

An Experiment on the Effects of Native Language

Communication on Work Result Quality

Freie wissenschaftliche Arbeit zur

Erlangung des akademischen Grades

"Master of Science"

angefertigt am

Department Informatik

Professur für Open Source Software

Prof. Dr. Dirk Riehle

Friedrich-Alexander-Universität Erlangen–Nürnberg

Eingereicht von:

Kramer, Simon

21567835

International Information Systems

 Betreuer: Prof. Dr. Dirk Riehle

Nürnberg, den 31. August 2012

ABSTRACT I

Abstract

The motivation of this work was the research on distributed global software engineering

and its challenges concerning linguistic barriers of international software engineering

teams by Prof. Dr. Riehle at the University of Erlangen-Nuremberg. It led to the

research question, stating whether the communication in a common native-language

within one team in software engineering projects does have a positive effect on the work

result quality or not, which could help to improve the team compositions in global

software engineering projects. This work reflects the importance of this research

question in the context of global software engineering as well as the general effects of

communication on software engineering work results on the basis of existing scientific

publications.

Derived from reliable literature, linguistic barriers could, for example, lead to cultural

divergences, misunderstandings with consequences and a shift of hierarchies inside a

software engineering team. In addition, linguistic barriers could have an influence on

the level of trust among a team, which might have direct effects on the results of the

work. In order to determine these findings, this empirical research does examine the

hypotheses of how communication in a native language affects the software and

requirement quality of different SCRUM projects. It also investigates the level of trust

as well as the personal satisfaction of each team member of these projects. The SCRUM

projects were conducted as a quasi-experiment on different native and non-native

speaking team compositions of national and international students.

The results of this quasi-experiment mean that the communication in a native language

within a software development team correlates positively with the results of work

quality as well as with the level of trust among the team members. A positive effect on

the personal satisfaction could not be detected. Due to its experimental design, these

results only have internal validity. Hence, this experiment can be seen as an exploratory

research which should provide a base for future research.

Keywords: software engineering, SCRUM, language, language barriers, native language

TABLE OF CONTENTS II

Table of Contents

Abstract .. I

Table of Contents ... II

List of Abbreviations .. IV

List of Figures ... V

List of Tables .. VI

Chapter 1 Introduction .. 1

1.1 Research Question and methodology overview ... 2

1.2 Structure of the thesis .. 3

Chapter 2 Background and Motivation ... 4

2.1 Distributed software development and globalization .. 4

2.2 Distances effecting Global Software Development ... 7

2.2.1 Temporal Distance .. 8

2.2.2 Geographic distance ... 8

2.2.3 Social-cultural distance... 9

2.3 Linguistic barriers among international teams ... 10

2.4 Effects of lacking trust and language barriers.. 13

2.5 Theory and ambitions .. 14

Chapter 3 Research Methodology ... 16

3.1 Experimentation in the field of software engineering 16

3.1.1 Humans as subjects examined in controlled experiments 18

3.1.2 Alternatives to controlled experiment .. 20

3.1.3 Classification of the conducted experiment.. 21

3.2 Experimental design .. 22

3.2.1 Definition of the experiment... 22

3.2.2 Definition of the wording work result quality .. 23

3.2.3 Discussion of hypotheses investigated ... 24

3.2.4 Variable definition .. 25

3.3 Instrumentation and development environment... 27

3.3.1 Experimental setup ... 28

3.3.2 Team settings .. 30

3.3.3 Development environment ... 31

TABLE OF CONTENTS III

3.3.4 Product owners ... 32

3.3.5 Developers .. 33

3.4 Experimental data collection procedures ... 34

3.4.1 The ‘Likert Scale’ method .. 34

3.4.2 Pre-Survey .. 35

3.4.3 Evaluation of software quality and requirement quality 35

3.4.4 Final Surveys .. 39

Chapter 4 Experimental Operation .. 40

4.1 Personal observation .. 41

Chapter 5 Analyses and Results .. 43

5.1 Pre-survey .. 43

5.1.1 Calculation of the DEV group weighting ... 44

5.1.2 Calculation of the PO group weighting .. 45

5.2 H1: Software quality and requirement quality ... 46

5.2.1 Requirement quality results .. 46

5.2.2 Software Quality evaluation ... 47

5.3 H2a: Analysis of the level of trust survey .. 50

5.4 H2b: Analysis of the personal satisfaction of the team members 52

5.5 Summary .. 53

Chapter 6 Discussion ... 54

6.1 Limitations ... 54

6.2 Discussion of the results .. 55

Chapter 7 Conclusion .. 58

7.1 Suggestion for future research ... 59

Acknowledgment .. 60

Literature ... VII

Versicherung .. XII

Appendix I – Use Cases ... XIII

Appendix II – Personal Satisfaction Survey Questions .. XVII

Appendix III – Level of Trust Survey Questions ... XVII

Appendix IV – ANOVA Personal Satisfaction ... XVIII

Appendix V – ANOVA Level of Trust ... XIX

LIST OF ABBREVIATIONS IV

List of Abbreviations

DSD = Distributed Software Development

DEV = Developer

ELF = English as Lingua Franca

GSD = Global Software Development

GSW = Global Software Work

NS = Native Speaker

NN = Non Native Speaker

PO = Product Owner

LIST OF FIGURES V

List of Figures

Figure 1: Impact of distance (Noll et. al (2010)) .. 7

Figure 2: Motivation for the research question .. 15

Figure 4: Communication channels among teams .. 26

Figure 5: SCRUM Model (Adapted from scrumit.wordpress.com) 29

Figure 6: Total software and requirement quality .. 50

Figure 7: Show the average value of each team member as well as

 the average value of each team (ANOVA p > .004) 51

Figure 8: Show the average value of each team member as well as

 the average value of each team (ANOVA p.003) .. 52

Figure 9: Result summary radar chart .. 53

file:///C:/Users/Simon/Documents/Studium/Master-Thesis/Ausarbeitung/MA_SK_V_0_8.docx%23_Toc334004051
file:///C:/Users/Simon/Documents/Studium/Master-Thesis/Ausarbeitung/MA_SK_V_0_8.docx%23_Toc334004052

LIST OF TABLES VI

List of Tables

Table 1: Categorization of software experiments (Basili V. (1995)). 22

Table 2: Team settings .. 31

Table 3: Software Quality Evaluation Model ... 38

Table 4: Illustrates the results from the developer groups of each team 45

Table 5: Illustrates the results from the product owner groups of each team 46

Table 6: Illustrates the results of the requirement quality .. 47

Table 7: Software quality evaluation model ... 48

Table 8: Weighted Software Quality and Requirement Quality results 49

Table 9: Software quality based on Defect Rate .. 57

CHAPTER 1 - INTRODUCTION 1

Chapter 1

Introduction

Beginning in the last century, the subsequent years have shown continuous and

increasing movements toward a globalized business. Economic forces are turning the

national markets into global markets that demand new ways of collaboration and

communication (Herbsleb & Moitra, 2001). Particularly in the IT sector, many local and

global companies decided to follow the principles of outsourcing and offshoring

(Carmel & Agarwal, 2001). These processes have the objectives of saving labor costs

on software development as well as gaining higher-quality software on a shorter

development cycle (Holmstrom, Ó Conchúir, Ågerfalk, & Fitzgerald, 2006). According

to Gartner (Outsourcing & Strategic Partnerships, 2012), the Worldwide IT outsourcing

revenue totaled $246.6 billion in 2011. This is a 7.8 per cent increase from the 2010

revenue of $228.7 billion.

Primarily locally distributed and globally distributed teams request new ways of

communication and collaboration for their daily business. In the IT sector, a global

software development (GSD) team is assembled from distributed members, who

collaborate on a common software project while working across geographic, temporal,

cultural, political, and organizational boundaries to accomplish an interdependent task

(Smite & Borzovs, 2006). This kind of working environment presents challenges with

CHAPTER 1 - INTRODUCTION 2

respect to communication, coordination, and control (Ågerfalk & Fitzgerald, 2006).

Hence, Moe & Smite (2008) argue, “GSD is recognized as being considerably more

complex to manage than even the most complex in-house project.”

In addition to coordination and control, successful communication among team

members is the precondition on distributed projects because large groups of software

engineering specialists must communicate their decisions and coordinate their activities

to produce a high quality software product to the customers’ specifications (Favela &

Pena-Mora, 2001). Hence, more often than not these international groups face linguistic

barriers due to different cultural backgrounds and dissimilar languages. In the beginning

of GSD, the involved software engineers had to handle these linguistic barriers without

any or little training on a GSD environment (Favela & Pena-Mora, 2001). Therefore,

the networked world has grown closer together and GSD has found its place in daily

business as well as in university courses to better prepare software engineering

specialists for a multinational work environment. But in particular, linguistic barriers

still present key challenges to GSD (Noll, Beecham, & Richardson, 2010).

At the beginning of GSD and also today, an important approach to overcome these

barriers is to agree on English as the project communication language to simplify the

communication among the global teams (Carmel & Agarwal, 2001). Using a third

language seems to fill the gap between team members with dissimilar native languages.

But, for example, what are the effects of using a third language as the project

communication language on the software product quality? Or thinking the other way

around, can full or partial communication in a native-language produce a better software

product?

1.1 Research Question and methodology overview

On the basis of the preceding questions, the research question “What are the effects of

being able to communicate in one's native language on the quality of work in software

development processes?” was formulated and a number of assumptions were made. In

this first attempt to investigate this research question, it was required to measure and

evaluate whether project communication on native-language or, vice versa, non-native-

CHAPTER 1 - INTRODUCTION 3

languages, does influence the results of work quality in a controlled environment or not

at all. Therefore, an experiment on linguistic barriers among different software

development teams was conducted. This should provide the data base for this research

question.

Twenty graduate students with similar and dissimilar native-languages were the

participants of this experiment. The students were divided into four teams. Each team

must develop a software product to the same customer requirements. After a

development period of seven weeks, the final software product of each team was

analyzed and compared to the other products to examine the research question.

Additionally, two surveys were answered by the participants to obtain further

information for analyzing the research question. This investigation might be interesting

for future compositions of software development teams as well as to minimize the risk

of low quality software products.

1.2 Structure of the thesis

The chapters describe the implementation of the study to examine the research question,

analyzing the results of the conducted experiment and discussing the findings.

The second chapter provides the literature for the research question and the derived

theory. It describes the main challenges in GSD and, in particular, the linguistic barrier

affected through different native languages. Chapter three discusses experiments in

software engineering in general and describes in detail the experiment design of this

conducted experiment as well as the data collection procedure for the analyses. A

concise chapter four illustrates the experimental operation and the observations of the

author during the software development period. Interesting insides are described which,

to some degree, match the literature in chapter two. After that, chapter five analyzes the

results of the conducted experiment and tests the hypotheses in order to reject or

confirm the theory. Chapter six discusses the findings of chapter five and limitations on

the study. The last chapter provides several suggestions for further research on this topic

as well as a conclusion reflecting the findings in the context of the theoretical

background.

CHAPTER 2 – BACKGROUND AND MOTIVATION 4

Chapter 2

Background and Motivation

To understand the complexity of the research question, it is necessary to describe and to

analyze distributed software development (DSD) as the area under discussion and the

role of language as a vital element within this context. Thus, this chapter describes the

global business movement through DSD, chances, and the challenges mainly

influencing the process communication. Communication turns out to be an important

factor in a successful software engineering project. Linked to the process

communication of a DSD project, the correlation between linguistic barriers and

communication will be under discussion in association with the effects of native

language. Finally, after illustrating the theoretical background of this study, the chapter

illustrates the motivation for the overall theory.

2.1 Distributed software development and globalization

The levels of distribution in DSD can vary from software development teams being

located in the same corridor, building, or city to those on different countries or

continents (Prikladnicki, Marczak, & Audy, 2006). Allocation of software work to

different countries is termed Global Software Work (GSW) or Global Software

Development (GSD) and defined by Sahay (2003) as “software work undertaken at

CHAPTER 2 – BACKGROUND AND MOTIVATION 5

geographically separated locations across national boundaries in a coordinated fashion

involving real time and asynchronous interaction.” The globalization of business,

particularly in the software industry, has become a steady, irreversible movement that

rapidly increased the interest in distributed software development in the last decades

(Sarker & Sahay, 2004) and is becoming a norm in the software-intensive high-

technology industry today (Damian & Moitra, 2006). Advances in communication

technology facilitate this trend (Noll et al., 2010). DSD is established in many

organizational operations either by offshoring parts of their software development

facilities to subsidiaries located abroad or by outsourcing their software development

activities to third party organizations. According to Ågerfalk & Fitzgerald (2006),

adopting a GSD model should be considered by organizations to access a larger labor

pool and local expertise. Further organizations could benefit by using time zone

differences in “round the clock” development to take advantage of cycle-time

acceleration, cutting IT-labor costs by producing IT in low-cost countries such as

Eastern Europe, Latin America, and the Far East, or from the quick formation of virtual

corporations as well as virtual teams to exploit market opportunities (Carmel &

Agarwal, 2001) .

In the literature, several terms describing virtual teams in a globally distributed

environment such as virtual team, international virtual team, and globally distributed

team exist (Powell, Piccoli, & Ives, 2004, Ebert & Neve, 2001). Virtual teams are

described as a social group of individuals undertaking and coordinating their activities

to achieve common goals, share responsibilities for outcomes, interact through

interdependent tasks, and operate across geographic, temporal, and organizational

boundaries (Powell, Piccoli, & Ives, 2004). Powell et al. (2004) also describes virtual

teams as the core building block of a GSD organization. Hence, GSD project success

largely depends on the successful implementation and collaboration of virtual teams.

