Friedrich-Alexander-Universitat Erlangen-Nirnberg

Technische Fakultat, Department Informatik

ARON METZIG
BACHELOR THESIS

IMPLEMENTATION OF A GITLAB
ADAPTER AND THE EVOLUTION OF
I'T’S INTERFACE

Submitted on 4 February 2019

Supervisor: Maximilian Capraro M.Sc.; Prof. Dr. Dirk Riehle, M.B.A.
Professur fiir Open-Source-Software

Department Informatik, Technische Fakultét
Friedrich-Alexander-Universitat Erlangen-Nirnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Priifungsbehoérde vorgelegen hat und von
dieser als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen,
die wortlich oder sinngemaf iibernommen wurden, sind als solche gekennzeichnet.

Erlangen, 4 February 2019

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 4 February 2019

https://creativecommons.org/licenses/by/4.0/

Card of thanks

For always kind and supportive suggestions, not only in code contributions.
A special thanks for Maximilian Capraro, who made this thesis possible.

1

Abstract

Gitlab is an Software forge with integrated Continuous Integration (CI) and Dev-
Ops features under the MIT license for the non commercial version. As Gitlab
is broadly used for inner source software development it is important to be able
to measure code collaboration within existing ecosystems. To measure the code
collaboration, the Patch-Flow Crawler (FPC) was created by the Open Source
Research Group’s (OSR). It is not yet possible to use this software with Gitlab.
Therefore this thesis implements an adapter that fetches the relevant patches
from the Gitlab-API and transforms it to the FPC can calculate the patch-flow.
This includes organizational structures, mapping of pseudonyms to identities and
the ownership of patches. The implementation was evaluated with the use of the
production RRZE-Gitlab instance. Also Unit and Integration-tests validate the
correctness of the code after Gitlab-API changes. The FPC now can natively
calculate the patch-flow from an configured Gitlab instance and is able to to
determine entity-relationships, if the Gitlab instance contains the reliable data.

1l

Contents

1 Introduction 1
2 Requirements 3
2.1 Functional Requirements 3
2.2 Non functional Requirements 4
2.3 Evaluation 4

3 Implementation 6
3.1 Design of the SDK 6
3.1.1 GitlabService — Authorization and endpoints 6

3.1.2 GitlabClient - Fetching Data from Gitlab 7

3.1.3 GitlabPaginator — Utilization of the Gitlab-APT 8

3.1.4 GitlabCommitlterator — Effectively fetching Patches. . . . 9

3.1.5 Transformer — Enter the PFC world 10

3.1.6 GitlabAdapter- Setting it all together 11

3.2 Plugin Implementation 13
3.2.1 Configuration 13

3.2.2 AddRepositoryPreStep — Setting up repositories 14

3.2.3 GitlabAdapter - Fetching the Patches 14

3.2.4 ResolvePseudonymProcessor — Reuse pseudonyms 14

3.2.5 GitlabAddAuthorProcessor — Map new Users 15

3.3 Manual mapping pseudonyms 15
3.3.1 Webclient - Provide functionality to the user 15

3.3.2 The backend logic 17

3.3.3 Getting unmapped pseudonyms L. 17

3.3.4 Manually mapping a pseudonym 18

3.3.5 Creating the organizational structure 18

3.3.6 Logical inference for mapping Authors to Patches 19

3.4 Testingo 19
3.4.1 Setting up an testing environment 19

3.4.2 Creation of an Docker backup 20

3.4.3 Inserting testingdata 0oL 21

v

3.4.4

4 Evaluation

Integration in the Pipeline

4.1 Performance and testing system

4.2 Database and validity
4.3 Logging and resilience

4.4 Testing

Appendices
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |
Appendix J

References

UML Gitlab o
Transformer code
Excerpt Person
Excerpt InnerSourceProject
Excerpt Filechange
Excerpt Patch 00
Excerpt Repository
API-Key retrievemnt

Warn Log
Error Log

23
23
23
25
25

27
27
28
29
30
31
32
33
34
35
37

40

1 Introduction

Inner source code collaboration is the use of open source practices and the estab-
lishment of open source-like communities for firm internal development (Capraro
and Riehle, 2017). This Inner source collaboration is measurable due the patch-
flow-method.

In OS, a patch is a code contribution from an individual to an OS project.

The patch-flow then is the flow of such patches in across organizational bound-
aries. Hence the PFC, that measures this code collaboration between different
inner source teams and projects using this flow. The collaboration is measured by
creating a directed weighted graph between the organizational units. (Capraro,
Dorner and Riehle, 2018)

For hosting inner source projects industry uses software forges like Github En-
terprise, Gitlab, Bitbucket and home made solutions.

For beeing able to migrate the PFC into a company, it is necessary that it is able
to interact with the existing software forge.

Gitlab is a broadly used software forge, which includes industry-standards fea-
tures, like kubernets and native Continuous Integration (CI) support . The ac-
quisition of Microsoft emphasizes it’s distribution.

So the ability of supporting Gitlab it is an important milestone for the FPC.
This thesis is implementing an adapter between the Gitlab-API and the PFC.
The PFC is the demanding part, where the adapter itself is implemented as an
plugin.

With this implementation the FPC is now able to extract the necessary data
from Gitlab, transforming the data into the internal entities and finally measures
the given patch-flow.

The following section will describe the given requirements, including an in-depth
analysis of the recent Gitlab-API and the FPC.

Then the implementation section will cover the creation of an Gitlab test infras-
tructure and the implementation of the adapter itself.

The evaluation of this extension is using the real world Gitlab instance of the
RRZE, which is the service provider of the Friedrich-Alexander University. The
contributions of this thesis are:

e An adapter that allows to crawl the patch-flow from the Gitlab-API
— Authentification for the Gitlab-API
Pagination handling of the Gitlab-API

Fetching for new projects

Fetching all patches in a given time range

Fetching all file-changes of a given commit
— Fetching and mapping persons from Gitlab
— Assigning a person to a patch, when this is logical inferable

— Bugfixing for certain Gitlab versions

Manual mapping of patch pseudonyms to persons
— Creating frontend components
— Pseudonyms querying logic

— Communication due REST

A test setup for this adapter

Setting up a local Gitlab instance for a CI pipeline

Dockerfile that automatically sets up the Gitlab-instance
— Gitlab configuration
— API-Key
— Mock data

Integration test, for all critical API-Calls
e Unit tests

The thesis is structured as follows. Section one covers the specifications for the
adapter.

Section two on the implementation itself and section three evaluates the fulfill-
ment of the specifications.

2 Requirements

The PFC is a sophisticated toolbox, which is able to interact with multiple soft-
ware forges and provides an web frontend which communicates over a REST-
service with the backend. To handle this complexity, the software is encapsulated
in submodules. Each submodule has it’s own SDK, service and restservice.

As crawling is one of the core features of the software, this module has the ability
to use plugins and provides an interface inside it’s SDK.

2.1 Functional Requirements

The PFC needs to know which repositories are available by Gitlab.

The plugin has to be able to detect them. The context of archived and forked
repositories can differ for every user, the user shall be able to skip them. Also
commits that are pure merges need to be skipped, as they are not evaluated for
the patch-flow. After the repositories are fetched, the FPC crawls the commits
for each project.

The apter must be able to retrieve the patches. These patches need to be retrieved
and sorted by their ascending creation time. Then the FPC knows exactly, which
patches already haven been crawled and no duplicated work is done.

