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Abstract

Components are fundamental building blocks in software engineering. Modern
day software products are often a complex composition of many components
from entirely di↵erent vendors. Some are proprietary software, while others
are open source components. The reuse of open source components has many
many advantages but also brings up challenges, like license non-compliance,
copyright issues or the potential risk of security weaknesses introduced through
dependencies. These issues can be identified and managed by understanding
the component architecture and the relationship between components. We call
one representation of a software product architecture the product model, which
is an enhanced version of what is known as the bill of materials. A useful visual
representation of the product model doesn’t exist at this point. Therefore the
focus of this thesis is the implementation of an interactive tool the visualization
of the underlying component graph, intending to help software developers to
get a better understanding of the code component architecture (product model)
of their software products.
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1 Introduction

At the beginning the motivation for the present work and its structure and
overview will be outlined.

1.1 Motivation

Modular software architectures and the development of generic software com-
ponents allow extensive code reuse and the development of software products
as complex compositions of many individual functional pieces. Especially the
ongoing rise of open source software (OSS) has significantly contributed to
the reuse of software. Today open source components (OSC) have become so
relevant, that they can be found in most software products. Either directly or
indirectly included, as transitive dependencies of other components. Deshpande
and Riehle, 2008 have shown that the total amount of open source code and
the total number of projects have been growing exponentially.

The usage of OSS has many benefits for both open source software developers
and developers in firms. The possibility to review the source code, a large base
of developers and testers, and the decreased risk of vendor lock-in are just a
few of them (Morgan & Finnegan, 2007). Developers can also greatly save
on development costs and time through code reuse (Haefliger, Von Krogh &
Spaeth, 2008). OSS has also proven to be an economically viable alternative
to proprietary software with a diverse set of working business models (Riehle,
2007).

But in spite of all benefits, there are also some drawbacks that developers have
to be aware of when they incorporate OSS into their product. Legal aspects like
license non-compliance and copyright are major issues that are challenging to
work out. Copyleft licenses for example, like the GNU General Public License
(GPL), have strong constraints that enforce derivative works to be subject
to the terms of the same license. When it comes to copyright it is an often
overlooked fact, that copyright protection comes into force at the moment in
which the software is created, even if no explicit license is provided (Laurent,
2004).

Another issue is the potential risk of security weaknesses introduced through
dependencies (Morgan & Finnegan, 2007). Vulnerabilities can easily be passed
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through the dependency graph. Some known and easy to prevent vulnerabilities
may go unnoticed because projects unknowingly include third-party compon-
ents as transitive dependencies. A dependency that is several projects removed,
is not easily visible and can be a possible hazard.

To manage these issues, it is first of all important for developers to be aware of
them and then to understand the interactions between the di↵erent components.
But because of the complexity of the relationships, this can be overwhelming.
Assisting tools have potential to reduce the overhead for software engineers
and analysts. Providing visualizations for a variety of viewpoints of a software
system has many benefits (Councill & Heineman, 2001).

1.2 Overview and Structure

At the beginning, the underlying basics of graph theory are explained in chapter 2
(Foundations). In addition, the term software component is defined and the
corresponding component model, the product model, is clarified. In the fol-
lowing chapter 3 (Technologies) the most important technologies, which were
used for drawing the graph and for implementing the front-end, are presen-
ted. Chapter 4 (Requirements) presents the goal of the visualization tool and
addresses the requirements for the implemented application. Here, mainly func-
tional requirements and their purposes are described. The general architecture
and the front-end design are explained in chapter 5 (Architecture and Design).
It is followed by chapter 6 (Implementation), which describes the implement-
ation of the parser, graph drawing, and the graphical user interface. This
chapter also covers the publish-subscribe pattern, which is used for communic-
ation purposes. Chapter 7 (Evaluation) reviews and evaluates all previously
defined requirements. In the last chapter, chapter 8 (Summary and Outlook)
the essential parts of this thesis are summarized and possible further develop-
ment steps are suggested.
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2 Foundations

This chapter serves as a short basis of topics that are important in order to fully
understand the rest of this thesis. Section 2.1 touches on the basics of graph
theory by showing important representations, graph layouts and di↵erent types
of graphs. In section 2.2 the term software component is defined, and the
Product Model is introduced.

2.1 Graph Theory

In graph theory, a graph or network is used to model the pairwise relation-
ships of entities. Each graph G = (N,E) consists of two finite sets, one for
the entities (nodes) N = {n1, n2, . . . ni} and one for the relationships (edges)
E = {e1, e2, . . . ej}, where each edge ej is a two-node subset describing their
relationship. A simple example with four nodes and four edges would be defined
like this:

N = {n1, n2, n3, n4}
E = {e1 = {n1, n2}, e2 = {n1, n3}, e3 = {n4, n1}, e4 = {n3, n4}}
G = ({n1, n2, n3, n4}, {{n1, n2}, {n1, n3}, {n4, n1}, {n3, n4}})

Remark. many di↵erent terms denote the elements of a graph in literature.
Nodes are often referred to as vertices or points. Edges are also called links,
lines or arcs.

2.1.1 Graph Representations

There are many di↵erent ways to represent graph structures, but two of the
most common 2D-representations are matrix-based representations (figure 2.1)
and the so called node-link diagram (figure 2.2).
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  n1 n2  n3 n4 

n1 0  1  1  1 

n2  1  0  0  0 

n3  1  0  0  1 

n4 1  0  1  0 

  e1 e2  e3 e4 

n1 1  1  1  0 

n2  1  0  0  0 

n3  0  1  0  1 

n4 0  0  1  1 

Figure 2.1: Adjacency matrix(left) and incidence matrix(right) of graph G

Matrix-based representations are usually two dimensional. In the adjacency
matrix, each node of the underlying graph is represented by a row and a column.
An entry in the adjacency matrix means, that there is an edge between the node
represented by the column of the matrix, to the node represented by the row.
Another matrix-based format is the incidence matrix, where each row represents
a node of the graph and every column represents an edge. Each column has
two entries, one for each node, that the respective edge connects. The number
of entries in each row is the same as the represented node has edges. The order
of the elements in the matrices is generally alphabetically but is often changed
to highlight specific features of the graph.

n1

n3

e1 e2

e4

e3

n4

n2

Figure 2.2: Node-link diagram of graph G

The appearance of a node-link diagram is a↵ected by the topology, geometry
and visual features of the elements. The topology is given by the graph descrip-
tion and can’t be changed without changing the graph itself. The geometry of
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a graph refers to the positions of the nodes. These can be chosen at will, but
are typically computed with a specific layout in mind (see: subsection 2.1.2).
Visual features of the elements, such as shape, size or color can also be chosen
freely to enhance the perception of the graph.

