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Abstract

The number of open source software projects has continued to grow for many
years now, with a portion of them being very successful and broadly adopted. For
companies and individuals involved in an open source project, it is advantageous
to estimate its success and longevity. There are some high-level models of success
to be found in literature. However, other than growth, factors of success derived
from commit data have been barely studied by academics. This thesis searches
for predictors that can contribute to a predictive model. We use an exploratory
approach on a large set of over 11,000 active projects to find predictors. During
the course of this work, we implemented a duplicate correlation filter in order
to account for forked projects, and we designed a general ranking metric. We
compared the distribution of features between the high ranking projects and all
others. Through that, we found that the amount of initial contributors and
the number of active months correlates positively with success. An in-depth
evaluation of the explored predictors is not part of this work.
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1 Introduction

1.1 Original Thesis Goals

This thesis aims to find predictors of success for open source projects through
an exploratory data analysis approach. As part of this approach, an overview
of available literature is provided. Further goals include the development of
a ranking metric for open source software projects, and the evaluation of the
predictors.

1.2 Changes to the Thesis Goals

In the course of this research, the need for further data conditioning has arisen;
hence this thesis also aims to design and implement a duplicate filter. Second,
due to time constraints, the evaluation was shortened.
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2 Research

2.1 Introduction

Open source development of software is considered efficient and has been increas-
ingly adopted by companies over the last decade. Indeed, around half of open
source software (OSS) development is actual paid work (Riehle, Riemer, Kolassa
& Schmidt, 2014). With the increase of OSS in commercial fields, the interest
in the success prediction of OSS projects has, accordingly, also risen. This is a
complex task since various qualitative and quantitative factors can play a role
in success – ranging from community dynamics over licensing to development
activities. Many studies on these different factors can be found in the work of
Ghapanchi, Aurum and Low (2011).

This work focuses on quantitative commit data and provides features for sup-
porting the development of a predictive model. By analyzing a large data set of
open source projects, we aim to isolate factors that can be used to predict the
chances of success.

2.2 Related Work

2.2.1 Concerning Growth

Several, well-received papers have been published regarding the growth of OSS.
All of the following research has employed a type of line of code (LoC) metric for
the growth models. Although we use only pure commit numbers in this work,
these studies are still relevant since the number of commits correlates closely with
the LoC. Kolassa, Riehle and Salim (2013) have shed light on the distribution of
the LoC per commit, finding a median of 16 LoC.

Godfrey and Tu (2001) have examined the growth and evolution of the Linux
Kernel, wherein they have found a super-linear process of growth. They have
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postulated the hypothesis that ”successful open source software seems to have a
development dynamic — distinct from that of most industrial software — that
allows some systems to grow at a super-linear rate for prolonged periods.”
Robles, Amor, Gonzalez-Barahona and Herraiz (2005) have also examined the
growth of the Linux Kernel, among 18 other large Free/Libre and Open Source
Software (FLOSS) projects. They have also discovered a super-linear increase for
the Kernel, while 15 out of the 18 other projects showed linear growth.
Covering the small scale, Roy and Cordy (2006) have not found any super-linear
growth in the two small-sized projects they evaluated.
Succi, Paulson and Eberlein (2001) have compared the growth rates of three com-
mercial, and three open source software projects, including Linux. The growth
rate of the majority of projects they analyzed can be described by means of linear
approximation, with the only exception being Linux.

While all of these studies have focussed on a few individual projects, Koch (2007)
analyzed the growth of 4,047 open source projects, by using data from Source-
Forge. He was interested in deriving a growth model to fit the individual projects
of his dataset. Opposed to the others, his study, interestingly, has indicated that
a quadratic growth model fits better than a linear growth model.

In contrast, we do not focus on growth directly, but rather on success, which is
induced by long-term growth. Further, instead of LoC, we use the number of
commits.

