) {

 p <- p + geom_ribbon(aes(x = time, ymin = pclwr, ymax = pcupr), colour =

"gray30", alpha = 0.3)

}

if (("clwr" %in% colnames(resultdf)) && ("cupr" %in% colnames(resultdf))) {

 p <- p + geom_ribbon(aes(x = time, ymin = clwr, ymax = cupr), colour =

"gray20", alpha = 0.2)

}

if (("plwr" %in% colnames(resultdf)) && ("pupr" %in% colnames(resultdf))) {

 p <- p + geom_ribbon(aes(x = time, ymin = plwr, ymax = pupr), colour =

"gray50", alpha = 0.2)

}

if (("fitted" %in% colnames(resultdf))) {

 p <- p + geom_line(aes(x = time, y = fitted))

}

Show graph

show(p)

Example Code 2, Script creating graph for monthly total added lines of code per licensetype

64

The code above generates the same graph as the previous one from the toolkit

Figure 43 total monthly added lines of code per licensetypes

If we would want to create a graph for number of active committers per month split by lan-

guage type and run a non-linear regression with logistic model formula, then the following

figure shows the settings for the toolkit:

Figure 44 Options for figure 45

65

Which generates the following graph:

Figure 45 Non-linear regression with logistic formula on number of active committers per

month split by language type.

To generate the graph from the example above by scripting it in R, using example code 1 re-

quires many changes. This would happen every time if you want to use different statistical

methods or change the split sets:

dat<- subsetdat

setvalues<-c("c", "cpp")

for(j in 1:length(setvalues))

{

 setvalue<-setvalues[j]

 #print(setvalue)

 dat[which(dat['language']==setvalue),'languagetype']<-'languagegroup1'

}

setvalues2<-c("java", "python", "php")

for(j in 1:length(setvalues2))

{

 setvalue<-setvalues2[j]

 #print(setvalue)

 dat[which(dat['language']==setvalue),'languagetype']<-'languagegroup2'

}

66

selectcolumns <- c()

selectcolumns <- c('activl1m','languagetype','time')

Make a copy of data frame

data <- dat[, selectcolumns]

modeldata <- ddply(data,.(languagetype,time), function(df) sum(df$activl1m))

names(modeldata)[which(colnames(modeldata) == "V1")] <- c(paste("activl1m", sep =

""))

resultdf <- ddply(modeldata,.(languagetype),function(df){

 df$time<-as.numeric(df$time)

try(model<-nls(activl1m~SSlogis(time, Asym, xmid,

scal),data=df))

 try(df$fitted<-fitted(model))

df$time<-as.Date(df$time)

 return(df)

 })

p<-ggplot(data=resultdf,aes(x=time,y=activl1m))+geom_point(aes(x = time,

y = activl1m))+facet_grid(languagetype ~.,scales="free_y")

if (("fitted" %in% colnames(resultdf))) {

 p <- p + geom_line(aes(x = time, y = fitted))

}

p<-p+geom_smooth()

show(p)

Example Code 3, Script creating graph for monthly total active number of contributors per languagetype

The examples above show that even simple tasks that require only the setting of a few param-

eters in the toolkit require a lot of work when scripting them by hand. Changing parameters in

hand-written scripts is error-prone. When using the toolkit parameters are changed in one

place only.

Another advantage of the toolkit is that if it is being used in an application like a shiny UI the

parameters can be interactively changed and the result will be shown immediately.

When working with the traditional R-approach, a lot of code duplication is happening as well

while the toolkit automates repetitious parts.

67

When using new statistical functions, they have to be added to the toolkit only once so when

they are needed a second time the code does not need to be written again. Also note that some

statistical functions in R require subtle changes in the data structures which is a source of er-

ror when scripting the traditional way15. By setting up the rules for handling the data struc-

tures for a specific function in the toolkit the user has to take care of this only once.

For the exploratory part of the research process the toolkit in combination with an application

like a shiny UI simplifies the work of the researcher.

15 In the example code 3 the data column nls() is working on is coerced to numeric which is a requirement of

nls() but not of lm().