There are many di↵erences between node-link diagrams and matrix-based rep-
resentations in terms of readability and comprehensibility. The task for a user
to find paths between two nodes in a graph is, for example, usually achieved
much faster on node-link diagrams. Matrix-based representations, on the other
hand, tend to perform better, when graphs become larger and denser. One key
point for both representations is the degree of familiarity with the underlying
data set. Experience has a substantial impact on the ability to quickly under-
stand the graph representations (Keller, Eckert & Clarkson, 2006) (Ghoniem,
Fekete & Castagliola, 2004).

2.1.2 Graph Layouts

The positioning of the nodes in node-link diagrams is crucial for the compre-
hensibility of the visualized graph. Especially, when graphs get bigger and more
complex visualizations tend to get overwhelming. Some basic rules of good
graph layouts are a uniform distribution of nodes, minimal edge crossings, uni-
form edge length and highlighting of the underlying structure (Fruchterman &
Reingold, 1991).

One widely used approach is the force directed layout introduced by Fruchter-
man and Reingold, 1991. It has been highly optimized since then, but the basic
idea is truly powerful and easy to explain. Starting from random positions the
iterative algorithm computes repulsing and contracting forces for each node in
the graph. These forces vary depending on the relative position of the node to
all other nodes and the relative position to connected neighbors. This iterative
simulation runs until an equilibrium is reached and the graph is in a relaxed
state. Layouts like this are called physics based layouts.

Layered graph layouts (also called Sugiyama-style graph layouts after Sugiyama,
Tagawa and Toda, 1981) are based on the fact, that typically there is a general
direction for edges in directed graphs and directed acyclic graphs (DAGs). First
a rank is assigned to each node, with some heuristics. Then nodes can be
arranged into horizontal layers, with a depth-first search method, which exposes
the underlying hierarchical structures in the graph (Gansner, Koutsofios, North
& Vo, 1993).

Other kinds of graph layouts are the circle, concentric circle or grid-based lay-
outs. The choice for the appropriate layout always depends on the type and
specific characteristics of the graph, as well as the general goal of the visualiz-
ation.
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2.1.3 Types of Directed Graphs

Graphs can be classified into many di↵erent types, based on their characterist-
ics. In general, a distinction is made between directed and undirected graphs.
A graph is called directed, if the subsets of edges ej in the graph are ordered and
have a direction associated. This means, that the nodes which are connected
by edges have a transitive relation. Figure 2.3 shows the same graph as before,
but with directed edges.

n1

n3

e1 e2

e4

e3

n4

n2

Figure 2.3: Directed node-link diagram of graph G

Directed acyclic graphs (DAGs) are special forms of directed graphs that have
no directed cycles. This means that there is no path of successive directed edges
that starts and ends at the same node in the graph (figure 2.4). DAGs have
many applications in computer science but are also relevant in general. One
example is the citations graph of publications in academia. Each publication is
a node and each citation is a directed edge. Because it is only possible to cite
works, that have already been published in the past, resulting citation graphs
are DAGs.
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e1 

n1

n3
e2

n4

n2

n5

e5 

e3 

e6 

e8 

e7 

e4 

Figure 2.4: Node-link diagram of a directed acyclic graph (DAG)

2.2 Software Components

2.2.1 Definition

Modern software engineering has a strong focus on separation, with the goals
of reuse, flexibility, extensibility, and maintainability of the individual parts.
Applications are broken down into important parts based on functional be-
havior and build from independently working pieces, which are referred to as
components. The term software component has no clear and precise meaning
in literature, and the given definitions di↵er with context and specific domain
(Szyperski, Bosch & Weck, 1999). To have a common ground with preceding
and future works this thesis follows the given definition:

A software component is a software element that conforms to a
component model and can be independently deployed and composed
without modification according to a composition standard.

—Councill and Heineman, 2001
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2.2.2 The Product Model

The component model that underlies this thesis was developed at the Professor-
ship for Open Source Software at the Friedrich-Alexander-University Erlangen-
Nürnberg and is called the Product Model. It provides a general way to model
the component architecture of software products and results from the necessity
to fulfill the requirements on compliance tools (Harutyunyan, Bauer & Riehle,
2018).

The starting point of this model is the software project itself. A project can
contain several di↵erent root components, which in turn can depend on several
di↵erent other components. These dependency relationships between compon-
ents can be of di↵erent types (e.g., dynamically or statically linked), but they
always form a hierarchical structure, that represents a directed acyclic graph.
Each component contains information about the software artifact it represents
and a list of metadata, such as license or interface data. The diagram in fig-
ure 2.5 shows the general structure of the Product Model.

0..*

0..*

Project 

1 1
Component  Artifact 

≪interface≫ 
Metadata 

InterfaceData LicenseData 

dependencies 

1..* 0..*
0..* 1

Figure 2.5: General structure of the Product Model

The Product Model is intended to be processed as common machine-readable
file formats such as JSON, XML or YAML. In listing 2.1 exemplary JSON code
is shown, which depicts the component architecture of a specific project via the
Product Model.
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Listing 2.1: JSON code that describes the component architecture of an ex-
emplary project

{
”name” : ”ProjectName ” ,
”homepageUrl ” : ” https : // github . com/ user /ProjectName ” ,
” vcs ” : ” https : // github . com/ user /ProjectName ” ,
” de c l a r edL i c en s e s ” : [ ” Apache 2 . 0 ” ] ,
” bui ldTool ” : ”MAVEN” ,
”rootComponents ” : [

{
”name” : ”Component A” ,
”namespace ” : ”” ,
” v e r s i on ” : ”2 . 0” ,
” a r t i f a c t ” : {