2.2.2 Concerning Success

Many previous studies in the field of FLOSS have provided a definition of success
for OSS. The definitions vary greatly since there is no established definition as
yet. Ghapanchi et al. (2011) have undertaken an extensive literature review,
including 45 studies and their respective definitions of successful open source
software. In their approach to create a measurement taxonomy for success, they
have isolated six ”success areas”, all of which have been studied by the papers
they used. Namely, these areas are product quality, project performance, user
interest, project efficiency, project effectiveness, and project activity. This has
created a high-level view on success, whereby factors such as governance model,
license model, and the ratio of paid vs. volunteer contributors can be embedded
on a lower level.
From this perspective, this research can be considered to reside in the area of
project activity. We solely focus on commit data, deriving an activity measure
from it, and creating a ranking metric to reflect the relative success. Other factors
that might have a large influence on the overall success, are beyond the scope of
this work.
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Research regarding the prediction of success can be found within the scope of
start-ups. Amar Krishna and Choudhary (2016) have build several models for
predicting the success of start-ups. Their work has been based on a dataset of
11,000 failed and successful companies. After defining several key factors – such
as the amount of seed funding, the time to fund, the time in the market and
the burn rate – they have used supervised learning classifiers to model success-
prediction.
This is interesting for this research, because in some aspects, an emerging OSS
project is comparable to a start-up. Contributors can be seen as employees, and
commits representing the work done, what might be seen as the revenue stream.
We relate to their research for initial feature selection. Also, the failure rate of
start-ups is around 90% (Amar Krishna & Choudhary, 2016), in comparison to
the 63% failure rate that Krishnamurthy (2002) has found among SourceForge
projects. When one considers the large increase in numbers of OSS since then, it
seems quite likely that the failure rate of OSS has increased as well – matching
that of start-ups even more closely.

Krishnamurthy (2002) has looked at the top 100 mature open source projects,
where he found that most projects were developed and maintained by an exceed-
ingly small number of people. He used data from SourceForge, which classifies
projects into stages, including a mature stage. Among 480 mature projects, a
ranking was created through use of the activity percentile provided by Source-
Forge. According to SourceForge, the activity percentile is composed out of a
traffic, a development, and a communication component. Since these compon-
ents are not further defined, it is difficult to comprehend the underlying metric.
In contrast, this work defines a transparent ranking metric, that can be applied
to data from various sources. In addition, a much larger data set of over 11,000
active OSS projects has been used.

2.3 Research Question

The broader question of the research is: how can the success of emerging open
source projects be predicted?
With the purpose of contributing to that problem, we focus on the particular
question: what are useful success predictors in commit data?
The answer delivers one component for a predictive model of OSS success.
During the research, further questions arose. For example, how can one identify
forked OSS projects through commit data? And what is a suitable metric for
ranking OSS projects based on commit data? These questions are answered in
this thesis.
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2.4 Research Approach

2.4.1 Methodology

In this work, we used the exploratory data analysis (EDA) approach that has
been established by Tukey (1977). For the most part, we employed visual and
descriptive techniques, while using correlations to identify duplicates. Overall,
the method entailed an iterative process of exploring the data and implementing
or, otherwise, adapting the pre-filters. Hence, we only describe the final iteration
in this written work.
The data set was provided by the professorship. At the beginning of the research,
we merged the given data and metadata, which contains the development history
of over 238,000 OSS projects. After examining the distribution of the projects
in a scatter plot, we found that mapping these to the best fit line can result in
a useful relative ranking. As many duplicates where apparent at this point, we
identified them through correlation. Furthermore, a graph visualization revealed
a clustering of some duplicates, which we then used to manually identify the
original projects.

2.4.2 Brief Background

Time Series Analysis

For the duplication filter, we used time series analysis techniques. When one
deals with time series data, one important property to consider is stationarity.
A time series is stationary if its properties do not depend on the time of obser-
vation. In other words, if the common probability distribution of a process does
not change over time, then it is considered stationary (Kirchgässner, Wolters &
Hassler, 2008). In the simplest case, this is true for white noise, a succession of
uncorrelated, random values that have a zero mean. But for real-world data, this
is almost never the case.
The project data in our set shows obvious trends, as the activity on projects grows
and shrinks. Therefore we needed to transform the time series into stationary
data. One plain method to achieve this is computing the difference between two
subsequent points – known as differencing. The differenced time series can be
written as Y ′t = Yt − Yt−m, where m is the lag. The lag determines the distance
of the left shift. We used the random walk model for our data; this means dif-
ferencing with a lag of 1. For closely correlated time series, such as the project
data, the resulting series will approach white noise. This means we will loose
information on the trend, but it enables us to apply further statistical methods
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that require stationary data.
To test the de-trended time series for stationarity, we applied the widely used
augmented Dickey-Fuller (ADF) test, since it is valid for large samples. It tests
for the presence of a unit root; accordingly, in the absence of it, the process is
stationary.
To measure the correlation between two time series, we used the Pearson cor-
relation coefficient (PCC). It ranges from -1 to 1, with a value of 0 denoting no
correlation at all, while a value of 1 indicates a perfect match. In this work, we
looked for a high positive PCC to find duplicate projects. A high PCC implies
that the variables move in a most similar way, which is the case for duplicated /
forked projects.