68

3.9 Conclusion and Future Plans

The current implementation of the toolkit uses the plyr package for preparing data and a con-

siderable drawback is that it requires data to be loaded into the R environment before it can be

processed. In case of a big amount of data it will be better to use the dplyr package [19] devel-

oped by Hadley Wickham.

The dplyr package, built on top of the plyr package, allows for the processing of large amounts

of data by fast and efficient filtering, selecting, reconstructing, and aggregating. It doesn’t load

the entire data first from the data source before processing it but rather it builds a query before

querying the data source and loads only the required data.

Currently the framework is computing the statistics but the results are only used for visualiza-

tion purposes. One might need to use more information from the model such as goodness-of-

Fit, p-values etc. For this the gfw.chart.model.processor class could be modified to return a

model object instead of data extracted from the model.

69

4 List of References

[1] http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html

[2] http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html

[3] http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html

[4] http://stat.ethz.ch/R-manual/R-patched/library/stats/html/arima.html

[5] Deshpande, Amit; Riehle, Dirk (2008): The Total Growth of Open Source. In Barbara Russo,

Ernesto Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi (Eds.): Open Source Develop-

ment, Communities and Quality, vol. 275. Boston, MA: Springer US (IFIP – The International

Federation for Information Processing), pp. 197–209.

[6] Wächst Freie Software exponentiell? http://keimform.de/2008/waechst-freie-software-ex-

ponentiell/

[7] The Open Source Big Bang. http://dirkriehle.com/2011/06/21/the-open-source-big-bang/

[8] Gottfried Hofmann, Dirk Riehle, Carsten Kolassa, Wolfgang Mauerer. “A Dual Model of

Open Source License Growth.” In Proceedings of the 9th International Conference on Open

Source Systems (OSS 2013). Springer Verlag, 2013.

[9] Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of

Statistical Software, 40(1), 1-29. URL http://www.jstatsoft.org/v40/i01/.

[10] Hadley Wickham (2007). Reshaping Data with the reshape Package. Journal of Statistical

Software, 21(12), 1-20. URL http://www.jstatsoft.org/v21/i12/.

[11] http://cran.r-project.org/web/packages/doBy/index.html

[12] G. Grothendieck (2014): sqldf: Perform SQL Selects on R Data Frames. Available online

at http://CRAN.R-project.org/package=sqldf.

[13] Wickham, Hadley (2009): ggplot2. Elegant graphics for data analysis. Dordrecht [u.a.]:

Springer (Use R!).

[14] Vaidyanathan,R. (2014), rCharts: Interactive Charts using Polycharts.js, R package

version 0.4.2, github.com/ramnathv/rCharts.

[15] Markus Gesmann and Diego de Castillo. Using the Google Visualisation API with R. The

R Journal, 3(2):40-44, December 2011.

[16] “Coche” script http://github.com/GottfriedHofmann/coche

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/nls.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/arima.html
http://keimform.de/2008/waechst-freie-software-exponentiell/
http://keimform.de/2008/waechst-freie-software-exponentiell/
http://dirkriehle.com/2011/06/21/the-open-source-big-bang/
http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v21/i12/
http://cran.r-project.org/web/packages/doBy/index.html
http://cran.r-project.org/package=sqldf
http://github.com/GottfriedHofmann/coche

70

[17] Ohloh, Inc. See http://www.ohloh.net.

[18] Ohloh, Inc. Ohloh API. See http://www.ohloh.net/api.

[19] Hadley Wickham and Romain Francois (2014): dplyr: dplyr: a grammar of data manipula-

tion. Available online at http://CRAN.R-project.org/package=dplyr.

[20] Arafat, O., & Riehle, D. (2009, January). The commit size distribution of open source soft-

ware. In System Sciences, 2009. HICSS'09. 42nd Hawaii International Conference on (pp. 1-

8). IEEE.