” f i l ePa t h ” : ”/ProjectName/ j a r s /component a . j a r ” ,
”hashAlgorithm ” : ”SHA512” ,
”hash ” : ”B1B556692341A240F8B81F8F71B8B5C0225CCF”

} ,
”metaData ” : [

{
” d e s c r i p t i o n ” : ” L icense ” ,
” value ” : ”MIT”

} ,
{

” d e s c r i p t i o n ” : ” I n t e r f a c e ” ,
” value ” : { . . . }

}
] ,
” dependenc ies ” : [

{
” t a r g e t ” : {

”name” : ”Component B” ,
”namespace ” : ”” ,
” v e r s i on ” : ”3 . 4” ,
” a r t i f a c t ” : { . . . } ,
”metaData ” : [ . . . ] ,
” dependenc ies ” : [ . . . ]

} ,
” type ” : ”DYNAMIC IMPORT”

} ,
. . .

]
} ,
. . .

] ,
}

Dependencies in software projects are usually managed by build systems or
package managers like Maven or the Node.js package manager (NPM). The
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necessary information to construct the Product Model of a specific software
project can be extracted from these tools. A crawler that does this for Maven
based Java projects was implemented as part of a preceding master thesis at the
Professorship for Open Source Software at the Friedrich-Alexander-University
Erlangen-Nürnberg (Sche↵er, 2018).
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3 Technologies

This chapter introduces the main technologies used for the implementation
of the dependency graph visualization tool. In section 3.1 the choice of the
graph drawing library based on an evaluation of existing libraries is explained.
Section 3.2 covers some essential aspects of the front-end framework and state
management, that has been used.

3.1 Graph Drawing Library

A variety of web-based open source visualization libraries have been evaluated
before the design and implementation of the tool began. Five of the libraries
that have been identified as the most promising ones, have been looked at more
closely. These libraries are Cytoscape.js (Lopes et al., 2015), D3.js (Bostock,
Ogievetsky & Heer, 2011), Sigma.js1, Vega (Satyanarayan, Moritz, Wongsu-
phasawat & Heer, 2017) / Vega-Lite (Satyanarayan et al., 2017) and VivaG-
raph.js2. All of them are licensed under permissive open source licenses. Either
under the BSD 3-clause license (D3.js, Vega / Vega-Lite, and VivaGraph.js) or
the MIT license (Cytoscape.js and Sigma.js).

Cytoscape.js, Sigma.js, and VivaGraph.js are dedicated graph drawing libraries,
which allow the user to render a graph as an interactive node-link diagram. But
they are not able to visualize a graph in a di↵erent representation. D3.js and
Vega / Vega-Lite, on the other hand, are general data visualization libraries.
They are not restricted to relational data or specific representations and can be
used to render graphs as a node-link diagram and other representations, like the
adjacency matrix. The flexibility of D3.js and Vega / Vega-Lite comes with a
trade-o↵ in complexity, which makes them harder to use and understand. Other
compromises are derived from the rendering engine technology (Scalable Vector
Graphics (SVG), Hypertext Markup Language (HTML) Canvas or WebGL)
that is used by the library to render the graph. The performance, for instance,
scales di↵erently. SVG performance depends on the size and complexity of the
scenegraph (which relates to the number of elements in the graph), while HTML
Canvas performance is more dependent on the size of the view area. The best
performance can be achieved with WebGL based rendering. But performance

1
https://github.com/jacomyal/sigma.js

2
https://github.com/anvaka/VivaGraphJS
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gains generally come with the loss of support for interactivity features (i.e.
event listeners on the graph elements). A comparison of important features
and other criteria that were evaluated to choose a fitting visualization library
is shown in table 3.1.

Graph
Specific

Graph
Analytics

Performance
Interaction

API
Documentation

Cytoscape.js Yes Yes Satisfying
Very

Satisfying
Very

Satisfying

D3.js No No Neutral
Very

Satisfying
Satisfying

Sigma.js Yes No Satisfying
Very

Satisfying
Satisfying

Vega / Vega-Lite No No Neutral Satisfying
Very

Satisfying

VivaGraph.js Yes No
Very

Satisfying
Unsatisfying Unsatisfying

Table 3.1: Comparison of graph visualization libraries

From this comparison, Cytoscape.js stands out as a full graph theory library,
that is developed not only for graph visualization but also for analysis. A rich
API for graph analytics and interactions with the graph elements allows for
graph manipulations in every way. With HTML Canvas as underlying rendering
engine technology, the performance is good, and thousands of graph elements
can be rendered on standard hardware (Lopes et al., 2015).

Other reasons that speak in favour of Cytoscape.js are:

• A sophisticated graph model

• Support for directed graphs and compound nodes

• Separation of graph style and graph data

• Access to numerous layout algorithms

• An extension API for UI, layout and the core

• Many existing extensions (first and third-party)

• Export of the graph data in JSON format

3.2 Front-End

This section covers the front-end framework Vue.js and the state management
mechanism of the Vuex library.

12



3.2.1 Framework

The initial implementation of the application was done in vanilla JavaScript
without any particular framework. But because the code lacked structure and
state management became an issue, the front-end was rewritten in Vue.js3. The
main reason that Vue.js was used instead of other well-known frameworks, like
React or Angular, was vue-cytoscape4. Which is a well-maintained wrapper
library, that helps with the integration of Vue.js and the used graph drawing
library Cytoscape.js.

Vue.js describes itself as a progressive framework, that can be adopted incre-
mentally. The core is just a single library without any dependencies to other
libraries. It takes care of displaying data on an HTML page (view binding),
handling user interactions (event binding) and takes input values from forms
(input binding). Single-file components (vue-components) structure the applic-
ation in a concise way and keep all the relevant source code (markup, styling,
and functionality) of UI elements together in one place (listing 3.1).