Supervised Machine Learning

To test the predictors, we made use of supervised machine learning. ”A super-
vised scenario is characterized by the concept of a teacher or supervisor, whose
main task is to provide the agent with a precise measure of its error (directly com-
parable with output values). With actual algorithms, this function is provided
by a training set made up of couples (input and expected output).”(Bonaccorso,
2017) With this information, an algorithm is trained, constantly correcting its
parameters to reduce the output error. After all, the goal is that the algorithm
works with samples never seen before.
In this work, we used the Gaussian Naive Bayes (GNB) algorithm for classifying
projects as successful / non-successful. The GNB is a simple probabilistic clas-
sifier, with ’naive’ assumptions: It assumes strong independence and Gaussian
distribution of the variables. Although these oversimplified assumptions are al-
most never true, the GNB has proven to work reasonably well for real-world data
in the past.

Performance Metrics

An intuitive and broadly used way to assess the performance of classifiers is the
confusion matrix (Bonaccorso, 2017). A confusion matrix is shown in Figure 1.
From that, several performance metrics are derived. It depends on the use case
towards which metric the algorithm should be optimized.

Precision is a measure for the portion of items classified as positive, that are
actually positive. It is defined as:

Precision =
TP

TP + FP
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Figure 1: Confusion Matrix

Recall is the portion of positive items being correctly classified as positive by the
algorithm.

Recall =
TP

TP + FN

Recall gives us information about the false negatives, indicating how many items
the classifier missed, whereas precision tells us how many items it caught out of
all positives. When the focus is on minimizing false positives, precision should
be as high as possible. Otherwise, when aiming to minimize the false negatives,
recall should be as high as possible.

Finally, the F1 score combines the two previous metrics by calculating the har-
monic mean, which is useful for finding a balance between precision and recall :

F1 = 2 ∗ Precision ∗Recall

Precision + Recall

2.4.3 Definitions

Throughout this paper, we use the following definitions, based on those of Riehle
et al. (2014):

• A (code) repository is used as a synonym for a version management system.

• To commit is the process of putting a piece of code into a repository.

• A commit is the piece of code submitted.

• A contributor is a person who has submitted at least one commit and has,
hence, contributed to the project. One should note that often this is re-
garded as a committer, while the contributor denotes the author of the
code, who does not have the access rights to commit the code by himself or
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herself. In this paper, we do not distinguish between committer and con-
tributor since one cannot ascertain who undertook the actual work through
an examination of the data.

Furthermore, we use the definition of active projects, as defined by Daffara (2007)
and subsequently rephrased by Kolassa:
”A project is active at a given point in time if the number of commits in the
preceding 12 months is at least 60% of the number of commits in the 12 months
before that.”(Kolassa et al., 2013).

This means that a project can be considered active if the following condition is
met:

0.6 ≤
∑n

i=1 commitsi∑2n
i=n+1 commitsi

, with window n = 12

For projects with less than 24 months worth of data, we have adapted the defin-
ition so as to use the following formula for the comparing windows:

n =
length(commits)

2

This ensures that younger project can also be classified as active / non-active.

2.4.4 Used Tools

As the main development environment, we used Jupyter Notebooks in conjunc-
tion with Python 3.6. This ensures an easy comprehension of all processing steps
taken, and decreases the effort required for anyone wishing to reproduce the res-
ults. We utilized the pandas library for handling, pre-conditioning, and filtering
the data, while using numpy and scipy for statistical analysis. The visualiza-
tion was done by matplotlib, seaborn, and networkx. To embed the generated
figures into this document, we utilized the pgf -backend for matplotlib together
with pdflatex.

All tools used are open source and freely available for all major platforms.

2.5 Used Data

2.5.1 Data Sources

The main data source used for this research is the platform Open Hub (formerly
called Ohloh) by the company Black Duck Software, Inc. (2014). This platform
catalogues open source projects from many different version control services. All
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data published on Open Hub was originally crawled and downloaded through the
use of their provided API. The raw data set contains more than 238,000 projects,
within a total of 2.9 million data points. The data is quantized in time slices of
months.
We cross-validated the data set against data directly from GitHub. For this, we
picked a sample of known, large projects hosted on GitHub. We then parsed the
commit data from the Git log and compared their development histories to the
data from Open Hub (see Figure 2). Most of the data matched extremely closely,
with some minor quantitative differences. This is because Open Hub keeps track
of multiple repositories per project and merges the data. This is also why there
is a significant discrepancy apparent for Mozilla Firefox. Firefox mainly uses a
mercurial repository for development, with the repository on GitHub only being
a mirror, which does not include all branches. However, Open Hub includes a
merge of all commits from all possible branches.
Finally, the data from GitHub is more up to date. This is due to the delay
introduced by the crawling interval of Open Hub, and additionally, the last time
we updated the local data set. Since we are focussing on the development history,
this is not critical for this work.
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Figure 2: Comparing sample projects against GitHub data
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2.5.2 Descriptive Statistics

Every data point represents the monthly activity of a project. It contains the
number of commits, the number of contributors, and a time stamp for the month.
A unique ID identifies the corresponding project that the data relates to.