[21] John Verzani, "simpleR", in PDF, http://cran.r-project.org/doc/contrib/Verzani-Sim-

pleR.pdf

[22] Thomas Lumley, "R Fundamentals and Programming Techniques",http://faculty.washing-

ton.edu/tlumley/Rcourse/R-fundamentals.pdf

[23] Google R Style Guide, http://google-styleguide.googlecode.com/svn/trunk/google-r-

style.html

[24] An Introduction to R, http://cran.r-project.org/doc/manuals/R-intro.html

[25] Data Manipulation with R, Phil Spector, Springer

[26] Software for Data Analysis, John Chambers, Springer

[27] R Cookbook, Paul Teetor,O'Reilly

[28] R Graphics Cookbook, Winston Chang, O'Reilly

[29] Learning R A Step-by-Step Function Guide to Data Analysis, Richard Cotton, O'Reilly

[30] R in a Nutshell, Joseph Adler, O'Reilly

[31] The Art of R Programming, Norman Matloff, O'Reilly

[32] Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.

[33] Martin, R. C. (2000). Design principles and design patterns. Object Mentor, 1-34.

[34] Colyer, A., Rashid, A., & Blair, G. (2004). On the separation of concerns in program fam-

ilies. Technical report, Computing Department, Lancaster University.

[35] G. Gorjanc. Working with unknown values: the gdata package. R News, 7(1):24–26, 2007.

URL http://CRAN.R-project.org/doc/Rnews/Rnews_2007-1.pdf.

[36] Beeley, Chris (2013): Web Application with R using Shiny. Birmingham: Packt Publishing.

[37] Self-Starting Nls Gompertz Growth Mode. http://stat.ethz.ch/R-manual/R-patched/li-

brary/stats/html/SSgompertz.html

http://www.ohloh.net/
http://www.ohloh.net/api
http://cran.r-project.org/package=dplyr
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/SSgompertz.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/SSgompertz.html

71

5 Appendixes

1. Normalize.sql script for normalizing main_language_id field in activitiy_facts table

2. Ohlohdata.sql script for creating ohlohdata table

3. Toolkit Documentation

72

5.1 normalize.sql

-- Function: normalize()

-- DROP FUNCTION normalize();

CREATE OR REPLACE FUNCTION normalize()

 RETURNS void AS

$BODY$

DECLARE

 r RECORD;

BEGIN

 FOR r IN select a.*,f.id afid from analysis a, activity_facts f where

a.id=f.analysis_id LOOP

 update activity_facts

set main_language_id=r.main_language_id

where id=r.afid;

 END LOOP;

 RETURN;

END;

$BODY$

 LANGUAGE plpgsql VOLATILE

 COST 100;

ALTER FUNCTION normalize()

OWNER TO asitti;

5.2 ohlohdata.sql

-- Function: ohlohdata(date, date)

-- DROP FUNCTION ohlohdata(date, date);

CREATE OR REPLACE FUNCTION ohlohdata(startdate date, enddate date)

 RETURNS integer AS

$BODY$

DECLARE retval integer;

DECLARE row RECORD;

DECLARE dates text[][];

DECLARE startyear integer;

DECLARE endyear integer;

DECLARE startmonth integer;

DECLARE endmonth integer;

DECLARE startday integer;

73

DECLARE endday integer;

DECLARE startperiod text;

DECLARE endperiod text;

DECLARE datestart text;

DECLARE dateend text;

DECLARE counter integer;

BEGIN

--DROP TABLE IF EXISTS ohlohdata;

CREATE TABLE IF NOT EXISTS ohlohdata(

dates date,

projectid integer,

teamsizes integer,

al1m integer,

rl1m integer,

commitsl1m integer,

activl1m integer,

vcs varchar(100),

language varchar(100),

license varchar(100),

projectname varchar(100)

);

startyear:=(SELECT date_part('year',startdate));

startmonth:=(SELECT date_part('month',startdate));

startday:=(SELECT date_part('day',startdate));

endyear:=(SELECT date_part('year',enddate));

endmonth:=(SELECT date_part('month',enddate));

endday:=(SELECT date_part('month',enddate));

FOR i IN startyear..endyear

LOOP

Raise notice 'Year : %',i;

startperiod:=i;

endperiod:=i+1;