Listing 3.1: Structure of a single file component in Vue.js

<template>
<v�tab�item c l a s s=”tab�content”>

<v�card�text>
<pre>{{ $ s t o r e . s t a t e . s i d eba r . dataTabContent }}</pre>

</v�card�text>
</v�tab�item>

</template>

<s c r i p t lang=”t s”>
import { Vue , Component } from ’ vue�property�decorator ’ ;

@Component
export d e f au l t c l a s s DataTab extends Vue {}

</s c r i p t>

<s t y l e scoped>
pre { font�s i z e : 2em; }

</s ty l e>

3.2.2 State Management

Vuex5 is a state management library for Vue.js applications. It provides a cent-
ralized way to store the application state and ensures that changes to the state
are correctly propagated to all relevant UI components. The shared application

3
https://github.com/vuejs/vue

4
https://github.com/rcarcasses/vue-cytoscape

5
https://github.com/vuejs/vuex
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state is stored and managed by Vuex in a global singleton. The underlying
state management pattern can be seen in figure 3.1.

Dispatch

Vue Components

Render
State

CommitActions

Mutate

Mutations

Vuex

Figure 3.1: The Vuex state management pattern6

To change the state vue-components dispatch actions based on user interactions.
These actions then commit one or multiple mutations with the desired changes.
Committing mutations is the only method to modify the state of the global
store. Mutations in contrast to actions have to be synchronous. When the state
in the store is mutated, the changes are automatically propagated across the
application, and all relevant UI components are getting updated and rerendered.
This is done e�ciently via the reactivity mechanisms of Vue.js.

6
Image taken(edited) from https://vuex.vuejs.org/
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4 Requirements

The objective of the visualization tool that was implemented as part of this
thesis is clarified in section 4.1. Section 4.2 specifies the functional and qualit-
ative requirements, that were set to create a useful application, which accom-
plishes the goal of interactive dependency graph visualization.

4.1 Purpose of the Tool

The reuse of software has been a general goal of software engineering since the
beginning. Today software projects are built from many parts, with many dif-
ferent libraries, which often stem from entirely di↵erent sources. This is only
possible because of modern tooling and dependency managers, that make pub-
lishing and consuming dependencies incredibly easy, by reducing the overhead
for developers to approximately zero. But because it is so easy to introduce
new dependencies, the count of imported software components in a software
project can grow quickly to a relatively high number. One reason for this is,
that an included dependency can additionally have multiple other transitive
dependencies.

Simple static visualizations of all software components and their dependencies
are often overwhelming and insu�cient. The aim of the application/visualiz-
ation tool is therefore, to visualize the software component graph of software
projects in a dynamic and interactive way, so that the users are enabled to
navigate and explore the graph as a whole, or to focus on selected parts. With
the overall goal to provide better insight and a deeper understanding of the
component architecture of the project.

4.2 Application Requirements

Some essential requirements have been identified before the design of the ar-
chitecture and the implementation of the tool started. The requirements are
divided into functional (F) and qualitative (Q) requirements. Functional re-
quirements specify specific operations, that can be performed by the application
or the user. Qualitative requirements refer to specific quality criteria, that can
be measured in numerical values to be evaluated later.
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F1: Parsing

The basis of the visualization is the input data (crawler artifact). The applic-
ation must be able to parse the given input data and to generate an internal
representation, from which in turn the visualization can be created. The output
of the parser is also the foundation for further internal operations, like manipu-
lation and the analysis of subgraphs. A successful implementation of the parser
generates output, that conforms to the chosen graph model and includes all
software components, their dependency relationships and the metadata.

F2: Visual Representation

The most important requirement is the correct visualization of the component
graph itself. This requires the software to be able to generate a complete
visual representation of the underlying dependency graph, with all transitive
relationships between the components. Correct visualization means, that the
number of elements displayed in the graph representation is equal to the number
of elements contained in the input data and the output from the parsing step.

F3: Navigation and Exploration

Navigation allows the user to move freely within the graph representation and
to explore the structure of the graph itself in order to develop an understanding
of its complexity. To enable this, the visual representation has to support basic
navigation functionality with gestures, like zooming, panning, and dragging of
selected elements.

F4: Focus

The tool should allow the user to highlight and focus on selected subgraphs or
specific components with all their dependencies, to reduce the visual complexity
of large component graphs. This enables the user to concentrate on the parts
of the dependency graph that are relevant to him.

F5: Data View

Each software component (node) and each dependency relationship (edge) that
is visualized in the graph representation can have associated data. To make
this information available to the user, a data view which displays the attached
information of a selected graph element should be implemented as part of the
application. The displayed information has to include associated metadata, if
the selected element is a node (software component).
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F6: Filtering

Another important functional requirement is filtering. The UI should have the
functionality to filter the represented graph, based on the components names
and attached metadata. This helps the user to reduce the complexity of the
graph, to find relevant software components or to only inspect partial structures
of the graph.

Q1: Performance

The only qualitative requirement that was identified is performance. The imple-
mentation of the application should address the performance of the parsing step,
the application load time and the scalability of the graph representation with
an increasing number of elements. To assess the performance of the visualiza-
tion tool, common action should be performed on di↵erent dependency graphs
while measuring the execution time and the resulting delays. The evaluated
graphs should be of di↵erent size and with di↵erent element counts (number of
nodes/edges).
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5 Architecture and Design

This chapter provides an overview of the overall architecture and design of the
application. First, the primary building blocks are introduced in section 5.1.
Then, in section 5.2, the concept and structure of the UI is described in detail,
and the di↵erent UI components and their respective tasks are introduced.

5.1 Architecture Overview

A good way to understand the general architecture of the Product Model Graph
application is by following the flow of the data. The input data (crawler output)
is generated beforehand by external tools, like the Maven Crawler (Sche↵er,
2018) or the analyzer of the OSS Review Toolkit (ORT)1. These tools ana-
lyze repositories or build artifacts and extract dependencies and corresponding
metadata of software components. The resulting data is then served to the
application via a simple HTTP server. This could be changed later to a more
sophisticated server, which provides a proper REST API in order to additionally
serve partial data when requested from the client.

The transfer of the input data marks the actual entry point into the Product
Model Graph application. The first step, after receiving the data is to create a
representation, that describes the dependency graph and can be rendered. This
means the data has to be conform to the graph model, that is expected by the
graph drawing library. The generation of this graph model conform representa-
tion is the task of the parser. Since the input data can be generated by di↵erent
tools and thus have di↵erent data and file formats, one parser implementation
is not su�cient. Each combination of data format and extraction tool needs
a special parser implementation, that generates the graph model conform rep-
resentation with the correct dependency graph. The implementation details of
the parser are explained in more depth in section 6.1.