Descriptive statistics of the projects are presented in Table 1. The percentiles
indicate that there are many tiny projects in the set. The medians of total
commits and contributors per projects are 33 and 5, respectively, while the 95th
percentile shows that there are projects on the high end, which have numbers
magnitudes larger. This is to be expected from a nearly complete data set since
such a set should include many personal code dumps and projects by hobbyists,
as well as the large, vivid OSS projects. This is also reflected in the length –
respectively the number of data points per project – where the median percentile
is at 4, while the top 5% of the projects are above 55.

Table 1: Descriptive statistics of all projects

commits contributors length

count 237,972.00 237,972.00 237,972.00
mean 670.24 44.08 12.41
std 10,631.59 653.59 23.43
min 1.00 1.00 1.00
25% 9.00 2.00 2.00
50% 33.00 5.00 4.00
75% 139.00 15.00 12.00
95% 1,594.00 114.00 55.00
max 3,013,656.00 120,531.00 258.00

Figure 3 shows a graphical summary of the distributions as a letter-value plot.
Since the data points are wide spread, with only a minority scoring high num-
bers, the letter-value plot conveys further information about the tail behaviour
in comparison to a simple boxplot (Hofmann, Wickham & Kafadar, 2017).

The outliers can be found in Table 2 and Table 3, wherein KVM appears as
the project with the most contributors in total. Given the nature of KVM, one
suspects it to be mostly a duplicate of the Linux Kernel with only a few additional
commits and contributors. We look into this later on in chapter 2.6.1.
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Figure 3: Letter value plot of descriptive statistics (using tukey stopping rule)

Table 2: Upper outliers in total commits

commits contributors length

KDE 3,013,656 59,240 247
NetBeans IDE 1,406,202 14,253 226
Mozilla Firefox 1,405,371 50,834 242
KVM 845,738 120,531 158

Table 3: Upper outliers in total contributors

commits contributors length

KVM 845,738 120,531 158
Linux Kernel 772,157 111,562 152
XFS Filesystem 667,096 95,585 232
Linux NTFS file system support 562,988 80,065 152
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2.6 Results

2.6.1 Duplicate Filtering

The dataset turned out to include many duplicates. While there were no exact
duplicates in the set, many stemmed from forked projects, with only minor addi-
tional work having been undertaken. This can be seen, in particular, for projects
related to the Linux Kernel. There are many ports of the Kernel for different
platforms. We want to identify these in order to prevent distortion in the further
analysis.

To detect these forks, a correlation filter was implemented. For every two projects
that overlap more than 33% in their time series, the Pearson correlation coefficient
(PCC) of this overlapping window is calculated. One assumption of the Pearson
correlation is, that the respective processes are stationary. Since most of the
time series in the data set shows an obvious trend – and are, therefore, non-
stationary – a difference-transform with a lag-1 difference was applied. Evaluating
the stationarity of the resulting time series is done by testing the null hypothesis
with the augmented Dickey-Fuller test (ADF). The results show that after the
transformation, more than 90% of all the time series are stationary (p ≤ 0.05).
For the purpose of finding duplicates, that value is reasonable. Having some trend
left in the data is not critical since two duplicates are extremely likely to share
the same trend, and, therefore, correlate significantly despite being considered
non-stationary.
The computation of the PCCs can be quite resource intensive, considering the
huge amount of possible permutations of the projects. Because of that, only a
subset of 5,000 projects was used here. This consisted of the top 5,000 projects,
as ranked in chapter 2.6.2. We considered projects with a PCC > 0.97 to be
duplicates. This threshold delivered useful results. Linking all correlated pairs
together creates a network of the suspected duplicates. Figure 4 visualizes a
section of the graph, containing the eight largest clusters. We then manually
identified the original projects of the clusters that were part of the top 100 in the
ranking. For all other clusters we defined the oldest project as the original.
By far the largest cluster consisted of Linux kernel based projects. We chose this
cluster to evaluate the results of the duplicate filter. By manually examining the
projects, reading their repository descriptions, as well as comparing their commit
time series directly (see Figure 5), we found no false positives among them. One
should note that only PCCs greater than 0.97 were considered for clustering.
It might be possible to lower the threshold, although at the cost of increasing
false-positives.

