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Abstract

Classifying open source software projects in the Ohloh data (Chapter 2.4: Used
Data Sources) manually would take a very long time. For further research on
the Ohloh data, it would be helpful to have the projects classified into groups.
In order to to this, data from a snapshot of the ohloh project is analyzed and
then machine learning techniques are used to classify the data. The results of the
classification can then be added to the Ohloh data for further research.
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1 Introduction

The Ohloh database is accessible via web under ohloh.net or REST API. The
data was collected by crawling the web for open source projects as well as by
users who added their projects to the Ohloh database. Users are also allowed
to add and correct data concerning projects. The Ohloh data has already been
used for several analysis by (Bruntink, 2014),(Gysin & Kuhn, 2010), (Hu & Zhao,
2008), (Deshpande & Riehle, 2008), (Arafat & Riehle, 2009) and others. In order
to improve future analysis, we analyze the ohloh data and classify the projects
into functional groups. As the big amount of data makes it really inefficient and
time consuming to classify the existing data, we use a machine learning approach
for classification.

1.1 Thesis goals

• Model of types of open source projects

• Algorithm using machine learning to classify open source projects

• Evaluation of algorithm using information retrieval measures
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2 Research

2.1 Introduction

Whenever there is enough data to be analyzed, it is likely to find patterns in it.
These patterns can be used on new data to gain some more information about
them. If the data is big enough not to be analyzed manually, machine learning
can be employed. This thesis will use machine learning to classify open source
projects from the Ohloh database.

2.2 Related Work

As mentioned in the introduction, there already have been several analysis con-
ducted on the Ohloh data by (Bruntink, 2014), (Gysin & Kuhn, 2010), (Hu &
Zhao, 2008), (Deshpande & Riehle, 2008), (Arafat & Riehle, 2009) and others.
The applied machine learning techniques have been discussed in multiple papers,
some of which are referenced towards the end of 2.6. Despite a lot of Research, we
couldn’t find any research on how to classify open source software into functional
categories. Although there has been a lot of work done in the field of mining soft-
ware repositories, we didn’t find any functional classifications of whole software
projects.

2.3 Research Question

Is it possible to classify open source projects into functional categories? What
are these categories? Is machine learning suited to classify the projects in the
Ohloh database?
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2.4 Research Approach

First, we will analyze the Ohloh data manually using the R package ggplot2. In
order to do this, a snapshot of the Ohloh data is accessed via PostgreSQL. We
use a snapshot, so that we don’t need to query the Ohloh.net web service every
time we run the classification and to avoid getting other results just because some
new projects were added in the meantime.

Afterwards, we will define a classification model for the Ohloh data. This means
we will first identify the data which might carry some information concerning
the classification. This data has to be structured to run the supervised machine
learning algorithms on it. Then, training and test data have to be defined.

Next, we will identify one or more machine learning algorithms, which can be
run on the data.

Finally, we will evaluate the used algorithms.

2.5 Used Data Sources

Ohloh database:

• Representative sample (2013) of open source projects

• Mostly ’hard’ project data like ’project name’, ’numbers of code’, etc.,
configuration management information, tags

• Easily accessible in an relational schema

• Accessible via Ohloh.net and REST API

2.6 Research Results

The snapshot of the data from Ohloh is saved locally at the Friedrich-Alexander-
University at Erlangen-Nürnberg and accessed via PostgreSQL. For the layout of
this database, please see Chapter 3: Layout.

As there was not much literature to be found about classifying Software at all, we
defined some prioritized requirements for a classification model suited for machine
learning:

1. Usefulness in further analysis (i.e. functional information on the projects)

2. Ease of creating training data for supervised machine learning
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3. Preferably orthogonal categories

The reasons for these requirements are explained in Chapter 3.1: Construction
of Model requirements.

We defined a model that tries to fulfill these criteria as best as possible:

• Entertainment: Anything related to games and videos.