Once the parser has generated the graph model representation, it can be trans-
ferred to the front-end, where the actual graph is rendered and displayed in a
view. The architecture diagram in figure 5.1 gives a general overview and shows
all elements and their connections.

1
https://github.com/heremaps/oss-review-toolkit
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Figure 5.1: Architecture overview of the Product Model Graph application

5.2 Front-End Design

The graphical user interface (GUI) of the Product Model Graph application
should enable users to interactively inspect the dependency graph of their soft-
ware project. An important part of accomplishing this, and the implementation
of the requirements listed in section 4.2, is the concept and structure of the UI
components. The main UI components are the Graph View, the Toolbar and
the Sidebar which consists of the Tabbar and three Tab Items (Actions Tab,
Data Tab and Settings Tab).

The Graph View is the largest and most important part of the application. It
serves as the canvas for the graph drawing library to render the dependency
graph on. The Toolbar provides quick access to essential features like the filter
input field and other functions, that are commonly performed. Anchored to
the side of the window is the Sidebar, which contains the Tabbar and the asso-
ciated Tab Items. The Tabbar displays several buttons for switching between
the di↵erent Tab Items (subviews) of the Sidebar. Controls and other GUI
elements, with which the user can issue commands to manipulate the graph
and its elements are located within the Actions Tab. The Data Tab is mainly
a container for textual metadata of the currently selected graph element. Set-
tings for both the graph’s appearance and the application as a whole, can be
found in the Settings Tab. Figure 5.2 shows the relationship between the UI
component hierarchy and the layout of the graphical user interface (GUI).
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Figure 5.2: Context between the hierarchical and GUI layout of the UI com-
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6 Implementation

This chapter describes important aspects and details of the implementation.
The parsing step and data generation for Cytoscape.js is explained in sec-
tion 6.1. Next, in section 6.2, the rendering and use of Cytoscape.js for graph
drawing are described in more detail. Section 6.3 describes all elements of
the GUI in detail. And finally, section 6.4 explains how the communication is
handled in order to overcome issues related to storing the graph instance in the
global state.

6.1 Parsing Component Graphs

The goal of the parsing step is to generate the data representation, that can
be processed and rendered by Cytoscape.js. This is accomplished by extracting
the dependency graph and other relevant data from the input data. Since the
input data may come from di↵erent sources in di↵erent formats, a separate
parser has to be implemented for each format and data source. In the process
of this thesis, two parser implementations were realized. One for the output of
the Maven Crawler and one for the analyzer output of the OSS Review Toolkit.
This demonstrates that the application can be easily extended to support other
tools as an import source. The implementations di↵er in details, but the general
approach is the same in both cases (see figure 6.1). The recursive identification
of software components with their dependencies and the creation of graph model
compliant elements for each of them. Nodes (listing 6.1) are created for every
software component and edges (listing 6.2) for their dependencies.

Listing 6.1: Graph model conform notation for a node

”data ” : {
” id ” : ”name . space : Component A: 2 . 0 ” ,
”name” : ”Component A” ,
”namespace ” : ”name . space ” ,
. . . // attached data ( a r t i f a c t , l i c e n s e , . . . )

}
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Listing 6.2: Graph model conform notation for an edge

”data ” : {
” id ” : ”name . space : Component A:2.0�>

name . space : Component A: 2 . 0 : Component B: 3 . 4 ” ,
” source ” : ”name . space : Component A: 2 . 0 ” ,
” t a r g e t ” : ”name . space : Component B: 3 . 4 ” ,
” type ” : ”DYNAMIC IMPORT”

}

The Cytoscape.js graph model notation requires only a data object with an id
field to create a valid node. If the fields source and target are also defined, then
the element is interpreted as an edge between two nodes. Other data such as
metadata can be attached to the object by creating custom fields with names,
that are not reserved by the graph model notation. The complete graph model
description1 can be found in the documentation of Cytoscape.js.

:DataFetcher

parse(inputData)

:Parser

 loop
[ for each component ]

:HttpSever

fetch(url)

return	inputData

return	elements

addNode(root)

addElements(rootComponents,	rootId)

addNode(componentId)

recursiveAddElements(dependencies,

addEdge(parentId,	componentId,	type)

componentId)

Figure 6.1: Sequence diagram of the data fetching and parsing step

The input data is requested from the server and after it has been received, the
parsing starts with the selection of the suitable parser implementation. This
selection is based on the structure of the data and the existence or lack of
certain data fields.

1
http://js.cytoscape.org/#notation/elements-json
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In addNode(), the first node object is created for the root, and its associated
data is attached. Then the addElements() function is called, with the list of all
root components and the root as parent ID. Now for each root component, a new
node with metadata and a directed edge from root to the current component
is created. Every root component has a list of dependencies, which all have
the same fields and a list of their own dependencies. The implementation of
recursiveAddElements() is analogous to the process just described, but makes
use of the recursive structure of the remaining data, by calling itself at the end.
After the whole dependency tree is recursively parsed, duplicated entries get
removed. At last a large array of data objects gets returned as the result of the
parser

6.2 Graph Drawing

In Cytoscape.js a graph corresponds to a cytoscape instance. To create and
visualize a cytoscape instance four things have to be provided: the container,
the style, the elements, and the initial layout. Listing 6.3 shows the complete ini-
tialization of the cytoscape instance as vue-component with the vue-cytoscape
wrapper library.

Listing 6.3: Initialization of the cytoscape instance in the Graph View vue-
component

<template>
<div id=”cytoscape�con ta ine r ” v�hotkey=”keymap”>

<cytoscape : c on f i g=”con f i g ” : preConf ig=”preConf ig ”
: a f t e rCrea t ed=”a f t e rCrea t ed”>

</cytoscape>
</div>

</template>

<s c r i p t lang=”t s”>
. . .
@Component
export d e f au l t c l a s s GraphView extends Vue {

pr i va t e c on f i g = { s t y l e : d e f a u l t S t y l e } ;
. . .
p r i va t e async a f t e rCrea t ed ( cy ) {

const e lements = await fetchData (RESOURCE URL) ;
t h i s . replaceGraph ( elements , i n i t i a l L ay ou t ) ;
. . .