Almost all of the duplicates were forked projects, with additional work undertaken
based on the original. This can, for example, be observed in Figure 5 for the
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Linux Kernel and KVM. Accordingly, instead of removing all forks from the set,
we decided to take the difference of the forks and the originals. Hence, we could
treat them as independent projects and could keep their work in the set.
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2.6.2 Ranking Metric

A project with a high activity, which means that many people are constantly
working on it, is considered successful. To quantify the success of a project, a
ranking metric was developed. In order to keep this metric simple and robust,
only three dimensions were considered: commits, contributors, and time. Time
is involved implicitly through filter conditions, while commits and contributors
were merged into a ranking score.

We applied several pre-filters so as to only include projects that met the following
conditions:

• The median of contributors per month was higher than 1.3.

• There were data points in the previous 2 years.

• The projects were ”active”, by the definition in 2.4.3

The first condition removed most of the tiny projects that were not of interest for
this research. The value of 1.3 was initially derived from the lower 1/4 percentile,
and it was tweaked later in the process. This median value seemed to work well
for this simple pre-filter.
The second condition sets the time window to which the ranking metric was
applied. Two years was reasonable for obtaining a stable but dynamic ranking.
Smaller windows, however, could be used to attain a momentary view.
Last, we filtered out any projects that were not considered active, as from the
date of their last data point. After all, this leaves us with over 11,000 currently
active projects.

When one examines the scatter plot of median commits over median contributors
in Figure 6, it is apparent that many well-known projects scored highly on both
dimensions. The best fit line was used as a trajectory for an ideal development.
By orthogonally projecting the points onto the best fit in normed space, and
by taking the Euclidean distance, we obtained a relative ranking. The best fit
denotes the weight of commits and contributors for this particular data set. The
color indicates the lifetime of a project until the present day, ranging from green
for ≥ 10 years to red for ≤ 1 year. A list of the ranking results can be found in
the appendix.
As one might expect, many projects with high numbers in commits and contrib-
utors are also very mature – most having a lifetime of over 10 years. There were
some outliers: Microsoft’s .NET can be seen to have an lifetime of under five
years, which seems odd since it was published in 2002. But .NET was not open
sourced until 2014 and, therefore, was not listed in any public repository. This
matches the earliest data point of it in the set.
Another outlier was cctx, which despite its young age, scored noticeably high,
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ranking quite close to QT 5. A quick glance at the Git repository reveals that it
is a trading library for cryptocurrency exchange markets, and that it is broadly
adopted in the that field. Given the background of the cryptocurrency boom at
the time, this rapid development seems plausible.
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Figure 6: Scatter plot of active projects

2.6.3 Predictors

To compare potential predictors, we split the data into two groups: the successful
group, consisting of the top 500 projects in the ranking, and all other projects that
were active for at least one month in their lifetime. The latter contained around
50,000 projects. The top 500 reflected the largest, currently active projects; at
the low end, there were projects with around ten contributors per month.

Selecting Features

Inspired by the features used by Amar Krishna and Choudhary (2016) for pre-
dicting the success of start-ups, we investigated the quantity of active months per
project, the number of initial contributors and the rate of commits per contrib-
utor.
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To obtain an active-status for every point in a given project’s lifetime, we ap-
plied the definition of active as a rolling function over the time series. After
aggregation, we could tell for how long a given project was considered active.
Comparing the descriptive statistics of this feature in the two groups shows dif-
ferences in distribution. For the top 500 group, this resulted in 75% of projects
with more than 48 active months, while 75% of all the other projects were below
28 active months (see Table 4). This difference indicated that it could be a useful
feature for classification.

We calculated the second feature, the number of initial contributors, as the sum of
contributors over the first six months of a given project’s lifetime. An examination
of the distribution between the two groups shows that 75% of the top 500 had
more than 14 initial contributors, whereas 75% of all the others had less than 7
(see Table 5). We tried different time windows for the summation of contributors,
ranging from 1 to 24 months. Increasing the window enhanced the difference in
distribution – but only significantly up to a period of six months.

To feature the work done per contributor to a given project, we calculated the
median rate of commits per contributor (see Table 6). In comparison to the other
features described before, the distribution of the rates between the two groups
was far more similar. Despite the fact that contributors committing three times
as much in the top 500 group in median, its the weakest of the feature so far.