• Workplace: This is anything related to a typical developer workplace.

• Infrastructure: Things like frameworks, web infrastructure, drivers, ...

These categories will be useful in further analysis, as they provide a differenti-
ation in functionality. Also it will be possible to create training data based on
the tags (as explained below). The categories are not orthogonal, but we had to
accept this as the other two criteria were more important.
We discussed creating a ’others’ category but since we couldn’t find any corres-
ponding tags, we decided to drop it.
We choose to run our further analysis on the tags because they are already struc-
tured and can be easily used to create training data. The relation between pro-
jects and tags is a N:M relation. Also, we suspected, that tags carry information
about the functional classes as they were created/added by users to order their
project into (partly) functional sets. We hoped that we could extract this in-
formation from the tags with our machine learning algorithms. From this point
on, we will ignore all projects without tags.
To judge the importance of the tags, several analyzes were conducted on the data:

• The number of tags per project:

There are some projects with a really big number of tags (up to 178 tags
per project) while most of the projects have less than 50 tags. The graph
only shows the top 2.000 projects with the highest number of tags.
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Figure 2.1: The number of tags per project

• The number of usage of the top 200 tags:

Despite these being the 200 top used tags, it is clearly visible, that there
are a couple of really often used tags (most of these tags are programming
languages) while the usage of most tags is smaller by several orders of
magnitude. We consider tags that are used often to (possibly) carry a big
amount of information, because they aggregate a big amount of objects into
a (possibly functional) group. Tags that are rarely used can’t carry such
a big amount of information and might even lead to over specialization for
some machine learning algorithms. Because of this and performance issues,
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Figure 2.2: The total occurrences of the tags

we decided to only consider the 700 most used tags for further analysis.
The number 700 was determined experimentally, so that the run-time of
the algorithms would be at around one day.

• A histogram of the tag usage:

This histogramm shows, how often tags are used n times (0 ≤ n ≤ 250). A
big amount of tags is used under 10 times and carries therefore very little
information. This supports our decision to only use the 700 most used
tags.
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Figure 2.3: Histogram of Tag usages

In order to get the training data set, we searched for tags that seemed to fit into
our categories. In particular these tags are:

• Entertainment: ’game’, ’games’, ’gaming’, ’video’

• Infrastructure: ’infrastructure’, ’framework’

• Workplace: ’ide’, ’editor’

We assumed that each project, that contained at least one of these tags was to be
belonging to the corresponding functional class. We accepted the fact that this is
not true for every case, as the machine learning algorithms are able to deal with
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uncertainty in its input data. For the same reason, the fact that some projects
were added to two categories is not a problem.

The training data now consists of tuples (project ID, tag1, tag2, ..., tag700, class).
To define a test set, we selected 1000 random values from the training data set
and deleted them from the training data set.

As the work was already done using R, we choose to use the package RTextTools
(Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun, Emiliano Grossman
and Wouter van Atteveldt, 2012) to analyze the data. It employs several different
machine learning algorithms and combines them to get the best results. Also, it
has the capability to evaluate the algorithms used.

The employed algorithms are:

• Support Vector Machines (svm) construct one or more hyper-planes in
a high-dimensional space. These hyper-planes are constructed using a
maximum-margin-separator to provide the broadest categories. The num-
ber of dimensions can be higher then the number of input dimensions to
keep the separators linear. In the original dimensions, the separator can
thus be non-linear. For a detailed description of how svm work, please see
(Norvig & Russell, 2012) S. 863-868.