For example, an implementation of a virtual team can be achieved by combining

technical skills and experience of low- and high-cost center engineers with the focus on

performance and reducing costs (Noll et al., 2010). To gain efficiency, the members of a

virtual team have to communicate whenever it is necessary (or possible) to understand

requirements of the software product, facilitating knowledge transfer between team

members, and to help other team members to perform development activities (Ebert &

CHAPTER 2 – BACKGROUND AND MOTIVATION 6

Neve, 2001). Communication among virtual team members is facilitated by

technological advances in asynchronous and synchronous communication, too.

In general, communication is an effective and necessary process for collaboration within

projects. In the field of software engineering, it is essential to communicate with each

other to coordinate and control projects (Carmel & Agarwal, 2001). High

communication quality, as well as frequent communication, is essential to achieve team

effectiveness and cohesiveness between developers, managers, and users (Herbsleb &

Mockus, 2003). Otherwise, it is critical to meet specified cost, schedule, and software

quality goals (Herbsleb & Mockus, 2003). Research undertaken by the Standish Group

Inc. in 2009 corresponds with this statement. The Standish Group found out that 24% of

all projects fail and at least 44% were highly challenged due to issues regarding cost,

schedule, and performance (quality) (Green, Mazzuchi, & Sarkani, 2010). Therefore, for

example, the agile software engineering method prefers collocated development teams

to enable face-to-face communication in order to realize effective communication. Face-

to-face conversation is one of the principles behind the Agile Manifesto in conveying

information to and within a development team (Manifesto for Agile Software

Development, 2001).

However, in comparison to in-house software engineering projects leveraging

collocated teams, DSD and especially GSD projects are recognized as much more

complex to manage and several studies indicate that communication among

organizations and participants is the main challenge for GSD (Moe & Smite, 2008). For

example, within a distributed agile development project, the usage of continuous face-

to-face communication is expansive and sometimes simply not feasible due to high

travel costs (Carmel & Agarwal, 2001). In this particular case, due to their research on

communication and quality in distributed agile development, Green et. al. (2010)

recommends adapting a blend of asynchronous and synchronous communication

methods and tools, which might be as successful as collocated teams. The following

part describes the main influences on communication and possible solutions to prevent

these challenges in GSD.

CHAPTER 2 – BACKGROUND AND MOTIVATION 7

2.2 Distances effecting Global Software Development

According to Holmstrom et al. (2006), “GSD is technologically and organizationally

complex and presents a variety of challenges to be managed by the software

development team.” A GSD unit cannot function without coordination, communication,

and control processes. It is believed that in a GSD organization these processes are

mainly challenged by temporal, geographical, and socio-cultural distance (Damian D. ,

2002). Noll et al. (2010) identifies geographic, temporal, language, and cultural distance

as major categories of barriers reported in 24 papers of research on GSD and

collaboration, as well. Figure 1 show that distance challenges negatively influence

communication, coordination, and control within projects. Furthermore, the distance

influences on communication in turn again effects coordination and control.

Figure 1: Impact of distance (Noll et. al (2010))

The next sections describe temporal, geographical, and socio-cultural distance

challenges effecting communication, coordination, and control. In addition to these

three identified dimensions of challenges, other researchers have documented further

challenges on GSD. For example, Carmel has identified five centrifugal forces that have

the potential to derail GSD (Carmel, Global software teams: collaborating across

borders and time zones, 1999); but with many researchers referring to the three

CHAPTER 2 – BACKGROUND AND MOTIVATION 8

dimensions of temporal, geographical, and socio-cultural challenges, this work will also

focus on the three distance challenges. Bird, Nachiappan, Premkumar, Gall, & Brendan

(2009) conclude that it is possible to conduct in-house globalized distributed

development without impacting the software quality by adapting practices to prevent

challenges and improving communication. In his research on a Windows Vista Case

study, he attributes the success of the project to a well-structured organization, which

prevents emerging GSD challenges. Hence, the three identified distance challenges can

also be eliminated, for what reason not only the challenges but also their solutions will

be discussed in this section.

2.2.1 Temporal Distance

The temporal distance measure can result from time zone differences caused by

distributed development around the globe and from dissimilar time shifting work

patterns of the virtual team members; for example, in Germany and Spain (Sarker &

Sahay, 2004). Ågerfalk et al. (2005) characterize temporal distance as a measurement

identifying the dislocation in time experienced by two GSD collaborators. As a

consequence, temporal distance can be seen as a delay in response time and the

reduction of opportunities for synchronized communication between GSD actors

(Sarker & Sahay, 2004). For example, Herbsleb & Mockus (2003) observed that a

change request on software functionalities takes twice as long to be completed in a

distributed environment than in a collocated Hence, working within the same time zone

or time zone bands, for example, within Europe or a collaboration of Europe and South

Africa, facilitates synchronized communications. Suitable solutions for the temporal

distance challenge could be the “follow-the-sun” development, which forwards certain

tasks under construction from side to side to take advantage from temporal distance

(Holmstrom, et. al, 2006).

2.2.2 Geographic distance

Geographic distance is the distance between two actors of GSD projects. This distance

is measured in the ease of relocating resources from one location to another; for

example, by air links (Ågerfalk, et al., 2005). Thus, it is likely that one potential

location is closer on a km perception, but the second potential location provides a better

CHAPTER 2 – BACKGROUND AND MOTIVATION 9

air link or railway connection and thus, the second location fetches better. High

geographic distance reduces the share of explicit knowledge and the possibility of

developing a personal relationship between team workers because distributed teams

must use mail, video, or teleconferencing technologies to communicate among one

another (Noll, et al., 2010). Holmstrom et al. (2006) finds that actors among high

geographical distance projects have difficulties in establishing trust and creating a

feeling of “team-ness” without face-to-face communication. Geographical distance can

be overcome by spending time on travel, which on the one hand facilitates face-to-face

meeting, but on the other hand is very cost intensive. Additional company structures and

services like profile information of every team member in the company internal

websites, near shoring, and taking advantage of modern communication tools for

synchronized communication such as video and teleconferencing technologies is seen as

the best solution for collaboration across geographical distance (Noll, et al., 2010).

2.2.3 Social-cultural distance

The last challenge of GSD is social-cultural distance, which includes language barriers

as a central element (Noll, et al., 2010). However, language barriers do play a crucial

role in the motivation for the research question of this work. The subchapter “Linguistic

barriers in Global Software Development” describes language barriers and their effect

on communication in detail. In this section, cultural distance, which is the second,

central element of social-cultural distance, will be described.

Social distance is described by Ågerfalk et al. (2005) as a measurement of

understanding between the actors’ values and normative practices as well as differences

in organizational culture and national culture (Carmel & Agarwal, 2001).

Organizational culture does include applying methodologies and project management

practices in organizational systems. National culture takes individual motivation and

work ethics, language, ethnic group norms, and politics into account (Carmel &

Agarwal, 2001, Holmstrom, et. al, 2006). It is possible that two actors do have a high

social-cultural distance but share a common organizational structure, and vice versa.

Combining the social-cultural distance with the temporal distance allows several

different combinations. For example, the USA and Australia have a large temporal

CHAPTER 2 – BACKGROUND AND MOTIVATION 10

distance because of different time zones, but have a similar cultural and language

background. In turn, the European and South African people share the same time zones

but have dissimilar cultural backgrounds. Cultural distance may lead to different

interpretations and misunderstandings; for example, when Europeans misinterpret a

polite expression of acknowledgment by an Asian colleague as commitment or

agreement (Noll, et al., 2010). Likewise, different norms in software development

processes could be a cultural difference and might be lead to conflict approaches or

could be misinterpreted as incompetence or discourtesy (Noll, et al., 2010). There are

different approaches by organizations to solve issues relating to cultural distances. One

approach is an offshore-onshore bridgehead where 75 percent of the personal work

occurs offshore while 25 percent of the work remains onshore on the customer side

(Carmel & Agarwal, 2001). This structure facilitates closeness to the customer while

optimizing cost savings by offshoring the development work. Another arrangement

could be the cultural liaison by an internationally experienced project manager, who

travels between the stakeholders to facilitate the cultural, organizational flow and

prevents cultural misunderstandings (Carmel & Agarwal, 2001).

2.3 Linguistic barriers among international teams

Challenges on effective and good communication in GSD projects can occur in various

ways as described in the previous subchapter. Moreover, linguistic barriers among team

members do influence the communication quality and quantity within projects

(Holmstrom, et. al, 2006). Linguistic barriers are a central element of the social-cultural

distance described by Holmstrom et al. (2006). Due to the fact that multinational team

members speaking different native languages and have an individual lingusitic and

educational background, linguistic barrieres can be characterized as a major challenge

on communication within GSD. Furthermore, linguistic barriers could occur through

different organization languages as well as cultural distances, such as dissimilar verbal

business etiquette.

The native language (first language or mother tongue) is defined as the language a

person has learned from birth and which is usually given from his or her parents

(Bloomfield, 1995), or the language that a person speaks the best. It is also possible that

CHAPTER 2 – BACKGROUND AND MOTIVATION 11

a person speaks more than one native language; for example, in case of the parents

speaking different native languages. The native language of a child is part of its

personal, social, and cultural identity (Bloomfield, 1995) and due to an element of

social-cultural distance (Noll, et al., 2010). This statement might imply cultural habits in

the way of communication.

Clearly, team members in multinational teams with different native languages need a

bridge for effective communication. To overcome the language barriers, many global

organizations have implemented a lingua franca (Noll et al., 2010). Lingua franca is

defined as a language which is used to communicate between persons who do not share

the same native languages (Lutz, 2009). Typically, the lingua franca is a non-native

language for the speaker. Non-native language, or foreign language, is the language,

which is spoken in another country or culture and, for example, taught in an individual’s

school or at the university that is attended (Bloomfield, 1995). It is the second language

a person speaks in addition to his or her first language. Since the Second World War,

English has become the lingua franca dominating politics, science, and business

(Bloomfield, 1995). The rise of English as lingua franca is well documented and due to

its global popularity, English has also become the standard lingua franca on GSD

projects. Various decision makers see the advantage of a common language linked to

the project success. Hence, language background and skills are important factors; for

example, offshoring IT work to countries with strong English competences such as

Singapore, India, and the Philippines (Carmel & Agarwal, 2001).

However, communication among teams with members who speak different native

languages could cause various problems even when they use a lingua franca such as

English. In the past, much research had been done on the native speaker (NS) vs. non-

native speaker (NNS) conversation, for example, on comprehensible input, because NS-

NNS conversation often leads to misunderstandings or even non-understanding (Long,

1982). Lutz (2009) argues that a misunderstanding of the spoken words is much worse

compared to a non-understanding of the whole sentence. A sentence that is not

understood by the other team members will usually be discussed again. In contrast,

misunderstanding an instruction during a business meeting could be processed without a

discussion afterwards. Lutz (2009) also observed interesting tendencies in his lesson

CHAPTER 2 – BACKGROUND AND MOTIVATION 12

learned in international Software Development Division. In this context he named

linguistic false friends caused by linguistic similarities in slightly different native

languages of team members with the same cultural background; or similarities between

the native language of the team members and the lingua franca implemented by the

organization, which might cause false friends. One example are the German words

“bekommen” and ”aktuell” and the English words “become” and “actual”, which have

dissimilar meanings.

Another challenge in using English as lingua franca (ELF) could occur if a NS or a very

good NNS of English is part of a project team. Team members with poor language skills

could feel ashamed or be reserved because of their reduced communication style and

speak less than the others (Lutz, 2009). There is also the feeling of losing power in

collaborating with a native speaker when team members have different levels of English

skills (Noll, et al., 2010). In turn, the native speaker is or thinks he or she is of a higher

status, especially if a native speaker has foreign talk experience or the conversation

occurs spontaneously. Due to this, Long (1982) mentioned that in this particular team

combination it is even worse for native speakers because they are not aware of what

non-native speakers of English are talking about. He continues that idioms and

communication style by non-native speakers are hard to understand and prone to

intercultural misunderstandings (Ebert & Neve, 2001). Consequently, native language

proficiency could be bad for communicative success in lingua franca settings; for

example, ELF communication should be restricted to a core vocabulary and simple

grammatical constructions (Long, 1982). A general agreement by research is that NS’s

use a reduced variety of their own language if they are speaking with a non-native

speaker. In many cases, this kind of communication is ungrammatical because articles

and copula are deleted by the native speaker, which might lead to several

misunderstandings (Long, 1982).

These misunderstandings like power shifting, linguistic difficulties, and adaptations by

NS and NSS could lead to big process and implementation faults, which results in a

decrease in the level of trust among the project team members (Holmstrom et al., 2006).

In the literature, different linguistic and organizational approaches are discussed as

solutions to handle linguistic barriers within GSD; for example, asynchronous

CHAPTER 2 – BACKGROUND AND MOTIVATION 13

communication (email) can help to improve communication because the team member

has much more time to answer a question. Additionally, Lutz (2009) recommends both

various training in the organizational lingua franca and asynchronous communication,

which is easier to understand than oral communication. Nevertheless, asynchronous

communication does not fill the gap of face-to-face communication, which allows

virtual teams an informal conversation to develop working relationships and trust

among the team members. The following subchapter describes the importance of trust

within GSD and the effects of language barriers in establishing and maintaining trust.