}
. . .

}
</s c r i p t>

25



The container is a simple HTML <div> element, that contains the cytoscape
instance. It is important to note, that the dimensions of the container element
also define the size of the canvas on which the graph is rendered. The style is set
to the default style, which was predefined and imported. The elements and the
layout cannot be set in the configuration, because of the asynchronous fetching
of the data and the parsing step. For this reason, the elements get added in the
afterCreated() function. After all graph elements have been added, the initial
layout is created from a predefined default layout and then applied.
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6.3 Graphical User Interface

The following section describes all implemented elements of the graphical user
interface. An overview of most elements can be seen in figure 6.2.

Figure 6.2: The graphical user interface of the application

6.3.1 Graph View

The graph view takes up the most space of the user interface and extends across
the entire width of the application, when the Sidebar is unopened. It serves as
a canvas to display the graph representation. The drawing of the graph itself
has already been described in section 6.2 and is therefore not discussed any
further here.

6.3.2 Sidebar

The Sidebar, which is located on the right side of the interface, is composed of
the Tabbar (figure 6.3) in the top part and the area for the Tab Items, that
occupies the remaining space. The currently active tab is displayed in the Tab
Items area. Thereby a distinction is made between the Actions Tab, Data Tab,
and Settings Tab. The former is divided into the sections graph manipulation,
graph layout, and export (figure 6.4).
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Figure 6.3: The Tabbar

(a) Graph layout (b) Graph manipulation (c) Export

Figure 6.4: The three sections of the Actions Tab

In the graph layout section, the current layout is selected from various pre-
defined options (e.g. breadthfirst, concentric, dagre). Depending on the se-
lected layout option, the user is provided with further configuration settings.
In the area graph manipulation, di↵erent buttons are displayed which trigger
specific actions. The last section named export allows to download the graph
data as JSON format, or a snapshot of the currently displayed elements in the
viewport as png or jpg.

The second tab is the Data Tab. It allows the user to obtain further information
by displaying all the attached data of the currently selected graph element.
This is done as text, because the size and attributes of the attached data can
be di↵erent for each graph. The implementation is realized by putting the
actual JavaScript object, that holds the data in an HTML <pre> element.
This preserves both spaces and line breaks and presents the data precisely as
it is.

The last Tab Items is the Settings Tab. Here adjustments can be made to
the visual appearance of the graph, by changing settings related to nodes and
edges. Also general application settings can be configured (see appendix A).
Figure 6.5 shows the to sections graph settings and application settings with
all possible setting options. All three Tab Items can be seen as full-size images
in appendix B.
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Figure 6.5: The Settings Tab

6.3.3 Toolbar

The Toolbar is located in the upper part of the application and extends from
the left edge to the Sidebar on the right. It serves as a container for frequently
used functions and provides quick access to them. Currently, it contains the
input field for the filter functionality and buttons for undo/redo and to fit the
graph to the size of the Graph View.

6.4 Communication

Storing the application state with the Vuex library and managing state changes
as described in subsection 3.2.2 works fine for most parts of the application. But
unfortunately, when the cytoscape instance, which holds the actual rendered
graph object, is managed with Vuex, the application breaks down. This is not
a big problem, because the cytoscape instance can easily be stored in the Graph
View component and is treated as local state.

The question is now how to communicate actions, that are triggered somewhere
else in the application to the Graph View component. Using the built-in data
flow mechanics of Vue.js, by emitting events to parent components and passing
data down to child components with props is tedious and cumbersome because
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many di↵erent vue-components would be involved. A more fitting approach for
the use case of communication actions to the Graph View component is the
publish-subscribe pattern (figure 6.6).

Graph	View

App

Sidebar

Tabbar

Toolbar

Tab	Items

Actions	Tab Data		Tab Settings	Tab

subscribe

publish

Figure 6.6: The publish–subscribe pattern for communication

This pattern is widely used is for communicating messages without coupling
the involved parts (Eugster, Felber, Guerraoui & Kermarrec, 2003). When
an action is triggered, or a change happens, an event is emitted directly to a
global object, the event hub. Other vue-components register listeners on the
event hub to be notified when a specific event occurs. The event hub could be
a separate vue-component, that is globally accessible, but the App as the root
vue-component is an obvious choice. Listing 6.4 shows the relevant source code
for the registration of listeners and listing 6.5 shows the emissions of an event.

Listing 6.4: Registration of an event listener for the apply-layout event

// in GraphView . vue

p r i va t e mounted ( ) {
// r e g i s t e r l i s t e n e r s on event hub

t h i s . $root . $on ( ’ apply�layout ’ , ( ) => {
t h i s . runLayout ( ) ;

} ) ;
}

30



Listing 6.5: Emission of the apply-layout event

// in ActionsTab . vue

<v�btn smal l b lock c l a s s=”e l eva t i on �1”
@c l i ck=”$root . $emit ( ’ apply�layout ’)”>Apply
</v�btn>

Using this simple way to convey messages across the application separates re-
sponsibilities from the start and keeps the source code maintainable, by retain-
ing the relevant source code within the responsible vue-components. Adding
and removing listeners at runtime is also possible if needed.
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7 Evaluation

In this chapter, the developed application is assessed by evaluation of all re-
quirements that have been defined in chapter 4.

Evaluation F1: Parsing

In the course of this work two parsers were implemented. The parsers convert
the given input data to a format, which is conform to the graph model notation
provided by the graph drawing library Cytoscape.js. The requirement deman-
ded, that all software components and their dependencies should be correctly
processed and included in the output of the parser. To ensure this, the number
of elements before and after the parsing step were compared. First, several rep-
resentative input files were selected for the two implemented parsers. The input
files were evaluated manually to obtain the initial number of software compon-
ents and dependency relationships. These values were then compared to the
number of elements generated by the parsers. No deviations were found in any
of the tested input files. A detailed investigation of the runtime of the parsing
step was also carried out and is described in the section of the performance
evaluation (Q1).