• Boosting or in this case the LogitBoost algorithm assigns base classifiers
to the training data. Each Iteration, the miss-classified data has their
weighting decreased, whereas the correct classifiers’ weights are increased.
The classifiers are adjusted accordingly. This leads to a focus on the miss-
classified data and thus a better learning. The iterations can be set to
a given number or by stopping when the binomial log-likelihood for each
boosting iteration is at its maximum. (Dettling & Buhlmann, 2003)

• Supervised latent Districhlet allocation (sLDA) is based on latent Districh-
let allocation (LDA), which is a topic model, that treats the topic pro-
portions for each document as a draw from a Ditrichlet distribution. The
words in the document are obtained by repeatedly choosing a topic assign-
ment from those proportions, then drawing a word from the corresponding
topic. sLDA adds to LDA a valued variable associated with each document.
The documents and responses are modeled, so that there are latent topics
found, that will best predict the response variables for future (not valued)
documents. (Mcauliffe & Blei, 2008)

• Bagging is a method for building ensembles that use different subsets of the
training data to produce classifiers. Bagging draws a number of random
instances from the training set with replacement and learns the drawn sub-
set. This is repeated several times. Each Repetition of this process leads
to a single classifier. At the End, taking a vote of these classifiers leads to
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the final prediction. (Maglogiannis, Karpouzis, Wallace & Soldatos, 2007,
S. 15)

• Random Forests are a generalization of recursive partitioning. The Training
data is partitioned. These partitions are classified via trees. These trees can
be built by recursive partitioning. Each node of these trees only contains
members of a certain class. To classify new data, all of the trees are used
upon it and vote for the result. The most often chosen result is the final
prediction. (Clarke, Fokoue & Zhang, 2009, S. 254)

• Glmnet combines elastic-net penalties with generalized linear models. The
used models are regression, two-class logistic regression and multinomial
regression problems. (Friedman, Hastie & Tibshirani, 2010)

• Decision Trees are trees generated from a random subset of the test data
(e.g. by divide and conquer) and are valued as they represent only a part
of the full set. New data is classified by a valued vote. (Quinlan, 1986)

• Neural networks are probably the most common form of machine learning.
They consist of neurons which are connected to former and following neur-
ons. When the former neuron’s (weighted) output exceeds a certain value,
the current neuron is activated and ’fires’ its output. Training a neural net
is usually done via some regression method and requires finding the best
network structure as well as the correct activation function for each neuron.
(Russell & Norvig, 2009, S. 727-737)

• Maximum entropy is a stochastic model. Its main principle is: ’Model
all that is known and assume nothing about that which is unknown.’ In
this case, ’assume nothing’ means ’assume equal distribution’. Data from
the training set is interpreted as statistical constraints. Each of these con-
straints make the model more accurate. (Berger, Pietra & Pietra, 1996, S.
40-43)

To evaluate the effectiveness of the algorithms, we run the algorithm 10 times
with randomly selected test data. The mean value of correct classified data was
81%. The standard deviation is 0,50685% while the biggest deviation was 1,1%.
This process took around 27 Hours per run and needed around 16GB of RAM
at peak on a workstation (see Appendix 1: Workstation Configuration). As the
system is not a real time system, the values for the run-time and RAM are only
estimates and therefore rounded.
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For the Figures 2.4-2.7, we measured the accuracy (the number of right results
divided by the number of result class X) and recall (the number of right results
divided by the number of results that should have been returned for class X) for
each algorithm and each class and computed the f-score (2× precision×recall

precision+recall
). The

f-score represents the overall quality of the algorithm:

Figure 2.4: Results for Entertainment.

For Infrastructure and Entertainment, the values in Figures 2.4-2.7 are quite
acceptable. The recall for Workplace on the other side is low compared to the
others’ recall, while the accuracy is still high. This means, that if the algorithms
return the result ’Workplace’, they are mostly right, but they misplace a big
amount of actual ’Workplace’ results into the other classes.
This is due to the fact that only 3,8% of the actual training data is classified as
Workplace, whereas 47,2% of the data is classified as Entertainment and 49,0%
is classified as Infrastructure. This makes the Workplace statistically less im-
portant and the algorithms heavily favor the other classes when in doubt. SVM
and Logitboost illustrate this, as they are extremely accurate when deciding for
Workplace but, when in doubt, they just favor the other two classes. This phe-
nomenon is called over-specialization. Other algorithms are more resistant to
this effect, especially sLDA. To sum it up, the accuracy of the Workplace class is
lower to keep overall accuracy as high as possible.
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Figure 2.5: Results for Workplace.