2.4 Effects of lacking trust and language barriers

Beside temporal, geographical, and social-cultural distance dimensions affecting GSD

projects, lack of trust is an additional factor relating to a decrease in productivity,

quality, and overall team morale (Moe & Smite, 2008). The lack of trust might result in

an increase of relationship conflicts, the prioritization of individual goals over group

goals, and competitions between sub teams. The impact on trust among the virtual team

members is also influenced by temporal, geographical, and social-cultural distance

(Noll, et al., 2010, Moe & Smite, 2008). For example, in particular, the lack of face-to-

face meetings as a result of geographical distance goes along with cost saving strategies

by the management. Moreover, the effects of poor EFL skills as well as cultural

distance like it is described in the previous subchapter similarly reduces the level of

trust (Moe & Smite, 2008). Finally, job uncertainties in GSD also have an impact on

trust because many engineers and developers in high-cost locations are afraid of losing

their jobs as the result of shifting the software work to low-cost locations. However,

Battin, et. al (2001) found that when people are working together in close proximity for

a longer period of time, many issues such as trust, perceived ability, and delayed

response to communication requests were assuaged.

A study by Muhammad, June, & Phong (2007) on Vietnamese developers might

confirm the statement that language barriers do influence the level of trust. In his study,

he asked twelve Vietnamese software developers developing software for Far Eastern,

European, and American clients about the main factors influencing trust between them

and their international customers. He identifies cultural understanding, the knowledge

CHAPTER 2 – BACKGROUND AND MOTIVATION 14

of norms, skills in the native language of both parties, and business ethos as being very

important in establishing relationships of trust with their customers. For maintaining

trust, the cultural understanding and the communication either in the customer or the

software developer’s native-language, were critical factors in preserving trust with the

customer. Indeed, this study was compared to a study on Indian developers by Oza,

Hall, Rainer, & Grey, (2005), which asked more or less the same range of questions to

the Indian developers. Both studies agreed that initial face-to-face meetings are vital to

gain trust in relationships; but the Indian counterpart has a different view on the role of

“cultural understanding” in particular languages. Compared with the statements of the

Vietnamese software developers, for the Indian developers, speaking in the customer’s

native language or vice versa was not an important criterion for establishing and

maintaining trust. The explanation for that disagreement might be the familiarity of

Indian culture and English language due to the Indian history and the majority of US

clients according to Muhammad et al. (2007).

2.5 Theory and ambitions

Summarizing the findings of chapter two, DSD and, in particular, GSD, on the one hand

provide various chances for IT-industry organizations related to cost savings,

knowledge expansion, entering local markets, and multinational cooperation. On the

other hand, GSD brings several challenges with it, which critically meet specified cost,

schedule, and quality goals. One of these described challenges is social-cultural distance

triggered by international team compositions from different cultural backgrounds and

with different native languages. Linguistic barriers are an element affecting social-

cultural distance and are mainly influenced by the team members’ native language and

non-native language education. Additionally, the organizational language does play an

important role. As described in the section ‘Linguistic barriers among international

teams‘, linguistic barriers between NS and NNS could create misunderstandings, non-

understanding, and a shift of power among the projects teams. These factors might lead

to faults and to a decrease of trust. In turn, establishing and maintaining trust among

team members tends to be influenced by cultural background as well as linguistic

barriers.

CHAPTER 2 – BACKGROUND AND MOTIVATION 15

In general, this theoretical knowledge leads to the assumption that language does play

an important role in today’s software development. In particular, NS vs. NNS

communication among international teams does directly influence the social-cultural

distance of GSD project teams and might manipulate the level of trust among these

teams. Therefore, the direct influence of linguistic barriers and the possible reduced

level of trust could be challenges for communication, collaboration, and control, which

are central factors for the project success and for the results of the work. The structure

from Figure 2 is derived from the findings above and illustrates the possible influences

of linguistic barriers on DSD (GSD) success.

Due to the knowledge that language barriers could affect the project success and might

be initiated by negative NS-NSS communication correlation, this work assumes the

theory that the communication in one's native language correlates positively with work

result quality in software development processes. Until now, there is neither a related

work available, which examines this particular research question, nor a measure of the

effects of the project success influenced by different NS-NSS communication situations.

Hence, this empirical research conducts an initial experiment on this area. It observes

whether differences on the team performance of NS-NS, NS-NSS, or NSS-NSS teams

are observable on the working results quality or not. Furthermore, correlations between

linguistic barriers and trust are analyzed in this study to determine the effect of

linguistic barriers on trust. Both findings might provide a basis for further research on

this topic. Additionally, the study analyzes the level of personal satisfaction of the team

members to determine if different team compilations of native and non-native speakers

might have an effect on personal satisfaction or not. This might be an indicator for

problems in the team.

DSD (GSD) success

(communication | collaboration | control)

The level of trust

among team members

Linguistic barriers

challenges

?

?

Figure 2: Motivation for the research question

CHAPTER 3 – RESEARCH METHODOLOGY 16

Chapter 3

Research Methodology

This chapter describes the research methodology of this empirical research. First, it

explains experimentation in the field of software engineering in general and the

importance of conducting a controlled experiment to determine the research question.

Derived from this context, the conducted experiment will be classified. Second, it

provides an overview of the experimental design. This subchapter includes the

characterization of the conducted experiment, the definition of the wording ‘work result

quality’ according to the conducted experiment as well as the explanation of the major

and minor hypotheses. These were generated to test the overall theory, including the

dependent and independent variables. Third, it describes the instrumentation and

experimentation environment as well as the organization and team settings for the

empirical research. Finally, this chapter describes the data collection procedures such as

the pre and final surveys and the valuation methods for proving the three hypotheses.

3.1 Experimentation in the field of software engineering

“Software engineering is a laboratory science” (Basili V. , 1996). Consequently,

empirical studies are vital for software engineering to become a mature science like

physics, medicine, and manufacturing (Basili, Selby, & Hutchens, 1986). A scientific

CHAPTER 3 – RESEARCH METHODOLOGY 17

process provides a basis to increase the knowledge and understanding within a specific

scientific field (Wohlin, et al., 2000). As in every discipline, experiments are also

central to the scientific process in software engineering. Experiments provide a classical

method to identify cause-effect relationships between components by controlled

experimentation (Wohlin, et al., 2000). According to Basili, well-known for measuring,

evaluating, and improving the software development process, “experimentation in

software engineering helps us to better predict, understand, control, evaluate, and

improve software development processes and products”. He adds that “we must learn

from application and improve our understating (Basili V. , 1996).”

The role of experimentation within software engineering has increased over recent

decades, but there is still more scope for further experimentation in software

engineering (Wohlin, et al., 2000). In addition, much research on the field of software

engineering experimentation criticizes the quality of various experiments, which were

processed. Basili et al. (1986) categorized and described more than 100 experiments in

software engineering that have been performed in the seventies as well as in the early

eighties. Based on this categorization of the research papers, he identifies various

problem areas in software engineering experimentations in the sections of experiment

definition, planning, operation, and interpretation. It is important to prevent these

identified problems in each state of the experiment cycle in order to conduct a proper

experiment (Wohlin, et al., 2000).

Basili et al. (1986) argues that in the definition section, a more precise specification of

the problem under observation is required, for example, in terms of a common

understanding of software quality. The reason for this is that there could be many

different interpretations and perceptions of software quality deriving from different

perspectives. Also, he underlines the importance of including a series of

experimentation for exploration, verification, and application in the planning process to

maintain a common sense of research and for further experiments. Additionally, Tichy,

Lukowicz, Prechelt, & Hein (1995) recall the importance of external validation of the

findings. In their quantitative study they investigated more than 400 scientific articles

for the level of experimental validation and they discovered that only a few findings of

conducted experiments will be validated in further studies. Therefore, they repeat that

CHAPTER 3 – RESEARCH METHODOLOGY 18

the research in the field of software engineering should keep in mind that the empirical

validation should always be an important part of an experiment; otherwise, the results

are not valid if no empirical evidence has been provided. Basili et al. (1986) also found

discrepancies in the experimental operations. He criticizes that the collected datasets of

many examined papers have not been defined carefully to compare the records with

other projects for external validation. Wohlin et al. (2000) agrees with this statement

and argues that researchers should be careful about the definition, validation, and

communication of the data, because they play a vital role in the experimental process.

Finally, Basili et al. (1986) continues that a proper presentation of experimental results

supports a correct interpretation. Therefore, a presentation of the results should include

appropriated qualification feedback by developers and researchers from different

platforms to support a suitable interpretation of the results.

Summarizing the literature of this subchapter, Basili et al. (1986), Wohlin, et al. (2000),

and Tichy et al. (1995) agree that not only the quantity of experiments but also the

quality of experiments should be improved in software engineering experimentation.

Furthermore, they found out that too many software engineering experiments are

performed once and stay isolated without any replication. Thus, Basili V. (1996)

conducts that this kind of experiment “…does not lead to a large body of knowledge.” It

can be drawn from the literature that a strictly controlled design of the experiment and a

detailed description for further replication is necessary for the experiment conducted in

this study.

3.1.1 Humans as subjects examined in controlled experiments

Basili et al. (1986) made the point that there are many factors such as cost and quality

goals, methodology, experience, problem domains, and constraints that could vary in

software engineering environments. Nevertheless, he underlines the importance of

human capital within the projects because each person examined can make enormous

differences. Schach (1993) categorized software engineering experimentation

examining persons as subjects as “experimentation-in-the-small' and “experimentation–

in-the-large” to denote experimentation in the areas of “programming-in-the-small” and

“programming-in-the-many”, respectively.

CHAPTER 3 – RESEARCH METHODOLOGY 19

An example of an “experiment-in-the-small” could be an experiment conducted by a

professor with a class of computer science students. Therefore, a computer science

assignment might be used as an example to determine different programming

techniques by two pairs of student groups. The single grade of every student analyzed

by appropriate statistics might be the result of the experiment. Also, professionals could

be the subjects of an ‘experiment-in-the-small’ as described by Basili et al. (1986) and

Schach (1993). In turn, an “experimentation-in-the-many” cannot be performed with a

small group of people such as an “experimentation-in-the-small” (Schach, 1993). He

claims that “experimentation-in-the-many” is necessary for true experimentation.

Hence, at least two large teams, each with more than twenty team members, must work

with a new programming method, which must be observed by an “experimentation-in-

the-many”. According to Schach (1993), there is apparently no trouble-free approach

for a controlled experiment, because of high costs and a variety of programming skills

of each participant. For example, high costs incurred by programming processes, which

must be performed at least twice for each team or multiple versions of the software are

created by the teams depending on the experimental design. Moreover, it is very

difficult to convince the software industry to spend resources and money on testing if

there is no direct value for the particular industry or customers. In addition, differences

in the abilities of the software developers, as well as other disruptive factors such as

language, can manipulate the outcome of the experiment. Apart from the knowledge and

experience of the participants, trouble can arise if a team member resigns, is fired, or is

transferred to another organization (Schach, 1993).

Many empirical studies in software engineering literature have used students as the

subjects of their experiments (Carver, Jaccheri, Morasca, & Shull, 2003). Researchers

often keep in mind the reduction of technical and organizational risk compared to

empirical studies in the industry. Hence, Basili V. (1996) distinguishes between

“novice”, who are “students and individuals not experienced in the study domain” and

“experts”, who are “practitioners of the task or people with experience in the study

domain” as subjects of the software engineering experiment. However, conducting an

experiment with students is seriously discussed in the literature (Schach, 1993). Schach

(1993) claimed that in student teams, the work is usually done by one or two members

of each team, instead of all three team members. Often, the students have different

CHAPTER 3 – RESEARCH METHODOLOGY 20

motivations to participate in an experiment, such as good grades or passing the course.

In turn, a professional program earns money or at least fame for an open source project.

He continues that the scale of a student project can never be as large as that of a

professional programmer team; for the reason that in a typical ten week student project,

the participants can work in average ten hours per week on the project only, because

students often have part time jobs and additional courses. Therefore, he argues that this

kind of project can barely be considered as being “programming-in-a-many”, for

example. A more practical difficulty within student projects is the designing constraints

among the classrooms and the fact that students can only meet once per week. In

general, Schach (1993) argues that these findings from such projects have no external

validity and are not transferable to professional programmers. Whereas Basili, V. (1996)

illustrates that “the novice subjects are used to “debug” the experimental design, which

is then run with professional subjects.”

Conversely, Runeson (2003) identifies significant differences comparing the

performance of undergraduate students and graduate students, but the differences

between industrial professionals and graduate students are smaller. The fact that

students often become practitioners a short time later supports this theory. Another fact

which indicates that the distance between students and professionals is not as high is

that more and more students are working for the industry during the semester, so the

lines between students and the industry are blurred. Besides this, students are fairly

more accurate with the protocol of experiments compared to the professionals (Carver et

al., 2003). Finally, empirical studies with students can be a helpful preliminary

experiment before running an experiment in industrial settings to test the execution of

studies and detect and remove problems for cost savings. Höst, Regnell, & Wohlin

(2000) mentioned that pedagogical goals and research goals should be harmonized.

3.1.2 Alternatives to controlled experiment

In general, to find interesting patterns and relationships in the field of software

engineering, a theoretical or experimental approach is common. A theoretical approach

could be, for example, the observation of several programming methods reported in

literature and a conclusion drawn from this observation (Schach, 1993). A controlled

CHAPTER 3 – RESEARCH METHODOLOGY 21

experiment is strictly tied to certain experimental conditions like the random assignment

of the subjects to different treatments and the execution of the experiment in a

laboratory environment (Wohlin, et al., 2000). If these conditions of a controlled

experiment cannot be fulfilled, there are several options for empirical strategies on

software engineering. A quasi-experiment is used if it is not possible to perform random

assignments of the group members to the quasi-experiment. Additional approaches

include case studies and surveys (Wohlin, et al., 2000). Case studies are conducted for

monitoring projects and assignments in a lower level of control compared to

experiments. The aim is to identify relationships among different attributes and to

observe specific attributes. Survey results are analyzed for descriptive and explanatory

conclusions gathered by interviews and questionnaires (Wohlin, et al., 2000).