Table 4: Descriptive statistics of active months

top500 all

count 500.00 54,368.00
mean 96.09 22.47
std 63.69 29.11
min 0.00 1.00
10% 20.90 2.00
25% 48.00 5.00
50% 83.00 12.00
75% 138.00 28.00
90% 195.10 56.00
max 246.00 246.00
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Table 5: Descriptive statistics of initial contributors

top500 all

count 500.00 237,972.00
mean 77.70 5.87
std 174.36 12.48
min 6.00 1.00
10% 9.00 1.00
25% 15.00 2.00
50% 36.00 5.00
75% 77.25 7.00
90% 145.50 11.00
max 1,960.00 1,960.00

Table 6: Descriptive statistics of commits per contributor rate

top500 all

count 500.00 54,368.00
mean 21.65 8.88
std 19.73 25.02
min 1.81 1.00
10% 6.48 2.00
25% 9.69 3.00
50% 15.11 5.00
75% 26.06 10.00
90% 44.57 19.00
max 217.00 5,100.00

Testing Features

To test the performance of the features, we chose the Gaussian Naive Bayes
(GNB) classifier in a supervised learning setup. The training set we used is con-
structed of successful / non-successful projects, with the same frequency as they
occur in the data set. Using the same amount for both classes would introduce
a bias towards the successful class. We used the standard ratio of 20:80 to split
the data in a training and a test set, resulting in 10,973 projects in the training
set.

As the items for the training set are randomly selected, we ran 1000 iterations
of training and testing for each feature. This minimizes the impact of ”lucky”
constellations in training items and delivers reproducible results.
Table 7 lists the median performance results of all iterations per feature set.
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Among the single features, we found the number of active months to perform best
in classifying the successful projects correctly, with a recall of 30%. However, us-
ing any of the features individually resulted in a rather poor performance, ranging
between 30% and 8% for recall, which indicates many false negatives. When a
combination of features was used, the GNB performed better, with matching
rates from 36% up to 57%. The highest result was obtained by using all the
features to train the GNB.
The recall tells us what portion of actual successful projects have been classified
as successful. However, for our case, the reduction of false positives is more inter-
esting. We want as little projects as possible to be falsely classified as successful.
The feature that produced the smallest amount of false positives is initial con-
tributors, with a precision of 30%. This is still better than a random classifier
guessing half of all projects to be successful, which scores 0.8% in precision.

The rate of commits per contributor scores lowest throughout all metrics. This
supports the implications of the descriptive statistic in Table 6, that it is not
significant enough as a predictor.

Note that the overall performance – that is the percentage of all projects classified
correctly – is not sound for our data. The data set is vastly imbalanced, through
the successful projects being a tiny minority.

Table 7: GNB feature performances

used features overall precision recall F1

0 ’active’, ’init contributors’ 0.98 0.21 0.57 0.30
1 ’init contributors’ 0.99 0.30 0.32 0.30
2 ’active’, ’init contributors’, ’rate’ 0.97 0.19 0.56 0.28
3 ’init contributors’, ’rate’ 0.98 0.21 0.34 0.26
4 ’active’ 0.98 0.14 0.34 0.20
5 ’active’, ’rate’ 0.97 0.13 0.39 0.19
6 ’rate’ 0.98 0.06 0.07 0.07

2.7 Discussion

With the duplicate filter we implemented, it is easy to identify forked projects in
a reliable way. This helps to condition time series data of OSS and also opens
up the possibility of finding similar or connected projects. Advanced tweaking of
the thresholds could improve the results further, but with the current values we
found no false positives.
A future approach for increasing the resource efficiency of the filter might be to
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roughly pre-select pairs of projects, for example, by matching projects with a
similar median in commits. This would avoid computing the PCC of pairs that
are highly unlikely to be duplicates, due to the fact that duplicate projects are
close to each other in absolute commit numbers. This approach might also open
up the possibility of running the filter on the complete data set.

The ranking metric is suitable for establishing a relative ranking between projects
at a given point in time. This metric provides us with an easy tool to generally
compare projects based on their activity. When one expands the time window to
the lifetime of all projects, an absolute ranking value is delivered; this makes it
possible to compare projects between datasets. We used it to obtain the current
most projects, within a window of 2 years, and we defined the top 500 projects
as successful samples. For future work, it might also be interesting to look at
changes in rankings over time and, for example, identify those projects that
outpace others.