Each fetched patch also includes filechanges, that need to be fetched as well.

Each patch has one author and committer which are instances of the user entity.
Mapping those users to each patch is an important step for successfully calculat-
ing the patch-flow.

Consequently each patch shall get automatic assigned to the according PFC rep-
resentation of a person, for both - the author and the committer.

Patches that cannot get assigned automatically shall be listed and manually
assignable in the webinterface.

As Gitlab provides more functionality, than a local git repository does, it avail-
able meta-data shall be used - like generating the organization structure from the
provided meta-data.

To make the plugin extendable and allow other developers to work with the
source-code regression tests in form of unit and integration-tests needed to be
implemented. This shall also ensure that bugs in the Gitlab-API are covered.

2.2 Non functional Requirements

The most current Gitlab-API-version is version 4. All lower APIs have been
dropped in previous versions of Gitlab. There is a note over GraphQL, which is
as alternative query-language instead of REST, but due license issues, this is not
released yet. Summa summarum the adapter only needs to support version 4 of
the REST-APIL.

As the application is designed for inner source, which implies the usage of com-
panies, the implementation needs to be able to scale up for big projects. It also
needs to be able to run on systems with moderate memory and processor power.
For debugging and usability reasons the user should always be able to see the
current state of the CrawlRun. Proper log output should always be provided and
be configuratable due the logging level.

2.3 Evaluation

As this is an engineering thesis on an active developed software, each contribution
is considered as accepted when a merge request, that implements this features
was merged into the stable develop branch.

As Mr. Capraro is the founder and main author of the PFC, his opinion is
considered as expert opinion in the full scope of this thesis.

Therefore an accepted merge grants sufficient code quality, out of the two-man
rule in combination with stylecheckers and automatic tests of the Cl-pipeline.

A merge request (MR) was also used to discuss different approaches to certain
problems. They also document brainstorming, solutions beside from the classical
code review.

But as a MR is a pure code contribution, which does not grant the implementation
of the full extend of the specification. A special appointment with Mr. Capraro
as supervisor was made. At this appointment each requirement was tested for its
fulfillment on the internal Gitlab server of the RRZE.

The combination of the already reviewed code, an open-source oriented mindset
and the evaluation of a CrawlRun in productive real-world environment makes
the conclusion of this thesis.

3 Implementation

The implementation section is divided into two parts. First the design of the SDK,
which provides the pure functionality library and afterwards the construction of
the plugin, which implements the actual features.

3.1 Design of the SDK

The adapter itself is written in Java8. As we are interacting with an REST inter-
face, the choice of the HTTP-library is crucial. As HTTP/REST client, Retrofit2
already was used broadly in the PFC codebase and provides strong static-typing
and automatic parsing of the JSON-responses. This also fits very naturally in
the development environment.

Retrofit abstracts all seven layers of the OSI model. Therefore it requires an
interface, which holds the necessary data, like the used HTTP method, query
parameters and service URI. This data is passed in method annotations as they
appear in listing 3.1.

For transforming the JSON response into a POJO the GsonConverter is used.
The cost of this abstraction is, that all Object-Orientated-Principles are broken
for the given interface. So a general contract can’t be established and future
Gitlab-API versions need a completely new interface.

An overview of the SDK design can bee seen in the UML of of appendix A. This
will be further explained in a bottom-up approach.

3.1.1 GitlabService — Authorization and endpoints

The interface mentioned above is implemented in the GitlabService class. It pro-
vides the hardcoded endpoints and parameters for each API call.
To hide the boilerplate code for creating a Retrofit implementation of this class

the GitlabServiceFactory is used.

In the GitlabServiceFactory the AuthorizedHttpClientFactory is called.

As Retrofit itself relies on OkHttp to handle the networking, it is possible to hand
in a custom OkHttpClient.

OkHttpClient allows to add so called ‘Interceptors’. Interceptors are chained and
are able to customize the raw HTTP-Requests.

In this place the private-api-key for Gitlab is added automatically to each request
as query parameters. Adding this key to every request decreased the complexity
for the GitlabService, as all authorization is now implicit handled and the service
can focus on pure functionality.

QGET ("projects/{id}/repository/commits")

Call<List<GitlabCommit>> getCommits (
@Path("id") String _path,
@Query("since") Date _since,
@Query("until") Date _until,
@Query("per_page") int _pageCount,
QQuery("page") int _page

Listing 3.1: GitlabService example method

3.1.2 GitlabClient - Fetching Data from Gitlab

The network layer and JSON to POJO mapping gets encapsulated in the Gitlab-
Client class.

This class validates the global configuration file settings and delegates the Git-
labService. The GitlabService class only holds methods which are Retrofit2.Call
Objects. Such an object offers an execute method. In this method the network
call, the JSON parsing and HTTP response code check happens, so all non de-
terministic exceptions get handled there. When a exception occurs, the call is
repeated until a counter variable reaches a certain threshold. As this code is pure
boilerplate it gets wrapped into the generic function, ‘validateResponse’. This
method gets a ‘RetrofitRequestBuilder’-Interface. This interface only holds a
‘fetch® function. This function wraps around the according GitlabService method
call, by creating a closure.

Java interfaces with only one method can get called over a lambda-expression.
This makes the GitlabClient methods one-liners, as one only holds the inline
creation of the interface implementation, which is passed as parameter to the
validateRespone method.

As shown in listing 3.2, the resulting code is, beside the type information, very
similar to more expressive scripting languages like JavaScript or Python.

public List<GitlabCommit> getGitlabCommits(GitlabProject _proj, Date
_since, Date _until, int _count, int _page) {
return validateResponse(() ->
service.getCommits (_proj.getPathWithNamespace(), _since,
_until, _count, _page));

Listing 3.2: GitlabClient example method

3.1.3 GitlabPaginator — Utilization of the Gitlab-API

The Gitlab-API heavily relies on pagination. Every request returns a maximum
of 20 elements per request, per default. This can be increased up to 100 elements
by setting a query parameter.

Pagination on code level itself is pure boilerplate, but by fetching different el-
ements various conditions arise. The class ‘GitlabPaginator’ uses therefore the
static and generic function, 'paginate’, which awaits the abstract class ‘Pagina-
tionRequest’ as parameter.

This class holds the abstract method ‘fetchFromClient’, with the current page-
number, and the elements per page as parameters.

An implementation of the method expects the page-number and element count
as parameter and delegates them, to their underlining GitlabClient method.

In order to be able to customize such a request, the virtual functions ‘takeWhile’
and ‘filter’ are implemented. They are inspired by the Java9 Stream Interface.
The default implementation of those methods triggers a non-behavior. But Pagi-
nationRequest implementation can optionally override this methods, to customize
request. Listing 3.3 shows, how this results in a clean way of creating customiz-
able interfaces.

public static <T> List<T> paginate(PaginationRequest<T> _request) {
List<T> addedObjs = new ArrayList<>();
int page = FIRST_PAGE_INDEX;
// Traverse trough pages
while (true) {
List<T> possibleAddObjs =
_request.fetchFromClient (ELEMENTS_PER_PAGE, page);
// Add every repo, that fit the constraints
for (T checkObj : possibleAddObjs) {
if (_request.takeWhile(checkObj)) {
if (!_request.filter(checkObj)) {
addedObjs.add(checkObj) ;
}
} else {
return addedObjs;
}

// Check for end of data stream
if (possibleAddObjs.size() < ELEMENTS_PER_PAGE) {
break;

}
page++ ;

}

return addedObjs;

}

Listing 3.3: Implementation of the paginate method

3.1.4 GitlabCommitlIterator — Effectively fetching Patches

Fetching patches is a fundamental feature for the FPC. For this reason the ‘Sc-
mAdapter’ interface exists. The contract phases that implementation should be
able to fetch patches of a given project, in a given time range, sorted ascending
by their creation timestamp.