3.1.3 Classification of the conducted experiment

There are several attributes of an experiment such as type of result, participants,

environment, and the level of control, which can be used to characterize an experiment

according to Basili V. (1995). This empirical research was conducted within a

laboratory environment (see. experimental environment), but the subjects were not

randomly assigned. But due to the high level of control and the university environment,

this empirical research can be classified as a quasi-experiment in “vitro”. “Vitro” is an

experiment under controlled conditions, for example, at the university (Basili V.,1995).

The opposite is “vivo”, which describes experiments in the field under realistic

conditions.

Similarly, for a quasi-experiment in “vitro”, statistical inferences need to be applied to

determine significant cause-effects in an appreciated way of statistical analyses

(Wohlin, et al., 2000). Due to the fact that the expected outcomes of H1 are two

measurements for the software quality and for the requirement quality from only four

teams (see. Team setting), a descriptive statistics method is adequate. Basili V. (1995)

believes that “some simple combination of metrics could easily explain cost, quality,

etc.” Finally, the experiment is performed exclusively with graduate students, which

leads to a “novice” classification according to Basili V. (1995). Basili V. (1995) also

characterized an experiment on the number of teams and the projects analyzed.

CHAPTER 3 – RESEARCH METHODOLOGY 22

According to his categorization, this empirical research does fit to the multi-variation

project categorization, as it is shown in Table 1.

Table 1: Categorization of software experiments (Basili V. (1995)).

3.2 Experimental design

This subchapter describes the experimental design including the characterization of the

conducted experiment as well as the discussion of the hypotheses; the selection of the

independent and depended variables will also be explained. It should illustrate the

objective of the study and the purpose for which the experiment was conducted.

3.2.1 Definition of the experiment

In preparation for effective experimental planning, a precise definition of the study is

essential (Basili V., 1995). Basili V. (1995) suggests a simplified variant of the

Goal/Question/Metric (QGM) model, which characterizes the type of the performed

study and moves the experimentation in a better direction (Basili & Rombach, 1988).

According to Basili V. (1995), the QGM model “represents a systematic approach for

tailoring and integrating goals with models from the software process, products, and

quality perspectives of interest, based upon the specific needs of a project and

organization.” However, Basili’s (1995) simplified variant only uses the goal

parameters of the QGM, such as the object of the study, purpose, focus, and the point of

view for the characterization approach. Adopting Basili’s & Rombach’s (1988)

approach to this work, the objective of the study is to examine the influences of the

communication language among international teams in order to improve future (virtual)

One More than one

One Single Project Multi-Project Variation

More than one Replicated Project Blocked Subject-Project

of Teams

per Project

Projects

CHAPTER 3 – RESEARCH METHODOLOGY 23

team compositions with respect to the results of the work from the point of agile

software development.

Therefore, the approach of this experiment is either to confirm or disprove the theory

that “communication in one’s native language correlates positively with the work result

quality in software development processes”. This experiment ran at the University of

Erlangen-Nuremberg in April and May 2012. Therefore, four multinational student

teams were the core of the experiment, from which each team had to develop an

application for Android devices to the same requirements specified by a customer. All

teams had to perform the agile development process SCRUM to implement the

customer requirements according to an agile process. According to the SCRUM alliance

definition, each project team was composed of a PO group and a DEV group (The

Scrum Alliance, 2012). The following section defines the wording work result quality

according to the definition of the experiment.

3.2.2 Definition of the wording work result quality

Since this empirical research analyzed an experiment on a software engineering project,

a typical IT-project success criterion was applied to measure the success of each project.

As described in chapter two, central success criteria of an IT-project are the

accomplishment of the specified cost, schedule, and quality goals according to the

literature. However, this experiment only focuses on the quality of the projects’

outcome. The reason for this is that the cost factors might not be adequately analyzed

within a seven week student project and the scheduled factor would probably have place

too much pressure on the students in respect to their grading, but the project outcome

was part of the final course grade of each participant.

To determine the quality of every software engineering project, two criteria were

defined: The expected work result quality of the experiment was four applications for

Android devices, each with various forms of software quality (see Experimental Setup).

Therefore, the first criterion of the working result outcome is the quality of each

individual Android application. In addition to the software quality, the requirement

quality in form of detailed user stories from the SCRUM process was part of the

CHAPTER 3 – RESEARCH METHODOLOGY 24

working result quality. User stories are an essential part of the SCRUM product backlog

and are written by the Product Owners (PO’s) to describe functionalities of the Android

application (see. Product Owners). Software quality as well as requirement quality were

analyzed and evaluated independently. However, both results are important to draw a

meaningful conclusion, because they reflect the work result quality of the entire team.

In addition, the level of trust as well as the personal satisfaction of each team member

were measured after the experiment and analyzed and evaluated independently from the

software and requirement quality metrics. As described in chapter two, the level of trust

might have direct influence on the software quality. Thereby, personal satisfaction

might be an indication for problems in the team and the motivation of the team

members for future joint software engineering projects.

3.2.3 Discussion of hypotheses investigated

The basis for a successful analysis of a theory is the decision regarding whether the

hypotheses are valid or not. The hypotheses derived from the theory are essential for all

steps of the experimental design and the included variables (Easterbrook, Singer,

Storey, & Damian, 2008). Within this empirical research, the major research hypotheses

should test the role of various native and non-native speaker team compositions and its

influence on the defined work result quality of the experiment. Therefore, each team has

dissimilar NS or/and NNS team member treatments. The detailed staffing process of the

teams is described at the section “Team settings” within this chapter.

To relate well to the definition of the work result quality one section before, the

hypotheses fall into two categories. The goal of the investigation is to support or reject

both categories whereas the first category is the crucial factor to attempt or to reject the

null hypothesis:

H0: Being able to communicate in one’s native languages does not correlate

with the quality of the work result.

The major category includes the direct influence of linguistic barriers on the software

and requirement quality. The hypothesis is as following:

CHAPTER 3 – RESEARCH METHODOLOGY 25

Major:

 H1: Being able to communicate in one’s native language correlates

 positively with the quality of the work result

The minor category consists of language barriers and their impact on the level of trust,

which in turn might have influence on the software quality according to the literature of

chapter two. Furthermore, the personal satisfaction of each individual participant is

measured within the minor category. The hypotheses are as following:

Minor:

H2a: Being able to communicate in one’s native language correlates

positively with the level of trust among virtual team members

H2b: Being able to communicate in one’s native language improves

personal satisfaction in the project

Hence, the empirical research tests three individual hypotheses and evaluates the result.

The following describes the treatments on each independent variable to test H1 as well

as the expected outcome of the dependent variables.

3.2.4 Variable definition

The experiment tests H1, whereas two additional surveys are carried out to test H2a as

well as H2b after the experiment. Both surveys were related to the experiment and

described in the section “Experimental data collection procedures.” The experiment had

three independent variables that were manipulated to measure the effect on two

dependent variables.

Independent variables:

As described in the chapter “Background and Motivation”, there could be three different

ways of communication among NS and NNS in general. The first way is to

communicate exclusively in the native language, which all team members have in

common; for example, to speak German if all team members are native speakers of

CHAPTER 3 – RESEARCH METHODOLOGY 26

German. The second possibility is that a team consists of team members with similar

and dissimilar native languages, so that only some team members are able to

communicate in their native language. An example for this possibility would be that a

team consists of two native German speakers and the other three members speak a little

or no German at all, so that the two Germans can just communicate with each other on

the same level. The third alternative is that all team members speak dissimilar native

languages; for example, Spanish, Turkish, French, German, and Chinese. In the second

and third cases, the teams could use a so-called lingua franca such as English to

communicate between a native and a non-native speaker

Since a SCRUM team consists of a PO group and a developer (DEV) group, three

different communication channels can be identified: the communication among the PO

group, the communication among the DEV group, and the communication between

DEV’s and PO’s. Each of these described communications can either take place in a

native language or in a non-native language, which depends on the composition of the

PO group and the composition of the DEV group. The PO group and DEV group could

either be composed of group members with similar native languages or of group

members who speak a dissimilar native language.

An example of a team compilation could be that the PO’s were native German speakers

and the DEV’s speak different native languages such as Chinese, Italian, and Spanish.

In this case, the method of communication between the PO’s would take place in a

native language, the communication between the DEV’s would take place in a non-

PO’s DEV’s

NS or NSS -

communication

NS or NSS -

communication

NS or NSS -

communication

Figure 3: Communication channels among teams

CHAPTER 3 – RESEARCH METHODOLOGY 27

native language, and the communication between the PO’s and DEV’s would also take

place in a non-native language. According to this example, there are three identifiable

independent variables: communication within the PO group (PO communication),

communication within the DEV group (DEV communication), and communication

between DEV’s and PO’s (Team communication), whereas all three of these

independent variables could adopt the treatment’s native language (NS) or non-native

language (NNS). If the communication took place in a non-native language, the lingua

franca used was English. The independent variables as the communication channels

among a SCRUM team are illustrated in Figure 4.

Dependent variables:

Requirement quality and software quality are the main outputs of the PO’s and DEV’s

roles in a software engineering SCRUM project. Particularly in a SCRUM project,

requirement quality plays a vital role, because it is a central part of the agile SCRUM

process. Many parts of the user stories will be specified in detail during the software

development process and not in advance, as with the V-model. The software quality

depends on the specification of the user stories, but there are also several other factors

influencing the software quality, which are described in the chapter “Background and

Motivation”. Therefore, to measure the entire work result quality of the teams, both

software quality and requirement quality are essential.

3.3 Instrumentation and development environment

This subchapter describes the experimental setup and the development process in detail,

which is essential for a possible future replication of the conducted experiment. The

experiment ran as part of the AMOS lab course. This course is held each semester by

Prof. Dr. Riehle at the University of Erlangen-Nuremberg. The contents of the course

are agile processes, more specifically SCRUM and technical (favorite XP) practices

(Riehle, 2012). Theoretical knowledge combined with practical knowledge from various

labs is taught during the semester. The course language is English due to the large

proportion of international students.

CHAPTER 3 – RESEARCH METHODOLOGY 28

3.3.1 Experimental setup

The general experimental setup consists of four software engineering projects based on

the SCRUM agile development process, corresponding to the course content of agile

processes. The goal of each software engineering project team was to develop an

Android application for an open social networking portal by the same requirement. The

requirements were defined and provided by a customer.

The customer role was performed by the author of this work. Agile development

processes such as SCRUM are used in an environment of changing requirements and

uncertainties (Green, Mazzuchi, & Sarkani, 2010). Therefore, additional information

according to the requirement specifications was distributed to all teams by the customer

during the sprints. Emerging questions from the teams concerning the requirement

specifications were answered by the customer from a customer perspective. However,

there was no SCRUM-Master provided for the teams because of a lack of resources.

Since the experiment was scheduled for seven weeks, each team held independent

weekly SCRUM meetings (Figure 5). A weekly SCRUM meeting was scheduled with a

time of one and a half hours and included a review and a sprint planning session

according to the standard SCRUM procedure (The Scrum Alliance, 2012). Participants

were responsible for the division of time during their meetings. For presenting the result

or new features during the planning or review session, the university provided a

projector and laptop, as well as Android Phones for the students. Each team was in

charge of selecting the correct media for their individual presentation. During the

planning session, the DEV’s needed to play planning poker to estimate the effort for a

new feature. The planning poker cards were provided by the university. The cards were

on a scale from zero to thirteen effort points, whereas zero is no effort for a feature and

thirteen is impossible to implement a particular feature within one week.

CHAPTER 3 – RESEARCH METHODOLOGY 29

Figure 4: SCRUM Model (Adapted from scrumit.wordpress.com)

The customer observed each of the weekly SCRUM meetings; the reason for this

procedure was first to answer emerging questions by the PO’s concerning the

requirement specifications, and second, to guarantee a sufficient laboratory process.

Emerging questions and answers of one particular team were not forwarded to the other

teams. The PO’s also had the possibility to ask the customer questions regarding the

requirements during the weekly sprints via mail. There was no restriction on

asynchronous or on synchronous communication among the team members during the

sprint. Additionally, daily SCRUM meetings and communication channels were not

observed and analyzed.

For the weekly SCRUM meeting, all teams were located in different rooms at a

different time at the University of Erlangen-Nuremberg. The meetings were held on

Wednesday and Thursday. The schedule was assigned in collaboration with each team

member because of overlapping university courses. The teams worked collocated and

dispersed at the university or at other locations during the sprints. In addition to the four

experimental teams, there was one additional team, which waslocated in Germany and

China. The PO’s within this specific team were located at the University of Erlangen-

Nuremberg, whereas the DEV’s were located at the University of Beijing. Due to this

fact, the experimental results of this particular team could not be used in the overall

outcome because the environment is not equal to that of the other four teams. However,

this kind of experimental setup could be the next step for further research in this area.