IF (i=1) THEN

datestart:=CAST(startperiod as text)|| '-' || CAST(startmonth as text) || '-' ||

CAST(startday as text);

74

ELSE

datestart:=CAST(startperiod as text)|| '-01-01';

END IF;

IF (i=endyear) THEN

 dateend:=CAST(endperiod as text)|| '-' || CAST(endmonth as text) || '-' ||

CAST(endday as text);

ELSE

 dateend:=CAST(endperiod as text)|| '-12-31';

END IF;

FOR row IN EXECUTE

'SELECT DISTINCT

 AF.MONTH AS DATES,

AN.twelve_month_contributor_count AS TEAMSIZES,

AF.PROJECT_ID AS PID,

AF.CODE_ADDED AS AL1M,

AF.CODE_REMOVED AS RL1M,

AF.COMMITS AS COMMITSL1M,

AF.CONTRIBUTORS AS ACTIVL1M,

R.TYPE AS VCS,

LN.NAME AS LANGUAGE,

LI.NAME AS LICENSE,

P.NAME as PROJECTNAME

FROM

ACTIVITY_FACTS AS AF

INNER JOIN ANALYSIS AN

ON AF.analysis_id=AN.id

INNER JOIN PROJECTS AS P

ON

AF.PROJECT_ID=P.ID

LEFT OUTER JOIN

ENLISTMENTS EN

ON

AF.PROJECT_ID=EN.PROJECT_ID

LEFT OUTER JOIN REPOSITORIES AS R

ON EN.REPOSITORY_ID=R.ID

LEFT OUTER JOIN

PROJECT_LICENSES AS PL

ON

AF.PROJECT_ID=PL.PROJECT_ID

75

LEFT OUTER JOIN

LICENSES AS LI

ON

PL.LICENSE_ID= LI.ID

LEFT OUTER JOIN

LANGUAGES AS LN

ON

AF.MAIN_LANGUAGE_ID=LN.ID

WHERE

AF.MONTH BETWEEN ''' || datestart || ''' AND ''' || dateend || '''

ORDER BY AF.MONTH'

LOOP

counter:=counter+1;

INSERT INTO ohlohdata

 (dates, projectid,teamsizes, al1m, rl1m, commitsl1m, activl1m, vcs, "lan-

guage", license, projectname)

VALUES

 (row.dates,row.pid,row.teamsizes ,row.al1m ,row.rl1m ,row.commitsl1m ,row.ac-

tivl1m , row.vcs,row.language, row.license, row.projectname);

IF (counter=500) THEN

 COMMIT;

 counter:=0;

END IF;

END LOOP;

END LOOP;

RETURN 0;

END

$BODY$

 LANGUAGE plpgsql VOLATILE

 COST 100;

ALTER FUNCTION ohlohdata(date, date)

 OWNER TO asitti;

76

5.3 gfw.chart Toolkit

Version 1.0

Date 03.06.2014

Title Toolkit for Graphics Generation

Author Ahmet Sitti

Maintainer Ahmet Sitti<ahmet.sitti@studium.uni-erlangen.de>

Description A toolkit for generating graphics using parameters

Depends R(>=2.10.0),

Imports plyr, ggplot2, zoo

System Requirements

License GPL-2

77

5.4 R Topics Documented

5.4.1 gfw.chart

Description

Main class in gfw.chart toolkit to generate the graphics

Usage

gfw.chart(data=df,params=params)

Arguments

 data data frame containing unprocessed raw data

 params list of parameters

Details

 Base class used by gfw.chart and gfw.model.factory classes.

Example

params<-list(aggregation=aggregation,dimensions=dimensions,

 facet=facet,graphics=graphics,model=model,timeseries=timeseries,

 explanatory=explanatory,coordinatesystem=coordinatesystem)

gc <-gfw.chart(data=df,params=params)

plotlist<-gc$creategraph()

show(plotlist[[1]])

78

5.4.2 gfw.chart.model.processor

Description

Used by gfw.chart class in order to process the data frame per dimension based on model

parameter.

