

 Master Thesis

Open Source
Research Group

Department of

Computer Science
Faculty of Engineering

Friedrich-Alexander-

University of
Erlangen-Nuremberg

Improving the Agile Methods
and Open Source Lab Course

Falko Saft

Improving the Agile Methods and Open Source Lab Course

Masterarbeit

vorgelegt von

Falko Saft

geb. 23.05.1986 in Nürnberg, Deutschland

angefertigt am 31.03.2012

Department Informatik
Open Source Research Group

Friedrich-Alexander-Universität Erlangen-Nürnberg
(Prof. Dr. Dirk Riehle)

Betreuer: Prof. Dr. Dirk Riehle

Beginn der Arbeit: 25.10.2011
Abgabe der Arbeit: 25.04.2012

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch die Forschungsgruppe Open
Source, wird für die Zwecke der Forschung und Lehre ein einfaches, kostenloses,
zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der
Masterarbeit einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Nürnberg, den 31.03.2012

Improving the Agile Methods and Open Source Lab Course

Abstract I

Abstract

Although Scrum is relatively new to the academic world, there is a rising awareness

to apply agile methods, not only in the professional software industry but also as part

of the software engineering curriculum. The agile practices of Scrum were, in the

context of this thesis, adopted at the programming course Agile methods and Open

Source (AMOS), at the University of Erlangen-Nürnberg. The AMOS course that

teaches students modern software engineering was in 2011 designed to develop a

first product prototype of Free Seas Ahoy!, the social network for sailors. Computer

Science and Information System students were applying the agile practices of Scrum

during the semester-long course by taking on the roles of Team Members and

Product Owners. This thesis analyzes the AMOS project of 2011 in detail and

compares it with the prior and first AMOS course of 2010 by a post-facto analysis. In

addition, this research also reviews similar development courses that make use of

agile methods and draws a comparison between the AMOS project and the findings

of related case studies. Several lessons learned, which result from the analysis,

include suggestions how to improve future instances of the AMOS project and

comparable academic courses. These proven recommendations embrace changes

on the adaptation of agile practices in university courses and the academic course

design.