To have a considerate memory consumption, the ‘fetch’ function returns an
Iterator-Interface, which lazy fetches the patches, instead prefetching and cre-
ating one big queue with high memory consumption.

The Gitlab-API has the functionality to return commits in a given time range,
using the query-parameters ‘since’ and ‘until’ but the patches are returned in a
descending order.

Consequently we need to return the patches in a reverted order. As just reverting
the list of all patches would break the idea behind the Iterator interface.

The solution was to determine the last page of all returned commits.

Gitlab sends the amount of pages for each request in the request-header field
‘X-Total-Pages’. So before fetching actual commits, this field is evaluated and
the pages are buffered in a reverse order.

Before returning a patch in the iterator, the commit diff needs to get fetched as
well. This includes calling the according function in the GitlabClient class, with
the accordingly is pagination.

3.1.5 Transformer — Enter the PFC world

The JSON responses from the Gitlab-API are transformed into POJOs by the
GsonConverter internally. To be able to do this, the according Java attributes
are annotated with the JSON name fields. This includes naming convention from
JSON snake_case, to Java CamelCase.

The POJO do not fully represent the received JSON. As there was a lot of data,
that could not be represented by the PFC, or irrelevant meta-data.

Beside the classes being used as pure data-structures, there are some convenient
functions, to give the internal values a more meaningful naming. Like the ‘isBi-
nary‘ function of ‘GitlabCommitDiff’. This methods checks if Gitlab prefixed the
an internal field, with an undocumented magic value.

In table 3.1 is an overview of the retrieved Gitlab classes, and their according
representation in the PFC.

Gitlab-Entity PFC-Entity

Project Repository, InnerSourceProject
Commit, PFC-Repository | Patch

Commit, CommitDiff FileChange

User Person

Table 3.1: Overview of transformation enitities

10

Transformation of GitlabRepositories

A repository has no one to one representation in the PFC.

The ‘Repository ’ class is used to hold the URL of the GitlabRepository. As this
class only is used for internal data management and is later required for actual
data-fetching.

The ‘InnerSourceProject’ instead gets the project name, with and without the
projects name-space and association to the created repository object.

Transforming GitlabCommits

To transform a GitlabCommit into a PFC-Patch, the associated PFC-Repository
is necessary for retraining their internal coupling.
As a GitlabCommits contains a list of GitlabCommitDiffs, which are represented
as FileChanges in the FPC, and those are transformed as well. Therefore the list
gets iterated and added into the resulting patch.
The pseudonym for author and committer is a concatenated string, formatted
with a git naming convention: “name >email<;”

To transform into a FileChange, there is the ‘DiffProcessor’ class, already in the
SDK package. This class parses the changed and deleted lines out of the diff-
string. But as it was written for the local file-system-git which does slightly differ
in their file format from the Gitlab-diffString. To make this compatible it is nec-
essary to prefix a magic value.

The code of the Transformer is very straight forward, but very criticial as they
appear in appendix B.

3.1.6 GitlabAdapter- Setting it all together

To encapsulate the Gitlab specific objects and details from the plugin module,
the GitlabAdapter was created. ScmAdapter-Interface and delegates the already
mentioned ‘GitlabClient’, ‘GitlabPaginator’, ‘GitlabCommitIterator’ and ‘Trans-
former’. It is also used to read in the user configuration and creates the authorized
client.

As shown in listing 3.4 business method of this class returns the result a ‘Gitlab-
Client’ API-call, wrapped into the ‘GitlabPaginator’ and finalized by the ‘Trans-
former’.

11

protected List<GitlabProject> loadProjectsFrom(boolean _archived, Date
_from) {
// Traverse trough pages until a old repo appears
return GitlabPaginator.paginate(new
GitlabPaginator.PaginationRequest<GitlabProject>() {
@0verride
List<GitlabProject> fetchFromClient(int _pageContentSize, int
_page) {
LogUtil.info(getClass(), "Loading projects page {}", _page);
List<GitlabProject> projs =
client.getGitlabProjects(_archived, _pageContentSize,
_page);
LogUtil.info(getClass(), "Loaded projects page {} - count {}",
_page, projs.size());
return projs;

}

@0verride

boolean takeWhile(GitlabProject _checkObj) {
return _checkObj.getDate().after (_from);

}

@0verride
boolean filter(GitlabProject _checkObj) {
if (skipForks && _checkObj.isFork()) {
LogUtil.info(getClass(), "Skipping fork: " +
_checkObj.getPathWithNamespace()) ;
return true;
}

return false;

P

Listing 3.4: GitlabAdapter example method

12

3.2 Plugin Implementation

As the SDK only provides functionality, but doesn’t implement any innovation
the ‘GitlabDemoPlugin’ is implemented. This class extends the ‘AbstractPlugin’
class and dues its contract implements the return of ‘Pre/PostSteps’ and ‘Patch-
Processors’. Each of this steps is called sequentially at the according time of a
‘CrawlRun’.

A ‘Pre/PostStep’ does not have a particular contract to fulfill, beside of the con-
figuration the PFC for the given plugin. A ‘PatchProcessor’ get’s every new
fetched patch, and is allowed to modify or even filter this patch.

Also the already mentioned ScmAdapter needs to be provided.

This thesis implements the following PFC Plugin interfaces:

PreProcessors:

e AddRepositoryPreStep:
Fetching, transforming and saving the repositories

PatchProcessors:

e AttachInnerSourceProjectRepository:
Adding the according ISP to the patch

e ResolvePseudonymProcessor:
Resolving already mapped author-pseudonyms

e GitlabAddAuthorProcessor:
Resolving new author-pseudonyms

ScmAdapter:

e GitlabAdapter:
Fetching, transforming and saving the patches with their according filechanges

3.2.1 Configuration

The plugin requires the following configuration by the user:

e baseUrl:
The URL to the Gitlab-API, eg. www.gitlab.example.com/

e apiToken:
A generated ‘Access token’ with the ‘api-scope’ as requirement. This is
required as Gitlab does not provide any functionality to login with regular
credentials

13

e skipForks:
Flag if the Crawler shall ignore forked repositories

e skipArchived:
Flag if the Crawler shall ignore archived repositories

3.2.2 AddRepositoryPreStep — Setting up repositories

Before the PFC can fetch any patch, is has to know which repositories are avail-
able. The ‘AddRepositoriesPreStep’ provides this functionality. It determines
the date of the last successful CrawlRun and request all Repositories and In-
nerSourceProjects, created since this date from the GitlabClient. The retrieved
Objects are getting saved in the database.

3.2.3 GitlabAdapter - Fetching the Patches

For fetching the patches, the PFC uses the ScmAdapter-interface implemented
by the GitlabAdapter. The PFC iterates over all repositories, and fetches all
patches, between the time of the CrawlRun and the last successfully saved patch
in the database.

3.2.4 ResolvePseudonymProcessor — Reuse pseudonyms

Gitlab does not provide any functionality to assign an Patch to an author by
default. Gitlab, unlike other software forges e.g Gitlab, does not return the id
of the author or the committer. While this makes partly sense for the author,
who does not necessarily need to be a user of the Gitlab-Instance, the committer
definitely has to be one. It is also not possible to list commits by a user. A
according patch was not merged into Gitlab (#12760), even it was demanded by
the community.