Figure 2.6: Results for Infrastructure.
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Figure 2.7: Compared f-Scores.

Figure 2.8: Ensemble results
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Figure 2.8 shows the n-ensemble coverage, which means that n or more al-
gorithms agree on the result and the n-ensemble recall, which is the percentage
of right answers on which the majority of algorithms agrees. As an example,
when all eight algorithms agree (n ≥ 8) they got a 91% recall, but this only
happens in 69% of all cases (n-coverage).
As less algorithms agree on the same class, the accuracy decreases to 81%.
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2.7 Results Discussion

All in all, the algorithm classifies 81% of the projects right. Although some
workplace projects are not classified correctly, the overall quality of the algorithm
allows a classification. Further possible improvements are discussed in section
2.8 Conclusion and Future Work.

There are still some biases, which might have some influence on the data:

• The training data might have a bias, as the heuristic of viewing the existence
of a tag as sufficient for classifying might not be right in all cases. This bias
could be eliminated by getting feedback from the users of Ohloh.net (See
the proposal in chapter 2.8).

• If a sufficiently large group starts to use the tags in a complete different
way, which is not represented in the training data, the classification will not
work as intended until the new use is represented in the training data and
the algorithms are run once again. It can’t be guaranteed, that this didn’t
happen at some point in the past and is reflected in the data. If this were
the case, the quality of the training data would be limited.

2.8 Conclusions and Future Work

The data from Ohloh can be classified by using the tags to create training data
efficiently. Afterwards, 81% of the tagged projects could be categorized right.

Improvements in the accuracy can be made by improving the training data:

• The categories can be suggested to the users of the Ohloh website. The
accepted and rejected (i.e. changed) categories can then be saved again
and being used as new training data. With each iteration, the training
data and the algorithms should become more accurate.

• It might be possible to find some more tags that fit into the category work-
place that we overlooked. Depending on the number of corresponding pro-
jects for these tags, this could have a big influence on the algorithms.

When more tags get frequently used or computation time is less relevant, it might
be worth to increase the computation time to expand the number of used tags.

If the chosen classification is not the best for a specific future research, a fitting
classification can be achieved by preparing a new training data set and letting
the algorithms run again. Again the iterative method above can be used here to
improve this training data set.
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As the choice of Workplace as a functional class seems not optimal, other classes
could be obtained by running a clustering algorithm on the tags.
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3 Elaboration of Research

3.1 Ohloh Database Layout

The layout of the Database:
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Figure 3.1: Relational Data Model of Ohloh

In our research, we used the relations tags, project tags and projects.
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3.2 Construction of Model requirements

The first point guarantees that the results of this work can be used for further
analysis.
The second one is important, because it is time consuming and therefore ex-
tremely inefficient to create the training data manually with big data sets. As
the Ohloh project currently has about 50.000 projects, it is not an option to
manually classify a sufficient part of these projects.
Although some overlapping of the training data (i.e. training data objects that
are placed in multiple categories) will not effect supervised learning too much,
most supervised machine learning algorithms can only place data into one cat-
egory. In this process, the information about the second category would be lost.
Because of this, we want to have orthogonal categories.
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4 Appendices

Appendix A Workstation Configuration

Configuration of the workstation:

• Intel(R) Core(TM) i7-950

• ASUS X56-Sabretooth

• 3x 8GB Kingston KHX1600C9D3K2/8GX

• Windows 8.1 x64

• R version 3.0.2 (Build 2013-09-25)

• Rtexttools (Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun,
Emiliano Grossman and Wouter van Atteveldt, 2012)
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