7 days

CHAPTER 3 – RESEARCH METHODOLOGY 30

3.3.2 Team settings

In total, there were four examined teams; two heterogeneous teams and two

homogenous teams. Homogenous teams had either team members with similar native

languages or team members with only dissimilar native languages. Thereby, a

heterogeneous team had team members with similar and dissimilar native languages

divided up in the PO group or DEV group. Additionally, there were several important

factors to consider for balancing and blocking other influences on the project outcome

like experience and education. Next, the step-by-step team setting process is described.

First, all participants in the experiment were graduate students from the University of

Erlangen-Nuremberg. The students were from computer science courses as well as from

international information systems courses. All participants were assigned to their groups

according to a survey conducted at the course registration and their native languages.

The course participants were divided into two groups of German NS and non-German

NNS.

Second, both groups were divided into the three categories of poor, average, and

professional software developers from the knowledge of a survey conducted on the

course registration. There was no distinction between male and female as well as no

distinction in respect to the age of the participants. However, the grouping by poor,

average, and professional software developers was based on very vague information

from the participants. Due to this, a further pre-survey that is described in the section

“Pre-Survey”, should determine more detailed assumptions of the skills and experiences

of each software developer at the beginning of the experiment.

In the third step, the students from the categories German NS and NNS were assigned to

the teams (Table 2). Each team was composed of three developers with poor, average,

and professional development skills and their native languages. Two participants with

poor development skills were assigned as PO’s according to their native language.

Therefore, the homogeneous experimental control group has scopes of five NNS with

dissimilar native languages and English as their team language. Further, one

heterogonous group with two native German PO’s and three non-native German DEV’s

CHAPTER 3 – RESEARCH METHODOLOGY 31

with dissimilar native language, as well as another heterogeneous group with two non-

native German PO’s and three native German DEV’s. Both groups had English as their

team language. Lastly, there was another homogeneous team including two native

German PO’s and three native German DEV’s. The team language of this group was

German.

Table 2: Team settings

TEAM-ID PO’s

(NS/NNS)

DEV’s

(NS/NNS)

Team language

(NS/NNS)

FSA10 NS NNS NNS

FSA31 NNS NS NNS

FSA11 NS NS NS

FSA23 NNS NNS NNS

Leftover students were given different tasks. It is important to know that the PO’s

neither worked in the SCRUM development process before nor wrote a user story.

Thus, there could be no advantage due to former SCRUM experiences as a PO. This

survey is described in the section “Experimental data collection procedures”. To gain

basic knowledge about SCRUM, there was an introduction on SCRUM for all

participants during the kick-off sprint meeting.

Fourth, there was no native English speaker assigned to any group of German NNS. The

NNS speak little to no German. However, all of the NNS have an adequate level of

English skills, which was determined in the pre-survey.

3.3.3 Development environment

The context of the study was for each team to develop an Android application for an

open social networking portal called FSAhoy.com. The portal itself focuses on

“…anyone interested in sharing nautical experiences and information” (Free Seas Ahoy,

2012). It provides several functions for sharing sailing experiences; for example,

managing sailing trips, location tracking, and sharing individual sailing trips beyond a

CHAPTER 3 – RESEARCH METHODOLOGY 32

social community (not fully implemented yet). The “Free Seas Ahoy!” project is an

open-source initiative for the most part by the AMOS lab-course and it has been

available online since summer 2011. This year it is developed in the second generation

of AMOS students from the University of Erlangen-Nuremberg. In addition to the

Android applications, a different group of students had continued developing the social-

networking portal. Due to this, the Android Application teams used a stable copy from

the first semester social networking portal to work independently. This stable copy

includes additional web-service implemented for the Android application.

Each of the four experimental SCRUM-teams had to develop the Android application

according to the requirements of the customer. The requirements were handed out as

UML Use-Cases (see Appendix I) by the customer. Six different use cases described

what the teams had to implement during the seven week sprints. However, the students

had no order to develop all functionalities within the seven week sprints, period.

Moreover, it was very unlikely to implement all goals of the UML Use-Cases within the

seven weeks. To provide a controlled communication platform, each team was assigned

to a separate Google Drive folder. The person responsible for the experiment provided

all six UML Use-Cases and a SCRUM Backlog template on this folder. The teams

needed to use the sprint backlog on the Google Drive folder to guarantee an equal

SCRUM process. Moreover, the teams could use this folder as a document sharing

platform, for example, to have a look on the product backlog during the weekly sprints

or to share architectural designs.

3.3.4 Product owners

According to the SCRUM principles, the PO’s were responsible for the business value

of the Android application project (The Scrum Alliance, 2012). Therefore, they had to

set up the product backlog including prioritized user stories for each feature of the

Android application. The PO’s had to generate each feature that was necessary to

implement the use cases goals and to put this feature into the product backlog. The

prioritization of each feature was also done by the PO’s, as well as setting up a release

plan. The first release of the Android application was directly after the seventh week of

the experiment. A second release was at the end of the semester, which was not part of

CHAPTER 3 – RESEARCH METHODOLOGY 33

the controlled experiment. During the review and sprint meetings, they had to manage

the product and sprint backlog as well as the feature archive. The sprint backlog

depended on the performance of the developers. It was also possible to remove or to

split features from the product backlog if the developer had critical arguments against it.

In case of any bugs found during the reviews, an additional bug feature was

implemented by the product owners. In order to have a quick start to the experiment, the

customer provided five user stories. Additionally, a mockup of the menu was provided

from the customer at the beginning, but there was no order to use the mockup for design

questions. The PO’s were in charge of designing mockups for visualizing the Android

Application activities.

3.3.5 Developers

The DEV’s had to implement each feature provided by the PO’s, but the DEV’s had the

opportunity for critical comments on the features and also the opportunity to call for

revision during the sprint planning. In the sprint review meeting, the developer team

demonstrates to the PO’s what they had completed during the last sprint. Each

developer was assigned as review manager at least twice within the experimental

period. The review manager was responsible for the tagging of the code, the technical

setup for the sprint review, and the feature presentation during the sprint review.

The DEV groups had to implement features into the Android application like reading,

updating, and creating the user profile, the trips, or the logbook information. To

implement these features corresponding with the context of the use cases, the

developers had to use several web-services provided from FSAhoy.com. Furthermore,

several mobile services such as GPS and the specific mobile menu navigation should be

implemented by the DEV groups. Enabling a quick start to the projects, an Android

framework was provided. The framework included an implemented RESTlet connection

to the web services and an Android database interface to a DB40 client backend. But the

teams were not forced to use the provided framework. Furthermore, there were no

restrictions on additional frameworks.

CHAPTER 3 – RESEARCH METHODOLOGY 34

Additionally, to avoid complications, each team had their own server instance with a

copy of the FSAhoy.com sever, which provided an independent programming

environment for each DEV group. In order to guarantee an equal working environment

for the DEV groups, they must use the same code repository. Therefore, four repository

accounts on www.bitbucket.org were created for each team.

3.4 Experimental data collection procedures

This subchapter provides an overview of the used data collection processes and

methods. The major part of this subchapter is the data collection process of the software

quality and the requirement quality. In total, there was one experiment and three surveys

carried out to collect data. One survey was before the experiment and two surveys

immediately after the experiment.

3.4.1 The ‘Likert Scale’ method

The survey questions consisted of open questions and questions that had to be answered

with the help of Likert scales; this scale is named after its inventor, Rensis Likert

(Likert, 1932). It is a psychometric scale commonly used in questionnaires and it is the

most widely used scale in survey research; for example, in marketing or social

economics (Web Center for Social Research Methods, 2006). The used Likert Scale in

this study was a five (or seven) point scale, which allowed the participants to express

themselves regarding how much they disagreed or agreed on a specific statement. The

advantage of this survey method is that it is fast, cheap, and easy. Moreover, it does not

allow for a simple yes or no answer from the participants, but rather a degree of answers

(McLeod, 2008). By using this method, a researcher can collect large amounts of data in

a short amount of time on paper or in the web. A disadvantage of this method is that

participants can affect the outcome by trying to please the researcher or lying to make

themselves better (McLeod, 2008); for that reason anonymity should be given to

prevent this effect.

The following describes several requirements for the conducted surveys:

 Anonymity of each participant

CHAPTER 3 – RESEARCH METHODOLOGY 35

 Easy accessibility of the questionnaire either via Internet

or as a hand out during the lecture

 Clear introductions for the participants on how to fill out the survey

 Questions regarding personal satisfaction and the level of trust

among a team from a proven psychological reference model

3.4.2 Pre-Survey

At the kick-off meeting, a pre-survey was conducted with the purpose of determining

the software engineering experiences of each participant and blocking other influences

on the experiment. As in the previously described section, the team compositions were

based on questions at the course registration. Due to that, this pre-survey should

determine an exact experience of each DEV and PO to weighting the experiment

outcome if large differences exist in the level of experience among the teams. The pre-

survey was divided into three parts. In the first part, questions were asked regarding

personal characteristics such as age, nationality, and course of study. The other parts

were different for DEV’s and/or PO’s. DEV’s were asked about their level of

experience in the field of programming as well as in the field of Android application

developing. The programming experience ranged from pass of a software engineering

course at university and no further programming skills, to working experience with

more than 10,000 lines of code or three years of working experience as a programmer.

In addition, the DEV’s were asked whether they already developed an Android

application and if they answered with yes, they should describe what kind of Android

application they had developed. In turn, the PO’s were asked if they have IT-project

experience and if they had already written a SCRUM user story. If they answered with

yes, they had to describe the context of this user story.

3.4.3 Evaluation of software quality and requirement quality

The Android applications were evaluated right after the investigation. As described in

the section “Definition of work result quality”, both quality criteria are strong indicators

of the overall quality. However, the data are collected in different ways. Next the data

collection process for both measurements is described.

CHAPTER 3 – RESEARCH METHODOLOGY 36

Requirement Quality

This variable cannot be measured on a standardized metric scale such as the Cyclomatic

Complexity Number, because each user story of the product backlog is an individual

text, which can only be analyzed with the knowledge of an expert. Thus, Prof. Dr.

Riehle made an expert valuation on the product backlog of each team to get a qualitative

measurement of the PO’s performance.

Software Quality

Good software quality is a basic goal in software engineering (Herbsleb & Mockus,

2003). However, software quality is still a complex and broad term in the literature. If

software quality is discussed in the field of software engineering, there are two related

but distinct notions. Software quality can be distinguished in functional and non-

functional quality (Spillner & Linz, 2005). Functional quality describes how well the

quality of a software product fits with the given design, based on the requirements and

specifications of the customer. The non-functional quality to the contrary describes to

what extent the software product meets robustness or maintainability; in general, the

degree to which a software product was produced correctly. For example, the structural

quality of the software product refers to non-functional quality and can be evaluated, for

instance, through the software inner structure, the source code, and its effect on the

architecture.

There are widespread quality models available such as McCall or ISO 9126 (today ISO

25010), but no commonly accepted evaluation model (Spillner & Linz, 2005). Perhaps

the reason for that issue is that the developers of the software have another perspective

on the product as managers. Software developers mainly focus on the internal structure

of a software product (white box), whereas managers or customers have an external

perspective (black box) on the software product. Furthermore, each software project is

different from other projects. For example, projects might differ in security,

performance, or replication aspects. Finally, some people rely on quality metrics and

other people don’t trust in metrics, but rather in fulfillment of requirements (Spillner &

Linz, 2005).

CHAPTER 3 – RESEARCH METHODOLOGY 37

Measuring the software quality of each Android application, this empirical research

used an adapted version of the ISO 9126 quality model. The ISO 9126 focuses on

functionality, reliability, usability, efficiency, compatibility, portability, and

maintainability. Each characteristic includes several sub-characteristics, which specify

the characteristics in detail. Each sub-characteristic is further divided into attributes,

which are items that can be measured or verified (Spillner & Linz, 2005). This attributes

are not in this quality model because of the variety of software products mentioned one

paragraph before. Due to that, the paper used several metrics and qualitative evolutions

to determine the software quality categorized in the ISO 9126 quality model.

To measure the software quality for the Android application in this study, an open

source tool called Sonar was used, which is used in very large open source projects such

as Apache or GoogleCode to control the software quality (Sonar, 2012). Sonar is a web-

based application and an open platform to manage code quality, which also provides

specific support for the Android application. Therefore, the Android application had to

build in Maven (The Apache Software Foundation, 2012). In addition to the metrics of

Sonar, which give a good internal view on each Android application, there was an

evolution of the Android applications on usability and on functionality by the customer.

Both characteristics cannot be adequately measured by a tool such as Sonar, for

example. Table 3 shows the characterizations used from ISO 25010 and the metrics

from Sonar as well as the evaluation from the customer perspective.

To determine the software quality on a comparable scale, points were awarded for each

quality metric. The result of a team was divided into predefined categories which

correspond to 0, 1, or 2 points. The point-categories are defined by the customer

according to standardized maximum and minimum values from the software quality

literature (Spillner & Linz, 2005) as well as from a customer perspective. Table 3

explains each metric and point-category used to evaluate the software quality.