This makes automatic mapping a non trivial thing and the quality of the outcome
heavily relies on the proper configuration of the pseudonyms, which are locally
configured on the contributors machines.

As the patches get processed, the ‘ResolvePseudonymProcessor’ makes an query
into the PFC database, if there is any patch already having a mapped person
to the current pseudonym. As a pseudonym can be used as authorPseudonym
and committerPseudonym, two database queries are required. The two lists get

14

unioned and then evaluated. This allows automatic mapping of already manual
mapped pseudonym and increases performance for automatic mapped ones, as
there isn’t an additional API-Call.

As this solution is not specific for Gitlab, but for the PFC, is part of the pseudonymre-
solver package and not the one for Gitlab.

3.2.5 GitlabAddAuthorProcessor — Map new Users

When there isn’t a already mapped pseudonym and therefore the ResolvePseudonymPro-
cessor mapping fails, the ‘GitlabAddAuthorProcessor’ tries do determine the Per-
son with the Gitlab-API.

Consequently the email is extracted from the pseudonym. This is particularly
easy, as the plugin controls the format of the names and just can use a regular
expression to extract it.

The retrieved email is queried in the Gitlab search endpoint. This search end-
point provides a fuzzy search. But when sending a valid email, Gitlab thankfully
only returns matching users entities. This is not documented, but makes it way
easier, as the plugin does not have to evaluate the return type first.

If only one user is returned, the ‘PatchProcessor’ assumes, that Gitlab did the
email matching successfully and matches the user to the patch. Every lookup
email is cached, so that duplicate emails are not queried multiple times.

3.3 Manual mapping pseudonyms

The PFC has an webinterface. This webinterface is written with Angular6 and
typescript as frontend with a jersey/glassfish REST-backend. In order to be-
ing able to map patches manually to persons, the according components in the
datamanger-modules were implemented.

3.3.1 Webclient - Provide functionality to the user
The used design language is the material design by Google. This fits very nicely

into the angular application, as google provides presets out of the box.
The feature to manually map users to certain pseudonyms are assigned to the

15

Pseudonym to map:

New Person:

& Xerkkkg Hkrg

Figure 3.1: Screenshot of the pseudonym-table with active picker-modal

‘Data Managment’ features. Placed a option in the dropdown menu of the ‘Misc’
category, which is placed in the main toolbar.

The component shows a paginatable table. The table columns are the pseudonym,
the amount of unmapped patches and a button to map the according entry, as
shown in figure 3.1.

The entries a sorted by descending by the patch-count.

Each time the table got shown a GET-Call to the backend is made, which returns
the list of all unmapped pseudonyms, and will be explained in detail later.

Clicking the ‘map’ button opens a modal. This modal is showing the pseudonym
and a inputfield, beside the obligatory submit and cancel buttons. When typing
in to the inputfield, an autocompletion get’s triggered and shows all persons,
matching the name or email. This autocompletion is also done via a GET-Call.
This allows to access to the whole Person-Object including the person id, which
is mandatory for the further mapping.

When a valid person is chosen, the submit-button gets enabled. The communi-
cation with the backend happens in a PUT-Call, with the pseudonym as path
parameter and the to mapped person as JSON in the body.

Mapping an already mapped pseudonym to a different Person, would create un-

16

wanted complexity in the backend. Therefore once a pseudonym gets mapped,
the button is disabled, after refreshing the site the pseudonym is mapped in the
backend and no longer get’s returned by the backend.

3.3.2 The backend logic

To communicate with the frontend the backend got the ‘PatchResource’, which
holds the according endpoints and delegates the PatchService to execute the
business methods. For interaction with the database the PatchDao got extended.

3.3.3 Getting unmapped pseudonyms

The Resource is able to return all unmapped pseudonyms in the ‘get UnmappedPseudonyms’
method. This endpoints holds the boolean variable unmapped as query para-

menter. As currently only unmapped pseudonyms are required, a ‘Unsupported-
OperationException’ is thrown, when the boolean is not true.

The delegated service directly returns the query. As DTO class the ‘Pseudonym-
Count’, which only holds the pseudonym string and the count of unmapped
patches was created. As this class isn’t an Hibernate-Entity, the default POJO
transformer couldn’t get used and the Hibernate ‘aliasToBean’-transformer. When
the ‘SQLQuery’ gets this transformer instead of an enity the class attributes get
assigend according to the query columns names. Therefore DbReader was edited
and now sets the transformer depending on the annotations of the given class.

The key was to union all patches from pseudonyms without mapped author or
committer. This are two intersecting sets. To guarantee the best performance
and keeping the complexity low, the distinction and sorting shall be done by the
database. Label 3.5 shows the resulting query. It unions two subqueries, one for
the patches, without authors, and once for ones without committers. The union
is done due the use of a SQL projection. So the result is distinct set, grouped by
names and sorted by their patch count. All done by the database.

17

SELECT pseudonym, count(id) as count

FROM (
SELECT pl.author_pseudonym AS pseudonym, pl.id as id
FROM patch AS pl
WHERE author_id IS NULL

UNION DISTINCT

SELECT p2.committer_pseudonym AS pseudonym, p2.id as id
FROM patch AS p2
WHERE committer_id IS NULL

) AS ¢q

GROUP BY pseudonym

ORDER BY count DESC, pseudonym DESC

Listing 3.5: Querying unmapped pseudonyms

3.3.4 Manually mapping a pseudonym

The second method of the class is the ‘mapPsedonymToPerson” method. It ex-
pects the pseudonym to map as path parameter and gets the according person as
body parameter in the PUT request. Jersey is implicit handling the conversion

from JSON to POJO.

The ‘mapPsedonymToPerson’ method is the endpoint for mapping a pseudonym
String to a according person object. The ressource asserts that there is a valid
person object, by asserting a valid id and then is updating all patches. This
is done by first querying and updating all patches with the matching author-
pseudonyms and then the same procedure with the committer-pseudonym.

To improve performance, batch updating got implemented in the ‘DbWriter’ class.

3.3.5 Creating the organizational structure

Gitlab has the groups and sub-group function. Here the users can get gathered.
But the default use-case is to access control. As it is convenient to manage whole
groups, instead of single persons. Also some addition namespace configuration is
possible. Using this for organizational structuring seems be irrelevant in practice.
Conceivable target groups would be small Start-ups, which do not rely on any
command chain, but as this is not the target group of the cmsuite, this idea is
dropped.

18

3.3.6 Logical inference for mapping Authors to Patches

As every not mappable pseudonym has at least one author, it is possible to
automatically map those patches, if and only if one author added patches. It is
save to assure that this wont be the case for long lived projects. But with properly
configurated projects and an automatically executed CrawlRun within the CI-
Pipeline, this assumption would actually hold, as usually only one developer
adds new Patches to the project per merge request. So this developer could
misconfigure his local git and the cmsuite will still be able to assign the according
patches. Due the ‘ResolvePseudonymProcessor’ it would even automatically map
this pseudonym to the right user.

But as this is very unlikely in practice, the idea was dropped. Although it can
get implemented as ‘PatchProcessor’ in the future.

3.4 Testing

As core Requirement for this thesis, a well rounded test strategy is demanded.
This includes Unit tests, as well as Integration tests. The resulting testing suit,
also needs to be executable in the CI pipeline of the project.