Improving the Agile Methods and Open Source Lab Course

Table of Contents II

Table of Contents

Abstract ... I

Table of Contents .. II

List of Figures ... V

List of Tables ... VI

List of Abbreviations .. VII

1 Introduction .. 8

1.1 Motivation .. 8

1.2 Context and Contributions ... 8

1.3 Structure ... 9

2 Fundamental principles ... 10

2.1 Plan driven development ... 10

2.1.1 Waterfall model .. 10

2.1.2 V-model ... 11

2.2 Agile methodology... 12

2.2.1 Extreme Programming ... 12

2.2.2 Scrum .. 15

2.3 Open Source ... 21

2.3.1 Open Source Software ... 21

2.3.2 Open Source development .. 22

3 Scrum in academic courses .. 23

3.1 Related work ... 23

3.1.1 Android applications ... 23

3.1.2 Computer games ... 25

3.1.3 Web service ... 26

3.2 AMOS project .. 27

3.2.1 Objectives .. 28

3.2.2 Roles .. 28

3.2.3 Process .. 30

Improving the Agile Methods and Open Source Lab Course

Table of Contents III

3.3 Academic courses in comparison.. 34

3.3.1 Roles .. 34

3.3.2 Practices .. 36

3.3.3 Artifacts .. 38

4 AMOS project of 2011 .. 40

4.1 Domain model ... 40

4.1.1 Product Summary .. 40

4.1.2 Target Audience ... 40

4.1.3 Features ... 41

4.2 Weekly sprints ... 45

4.2.1 Kick-off ... 45

4.2.2 Sprint 1 .. 46

4.2.3 Sprint 2 .. 46

4.2.4 Sprint 3 .. 47

4.2.5 Sprint 4 .. 47

4.2.6 Sprint 5 .. 48

4.2.7 Sprint 6 .. 48

4.2.8 Sprint 7 .. 49

4.2.9 Sprint 8 .. 50

4.2.10 Sprint 9 .. 51

4.2.11 Sprint 10 .. 52

4.3 Development Speed .. 52

4.3.1 Velocity .. 53

4.3.2 Sprint Forecasting .. 56

4.3.3 Burndown bar... 58

5 Mydosis and FSAhoy ... 60

5.1 Course setting ... 61

5.1.1 Components... 61

5.1.2 Domain .. 61

5.1.3 Participants and Roles ... 62

5.1.4 Technology .. 62

5.1.5 Timeframe .. 64

Improving the Agile Methods and Open Source Lab Course

Table of Contents IV

5.2 Project Performance ... 64

5.2.1 Velocity .. 64

5.2.2 Lines of Code ... 72

6 Discussion .. 75

6.1 Academic course... 76

6.2 Scrum methodology .. 78

6.3 Velocity ... 83

7 Conclusions .. 87

7.1 Limitations ... 87

7.2 Recommendations .. 88

7.3 Future research ... 90

References .. i

Improving the Agile Methods and Open Source Lab Course

List of Figures V

List of Figures

Figure 1: Waterfall model according to Winston Royce [10] 11

Figure 2: V-model according to John O. Clark [12] .. 11

Figure 3: Twelve practices of Extreme Programming [19] ... 14

Figure 4: Roles in Scrum [11] .. 16

Figure 5: Product Backlog, Sprint Backlog and Feature Archive in Scrum 18

Figure 6: Release Plan in Scrum [11] .. 18

Figure 7: Course schedule of Computer games [29] ... 25

Figure 8: Course schedule of Web service [6] ... 26

Figure 9: Feature responsibilities in the AMOS project of 2011 37

Figure 10: Daily Scrum on the mailing list in the AMOS project of 2011 38

Figure 11: Menu bar in FSAhoy ... 41

Figure 12: User profile in FSAhoy ... 42

Figure 13: Trip planning in FSAhoy ... 42

Figure 14: Daily logbook entry in FSAhoy ... 43

Figure 15: OSM integration in FSAhoy .. 44

Figure 16: Planned and completed story points in the AMOS project of 2011........... 55

Figure 17: Burndown bar chart in the AMOS project of 2011 58

Figure 18: Programming languages of Mydosis and FSAhoy [38]............................. 63

Figure 19: Completed story points of Mydosis and FSAhoy 65

Figure 20: Completed story points of Mydosis teams and FSAhoy 66

Figure 21: Story point curve of Mydosis and FSAhoy .. 69

Figure 22: Story point distribution of Mydosis and FSAhoy 70

Figure 23: Completed features of Mydosis and FSAhoy ... 71

Figure 24: Code analysis of Mydosis and FSAhoy [38] ... 72

Figure 25: Commits of Mydosis and FSAhoy [38] ... 73

Figure 26: LOC of Mydosis and FSAhoy [38] .. 74

Improving the Agile Methods and Open Source Lab Course

List of Tables VI

List of Tables

Table 1: Roles in the AMOS project of 2011 ... 29

Table 2: Structure of the class day in the AMOS project of 2011 32

Table 3: Adaptation of Scrum roles, practices and artifacts in academic courses 35

Table 4: Story points and their meaning in Scrum ... 53

Table 5: Planned and completed story points in the AMOS project of 2011 54

Table 6: One-Sample Statistics for completed story points 57

Table 7: One-Sample Test for completed story points .. 57

Table 8: Key facts for the AMOS courses of 2010 and 2011 61

Table 9: Velocity per developer of Mydosis and FSAhoy .. 67

Table 10: Statistics for the story point distribution of Mydosis and FSAhoy 70

Table 11: Suggestions for future AMOS projects .. 75

Improving the Agile Methods and Open Source Lab Course

List of Abbreviations VII

List of Abbreviations

AMOS Agile Methods and Open Source

App application

FSAhoy Free Seas Ahoy!

IP address Internet protocol address

LOC Lines of Code

MPO Main Product Owner

Mydosis electronic database for dosage information

OAuth Open standard for authorization

OSM Open Sea Map

PO Product Owner

SM Scrum Master

SPO Student Product Owner

TM Team Member

XP extreme Programming

Improving the Agile Methods and Open Source Lab Course

Introduction 8

1 Introduction

The Agile Methods and Open Source (AMOS) lab course is a semester-long

programming course offered at the University of Erlangen-Nuremberg. The basic

idea of this course is to teach students the aspects of modern software engineering

and to develop a prototype using agile methods [1].