CHAPTER 3 – RESEARCH METHODOLOGY 38

Table 3: Software Quality Evaluation Model

F

u
n

ct
io

n
a

li
ty

R

el
ia

b
il

it
y

U

sa
b

il
it

y

E

ff
ic

ie
n

cy

M

a
in

ta
in

a
b

il
it

y

Rules compliance index with

Findbugs (Gives a ratio between

weighted violations by Findbugs

and the number of lines of code)

2P:>= 85%

1P:>= 70%

0P: < 70%

Comments (Number of javadoc,

multi-comment and single-comment

lines. Empty comment lines like,

header file comments and commented

out lines of code are not included)

2P: >=50%

1P: >=30%

0P: <30%

Duplication (Number of physical

lines touched by a duplication)

2P: = 0

1P: <= 10

0P: >10

Method complexity (Cyclomatic

Complexity Number, also known as

McCabe Metric)

2P: <= 5

1P: <= 10

0P: > 10

Package tangle index (Gives the

level of tangle of the packages, The

best value 0% means that there is no

cycles and the worst value 100%

means that packages are really

tangled)

2P: <=10%

1P: <=20%

0P: > 20%

Correct implemented features

(Total amount of features

implemented according to the use

cases compared to the other teams)

2P: >= 20

1P: >= 15

0P: < 15

Design (Assessment of Graphic and

usability from a customer perspective)

2P: UP

1P: UP

0P: UP

Time measurement (Manually

measurement of user log-in time

and profile update time)

2P: <= 2s

1P: >= 3s

0P: < 3s

Total amount of JUnit Tests (Total

amount of features tested)

2P: >= 10

1P: > 0

0P: = 0

CHAPTER 3 – RESEARCH METHODOLOGY 39

3.4.4 Final Surveys

The level of trust as well as the personal satisfaction among teams has often been the

object of the research in the field of psychology and sociology. Hence, there are already

various approaches to measure both attributes. Therefore, two reference models from

the literature were used to create the questionnaires by meeting the scientific demand.

To find out the level of trust among the teams, a modified 5-point scale measure of

trustworthiness from Pearce, Sommer, Morris, & Frideger (1992) was distributed to the

team members. It was constructed to provide a general statement of trust among teams.

The survey questions were modified by Leidner & Jarvenpaa, (1998) who explored the

challenges of creating and maintaining trust in a global, virtual team. These questions

resulted in responses on a seven points scale and measured as intervals according to the

reference model of Leidner & Jarvenpaa (1998). Thereby, personal satisfaction was

measured according to a reference model of Wageman, Hackman, & Lehman (2005).

This measurement was used by Rogelberg, Allen, Shanock, Scott, & Shuffler (2010) to

identify the satisfaction of team members. These questions were responded to on a five

points scale and measured as intervals according to the reference model

CHAPTER 4 – EXPERIMENTAL OPERATION 40

Chapter 4

Experimental Operation

Software engineering is a process strongly influenced by human interactions and

communication, certain differences can occur, especially in agile software development.

Hence, this experiment was conducted to measure those differences with a focus on

similar and dissimilar native languages among software engineering teams. To obtain

comparable results of each team, a controlled experimental setup was essential to

prevent other influences as described in the previous chapter. Each team was also

observed by the customer to guarantee an equal SCRUM process as well as to offer the

opportunity to answer upcoming questions from a customer perspective. The outcomes

of this observation are several notes concerning the research question. Additionally,

sound records were made during each session.

The personal observation, explained in the following findings does not contribute to the

answer to the research question. Instead, it only provides an inside view of the

experimental operation and might help in finding additional starting points regarding

this topic.

CHAPTER 4 – EXPERIMENTAL OPERATION 41

4.1 Personal observation

During the six review and planning sessions, several characteristics of the

heterogeneous as well as of the homogenous teams could be observed corresponding to

the theoretical knowledge from chapter two. Here, there are only patterns described

which had often been repeated during the weekly SCRUM meetings.

The communication in English as lingua franca led to several misunderstandings or

even non-understanding during the sprint meetings. These groups who used a lingua

franca had many more uncertainties during the review sessions concerning the user

stories or the division of labor between PO’s and DEV’s. For example, there were

misunderstandings regarding how functionalities should have to look, which led to

revised versions of the functionalities until the next sprint meeting. Also, general

discussions occur on who has had to define constraints or error messages (PO’s or

DEV’s). In comparison, there were much more discussions about the technical

implementation of functionalities and much more cycles in planning poker if the DEV

groups spoke in their native language.

The native language team in particular needed more time for the planning session than

for the review session, whereas the heterogeneous native language team spent more

time on the review session than on the planning session to talk about ambiguities and

implementation mistakes. In addition, there was a noticeable shift of the hierarchies

within the heterogeneous groups through the native language speaker group members.

One reason for the shift was that the native German speakers within heterogonous

groups often switched to German, although they had agreed on English as a lingua

franca. In general, the roles of PO’s and DEV’s were separated more in the

heterogeneous than in homogeneous groups. The latter group made a harmonious

impression, whereas the heterogeneous groups had developed their monument on their

own.

The observations during the sprint sessions show dissimilar communication behaviors

in the teams. Summarizing the observation findings, the teams that communicated on a

lingua franca had more linguistic barriers, which led to a shift of hierarchy and many

CHAPTER 4 – EXPERIMENTAL OPERATION 42

more misunderstandings compared to the native language team. In turn, the native

language team had longer discussions in the planning session, which might have

positively influenced the working results. The observations currently suggest that the

native language SCRUM team might have performed better than the other teams during

the sprint meetings.

CHAPTER 5 – ANALYSES AND RESULTS 43

Chapter 5

Analyses and Results

This chapter analyzes the quality data of the conducted experiment and the responses of

the subsequent surveys to extract the most important results. These results are vital in

order to support or to reject the major and minor hypotheses. A summary of the

experimental results as well as of the survey results are given in the last subchapter.

5.1 Pre-survey

With the results of the pre-survey, two weightings were calculated for each team to

compensate differences in the abilities of software development or software project

management of the participants. The weightings were calculated independently for the

PO-group as well as for the DEV-group in a team. The total points of each group

member were aggregated to calculate the total points of each DEV or PO group. Finally,

the total group points were scaled from zero to one. In general, the nominated values

were calculated using this formula:

CHAPTER 5 – ANALYSES AND RESULTS 44

With the values of this scale, an average value among all teams was calculated for the

DEV as well as for the PO groups. This average value was divided by the nominated

value of each group to define the weightings of each PO and each DEV group. In

section 5.2.2, both weightings were used to weight the software quality results and

requirement quality results. Besides the collected data concerning the experience of

each participant, further personal attributes were collected, which were not used for any

evaluation of the experiment.

5.1.1 Calculation of the DEV group weighting

Each DEV group could receive between zero and twenty-seven experience points from

the responses of the pre-survey. Each participant could collect points for his or her

“development experience in general” (DEIG), “specific experience in Android

development” (SEIAD), and for his or her “general work experience in international

teams” (GWEIIT).

For GWEIIT each developer received zero or one point primarily depending on his or

her qualitative answer. If a developer had GWEIIT resulting from a profession in a

company or projects at the university, he or she received one point. Further, if a

developer had experience in SEIAD, he or she received either one point for experience

from theoretical courses at the university or three points from a developer profession in

a company or projects at the university. For DEIG, each developer received zero, one

(Passed the university course “Algorithmen und Datenstrukturen”), two (University IT-

project(s)), three (Private IT-project or working experience < 10000 lines of Code (~ 0,5

years)), four (Private IT-project or working experience > 10000 lines of Code (~ 1,5

years)), or five (Working experience > 10000 lines of Code (~ 3 years)) experience

points. Some of the participants marked two or three possible DEIG answers, but it was

always rated the highest value of experience. For example, a student with experience in

“University IT-project(s)” and “Private IT-project or working experience > 10000 lines

of Code (~ 1,5 years))” received four points.

The pre-survey results in Table 4 show a nearly balanced presetting of the developer

groups. FSA11, FSA31, and FSA23 had initial experience in Android development,

CHAPTER 5 – ANALYSES AND RESULTS 45

resulting from previous lectures or a profession in a company. In contrast, the GWEIT

and DEIG values are nearly balanced for all teams. Therefore, the software quality

results in particular from team FSA10 will be positively weighted, whereas the results

from teams FSA11 and FSA23 will be negatively weighted, which will be explained in

detail in section 5.2.2.

Table 4: Illustrates the results from the developer groups of each team

5.1.2 Calculation of the PO group weighting

The PO group of each team could receive between two and twenty total experience

points. They received one (poor), two (fair), three (good), four (very good), or five

(excellent) points depending on their general IT-Project experience (GITPE). Further,

zero, one, or two extra points were given if the PO’s already had general work

experience in international teams (GWEIIT) depending on the qualitative answer. If the

PO had GWEIIT resulting from a profession in a company, he or she could receive two

points. But for GWEIIT or specific SCRE from theoretical courses at the university,

only one point was given. For initial SCRUM experience (SCRE), each PO could also

receive zero, one, or three points depending on the qualitative answer; either one point

for experience from courses at the university in SCRE or three points from a profession

in a company.

team-id n

total experience points

(GWEIIT, DEIG, SEIAD) nominated weighting

FSA10 3 13 (3, 10, 0) ,481 1,173

FSA11 3 17 (2, 11, 4) ,630 ,897

FSA31 3 15 (2, 9, 4) ,556 1,017

FSA23 3 16 (2, 11, 3) ,593 ,953

,565average nom.:

CHAPTER 5 – ANALYSES AND RESULTS 46

Table 5 shows that the experience of the PO’s varies among the teams due to dissimilar

experiences in GITPE and GWEIIT of each PO group. However, none of the PO’s had

any initial SCRUM experiences.

Table 5: Illustrates the results from the product owner groups of each team

5.2 H1: Software quality and requirement quality

The following sections show the quantitative results of the conducted experiment. As

described in chapter three, the software quality data as well as the requirement quality

data was evaluated based on the Android Applications and the product’s backlogs

produced by the project teams. In particular, the software quality data was calculated on

a software quality evaluation model corresponding with the ISO 91261 standards,

whereas the requirement quality was collected by an expert valuation on the product

backlog of Prof Dr. Riehle.

5.2.1 Requirement quality results

To determine the requirement quality, the results were calculated on the quality of each

user story in the product backlog as described in chapter three. The results were

determined for each PO within a team. Therefore, the formula below was used to

calculate the quality of the user story within each sprint week he or she performed.

Afterwards, the results were aggregated for every PO group and scaled from zero to

one.

team n

total experience points

(GWEIIT, GITPE, SCRE) nominated weighting

FSA10 2 8 (2, 6, 0) ,300 ,958

FSA11 2 7 (2, 5, 0) ,250 1,150

FSA31 2 10 (3, 7, 0) ,400 ,719

FSA23 2 6 (1, 5, 0) ,200 1,438

,288average nominated:

CHAPTER 5 – ANALYSES AND RESULTS 47

∑

Table 6: Illustrates the results of the requirement quality

5.2.2 Software Quality evaluation

All results illustrated in Table 7 were evaluated on the basis of software metrics and a

qualitative validation from a customer perspective according to the use cases. The

software metrics ranging from number 1) to 5) and 9) were calculated by Sonar, which

is an open source platform to manage code quality, whereas the qualitative validation of

number 6), 7) and 8) were assigned by the customer. The customer was already

convinced of the right implementation (6) of the features during the sprint review

sessions. The calculation of the results of number 7) and 8) will be described in detail to

justify the customer validation.

All results were classified into predefined categories ranging from zero to two points, as

described in chapter three. In total, every team could gain between zero and eighteen

software quality points. Afterwards, the total points of each team were scaled from zero

to one for each team.

Team

FSA10

Team

FSA11

Team

FSA31

Team

FSA23

Requirement Quality 2,5 2,83 1 1,5

nominated 0,625 0,708 0,25 0,375

CHAPTER 5 – ANALYSES AND RESULTS 48

Table 7: Software quality evaluation model

 * FSA10: (-) Textlabels and textfields cannot be read on profile add/update (-) no Android usability

feature implemented (+) Application design goes hand in hand with the webpage (-) no menu

navigation FSA11: (+) Uses Android specific functionalities such as a slider to navigate through the

app (+) Clear and attractive design according to the webpage (+) Menu navigation FSA31: (+) Menu

navigation (+) Clear and attractive design (-) no android usability feature implemented FSA23: (-) no

android usability feature implemented (-) no menu navigation (-) Application design does not fit to the

webpage

** FSA10: User-LogIn: 6,21 sec. & Profile-Update:5,46 sec. FSA11: User-LogIn: 1,92 sec. & Profile-

Update: 2,32 sec. FSA31: User-LogIn: 1,65 sec. & Profile-Update: 1,20 sec. FSA23: User-LogIn:

4,41 sec. & Profile-Update: 2,46 sec.

The results of the software quality evaluation show that team FSA11 had performed

best with twelve out of eighteen points. However, there was no very large distance in

the results from FSA31, FSA23, FSA10, and the other three teams even performed

better in some software quality metrics. It is notable that team FSA23 as well as team

Metrics & Qualitaive validation

Team

FSA10

Team

FSA11

Team

FSA31

Team

FSA23

Lines of Code 3899 7696 6564 1771

1) Rules compliance with Findbugs 1 (76,5%) 2 (89,3%) 2 (90,0%) 1 (82,4%)

2) Comments 0 (5,5%) 0 (5,4%) 0 (5,2%) 0 (16,4%)

3) Duplication 1 (5,1%) 1 (8,0%) 1 (5,9%) 2 (0%)

4) Method complexity 2 (2,6%) 2 (2,7%) 2 (1,8%) 2 (1,8%)

5) Package tangle index 2 (2,1%) 0 (45,9%) 1 (12,3%) 2 (6,3%)

6) Right implemented features 1 (20) 2 (25) 1 (21) 0 (14)

7) Design * 1 2 1 0

8) Time measurement ** 0 2 2 1

9) JUnit tests 0 (0) 1 (3) 0 (0) 1 (5)

total points 8 12 10 9

nominated 0,444 0,667 0,556 0,500

CHAPTER 5 – ANALYSES AND RESULTS 49

FSA10 had numerous good software quality metrics but a poor performance, for

example, in the application design or rules compliance, which might have been affected

by the smaller amount of implemented features by these teams. In turn, team FSA11

and team FSA31 only had a fairly good performance on maintainability metrics such as

the package tangle index or duplication. Furthermore, none of the four teams wrote a

sufficient amount of comments on their code or sufficient test cases which might have

been influenced by the small programming period. Summarizing the results of Table 7,

team FSA11 and team FSA31 performed better in this model compared to the other

teams because of their well-balanced development of good code quality and the

fulfillment of the customer requirements.