3.4.1 Setting up an testing environment

The cornerstone for the suite is a selfhosted Gitlab instance. As using a existing
Gitlab, wouldn’t be extendable for various Gitlab versions. Also modifying the
test data, would be problematic, when two pipelines are executed in parallel.

To be deployable in the CI pipeline the instance is hosted via a docker container.
The existing and already configured dockerfile from the official GitlabCE reposi-
tory, couldn’t be extended, because there is a docker ‘RUN’ command, which is
restating the server in an endless loop, when executing the script.

Therefore the existing code was used as base for the new dockerfile and is equiv-
alent of an Gitlab installation on a vanilla Ubuntu 14.04.

After installation only one bash command is necessary to set up, configure and
run then Gitlab server: ’gitlab-ctl reconfigure’. This is setting up the all necessary
data structures, reading in the configuration files and starting the server. But
this command takes up to five minutes and is very 1/O intensive, which makes it
impractical to run it inside the CI-Pipeline.

The command ’gitlab-ctl start’ instead only starts the server and all services,

19

but requires an already exectued ‘reconfigure’ command. The command itself is
finished in a few seconds. The final up time for the services is around 45 seconds,
depending on the used hardware and Gitlab version.

As docker easily allows the usage of images, the final docker-image, already has
executed the expensive ’gitlab-ctl configure’ command and only needs to run the
‘start’ command.

Beside the installation configuration was done. Mainly used to change the default
port from 80 to 10080, as that is the redirected also docker port. This makes it
easy to use the same scripts, for development and deployment, as the endpoints
don’t change. The root password also got changed.

Filling the Gitlab instance with mock data, was the main issue of this task.
Gitlab does not allow login in via a username, password scheme. A API-Key
needs to be created inside the Webinterface.

Just creating a new Gitlab instance, every time the mock-date changes, would
finally change the private API-Key. This especially inconvenient, as the key is
hardcoded in the config files of the cmsuite project. As the docker-images are a
only subproject of the cmsuite, changing the API key would produce an addi-
tional MR in the main project. Also other developer would have to keep their
project always up to date. Otherwise failing pipelines, on parts their are not
working on would yield and restrict their workflow.

3.4.2 Creation of an Docker backup

There is a script inside the dockefile, that creates a backup. As it only differs
two lines from the original dockefile, it is in the script but commented out.

This script creates the backup and copies it to a specific folder. By using the
docker-host command it is possible to transfer the backup file to the host-machine.

Additionally the script creates the API-Key and persists it. This is done via
parsing the fetched HTML and faking the according HTTP request. The script
is written in python3 and make use of the request library.

The use-case for this workflow is updating gitlab, as gitlab backups are only
compatible with the current version. With the usage of the script, the developer
now has no need to login inside of the webinterface, creating and saving the key

by hand.

Down below are the necessary steps for the developer, that creates a new backup
file:

20

Setting the gitlab version in the file

Comment in/out the according lines in the dockerfile

Configurate the docker-compose file in the utils folder, to point to a existing
folder on the host machine

Start the modified container

Copy the created files inside the the assets/backup folder

Adjust the permission of the files

3.4.3 Inserting testing data

There are two types of data, which are necessary to test for this thesis. Gitlab
specific data and git only data.

Gitlab data like users, groups and project, where git data is only the version
control.

Creating git related data is trivial, even the automatic creation via bash.

For the Gitlab data-structures an other python3 script was written. It relies on
a Gitlab-API wrapper library.

Due a implemention of a shim code layer, it is possible to create users, groups,
project and forks in a single python line.

To populate the database, the RUN command of the docker-file creates a new
Gitlab instance, restores the backup, with the API-token, executes the Gitlab-
populate script and finally pushes the just created git project to Gitlab.

The final Gitlab data is the following:

e Creation of 15 Users

Creation of three projects

Creation of a branch of two projects

Fork of a Project
e Archiving of a project

And the git data contains these changes:
e (Creation of a file
e Add a line to a file-delta

e Remove a line to a file-delta

21

e Renamed a file

Changing the git_author

Creation of a binary

Patch of the created binary

Changing of the git_committer_email

3.4.4 Integration in the Pipeline

The pipeline is using a global docker-compose file, where a depending services
get started. The Gitlab image was added there.

This docker kickoff is done in parallel with the compilation step. This is the best
possible minimization for the uptime delay.

But to ensure the test-suite is fully booted, an watchdog is implemented, which
checks if the services are already up. This is done by just curling the Gitlab
landingpage and checking the return code. Wrapped up by some code, to avoid
an endless loop.

The integration tests are executed by maven in an subsequent step of the pipeline.

22

4 Evaluation

The final evaluation was done on the RRZE Gitlab. This instance is used, as it
is public for students of the FAU and has a reasonable amount of data. Its data
pool is small enough to still allows manually crosschecking the cmsuite database
content, with the data of the Gitlab webinterface with a natural limit for the a
CrawlRun runtime. But is also big enough to provide an meaningful stress test
on the application.

4.1 Performance and testing system

The application was tested on a regular notebook with an i5-5200U and 16GB
of RAM, with an up-to date Fedora 28. The machine always was responsive and
had an average CPU load of 40%. 1,06GB of RAM was used when running the
application in IntelliJ Ultimate 2018.1.

The average amount of fetched patches are around 20.000 per hour. With a
runtime of 46 hours.

4.2 Database and validity

As descripted in the table below there are almost a million patches in 504 projects
and 165 persons. The overall table count can be seen in table 4.1 and excerpts
of the table contents can be found in the appendicies C-G.

The crawled data will only analysed withing a semantic context, as dermining the
data quality would require all other patch-flow relevant data. Manually checking
the count of fetched patches in the database with the count of the Gitlab webin-
terface was done. Hence the five biggest repositories and two randomly selected
repositories were used. The comparison showed the equal amount of patches.
Checking the content of the respectively last repository-patch, also showed equal
data.

23

Tablename Count
Crawlrun 1
Filechange 2725974
Innersourceproject 504
Innersourceprojectlink | 0
Orgdimension 0
Orgelement 0
Orgelementttype 0
Orglink 0
Patch 909539
Person 165
Personlink 0
Repository 504
Resulthrow 0
Taxationpreference 0
Transformation 0
Transformationrun 0

Table 4.1: database table count

Checking critical Sections, like parsing user names and project namespaces was
done manually. No anormal data was found.

As the CrawlRun only resolved 165 Persons, it is obvious, that the patch mapping
was not very effective. The percentage of mapped patches was only 5%.

This is mainly as the biggest projects are open-source project mirrors. Mostly
llvim variants and even one UNIX kernel. Those are not marked as forks in the
RRZE-Gitlab, as they are inofficial mirror repositories - indepenent from the offi-
cial software forge. Those projects hold commits, which are done by pseudonyms
that can not be known by the RRZE-Gitlab instance - and are therefore not re-
solvable.

The detection is also highly depending on the local git configuration. As the
instance is mostly used by students. And it is very unlikely that this target group
properly sets commit name and email for their private and university projects.
As this is the projects are mostly relevant in the internal university context.

In the CrawlRun on the research group, with Mr. Carpraro as supervisor, the
mapping rate was 75%. This is significant higher, but will need the extra step of
manual assignment, which was implemented in this thesis.

24

4.3 Logging and resilience

Produce traceable logfiles is part of the functional requirements of this thesis.
The generated logfile has the highest logging level, which is info, and holds overall
3.678.850 lines.