Usage gfw.chart.model.processor(data=data,params=params,dindex=dindex)

Arguments

 data preprocessed data

 params list of instruction parameters

 dindex integer index of current dimension

Details

gfw.chart.model. processor class implements the instructions given by

gfw.chart.param.model class. The gfw.chart.model.processor class chooses what model

was given by gfw.chart.param.model class and implements the instructions on the data

frame passed by a reference. The data processed by gfw.chart.model. processor is a per-

dimension-preprocessed (can be aggregated) data frame.

Example

 model. processor <-gfw.chart.model.processor(data=data,params=params,

dindex=1)

modeldata<-factory$getdata()

5.5 Parameter Classes:

5.5.1 gfw.chart.param

Description

Base class for parameter classes.

Usage

Arguments

 data preprocessed data

 params list of instruction parameters

 dindex integer index of current dimension

Details

All parameter classes derive from gfw.chart.param class and inherit the “use” property.

This property allows the toolkit to determine whether to use the parameter or not.

Example

model_processor <-gfw.chart.model.processor(data=data,params=params,

dindex=1)

modeldata<- model_processor$getdata()

79

5.5.2 gfw.chart.param.aggregation

Description

Parameter class for aggregation instructions.

Usage gfw.chart.param.aggregation(useaggregate,aggregatecolumn,

aggregaterow,aggegatefunction= aggegatefunction)

Arguments

useaggregate turn aggregation on / off. Can be either TRUE or FALSE. Default

is TRUE.

aggregatecolumn Character column name for aggregation. It is used both for

aggregating the data and in facet formula selection. Default value

is NA.

aggregaterow Character row name for aggregation. It is used both for

aggregating the data and in facet formula selection. Default value

is NA.

Details

Example

aggregation<-gfw.chart.param.aggregation(aggregatecolumn=NA,

aggregaterow="license",aggregatefunction=sum)

5.5.3 gfw.chart.param.dimension

Description

Parameter class for a dimension which is used in gfw.chart.param.dimensions class.

Usage gfw.chart.param.dimension(dimension=dimension,confidenceinterval=

confidenceinterval,confidencevarinterval=confidencevarinterval,predictioninterval=

confidencevarinterval)

Arguments

 dimension Name of the dimension.

confidenceinterval Boolean confidence interval. Decides whether confidence

interval should be shown or not for this dimension.

confidencevarinterval Boolean confidence interval. Decides whether confidence

interval should be shown or not for this dimension.

80

predictioninterval Boolean prediction interval. Decides whether prediction interval

should be shown or not for this dimension.

Details

Example

dimension<-gfw.chart.param.dimension(dimension="xx",confidenceinterval=T,

 confidencevarinterval=T,predictioninterval=T)

5.5.4 gfw.chart.param.dimensions

Description

Parameter class for dimensions.

Usage gfw.chart.param.dimensions(dimensions=list(dimension))

Arguments

 dimensions List of dimension type of gfw.chart.param.dimension.

Details

Example

dimension1<-gfw.chart.param.dimension(dimension="xx",confidenceinterval=T,

 confidencevarinterval=T,predictioninterval=T)

dimension2<-gfw.chart.param.dimension(dimension="yy",confidenceinterval=F,

 confidencevarinterval=T,predictioninterval=T)

dimensions<-

gfw.chart.param.dimensions(dimensions=list(dimension1,dimension2))

5.5.5 gfw.chart.param.explanatory

Description

Parameter class for explanatory column.

Usage gfw.chart.param.explanatory(explanatory= explanatory)

Arguments

 explanatory Column name system. Default value is cartesian_coord

Details

Example

explanatory<-gfw.chart.param.explanatory(explanatorycolumn="xx")

81

5.5.6 gfw.chart.param.graph

Description

Parameter class for a graphics layer.