Table 8 shows the results of the conducted experiment weighted with the results of the

pre-survey as described in subchapter 5.1. For each team, the result of their software

quality was multiplied with the weighting of their particular DEV group. Moreover, the

result of the requirement quality of each team was multiplied with the weighting of their

PO group.

Table 8: Weighted Software Quality and Requirement Quality results

As shown in Table 8, the software quality results of FSA10 moved closer to FSA11 and

FSA31 after the weighting with the team member experience. Also, FSA11 moved

closer to the other groups because of their negative weighting. But still, team FSA11

performed best on software quality followed by team FSA10 and FSA31, as it is shown

in Table 7. Team FSA23 had poor performance in software quality compared to the

other teams. On the other side, the requirement quality of the PO’s of FSA11 and

TEAM-ID
Software

Quality
weigh. SQ weigh.

Requirements

Quality
weigh. RQ weigh.

FSA10 ,444 1,173 ,521 ,625 ,958 ,599

FSA11 ,667 ,897 ,598 ,708 1,150 ,814

FSA31 ,556 1,017 ,565 ,250 ,719 ,180

FSA23 ,500 ,953 ,477 ,375 1,438 ,539

CHAPTER 5 – ANALYSES AND RESULTS 50

FSA23 increased through the positive weightings, whereas the requirement quality of

team FSA31 and FSA10 decreased.

Figure 5: Total software and requirement quality

In general, the best software and requirement quality was delivered by team FSA11,

followed by team FSA10. FSA31 delivered good software quality but poor requirement

quality. Thereby, team FSA23 delivered good requirement quality but the lowest level

of software quality compared to the other teams.

On the basis of the work result quality, H1 need to be rejected and H0 remains because

no significant differences among the teams concerning correlations of their native

language with the work result quality could be identified. However, on a descriptive

level of statistics, the direct comparison of the average values shows that FSA11 had the

best quality results of the work. Chapter six will discuss this outcome in detail.

5.3 H2a: Analysis of the level of trust survey

This survey was distributed in paper form to all team members after the conducted

experiment. The survey was answered by 100% of the participants. Eight questions

were evaluated using this analysis, which could be answered on a seven-point scale. The

level of trust survey questions are attached as appendix 3.

.521

.598

.565

.477

.599

.814

.180

.539

.000 .500 1.000 1.500

FSA10

FSA11

FSA31

FSA23

SQ weigh.

RQ weigh.

1,016

,745

1,412

1,120

CHAPTER 5 – ANALYSES AND RESULTS 51

Before analyzing the answers, a conducted correlation analysis showed that all

questions are independent of each other. Hence, there was no need to conduct a factor

analysis to group some of the questions. Due to that, an average value could be

calculated for all responses of each individual team member. Therefore, the answers of

question six and question seven had to be inverted due to a negative formulation of

these questions. For example, if the question “There is no ‘team spirit’ in my group”

was answered with ‘strongly disagree”, the answer was graded with five points instead

of one point. Afterwards, a one-way Analyses of Variance (ANOVA) was applied to the

calculated team member average values to determine significant differences among the

teams. An ANOVA analysis can be used to test differences among at least three groups

(Analyses among two groups can be covered by a t-test). The analysis shows that there

are differences in the level of trust between the team FSA10 and the other teams with

significance of p < .004 (see Appendix IV).

Figure 6: Show the average value of each team member

as well as the average value of each team (ANOVA p > .004)

The result of the level of trust survey and the adopted ANOVA analysis is that the level

of trust is significantly most pronounced in team FSA11, which is followed by team

FSA11 and team FSA31. The lowest level of trust is among team FSA23. Therefore,

H2a can be confirmed by several limitations as described in chapter six.

5.375

6.775

5,250 5.025

0

1

2

3

4

5

6

7

8

FSA10 FSA11 FSA31 FSA23

Avg. Team members Avg. team

CHAPTER 5 – ANALYSES AND RESULTS 52

5.4 H2b: Analysis of the personal satisfaction of the team members

This survey about the personal satisfaction of the team members was conducted via

internet to all team members. There was a total response of 100 percent. In total, ten

questions were asked to all team members, whereas two questions had a negative

formulation. These negative question results were inverted as described in the previous

subchapter. The participants had to answer the questions on a five point scale. The

survey is attached as appendix four. Similar to the analysis of the level of trust survey, a

correlation analysis was conducted to show that all questions of this survey are

independent to each other. Also, no further factor analyses had to be conducted.

Afterwards, the average values for the responses of each team member were calculated,

and furthermore, a one-way ANOVA was applied to determine possible differences in

the personal satisfaction of the team members. However, the ANOVA analysis shows

no significant p > .183 differences and no tendency on a better personal satisfaction of

the teams with a common native language. Therefore, H2b needs to be rejected (see

Appendix V).

Figure 7: Show the average value of each team member as

well as the average value of each team (ANOVA p.003)

3.7

4.14

3,62
3.98

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FSA10 FSA11 FSA31 FSA23

Avg. Team members Avg. team

CHAPTER 5 – ANALYSES AND RESULTS 53

5.5 Summary

On the radar chart below, all results of the conducted experiment as well as of the level

of trust survey and the personal satisfaction survey are illustrated. Therefore, the results

of the level of trust and personal satisfaction surveys were scaled from zero to one. This

radar chart is not content of the following discussion because the results of each

investigation are not comparable. Nevertheless, it shows a tendency which is conformed

in the next chapter.

Clearly, team FSA11 performed best in the conducted experiment as well as in the level

of trust survey. Team FSA23 and FSA10 had equal performances. Team FSA31 had

similar performances compared to FSA23 and FSA10 and even performed slightly

better in Software Quality, but the overall performances were negatively affected due to

bad requirement quality.

Figure 8: Result summary radar chart

0.000

0.200

0.400

0.600

0.800

1.000

Software Quality
(Weighted)

Requirements Quality
(Weighted)

Level of Trust

Personal satisfaction

FSA10 FSA11 FSA31 FSA23

CHAPTER 6 – DISCUSSION 54

Chapter 6

Discussion

The last chapter analyzed and described the results of the conducted experiment as well

as of the surveys. Taking up this point, the following chapter discusses the findings

from chapter five in order to resolve the hypothesis under observation. Additionally,

some limitations of this empirical research are discussed. Overall, in addition to the

discussion of the results, this chapter provides further information regarding a

replication of the conducted experiment as well as improvements for future studies on

this topic.

6.1 Limitations

First, there are some limitations on the study which need to be made before discussing

the results. The experimental setup as a quasi-experiment has lower external validity

due to the presetting of the teams instead of a randomized arrangement of each

participant (Wohlin, et al., 2000). Randomized arrangement of the treatments (In this

case the native or non-native language of the students) is a prerequisite for a controlled

experimental setup (Wohlin, et al., 2000). Furthermore, the experiment was conducted

with graduate students as the subjects under observation, which is discussed seriously in

the literature concerning the external validity because this experimental design might

CHAPTER 6 – DISCUSSION 55

bias the reality (Schach, 1993, Höst, Regnell, & Wohlin, 2000). Further, the overall

experimental model is too small due to the amount of test persons within the teams as

well as the amount of teams in general. This amount was naturally limited by the

resources of the AMOS course, which is not sufficient to calculate significant cause-

effects among the teams by statistical analyses. Therefore, only descriptive methods are

used to analyze the findings of the software and requirement quality. Another limitation

is that all native speakers are from Germany, which is also naturally limited by the

recourses available. This suggests that the results might have been influenced by other

reasons; for example, the German education system. Finally, the results are restricted to

the SCRUM agile development. Perhaps other agile or non-agile development models

such as Extreme Programming or the waterfall development model would have led to

different results

6.2 Discussion of the results

At the beginning of this discussion, it should be underlined that no general assumption

can be drawn on external validity of the experimental results, which is a consequence of

the limitations discussed one subchapter before. However, interesting tendencies are

discussed in this subchapter that may be confirmed in further research building upon

this investigation. On the basis of the findings in chapter five, this discussion reflects

the rejection of H1 and H2b, as well as the internal validity of H2, because of the

significant testing of the level of trust survey.

H1 was rejected for the reason that the small amount of data did not allow any statistical

method that could confirm rational significant differences among the teams.

Nevertheless, the descriptive analyses of H1 show a tendency of a better performance of

the team FSA11 that could be derived from the experimental outcome with respect to

the limitations. The results of the experiment show that this native language team had,

in total (software and requirement quality), the best result of work quality (1,412)

compared to the other teams. As shown in Figure 6 in chapter five, the team is followed

by the heterogeneous team FSA10 (1,120) and the homogenous control group FSA23

(1,016), with team FSA31 following shortly after (,745). Interestingly, the native

speaking DEV group in team FSA31 had the second-best software quality results (,565)

CHAPTER 6 – DISCUSSION 56

right after the DEV group of FSA11 (,598), whereas the PO group of team FSA31 had

the lowest requirement quality result compared to the other PO groups. It can be asked

on the basis of these findings, if the developers do speak a common native language in

an agile SCRUM development process, and whether the languages barrier between PO

and DEV group or within the PO group matters or not? Also, the heterogeneous team

FSA10 shows this effect, vice versa. The native language PO group of team FSA10

performed second best (,599) right after the native language PO group of team FSA11

(,814). In contrast, the software quality of the non-native language DEV group of team

FSA11 was not as good as the software quality of the native language DEV groups of

team FSA11 and team FSA31. But either way, in turn it can be asked if low

performance of the PO’s in SCRUM projects does have an effect on the DEV group in

general?

Over-all, the tendency is towards a better outcome of the native language groups.

Maybe the reasons lie in the findings from chapter two, which describes the challenges

of linguistic barriers; but this cannot be significantly confirmed by these findings. Due

to that, this tendency should be viewed with caution as already mentioned in the

limitation subchapter. Additional research needs to exclude a “German effect” by a

replication of this study with native speaker groups from non-German speaking

countries.

Referring to the software quality evaluation model in general, this tendency regarding

the software quality can be discussed whether it reflects a reasonable examination on

the software quality or not. As described in chapter three, there are several ways of

measuring software quality in the literature. However, several previously conducted

experiments on software quality only based their appraisals on the formula:

 (Green et al. 2010, Bird et al. 2009). Adapting this type of

software quality measurement to the software quality outcome of this experiment, the

results indicate a similar shape. This might confirm a positive correlation tendency of

the native-speaking DEV groups with the work result outcome, as shown in Table 7.

The values in Table 9 were calculated on the critical and minor errors identified by

Sonar and the inverted weighting of software development experience by the conducted

pre-survey.

CHAPTER 6 – DISCUSSION 57

Table 9: Software quality based on Defect Rate

Going along with the tendencies of the experimental findings, H2a was confirmed by

the survey outcome with respect to the limitations of the study. The result shows that

the level of trust within the pure native speaker team is significantly higher compared to

the other teams. Interestingly, the survey outcome of the other teams has no high

divergence among these teams. This result corresponds with the theoretical background

of chapter two, which tends to the theory that a high level of trust among teams might

support the software quality outcome. With regard to the personal satisfaction of the

team members tested by H2b, it is interesting that all teams are strongly satisfied during

the sprint review. Due to that, no significant differences among the teams could be

calculated. The results might have differed if the experiment would have been executed

for more than seven weeks or would have been tested in more than two different

projects.

Adding to this discussion, the theory that the communication in one's native language

correlates positively with work result quality in software development processes cannot

be confirmed due to the fact that the major hypothesis, H1, had to be rejected. But as

described in this subchapter, there is a tendency that the communication in one’s native

language correlates positively with the work result outcome, which is supported by the

outcome of the conducted trust survey. The next chapter describes some suggestions for

further exploration on this particular research question.

Team

FSA10

Team

FSA11

Team

FSA31

Team

FSA23

Lines of Code 3899 7696 6564 1771

Code size (KLOC) 3,899 7,696 6,564 1,771

Critical errors 19 23 39 16

Major Errors 224 176 126 68

Defect Rate 62,32 25,86 25,14 47,43

weigh. 0,827 1,103 0,983 1,047

Defect Rate (weighted) 51,537 28,519 24,718 49,654

CHAPTER 7 – CONCLUSION 58

Chapter 7

Conclusion

The theoretical background of this empirical research underlines that globally

distributed software development has grown over recent decades, but challenges such as

temporal, geographical, and social-cultural distances have still remained. Technical

advances did support this growth and further technical innovations such as digital face-

to-face meetings had reduced geographical distances. However, social-distance such as

linguistic barriers cannot easily be bridged by a new technological innovation (at least

not today). The cultural and educational background of the employees, previous

experiences in virtual teams, and training are essential to reduce the social distance

among teams. Hence, challenges such as linguistic barriers are still feasible.