As the info output is for debugging and progress-checking purposes is not further
evaluated.

Appendix I is an summary of all warn-level logs, with the included tracelogs.
This appendix shows five repositories, which couldn’t get crawled properly.

The reason for this always was a readtimeout, which coulnd’t get resolved, by
just repeating the call. As the readtimeout already was increased to ten seconds,
this ascribable to the lacking performance of the target server.

Due the functionality of the the cmsuite, those repositories would get crawled on
the the next CrawlRun.

The error logs show 25 errors.

20 of those errors complainging over not determinable page size to fetch the com-
mits. But accessing the repositories over the webinterface is also not possbile,
as those repositories do not longer exists and seem to be only reachable over the
Gitlab-API endpoint.

The other five errors, are the error messages, triggered by the read-timeout men-
tioned above.

4.4 Testing

Unit tests only cover the Transformer and Gitlapdapter class.

While the coverage on the first one is 85% for all lines. The Adapter itself has
59%.

While testing the Transformer is trivial, testing the Adapter is focused on testing
it’s depending subclasses. Therefore the GitlabPaginator has a coverage of 94%
and the CommitIterator has 90%.

Integration testing was the crux for this thesis. As the Gitlab instance is a double-
edged sword. It guarantees stable mock-data but the up-time are long 45 seconds,
every time the pipeline get’s started. The parallization with the compilation step
only weakens this delay. While this is still an I/O and time expensive part of the
pipeline.

25

The integration test itself take ten seconds on normal hardware. The GitlabClient
has a line coverage of 82% and all relevant Endpoints are tested properly. The
coherend Factory classes are fully covered.

The coverage of both testing attempts have a line coverage of 71% and a method
coverage of 78% on the total gitlab package. This isn’t optimal. But as long
as breaking API changed, like the so called bugfix of the archive flag, happen,
the SDK has working and fully tested core features. An other author, which
is extending the functionality to an further scope of this thesis can rely on the
tested core features, like fetching, response-pagination and transforming.

26

Appendix A UML Gitlab

NPyeglIoyed] ([un- oye(‘woy” e ‘odor L1o0ysodoyy)yojey
oS0 YSIT :([rewo” SuLG)[rewF AgSU0sIo 108
‘oelo1genmogeuu] ‘Aropsodeyyld :(woy- aye()seriojisodoy o8

7109l01ge0mogeuuy ‘Aroysodeyy!d :()setrojsodey o8

wydepyqen

129lorgqenn) :(£1031s0dor L1031s0doy])mHIofSURIY
a8ueyDIL (PP~ PIIWO)R[ILD)) ULIOJSTRT)
A1ops0dor £109150d0Y] ‘YIUITOD™ JTUITO)(R[ILN)) ULIOJSTIRT)
UOSI9] (19N~ 108 () (R[}IL) | ULIOJSURI}

U0SI9YSIT (SIS RIS 7108 qRIID) 1181)SI08) ULIOfSTRT)

TypyedlystT :(Aroysoder £109s0dey] ‘SHIIUIOD™ ?HTITION) (R[N |ISIT) SHIIUTO)ULIOJS TR}
oelo1genmogeuu] ‘Aropsodayyldery :(syoelorgqeris ?yelorgqeirnlsiy)utiojsuery

Pred

JIOULIOJSURL],

Page(‘odor Aoyrsodoy ‘foad- 1afo1gqeit) “YUSI™ JURIDYRIID)

o) eIy :()1xou
wea[ooq :()1XoNsey
(mun- aye(y ‘oours”
10YRID) ORI

10JRID)[HUWO) A[HD

TuotsoA qeIn![re) :()uorsiop 108

Twesnqenlisrlren :(efed- jurpunonaBed- jur ‘onquyIesnT SuLlg)ILsYDIRaS
Trp@umon e ysryle) (e8ed ju

‘yunopefed- qurppyrunod” Sutng (eys,)redo ‘qreds Sung (,pr,)qredo)sgiqiuumo)jes
Trmon eI reD

ur “unopdfed- jur ‘run- ajeeouts” oye(‘red- Sulng (pr)Yredo)sHmuo)jed
7900lorgqennlsrlre) :(a8ed- juryunonoefed- yur ‘paargore wes[ooq)sioalo1 1108

221AI9GqRIND

TUOISTOA qRIE) () UOISIOA eI 108 2phs 21! :(asenbax- 7 1 lysenbayyuoryeuiSe g)ajeurded
Presnqepn!ysT :(98ed™ jur ‘yunoo Jur ‘9L YIS SULG)STos RTINS IopemSeJqED

7y00lorgqeprnlisry :(o8ed™ jur ‘unoo” qur ‘paserpydis. weajooq)s1alorJqeirnes
TRIAHWo) eI SIT
SUNOD™ JUL YO0 Yrurwo) e ford” 1oaforgqepn) PIqHumo)qenvs
yut :(eSed-
UL QUNOO” Ul ‘[run- dye(‘eouts” ae(] ‘load- 198(01JqeIn))unonHaTe JImmo)R Ies
TywopqepH sty

afed Jur “yunoo” jur ‘- aje(‘eours” aye(] ‘(oxd- 10901 R[N)SHTOD(R[IE)10F wed[ooq :(f[qO¥pay™ 1)1y

JOIDARIID . . o meopoq “AE@%E% bo:ss&&

71187 :(e8ed- yurn ‘ozIgiuajmoneSed- Jur) UL)OI JYDIO]

jsenbayuorjeurdeg

DIATOGR]
-0 :(weyorde- Suing ‘Ioseq” SUIIIG)edIATGIIRIID

A1090€J01AIOGqR D)

YIDANNO :(uwooride” Suing)eressd
Aropoegyue DAy HPIZIOYINY

27

Appendix C: Transformer code

Appendix B Transformer code

public Patch transform(GitlabCommit _commit, Repository _repository) {
Patch patch = Patch.create();

// Set default values

patch = patch.setRepository(_repository);
patch = patch.setToken(_commit.getId());
patch =

patch.setCommitterPseudonym(_commit.getCommiterName() .trim() + "
<" + _commit.getCommiterEmail() + ">");

patch = patch.setAuthorPseudonym(_commit.getAuthorName().trim() + "
<" + _commit.getAuthorEmail() + ">");

patch = patch.setCommitDate(_commit.getCommitedDate()) ;

patch = patch.setCommitMessage(_commit.getMessage());

// Set fileChanges

Set<FileChange> changes = new
HashSet<>(_commit.getGitLabCommitsDiffs() .size());

for (GitlabCommitDiff diff : _commit.getGitLabCommitsDiffs()) {
FileChange change = transform(diff);
changes.add(change) ;

+

patch = patch.setFileChanges(changes);

return patch;

28

Appendix C Excerpt Person

Id | Token | Email Firstname | Lastname
A4 | 1074 | Rk FF AR Qfaude | JFFFs NIFFFR

76 | 501 R RRFAFFRF Qfa.de | DFRFR] TAAFFA R
153 | 950 m*FFE FREK]Qfay . de M***m (@ Julokiolal |
35 | 771 JFRRE FRRRRR R Qfan.de | DFFF QR RRE)
15 | 381 A RRRER FRFFH] QUfar. de AFFRERRE G]

11 116 pFRRREE FRFRL QA de PERREER)