The support of multiple input models by di↵erent parser implementations allows
to compare them in a graphical way. Doing this for the Maven Crawler and the
analyser of the OSS Review Toolkit has revealed some di↵erences in the number
of dependency relationships found by them. This is an interesting finding, but
was not further investigated in the context of this work.
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Evaluation F2: Visual Representation

The requirements for the visual representation of the component graph were ful-
filled by using the graph drawing library (Cytoscape.js) to implement the Graph
View as core of the application. It is the element of the graphical user interface
(GUI) that allows the users to view and interact with the dependency graph
of their projects. The choice to use Cytoscape.js as the visualization library,
allowed the visualization of the dependency graphs as completely dynamic and
interactive node-link diagrams with many di↵erent graph layout options (see
figure 7.1). Especially the dagre1 option delivers great results, with computed
layouts that emphasize the underlying hierarchical structure of the dependency
graphs.

Breadthfirst Dagre (network-simplex)

Circle Dagre (longest-path)

Figure 7.1: Di↵erent computed layouts for the same graph data

The correctness of the rendered graph is handled by Cytoscape.js as long as the
provided data includes all elements and conforms to the graph model. To ensure
the completeness of the elements, the number of rendered nodes and edges was
programmatically compared to the number of elements from the parser output.

1
https://github.com/cytoscape/cytoscape.js-dagre
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The style and appearance of the rendered graph can also be adjusted in the
settings tab. Figure 7.2 shows the same graph four times, but with di↵erent
style-settings and di↵erent style-classes activated each time. Di↵erent styles
can reduce visual clutter and allow a user to export and share graphs in the
style he needs to be consistent with other visual architectural representations.

Figure 7.2: Di↵erent visual styles of the same graph
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Evaluation F3: Navigation and Exploration

All gestures (zooming, panning and dragging of selected elements) required in
the requirement description F3 in section 4.2 are supported by the chosen graph
drawing library (Cytoscape.js) by default and work as expected. Additional
navigation features, such as centering and fitting, have been implemented and
integrated into the GUI. The former is used to move the displayed elements
and the selected elements to the center of the view. The latter scales the
graphs according to the dimensions of the viewport. In the further process of
implementation support for undo/redo2 of simple actions and gestures has been
added. Figure 7.3 shows a partial screenshot of the GUI, in which the relevant
buttons for centering, fitting, and undo/redo are highlighted.

Figure 7.3: A screen-shot of the GUI with the center, fit, and undo/redo
buttons highlighted (green)

The undo/redo feature allows the user to explore various ways of displaying
the graph elements by allowing the user to reverse performed gestures easily.
Currently reverting changes to the graph layout is not yet possible.

2
https://github.com/iVis-at-Bilkent/cytoscape.js-undo-redo
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Evaluation F4: Focus

Allowing users to view and focus on only a part of the dependency graph was
one of the major requirements from the beginning. It was fulfilled by giving the
user di↵erent possibilities to select and view a subgraph. Viewing a subgraph
is probably the best way to reduce complexity and highlight the important
aspects of relevant dependency structures in large graphs. Figure 7.4 shows
the relevant steps, to view a partial dependency hierarchy. First, the software
components that are of interest are selected (a and b). Then the dependency
hierarchy is added to the selection, by executing the predecessors action from
the graph actions area in the sidebar (c). In the last step (d) a new layout is
computed and applied to the selected subgraph.

(a) selection (b) after selection

(c) get predecessors (d) apply breadthfirst layout

Figure 7.4: Steps to focus on a partial dependency hierarchy

To focus on a specific component with all direct dependencies as described in
section 4.2 requirement F4, a node corresponding to the component of interest
has to be selected first. Then all direct dependencies can be added to the
selection by, executing the outgoers action from the actions tab. At last a new
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layout (e.g. circular layout) should be computed to highlight and separate the
selection from the whole dependency graph. Figure 7.5 shows an exemplary
graph as a result of executing these steps.

Figure 7.5: Focus of one specific software component with all direct depend-
encies in a circular layout
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Evaluation F5: Data View

The graph representation visualizes software components as nodes and their
dependency relationships as directed edges. Both software components and
relationships can carry more information, which is usually not shown in the
graph representation. For example elementary data like a version number or the
namespace of the software component, but also more complex data as defined by
the Product Model in subsection 2.2.2. To make this data available to the user,
as required and described, a data view has been implemented and integrated
as a separate tab in the sidebar. When the data tab is active, it shows the
attached information of the graph element that was selected last. In figure 7.6
a software component is selected and the corresponding data is displayed on
the right side in the data tab. The data includes information about declared
licenses that were found by the crawler and information about the software
artifact from which the software component was deduced.

Figure 7.6: A selected node with the attached information displayed in the
data tab

The data view is implemented as a text view, that displays the JavaScript
object which holds the data of the selected element. A specialised view is not
feasible, because the di↵erent tools, that can be used as sources for input data
do not have a common notation for their metadata. This text view approach
is quite simple, but extremely flexible, so it always displays all attached data,
regardless of format. This also applies to possible future structural changes
to the Product Model, for example, if additional information is added to the
metadata object.
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Evaluation F6: Filtering

To enable filtering an input field for the search has been added to the GUI.
It is positioned isolated from the other navigation elements on the left side in
the toolbar, which is located in the upper part of the interface. By entering an
input text, the matching elements get selected and highlighted in the graph rep-
resentation. This includes both the software components and their dependency
relationships.

The usage of the filter functionality is illustrated in figure 7.7 with a small
graph. But the actual benefit is most noticeable in graphs with a high number
of elements. Appendix C contains a full screenshot of the filter functionality
used on a large graph.

Figure 7.7: Selection of graph elements matching the input text “wom” in the
filter input form

Currently, it is possible to filter by name and ID using the input field, which
was part of the requirement. In future implementation steps, it should be
possible to filter by name and ID as well as the attached metadata. Due to the
reimplementation with the Vue.js front-end framework, this step could not be
implemented within the given time frame.
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Evaluation Q1: Performance

To gain an understanding of the performance of the application, time measure-
ments were taken of the initial loading time of the application and the duration
of the parsing step. In addition, the scalability of the graph representation was
examined with generated test data of di↵erent sizes. All measurements and res-
ults were performed and generated on a 13-inch, Mid 2012 MacBook Pro with
a 2.5 GHz Intel Core i5 processor. The full hard- and software configuration of
the test computer is listed in table 7.1.