The GNB performed quite poor on classifying, however, as intended it gave an
orientation on which of the features are most useful for prediction. The number
of initial contributors and active months found to be promising. But clearly,
further evaluation is needed.
One could suspect that projects funded by companies or those that include many
paid developers have a higher chance of being successful in the long run. This
might be a reason for the number of initial contributors being higher among
the top 500 projects since funded projects are likely to have more contributors
right from the start, whereas projects started by individuals or small groups of
volunteers should take longer to attract contributors. Hence, identifying projects
in the top 500 that are funded or supported by companies would be an informative
task for future work.

One general limitation to consider for the given data set is that commits and
contributors are not independent variables but are, rather, closely correlated.
Accordingly, the informational gain of using both is limited. Having additional
data to connect commits to particular contributors should provide the possibility
for interesting features, such as the presence and size of a highly active core
development team.

Another limitation we discovered concerns Daffara’s definition of when a project
is active. It could lead to implausible behaviour under certain conditions. For
example, a pattern often seen on large projects entails a drop in activity after
either an initial hype or the project has reached a stable state. The number
of commits shrinks as it gets mature and transitions to the maintenance phase.
These drops can be more than the 60% threshold that Daffara has used in his
definition. Therefore, even some large projects such as Debian, which still has
over one hundred contributors per month, turned out as inactive by the definition
at times.
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2.8 Conclusion

In this work, we found a way of identifying and linking forked projects to their
originals based on commit data. Furthermore, we designed a ranking metric
with which we defined the most successful projects. Based on that, we explored
predictive features of success and found the initial contributors and active months
to be the most promising out of the predictors we tested.
The prediction results of the GNB turned out rather poor. More optimization is
needed. However, this also might not be enough for a reliable predictive model
purely based on commit data. Moreover, there are too many other factors that
have a huge impact on a project’s success, as described by Ghapanchi et al. (2011).
Nevertheless, using features derived from commit data as part of a predictive
model seems worthwhile. With the tools and findings provided, this work has
provided a solid foundation for further exploration of predictors in commit data
– and eventually the development of an predictive model of success for open
source software projects.
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Appendix A Enlarged Plots
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Appendix B

Listing 2.1: Pseudocode - Duplicate Filter

d u p l i c a t e p a i r s = [ ]

f o r every p r o j e c t pa i r in permutat ions :
p r o j e c t 1 = de−trend ( p r o j e c t 1 )
p r o j e c t 2 = de−trend ( p r o j e c t 2 )
over lap = i n t e r s e c t ( pro j ec t1 , p r o j e c t 2 )
i f over lap < 6 months or over lap < 33%:

i gnor e

c o e f f i c e n t = c o r r e l a t e ( p r o j e c t 1 [ over lap ] , p r o j e c t 2 [ over lap ] )
i f c o e f f i c e n t > 0 . 9 8 :

d u p l i c a t e p a i r s . append ( pro j ec t1 , p r o j e c t 2 )

d u p l i c a t e c l u s t e r = l i n k a l l d u p l i c a t e p a i r s
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Table 8: Top 100 projects in ranking

name commits
median

contrib.
median

ranking
score

0 Linux Kernel 5,613.00 752.00 7,576.41
1 Chromium (Google Chrome) 6,295.00 615.00 6,944.87
2 KDE 10,267.00 210.00 5,937.21
3 Mozilla Core 4,743.50 301.50 4,132.46
4 Android 5,912.00 214.00 4,051.11
5 OpenStack 5,206.00 244.50 3,948.24
6 .NET 2,786.00 177.00 2,426.27
7 Nuxeo Platform 2,167.00 173.00 2,127.14
8 Homebrew 1,526.50 189.50 1,957.89
9 Debian 2,018.00 156.50 1,949.53
10 Homebrew-Cask 1,056.00 214.00 1,917.71
11 NetBeans IDE 3,405.00 54.50 1,865.62
12 GNOME 1,881.00 144.00 1,804.39
13 docker 1,440.00 171.00 1,794.15
14 pfSense 2,191.00 110.00 1,709.49
15 FreeBSD Ports 1,960.00 109.00 1,601.21
16 Kubernetes 1,355.00 147.00 1,593.69
17 stub-http 568.50 186.50 1,516.62
18 Nextcloud 2,500.50 59.50 1,502.22
19 TensorFlow 1,216.00 125.50 1,386.49
20 Qt 5 1,282.00 119.00 1,371.31
21 ccxt 2,701.00 25.00 1,355.82
22 cms-sw 1,110.50 127.00 1,350.33
23 Arch Linux Packages 2,467.00 30.00 1,287.00
24 magento2 1,529.00 89.50 1,279.32
25 e-government-ua 2,271.00 40.00 1,268.86
26 Wikia 1,996.00 56.00 1,256.79
27 Boot To Gecko 1,172.00 104.00 1,221.03
28 PotPlayer 1,589.00 71.50 1,183.33
29 Liferay Portal 1,454.50 72.00 1,127.64
30 LibreOffice 1,562.00 65.00 1,127.29
31 openwrt packages feed 2,322.00 10.00 1,087.36
32 OroPlatform 1,839.00 38.00 1,065.48
33 salt 1,047.00 89.00 1,064.16
34 ResourceLib: C# File Resource Man-