14 | 66 m*** KRR @fau.de M***c A¥FFED

66 388 hrFFRE FEER) Qfgu.de |5 Ralakoionl | B**m

7 1099 CRRRRE FRFRFE Qo o THF*Fg e
146 | 440 R SRR Q. de | NEFRR] PR RRf
130 | 1079 profxE xRk dQfau.de | Dol SHFE*J

54 | 206 R FHRFRFHRRHR . Qo o | FFRrrert

106 1 596 WRRE FHRRFER], Qfars de L EEETETIN
144 | 1377 FRAAAE KRR F o Q. do XFFFFFg H % g

65 1521 jrokx ek Qfau.de J*¥**h D****]

29

Appendix F: Excerpt InnerSourceProject

Appendix D Excerpt InnerSourceProject

Q62 / (nm8dror) pjueprod pyueptod /num3dor | 867
G]e / (nm8dror) dwegxoj-dio dwegxoj-dm /nmsdor | 6Re
1 / (WA[FT) JUOWINI)SUTT JUSTUTLI)SUTHT / THA[T 1
€81 / (71) ourap-109s17-413 Owdp-109s1q-413 /9ssed /F1 | €871
LI / (uoregoloyIo(]) sydLos Iosn spdL1os 108N /UOTRGOI0 IO | FAT
76T / (pobngxe) [odureuadoy] [odureusgor/pobngixe | €7
68 / (oquuoyey) uregssorTq uregssoqI/0quorey | ¢8
181 / (euryoewme)) suryoRUMe] suIDRIINER] /oUlyDRWNE] | QT
6 / (U099-AS}) SpeO[UMOpP-1JoY-0so-Y® SPRO[UMOP-1JOT[-0S9-YR /00 -AS] 6
GO / (pobngrxe) rusquis msqnys/pobngxe | 69y
61F /| (e[P167AZ) UOTYeTUNUITIONIOUTDY] UOTR{TUNTWON DU /R[IGTAZ | 6T
4 / (1pAgTyr) dureyxop-Smmey dwoyxoj-Smmey/YIPAGTT |
8G¢ / (DDYON) THuLWUSISSY [ueWusIssy /HDOIN | 85€
80¢ / (y43g64q) 3dOY 1dON/y43z64q | 80¢
008 / | (NVAPANIS) Us)SONAILINDeS-3Unzies | Ua)soNALmoas-gunzyes/ y4oan1s | 00¢
A1oysoday] | 100 awreN uoyoT, | PI

30

Appendix E Excerpt Filechange

/o011y Sy
greeee | 11| 11| AAIAOIN | /6A2redg/1e8re] /qu/ ddo'sse[D8oY | €SYI16
0LG8GY L 0 | AJIQOIN | /DIN/waf/opnput/ qrojurusy)N | L6919Z1
8ETIEY 0| €| AJIdON /yeuriof /sysoyyun/ |ddo-ysaqsopnouriiog | 99.z811
£68€6. 0| o1 AQv | /98X/uenoapoy/1s03/ [['31e-$9-98X | TTVSGET
[pojroduut
VETLLT 0 ¢ | AJIQOIN |/sindur/so[npoyy/1s03/ S[POp-XXd | (81206
9L1€88 z ¢ | AAIQOIN | /98X/oyursngo(q/1s03/ [[owreu-o3eyul] | 682629
899891 0 I | AAIAOIN Jewag /qrf/ ddo pPaewag | z8L0SY
CFEFSI 0 I | AAIAOIN /SoMmpoy /1s03/ 2'udBIl | 6CLETS
/1adeayooz /oypede eaR("
LLO6TT 0| 8. aayv /810/3s03/ear(/o1s/ |380],300uu00y UL | 860ST9
0L887. 0 I | AAIAOIN JHDJ/19Y/ 2's[qeLIeA | €TFI9TT
yoyed | 'suf | ‘e | UOIPY yred oureuo[r g pI

31

Appendix G: Excerpt Patch

Appendix F Excerpt Patch

181 TINN TINN ~dogys Aury JxoN sk > Uk | 60TTCT
! TION | TINN soyepdu <810 Ay T4opP-AsdD yyses 8> | €6LEE
14! TINN TINN E8 €TV dLN <UPIOPNUOICIPD 45> | 6GV6E
9.¢ TINN TINN [BAOWIOT PISIOAY | <WOD [TRWBDH)G6S sy sesesessk D™ Bseseses) Pisesr @ | 00TGLE
9y TINN TION ToPNIp 413 <OUBW'y 4 B0 B> Wyseseseseosk M. Leseseserex V| 07G9L9
IS8T TINN TINAN " ssordoxd ur JIoA\ Usessese 2> U | 80TCOT
4! TINN TINN SHU <810°dJ 1qEP-ASdD g 4445> | COFTE
18T TINN TINN ‘dags dnuread JxoN sk B> WA | EVLLOT
181 TIAN TINN ‘dogs dnueo) WA > U™ | 8GCLO

]! e e LT9T Sm ppe SOP B st Lo kD> s H LL
GHT TINAN TINN dnueo[d o81ow <810 dyu 198-dSdD)y 4 445> | T6S8E
181 TION | TION ‘dogs dnueoyn e D> Wi | €8L88

OP W

(43 TION | TTIAN | JTeUWLRIRAN-YPRIJ PPV | “sssosrsk FONPO> Wi M WL 1¥cS
IS8T TINN TION rdegs 1N s D> Ut | E89ETT
[R5 QII GTT ssurpeoy <OP RO sk sk~ Pk Sk’ | C9LCLI
dSI | 033ruuwio) | oyny 98eSSOA] HUII0)) Joymy PI

32

Appendix G Excerpt Repository

112607 118°s359)-d100-RAND /NSVI(F1q /op e so qe[id/ /:sdyi 1| 987
986ES }18" 980/ UOTYeOYLIDA-X[aS0P /op TRy s0"qr(yis/ /:sdyyy 1| 161
T1971% 18 qi[-oou /oou /op ey s> qe[is/ /:sdyyy T | 06%
PI6E1L 115-sd3qom /FAlog T M1/0p ey s qreyis/ /:sdyyy 1| 097
LG863E }8" [92)113{958 /bnoaggjo /op ey so-qeyis/ /:sdyyy 1| 66¢
00L£8 N3 qom-) TYgIe; /uagoaurty /op ney so-qeryis/ /:sdyyy T|a61
113" I -qe38-dn /nm8diot /op neyso qeys / /:sdygy 11207
116GT 118"soua /sous /op ey so-qe[sd/ /:sdyi 11|9%1
68208% 18" uaFo[Y-8 /1 /op ey so-qe[3is/ /:sdyyy T |28¢
652692 18 eyep /yybyeu/opneyso-qe[is/ /:sdyyy T |zl
8z 18 oayseq /3AlogTm1/op ney s qeyis/ /:sdyyy 1| ¢
€6.20¢ 118 ooney /ourpeniney /op ney s qeyis/ /:sdyg T] 19
18 xoye[-ore[dwo)-193sod
Q6E¢ -urm-nej/1e3sod /sayerdurey /st /ep neyso-qes/ /:sdyyy 1| 8¢
13- 3R
0STL0Z -10ytuow-remod-1dser/yezy e /op neyso-qe[s/ /:sdyjy 1| 8.2
TO0FL9 | 118 30[[Ieuy00q-eAd /0Jozggaz/op neyso qe[is/ /:sdiyy T |9¢g¥
yoreJ }so8unox uo1jed0T] | unipmea)) | pl