Usage

 gfw.chart.param.graph(usegraph=T,geomfunction=geom_point,geomaes=aes(x=x,

y=y),

geomdata=NULL,geomcolour=NULL,geomlegend=NULL)

Arguments

usegraph Boolean value. Decides whether the graph shold be shown or not.

geomfunction ggplot function such as geom_point, geom_line etc.

geomaes Aesthetics function and aesthetics parameters.

geomdata Data used by the layer

geomcolor Layer graphics color

geomlegend Legend of the layer

Details

Example

default for ggplot

graphlayer1<-gfw.chart.param.graph(geomfunction=ggplot,geomaes=aes(x=x,y=y))

graphlayer2<-gfw.chart.param.graph(geomfunction=geom_point,

geomaes=aes(x=x,y=y))

graphlayer3<-gfw.chart.param.graph(geomfunction=geom_line,

geomaes=aes(x=x,y=fitted))

graphlayer4<-gfw.chart.param.graph(geomfunction=geom_smooth,

geomaes=aes(x=x,y=y))

5.5.7 gfw.chart.param.graphics

Description

Holds and maintains a list of graphs of type gfw.chart.param.garph objects.

Usage gfw.chart.param.graphics(graphs=list(graph))

Arguments

 graphs List of graph type of gfw.chart.param.graph.

Details

Example

default for ggplot

graphlayer1<-gfw.chart.param.graph(geomfunction=ggplot,geomaes=aes(x=x,y=y))

82

graphlayer2<-

gfw.chart.param.graph(geomfunction=geom_point,geomaes=aes(x=x,y=y))

graphlayer3<-

gfw.chart.param.graph(geomfunction=geom_line,geomaes=aes(x=x,y=fitted))

graphlayer4<-

gfw.chart.param.graph(geomfunction=geom_smooth,geomaes=aes(x=x,y=y))

graphics<-gfw.chart.param.graphics(graphs=list(graphlayer1,graphlayer2,

graphlayer3,graphlayer4))

5.5.8 gfw.chart.param.facet

Description

Parameter class for facet used for faceting ggplot result.

Usage gfw.chart.param.facet(facetfunction=facetfunction,facetscale=facetscale,

aggregation=aggregation)

Arguments

 facetfunction facet function lays out panels in a grid

 facetscale scale graphics

 aggregation aggregation object type of gfw.chart.param.aggregation class

Details

Example

facet<-gfw.chart.param.facet(facetfunction=facet_grid,facetscale="free_y",

aggregation=aggregation)

5.5.9 gfw.chart.param.model

Description

Parameter class for model definitions.

Usage gfw.chart.param.model(modelfunction="lm",modelformula=x~y,…)

Arguments

 modelfunction model function such as glm, lm, arima.

 modelformula formula used by the model function.

 … variable number of parameters per function.

Details

Example

83

model<-

gfw.chart.param.model(modelfunction="lm",modelformula=NA,family=gaussian)

5.6 Data Frame Splitter Classes:

Sometimes there is need for pre-processing the data to facilitate grouping. By set rules, the

values in one column can be used to place values in an additional column upon which the

grouping can then be done.

5.6.1 gfw.chart.split

Description

Used to define a split parameter to be used in gfw.chart.param.split.

Usage gfw.chart.param.split(splitvalue= splitvalue,setvalues= setvalues))

Arguments

splitvalue Character value. Contains the value assigned to the new column per

value found

in the setvalues vector

setvalues Vector of character search values

Details

This class is a supporting class to gfw.chart.splitset class. It contains the values

depending on values of the datacolumn parameter in gfw.chart.splitset class.

Example

vcssplit<-gfw.chart.split(splitvalue="vcsgroup1",setvalues=c("CvsRepository",

"SvnRepository","HgRepository"))

languagesplit<-gfw.chart.split(splitvalue="languagegroup1",setvalues=c("c","cpp"))

5.6.2 gfw.chart.splitset

Description

Parameter class for time series.

Usage

 gfw.chart.param.splitset(splitcolumn=splitcolumn,datacolumn=datacolumn,splitse

t=splitset)

Arguments

 splitcolumn name of the splitting column.

 datacolumn name of the data column to be used for splitting.

 splitset list of objects type of gfw.chart.param.split class.

Details

84

This class encapsulates split column, data column and splitsets in order to use them in

gfw.chart.datasplitter class. It basicly contains the instructions for the dataplitter class.