Model 13-inch, Mid 2012 MacBook Pro
CPU 2.5 GHz Intel Core i5
GPU Intel HD Graphics 4000 1536 MB
RAM 16 GB (2x8GB) 1600 MHz DDR3
OS macOS Sierra (Version 10.12.6)
Browser Google Chrome (Version 74.0)

Table 7.1: Full hard- and software configuration of the test computer

The analysis of the initial application load time was done with the performance
profiler of the Chrome DevTools. Figure 7.8 shows the results obtained using
two charts and corresponding legends. The legend on the left refers to both,
the upper graphic and the circular chart. The representation of the timeline
is supplemented by an additional legend that corresponds to the three vertical
markers.

Figure 7.8: Overview of the initial application load time3

The initial HTML document, without taking into account the included re-
sources, was fully loaded and parsed at 1562.5 milliseconds, as indicated by
the DOMContentLoaded event (blue). The painting of the first frames on
screen started at 1552.2 milliseconds as marked by the green vertical line. At

3
Generated with the Chrome DevTools
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timestamp 1585.2 milliseconds the Onload event (red) is triggered, which indic-
ates, that the entire application has finished loading, including all dependent
resources such as stylesheets, symbols, and required fonts.

In order to evaluate the parsing step and the time required for it, a total of
four test input data sets, with an increasing number of elements (software com-
ponents and their relationships), were thoroughly tested. In total all data sets
were parsed 10000 times and the mean value was calculated from the results.
Table 7.2 shows the average parsing time required for each data set, in the
first row. Furthermore the following row lists the found nodes and edges with
duplicate elements still included. The last row contains the values without
duplicates.

Input data A B C D
Parsing time
in milliseconds

0.02527 0.09361 0.57910 9.18197

Parsed Nodes/Edges
(with duplicates)

46/42 371/370 667/666 7419/7193

Parsed Nodes/Edges
(duplicates removed)

26/36 26/67 293/422 854/1863

Table 7.2: Parsing times needed for di↵erent input data sets

The values in the table show that with a higher number of parsed elements there
is no significant increase in runtime, as was expected beforehand. A comparison
of the duration from the smallest sample (A), with the duration required for the
largest data set (D) shows, that an increase of 9,1567 milliseconds in parsing
time is present. But this is due to the high di↵erence in size of the data sets,
which can be seen by the number of found elements (with duplicates). All
measured parsing times are acceptable and small enough to be neglected in the
total load time.

In order to evaluate the scalability of the graph representation, the most im-
portant layout options for graphs of di↵erent sizes were calculated and their
computation times were measured. Table 7.3 shows the results obtained.

Number of
Nodes/Edges

26/36 26/67 293/422 854/1863 1561/3081

Breadthfirst 526.53 538.98 584.01 864.13 1670.43
Circle 522.18 540.53 605.48 686.21 1091.24
Concentric 531.35 536.34 612.68 814.98 1235.24
Dagre 536.01 539.08 4443.84 55356.29 127415.81
Grid 529.58 538.71 622.30 838.17 1241.99

Table 7.3: Layout computation times for di↵erent graph sizes in milliseconds
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Most of the used layout options scale reasonably well, and have acceptable
computation times even for graphs with a higher number of elements. The
biggest tested graph had 4642 elements (1561 nodes and 3081 edges) and most
computation times were in a range between 1091.24 and 1670.43 milliseconds.
However, the dagre layout option, which delivered the best visual results, does
not scale well at all. Its computation time for the biggest graph was with
127415.81 milliseconds about 76 times longer than the time needed for the
breadthfirst layout, which was the second longest time.
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8 Summary and Outlook

The extensive reuse of software has become increasingly common, especially
through widespread usage of open source components (OSC). But the increas-
ing number of software components from di↵erent sources has led to very com-
plex code component architectures of software projects. In the context of this
thesis a visualization tool was developed, which is able to represent the com-
plete software component dependency graph of projects, in an interactive and
navigable way, with the goal of helping developers to manage and understand
these complex relationships between software components of their projects.

The core of the application is the Graph View, which displays the dependency
graph as a dynamic node-link diagram. This is done with the graph drawing
library Cytoscape.js, which was selected after an exhaustive evaluation of ex-
isting libraries. Various layouts and actions to manipulate the graph allow the
user to reduce the visual complexity and to concentrate on the areas of the
graph that are of interest to him. Other implemented functionalities like filter-
ing help to navigate the graph and to search for specific elements. More detailed
information on the individual elements, which is only available as metadata, is
displayed in a separate view.

The sources for the input data from which the component graphs are generated
can gathered through various tools. To show this, two parsers were implemen-
ted. One for an internal tool, the Maven Crawler and another for the analyser
of the OSS Review Toolkit (ORT).

Possible improvements and additions that could be made in future implement-
ation steps are among others. The extension of the filter functionality with the
option to also filter by attached metadata of elements such as declared licenses;
making all layout changes reversible via undo/redo and overall optimizations in
the implementation of graph manipulation actions, to decrease rendering costs
to a minimum, which could be done by using batch processing. A more major
enhancement would be the additional support of a further graph representation,
for example a matrix-based representation, like the Dependency Structure Mat-
rix (Sangal, Jordan, Sinha & Jackson, 2005). Keller et al. (2006) argue, that
both node-link diagrams and matrix-based representations have their respective
advantages and that a multiple graph view strategy could greatly enhance the
user experience, by enabling the user to switch representations at fitting times.
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All in all, this thesis has shown that software tools that help users to under-
stand/analyze complex relationships between software components can be of
great value.
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Appendix A Dark Mode
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Appendix B Tab Items

(a) Actions Tab (b) Data Tab (c) Settings Tab

Figure 8.2: The there Tab Items contained in the Sidebar
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Appendix C Large Graph Filtering
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