This study investigated an experiment to determine the effects of linguistic barriers on

the work result quality of two homogenous and two heterogeneous teams with

dissimilar team member compositions regarding their native languages. The experiment

was conducted in a controlled environment to prevent other influences such as

geographical and temporal distances to determine the effects of native language on the

work result quality of a software product. This investigation will be interesting for

future compositions of software development teams as well as for minimizing the risk

of low quality on future software products. The field of interests could vary from global

CHAPTER 7 – CONCLUSION 59

IT projects of organizations to global open source projects, on which international teams

need to find and work together. Certainly, a significant confirmation of these results

won’t change and should not change existing and future team compositions, but it might

help regarding the sensitivity of team members as well as the management.

Interestingly, the findings show a tendency that linguistic barriers might affect results of

the work quality. This tendency is reasoned by the good performance of one

homogenous team, which was composed of no linguistic barriers as well as the good

performance of two subgroups of the heterogeneous teams, also without linguistic

barriers. Although these results have some limitations, a replication of the experiment is

necessary to confirm this tendency as well as the theory which was not confirmed

during the discussion of the results.

7.1 Suggestion for future research

On the basis of the previous discussion and the limitations of this study, some

suggestions for future work in this field of research are described in this subchapter. To

confirm the tendency, this quasi-experiment needs to be replicated with native language

speaking teams or groups from countries other than Germany. Additional research

needs to exclude a “German effect” by a replication of this empirical research with

native speaker groups from other countries. It is important that these team compositions

are from at least two countries with similar educational systems and industry

infrastructure as Germany. In addition, there should be another team from countries

with a lower educational system and industry infrastructure. Of course, a control group

with an international team composition is essential, as well.

In the case of similar findings as found in this empirical research, a true controlled

experiment should be conducted. For example, randomized software development

projects at the university with similar and dissimilar native language team compositions

could be analyzed in a long-term study. The third step should be to conduct an

experiment on this research question to gain significant results about professional

developers in this field.

CHAPTER 7 – CONCLUSION 60

Regarding the measurement of the software quality, different measurement techniques

as well as different development processes should be applied on further investigations.

Besides the four teams under observation in this empirical research, there was another

team developing an Android application in collaboration with a team in Beijing via

face-to-face online communication. Therefore, in a fourth step, the linguistic barriers

should be tested with virtual team composition instead of weekly face-to-face meetings.

Acknowledgment

I would like to thank Prof. Dr. Dirk Riehle for the thesis opportunity, Hannes Dohrn and

Frank Denninger for their ongoing software engineering support.

LITERATURE VII

Literature

Ågerfalk, P., & Fitzgerald, B. (2006). Flexible and distributed software processes: old

petunias in new bowls? Communications of the ACM 49(10), pp. 26-34.

Ågerfalk, P., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., & Ó Conchúir, E.

(2005). A Framework for Considering Opportunities and Threats in Distributed

Software Development, In. In Proceedings of the International Workshop on

Distributed Software Development (DiSD 2005), A (pp. 47-61). Austrian

Computer Society.

Basili, V. (7th. July 1996). The Role of Experimentation in Software Engineering: Past,

Current, and Future. 8th international conference on Software engineering (pp.

442 - 449). Washington, DC, USA: EEE Computer Society.

Basili, V. R., & Rombach, D. H. (June 1988). TAME Projecti Towards Improvement-

Oriented Software Environments. IEEE Transactions on Software Engineering,

Vol. 14, No. 6.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (July 1986). Experimentation in

Software Engineering. IEEE Interactions of Software Engineering, No. 7, pp.

733-743.

Battin, R., Crocker, R., Kreidler, J., & Subramanian, K. (April 2001). Leveraging

resources in global software development. IEEE Software, pp. 70-77.

Bird, C., Nachiappan, N., Premkumar, D., Gall, H., & Brendan, M. (August 2009).

Does Distributed Development Affect Software Quality? An empirical case

study of Windows Vista. Communication of ACM, Vol. 52, No. 8, pp. 85-93.

Bloomfield, L. (1995). Language. London: Motilal Banarsidass.

Carmel, E. (1999). Global software teams: collaborating across borders and time

zones. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Carmel, E., & Agarwal, R. (March/April 2001). Tactical Approaches for Alleviating

Distance in Global Software Development. IEEE SOFTWARE, pp. 22-29.

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2003). Issues in Using Students in

Empirical Studies in Software Engineering Education. Ninth International

Software Metrics Symposium. IEEE Computer Science.

Damian, D. (2002). Workshop on Global Software Development. In Proceedings of

International Conference on Software Engineering (ICSE). Orlando, Florida,

USA.

LITERATURE VIII

Damian, D., & Moitra, D. (September/October 2006). Global Software Development:

How far we have come? IEEE SOFTWARE, pp. 17-19.

Easterbrook, S., Singer, J., Storey, M., & Damian, D. (2008). Selecting Empirical

Methods for Software Engineering Researc. London: Springer London.

Ebert, C., & Neve, D. P. (March/April 2001). Surviving Global Software Development.

IEEE SOFTWARE, pp. 62-69.

Favela, J., & Pena-Mora, F. (March/April 2001). An Experience in Collaborative

Software Engineering Education. IEEE Software, pp. 47-53.

Free Seas Ahoy. (11. 08 2012). Free Seas Ahoy! Von Home: http://www.fsahoy.com/

abgerufen

Gartner Outsourcing & Strategic Partnerships . (2012). Key Issues Facing ITO Industry.

Stamford.

Geay, C., McNally, S., & Telhaj, S. (March 2012). Non-Native Speakers Of English In

The Classroom: What Are The Effects On Pupil Performance? London: Centre

for the Economics of Education.

Green, R., Mazzuchi, T., & Sarkani, S. (2010). Communication and Quality in

Distributed Agile Development: An Empirical Case Study. World Academy of

Science, Engineering and Technology, pp. 61: 322-328.

Green, R., Mazzuchi, T., & Sarkani, S. (2010). Understanding the role of synchronous

& asynchronous communication in agile software development and its effects on

quality. Journal of Information Technology Management, S. Volume XXI, No.

2.

Herbsleb, J. D., & Moitra, D. (2001, March/April). Global Software Development.

IEEE Software, pp. 16-20.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2001). An Empirical

Study of Global Software Development: Distance and Speed. 23rd International

Conference on Software Engineering (S. 81 - 90). Washington, DC, USA: IEEE

Computer Society.

Herbsleb, J., & Mockus, A. (June 2003). An empirical study of speed and

communication in globally distributed software development . IEEE

Transactions on Software Engineering , Vol. 29 , No. 6, pp. 481 - 494 .

Holmstrom, H., Ó Conchúir, E., Ågerfalk, P. J., & Fitzgerald, B. (2006). Global

Software Development Challenges: A Case Study on Temporal, Geographical

and Socio-Cultural Distance. IEEE International Conference on Globale

Software Engineering. IEEE Computer Society.

LITERATURE IX

Höst, M., Regnell, B., & Wohlin, C. (2000). Using Students as Subjects - A

Comparative Study of Students and Profession-als in Lead-Time Impact

Assessment. Empirical Software Engineering, Vol. 5, pp. 201-214.

Leidner, D. E., & Jarvenpaa, S. L. (June 1998). Communication and Trust in Global

Virtual Teams. Journal of Computer‐Mediated Communication, Vol. 3, No 4.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of

Psychology, Vol. 22, No. 140.

Long, M. (1982). Native speaker/non-native speaker conversation and the negotiation of

comprehensible input. Applied Linguistics, Vol. 4, No. 2, pp. 126 - 141.

Lutz, B. (2009). Linguistic Challenges in Global Software Development: Lessons

Learned in an International SW Development Division. Fourth IEEE

International Conference on Global Software Engineering (pp. 249-253). IEEE

Computer Society.

Manifesto for Agile Software Development. (2001). Agile Manifesto. Von Principles

behind the Agile Manifesto: http://agilemanifesto.org/principles.html abgerufen

McLeod, S. (2008). Simply Psychology. Von Likert Scale:

http://www.simplypsychology.org/likert-scale.html abgerufen

Moe, N. B., & Smite, D. (2008). Understanding a lack of trust in gloabl software teams:

a multiple-case study. Softw. Process Improve. Pract., No. 13, pp. 217-231.

Muhammad, A. B., June, M. V., & Phong, T. N. (2007). Establishing and maintaining

trust in software outsourcing relationships: An empirical investigation. The

Journal of Systems and Software , Vol. 80, pp. 1438–1449.

Noll, J., Beecham, S., & Richardson, I. (September 2010). Global software development

and collaboration: barriers and sollutions. ACM Inroads, Vol. 1, No. 3, pp. 66-

78.

Oza, N., Hall, T., Rainer, A., & Grey, S. (2005). Trust in software outsourcing

relationships: an empirical investigation of Indian software companies. 9th

International Conference on Empirical Assessment in Software Engineering.

Keele, UK.

Pearce, J. L., Sommer, S. M., Morris, A., & Frideger, M. (1992). A configurational

approach to interpersonal relations: Profiles of workplace social relations and

task interdependence. Irvine: Graduate School of Management, University of

California.

LITERATURE X

Powell, A., Piccoli, G., & Ives, B. (2004). Virtual teams: A review of current literature

and direction for future research. The DATA BASE for Advances in Information

Systems, Vol. 35, No. 1, pp. 6-36.

Prikladnicki, R., Marczak, S., & Audy, J. L. (2006). MuNDDoS: A Research Group on

Global Software Development. International Conference on Global Software

Engineering (S. 2). IEEE Computer Science.

Riehle, P. D. (10. 08 2012). Software Research and the Industry. Von Courses:

http://dirkriehle.com/courses/agile-methods/ abgerufen

Rogelberg, S., Allen, J., Shanock, L., Scott, C., & Shuffler, M. (March–April 2010).

Employee satisfaction with meetings: A contemporary facet of job satisfaction.

Wiley InterScience, No. 2, pp. 149–172.

Runeson, P. (2003). Using Students as Experiment Subjects - An Analysis on Graduate

and Freshmen PSP Student Data. 7th International Conference on Empirical

Assessment & Evaluation in Software Engineering , (pp. 95 - 102).

Sahay, S. (2003). Global software alliances: the challenge of 'standardization'.

Scandinavian Journal of Information Systems, pp. 15: 3-21.

Sarker, S., & Sahay, s. (2004). Implications of space and time for distributed work: an

interpretive study of US-Norwegian systems development teams. European

Journal of Information Systems, Vol. 13, pp. 3-20.

Schach, S. R. (1993). Software Engineering - Second Edition. Chicago: Irwin

Professional Publishing.

Smite, D., & Borzovs, J. (2006). A framework for overcoming supplier related threats

in global projects. Joensuu, Finland: Springer Verlag.

Sonar. (12. 08 2012). SonarSource. Von Home: http://www.sonarsource.org/ abgerufen

Spillner, A., & Linz, T. (2005). Basiswissen Softwaretest. Heidelberg: dpunkt.verlag

GmbH.

The Apache Software Foundation. (19. 08 2012). Apache Maven Project. Von Home:

http://maven.apache.org/ abgerufen

The Scrum Alliance, T. (08. 08 2012). Scrum Alliance. Von Scrum 101: Scrum

Alliance: http://www.scrumalliance.org/pages/scrum_101 abgerufen

Tichy, W. F., Lukowicz, P., Prechelt, L., & Heinz, E. A. (1995). Experimental

evaluation in computer science: a quantitative study. J. Syst. Softw., pp. 9–18,.

LITERATURE XI

Wageman, R., Hackman, R., & Lehman, E. (2005). Team Diagnostic Survey-

Development of an Instrument. The Journal of Applied Behavioral Science, S.

Vol. 41, pp. 373.

Walenta, T. (April 2004). Managing cross-cultural issues in global software

engineering. Communication of the ACM, S. Vol. 47, No 4, pp. 62-66.

Web Center for Social Research Methods. (11. 08 2006). Social Research Methods.

Von Likert Scale: http://www.socialresearchmethods.net/kb/scallik.php

abgerufen

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000).

Experimentation in Software Engineering. Boston: Kluwer Academic

Publishers.

VERSICHERUNG XII

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne

Benutzung anderer als der angegebenen Quellen angefertigt

habe und dass die Arbeit in gleicher oder ähnlicher Form noch

keiner anderen Prüfungsbehörde vorgelegen hat. Alle Aus-

führungen der Arbeit, die wörtlich oder sinngemäß übernommen

wurden, sind als solche gekennzeichnet.

Nürnberg, den

 (Unterschrift)

APPENDIX XIII

Appendix I – Use Cases

A)

APPENDIX XIV

B)

C)

APPENDIX XV

D)

APPENDIX XVI

E)

F)

APPENDIX XVII

Appendix II – Personal Satisfaction Survey Questions

1. I feel a real sense of personal satisfaction when our team does well

2. I feel bad and unhappy when our team has performed poorly

3. My own feelings are not affected one way or the other

by how well our team performs

4. When our team has done well, I have done well.

5. I learn a great deal from my work on this team

6. My own creativity and initiative are suppressed by this team

7. Working on this team stretches my personal knowledge and skills

8. I enjoy the kind of work we do in this team

9. Working on this team is an exercise in frustration

10. Generally speaking, I am very satisfied with this team

Appendix III – Level of Trust Survey Questions

1. Members of my work group show a great deal of integrity

2. I can rely on those with whom I work in this group

3. Overall, the people in my group are very trustworthy

4. We are usually considerate of one another’s feelings in this work group

5. The people in my group are friendly

6. There is no "team spirit" in my group

7. There is a noticeable lack of confidence among those with whom I work

8. We have confidence in one another in this group

APPENDIX XVIII

Appendix IV – ANOVA Personal Satisfaction

APPENDIX XIX

Appendix V – ANOVA Level of Trust