agement
922.00 96.50 1,060.22

Continued on next page
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Table 8: Top 100 projects in ranking

name commits
median

contrib.
median

ranking
score

35 Intellij Community 1,684.00 46.00 1,051.75
36 tigerbrew 341.50 132.00 1,046.47
37 Mozilla Firefox 2,275.00 7.00 1,046.32
38 IntelliJ IDEA Community Edition 1,673.50 44.50 1,036.95
39 Eclipse IDE for Java 1,261.50 70.50 1,032.66
40 OpenBSD 1,412.00 57.00 1,007.02
41 terraform-providers 660.00 104.50 999.49
42 WebKit 1,218.50 66.00 983.18
43 OpenDaylight 828.50 90.00 974.96
44 Fuchsia OS 1,268.00 61.00 970.94
45 grpc 1,617.00 38.00 967.94
46 DART language 1,359.50 50.50 939.78
47 OroCommerce 1,458.00 39.50 908.29
48 pytorch 563.00 97.00 905.90
49 Avionic Design Linux for Tegra 1,918.00 9.00 903.08
50 FreeBSD 833.00 79.00 902.18
51 Rust (programming language) 844.00 78.00 900.21
52 WebKitForWayland 1,181.50 55.50 895.56
53 Ansible 668.00 85.00 870.47
54 ownCloud 1,225.00 46.00 850.10
55 Open edX 767.00 75.00 845.99
56 MariaDB 1,346.50 34.50 825.32
57 Odoo 844.00 66.00 818.65
58 react-native 387.00 95.00 814.98
59 hifi 1,450.00 25.00 806.22
60 open-liberty 661.00 72.00 779.03
61 SlackBuilds.org 630.00 74.00 779.01
62 codership-mysql 950.00 53.00 776.86
63 GNU Compiler Collection 633.00 69.00 746.34
64 NetBSD 759.00 58.00 726.93
65 MySQL 738.00 57.00 710.91
66 Paddle 939.00 43.00 704.06
67 llvm-or1k 1,069.00 34.00 700.00
68 LLVM/Clang C family frontend 699.00 57.50 697.17
69 pkgsrc: The NetBSD Packages Collec-

tion
799.00 49.00 683.33

Continued on next page
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Table 8: Top 100 projects in ranking

name commits
median

contrib.
median

ranking
score

70 cheri-clang 682.00 56.00 679.51
71 Zend Framework 1,063.50 31.00 677.20
72 HipHop Virtual Machine for PHP 799.00 46.50 666.34
73 OpenStack Nova 480.00 66.00 658.73
74 wp-calypso 411.00 70.00 655.61
75 mulle-clang 705.00 50.00 648.83
76 .NET Core Runtime 515.00 62.00 646.92
77 OpenPandora-Console 140.00 85.00 638.50
78 Boost C++ Libraries 648.50 52.00 637.61
79 Cloud Foundry 758.50 44.50 634.96
80 PHP 914.50 34.00 632.13
81 The LLVM Compiler Infrastructure 768.00 43.00 628.94
82 WildFly 776.50 42.00 625.87
83 Talend 651.00 49.50 621.71
84 MediaWiki 840.00 36.00 612.99
85 Symfony2 630.00 49.00 609.09
86 SBo-git 316.00 69.00 607.07
87 Exherbo 817.00 36.00 602.88
88 CiviCRM 789.50 37.50 601.00
89 MediaWiki extensions hosted by WMF 917.50 28.00 592.66
90 Project Atomic 532.00 52.00 586.42
91 Laravel 516.00 53.00 586.19
92 OpenJDK 9 368.50 62.50 585.96
93 Kokua Viewer 986.00 22.00 581.98
94 vbatts’s SlackBuilds 289.00 67.00 581.62
95 Microsoft Azure PowerShell Cmdlets 581.00 48.00 580.76
96 Ruby on Rails 336.00 63.00 575.08
97 YetiForceCRM 1,153.50 10.00 574.00
98 PrestaShop 911.00 25.50 572.82
99 Bitrig 533.00 49.00 566.47
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