Example

vcssplit1<-gfw.chart.param.split(splitvalue="vcsgroup1",setvalues=c("CvsRepository",

"SvnRepository","HgRepository"))

vcssplit2<-gfw.chart.param.split(splitvalue="vcsgroup2",setvalues=c("GitRepository",

"BzrRepository","SvnSyncRepository"))

languagesplit1<-gfw.chart.param.split(splitvalue="languagegroup1",setvalues=c("c","cpp"))

languagesplit2<-

gfw.chart.param.split(splitvalue="languagegroup2",setvalues=c("java","python","php"))

splitset1<-gfw.chart.param.splitset(splitcolumn="vcstype",datacolumn="vcs",

splitset=list(vcssplit1,vcssplit2))

splitset2<-gfw.chart.param.splitset(splitcolumn="languagetype",datacolumn="language",

splitset=list(languagesplit1,languagesplit2))

5.6.3 gfw.chart.datasplitter

Description

Modifies the data frame and creates a split data frame by adding new columns with

grouped values.

Usage gfw.chart.datasplitter (data=data, splitsets=splitsets)

Arguments

 Data data frame to be modified

splitsets list of splitsets of type gfw.chart.param.splitset

Details

If the data is a time series then it needs to be processed in a special way so the data

becomes a time series. This parameter allows the user to create time series graphics.

Example

vcssplit1<-gfw.chart.param.split(splitvalue="vcsgroup1",

setvalues=c("CvsRepository","SvnRepository","HgRepository"))

vcssplit2<-gfw.chart.param.split(splitvalue="vcsgroup2",setvalues=c("GitRepository",

"BzrRepository","SvnSyncRepository"))

languagesplit1<-gfw.chart.param.split(splitvalue="languagegroup1",

85

setvalues=c("c","cpp"))

languagesplit2<-gfw.chart.param.split(splitvalue="languagegroup2",

setvalues=c("java","python","php"))

splitset1<-gfw.chart.param.splitset(splitcolumn="vcstype",datacolumn="vcs",

splitset=list(vcssplit1,vcssplit2))

splitset2<-gfw.chart.param.splitset(splitcolumn="languagetype",

datacolumn="language",splitset=list(languagesplit1,languagesplit2))

datasplitter<-gfw.chart.datasplitter(splitsets=list(splitset1,splitset2))

splittteddata<-datasplitter$getSplitData(subsetdat)

5.7 Test Data Generator Classes

5.7.1 gfw.chart.testdata

Description

Creates test data defined by parameters.

Usage gfw.chart.testdata(params=params)

Arguments

params list of instruction parameters

Details

Testdata class takes a parameter called params which is a list of parameters containing

instructions about how testdata should create the data frame, column names and how

the columns should be filled. Parameters are as follows:

dimensions

columns list of parameters containing column details. A column can be of type

date, character, numeric or logical and it is defined with columntype.

Columnindex is an integer value to access the column defined by

dimensions. columnname is the name of the column. A column can also

be a factor. The filldata list fills the column with the data using fillwith

list. Fillwith can be a single value but also an expression. numberofrows

defines the number of rows in the data frame to be created. The created

data frame can also be saved by using the saveas parameter.

Example

paramsSSlogis=list(dimensions=as.list(paste("var", 1:10,sep="")),columns=list(list(

columnindex=1,columntype="date",columnname="time",columnfactor=F,values=as.D

86

ate(c("2000-01-

01"))),list(columnindex=2,columntype="character",columnname="license",

columnfactor=T,values=c("academic","gpl"),filldata=list(columnindex=2,fillwith=list(

expression(100/(2+exp((12500-as.numeric(df$time))/200)) + rnorm(length(df$al1m))),

expression(1/(1002+exp((3-as.numeric(df$time))/4)) + rnorm(length(df$al1m)))))),

list(columnindex=3,columntype="integer",columnname="al1m",columnfactor=F,value

s=c(1000:2000))),numberofrows=100,saveas="df.dat")

testdatagenerator<-gfw.chart.testdata(params=paramsSSlogis)

testdataframe<- testdatagenerator $getdataframe()