33

Appendix H: API-Key retrievemnt

Appendix H API-Key retrievemnt

def _request_api_token(session: requests.Session):
"""Performs an api_token creation and returns that token
Open to the private token site
req = session.get (TOKEN_URL)
if req.status_code != 200:
die("Couldn’t make GET on:", TOKEN_URL)

Parse an extra security token, which is baked in the html
authenticity_token = KeyCreatorParser().get_token(req)

Simulate key-creation with an POST-request

data = [
Needs to be a list with tuples, because of multiple

identical keys

(’authenticity_token’, authenticity_token),
(’personal_access_token[name]’, ’AUTOMATIC_TOKEN’),
(’personal_access_token[expires_at]’, ’’),
(’personal_access_token[scopes] [1’, ’api’),
(’personal_access_token[scopes] []’, ’read_user’),
(’personal_access_token[scopes] []’, ’sudo’)

]

req = session.post(TOKEN_URL, data=data)

if req.status_code != 200:
die("Failed POST on: " + TOKEN_URL)

Returned website contains the fresh api_token
return KeyRetrieverParser().get_token(req)

34

Appendix I Warn Log

[pool-2-thread-2] WARN
de.fau.cmsuite.pfcrawler.sdk.gitlab.client.GitlabClient - Exception
happened too often!

java.net.SocketTimeoutException: Read timed out

[pool-2-thread-2] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 40 at
https://gitlab.cs.fau.de/zi39firu/diy-ss18-gruppe5-projekt.git

java.lang.IllegalStateException: Rethrowing:

java.net.SocketTimeoutException: Read timed out

[pool-2-thread-1] WARN
de.fau.cmsuite.pfcrawler.sdk.gitlab.client.GitlabClient - Exception
happened too often!

java.net.SocketTimeoutException: Read timed out

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 133 at
https://gitlab.cs.fau.de/sithkarm/litmus-rt.git

java.lang.IllegalStateException: Rethrowing:

java.net.SocketTimeoutException: Read timed out

[pool-2-thread-1] WARN
de.fau.cmsuite.pfcrawler.sdk.gitlab.client.GitlabClient - Exception
happened too often!

java.net.SocketTimeoutException: timeout

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 138 at
https://gitlab.cs.fau.de/frececroka/kalah.git

java.lang.IllegalStateException: Rethrowing:

java.net.SocketTimeoutException: timeout

[pool-2-thread-3] WARN
de.fau.cmsuite.pfcrawler.sdk.gitlab.client.GitlabClient - Exception
happened too often!

java.net.SocketTimeoutException: Read timed out

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 156 at
https://gitlab.cs.fau.de/me6lsewa/passt-mac.git

java.lang.IllegalStateException: Rethrowing:

java.net.SocketTimeoutException: Read timed out

35

Appendix I: Warn Log

[pool-2-thread-1] WARN
de.fau.cmsuite.pfcrawler.sdk.gitlab.client.GitlabClient - Exception
happened too often!

java.net.SocketTimeoutException: timeout

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 187 at
https://gitlab.cs.fau.de/ob6lujeh/cyclegan-tensorflow.git

java.lang.IllegalStateException: Rethrowing:

java.net.SocketTimeoutException: timeout

36

Appendix J Error Log

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/al26yjiw/wedecide.git. PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/arw/hello.git.
PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/efe/mmda.git.
PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/energy/empya-akka.git. PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/energy/seep.git.
PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/fsv-tech/logo.git.
PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/icipguru/cip-gitlab-wiki.git. PageCount
was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/lucareeb/KalahGUI.git. PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/mpfsi/protokollsystem.git. PageCount was:
-1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/vy37bypi/InversesPendel.git. PageCount
was: -1

37

Appendix J: Error Log

[pool-2-thread-4] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/gene/cart.git.
PageCount was: -1

[pool-2-thread-4] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/jonglage/wissen.git. PageCount was: -1

[pool-2-thread-4] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/Visen/bs.git.
PageCount was: -1

[pool-2-thread-2] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/kissen/passt-faunotify.git. PageCount was:
-1

[pool-2-thread-2] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/mpfsi/klopapier.git. PageCount was: -1

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/az48uhaj/gameoflife.git. PageCount was: -1

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/el79irih/akss2015_multics.git. PageCount
was: -1

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/ro77zini/passt_p.git. PageCount was: -1

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for https://gitlab.cs.fau.de/Visen/I4-EZS.git.
PageCount was: -1

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.sdk.gitlab.GitlabCommitIterator - Couldn’t
determine page size for
https://gitlab.cs.fau.de/zo271loxo/fagerte.git. PageCount was: -1

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An error
occured crawling repo 133 at

38

https://gitlab.cs.fau.de/sithkarm/litmus-rt.git

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An
occured crawling repo 138 at
https://gitlab.cs.fau.de/frececroka/kalah.git

[pool-2-thread-1] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An
occured crawling repo 187 at
https://gitlab.cs.fau.de/ob6lujeh/cyclegan-tensorflow.git

[pool-2-thread-2] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An
occured crawling repo 40 at

https://gitlab.cs.fau.de/zi39firu/diy-ss18-gruppeb-projekt.

[pool-2-thread-3] ERROR
de.fau.cmsuite.pfcrawler.service.crawlengine.CrawlJob - An
occured crawling repo 156 at
https://gitlab.cs.fau.de/me61lsewa/passt-mac.git

error

error

error

git

error

39

References

Capraro, M., Dorner, M. & Riehle, D. (2018, May 28-29). The Patch-Flow
Method for Measuring Inner Source Collaboration, 2-3. doi:10.1145/3196398.
3196417

Capraro, M. & Riehle, D. (2017). Inner Source Definition, Benefits, and Chal-
lenges. ACM Computing Surveys, 49, 8-14. doi:10.1145/2856821

40

https://dx.doi.org/10.1145/3196398.3196417
https://dx.doi.org/10.1145/3196398.3196417
https://dx.doi.org/10.1145/2856821

	Introduction
	Requirements
	Functional Requirements
	Non functional Requirements
	Evaluation

	Implementation
	Design of the SDK
	GitlabService – Authorization and endpoints
	GitlabClient - Fetching Data from Gitlab
	GitlabPaginator – Utilization of the Gitlab-API
	GitlabCommitIterator – Effectively fetching Patches
	Transformer – Enter the PFC world
	GitlabAdapter- Setting it all together

	Plugin Implementation
	Configuration
	AddRepositoryPreStep – Setting up repositories
	GitlabAdapter - Fetching the Patches
	ResolvePseudonymProcessor – Reuse pseudonyms
	GitlabAddAuthorProcessor – Map new Users

	Manual mapping pseudonyms
	Webclient - Provide functionality to the user
	The backend logic
	Getting unmapped pseudonyms
	Manually mapping a pseudonym
	Creating the organizational structure
	Logical inference for mapping Authors to Patches

	Testing
	Setting up an testing environment
	Creation of an Docker backup
	Inserting testing data
	Integration in the Pipeline

	Evaluation
	Performance and testing system
	Database and validity
	Logging and resilience
	Testing
	Appendices
	Appendix UML Gitlab
	Appendix Transformer code
	Appendix Excerpt Person
	Appendix Excerpt InnerSourceProject
	Appendix Excerpt Filechange
	Appendix Excerpt Patch
	Appendix Excerpt Repository
	Appendix API-Key retrievemnt
	Appendix Warn Log
	Appendix Error Log

	References