1.1 Motivation

Today, agile methods are not only about to become the state-of-the-art in the

software development industry [2], they are also gaining increasing attention in

academic courses and are more frequently used in software development projects at

universities [3]. Early studies in 2002 showed that lightweight agile processes better

fit student projects than heavyweight plan driven approaches. A survey of 49

capstone projects found that agile practices better match the culture and skills of

students [4]. In addition, recent case studies document that students are highly

positive about courses that apply Scrum in the development process [5], [6].

Although that quite a lot of universities are teaching agile practices, this methodology

is often only referred to as another development method next to plan driven models

in theoretical lectures on development processes [7]. Courses that primarily address

and apply agile practices in a software development project are a relatively new

phenomenon [8]. Thus, the adoption and tailoring of agile practices that they match

the setting of a university course is still followed by a trial-and-error process that

leaves room for improvement.

1.2 Context and Contributions

The annual AMOS project is an academic programming course that uses agile

methods and is adjusted to meet the requirements of the academic setting at the

University of Erlangen-Nuremberg. Since this project just took place for the second

time in 2011, it is still in a learning phase where impediments and challenges are

faced. Hence, the idea and concept of the AMOS course is not carved in stone. It is

Improving the Agile Methods and Open Source Lab Course

Introduction 9

repeatedly being revised to overcome any arising difficulties and to respond to the

feedback that is given by participating students.

The goal of this paper is to suggest and validate improvements that set the stage for

future instances of the AMOS project. The obtained experiences from the AMOS

project of 2010 and 2011 are in this regard valuable insights that provide lessons

learned and give recommendations for a consistent further development of the

AMOS concept.

1.3 Structure

This thesis is structured as it follows: Chapter 2 introduces the fundamental principles

of plan driven development and explains the basic ideas of the agile methodology

and Open Source. These foundations are provided in order to understand the

underlying concepts of this thesis. Chapter 3 describes in more detailed the adoption

of the agile method Scrum in academic courses. Chapter 4 then covers a thorough

analysis of the university course Free Seas Ahoy! (FSAhoy). FSAhoy is the AMOS

project of 2011 and the key element of this thesis. The review of FSAhoy is followed

by a comparison between FSAhoy and Mydosis in Chapter 5. Mydosis is the

previous and first AMOS project of 2010. From the analysis resultant ideas how to

improve the AMOS project are framed as hypotheses in Chapter 6 and evaluated by

post-facto analyses and case study research. Chapter 7 provides the conclusions of

this research by laying out the limitations, summarizing the suggestions how to

improve future AMOS projects and outlining the areas which require further research.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 10

2 Fundamental principles

Today, agile methods such as Scrum or Extreme Programming (XP) are becoming

more and more state-of-the-art development practice. A survey by Forrester

Research found that already 35% of responding organizations were using agile

practices as part of their software development process by 2009. Scrum was thereby

the most adopted agile method with a utilization rate of 10.9% [2]. In addition, a more

recent study reveals that the number of organizations working with Scrum increased

from 25% in 2009 to 33% in 2010 when 100 project managers were asked by Danish

researchers [9]. This current trend and widespread use of agile methods is raising

the questions, “Why is Scrum getting so popular?” and “Why are agile methods

getting ahead traditional and plan-driven approaches?”.

In order to understand this observed phenomenon, the main features and differences

between plan-driven processes, agile methods and open source are explained in the

following.

2.1 Plan driven development

Plan-driven development models are regarded as the traditional way to develop

software [6]. They are characterized by linear and phase-oriented process models

that try to minimize risk by up-front planning. These linear models are often designed

with equal phases that contain specified activities.

2.1.1 Waterfall model

The most noted plan-driven development process is the waterfall model. This model

was first described by Winston Royce in 1970 and is illustrated in Figure 1. The idea

of the waterfall model is to start from the top and follow the flow successive down to

the bottom [10]. That means the same time, one can only move to the next stage in

this model if the preceding phase is already completed. The stages that are

described by the waterfall model are often defined as: Analysis, Design and

Implementation [11].

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 11

Figure 1: Waterfall model according to Winston Royce [10]

Iterations and feedback loops are, however, restricted and only allowed within

consecutive phases.

2.1.2 V-model

A more advanced plan-driven process model is presented in Figure 2 by the

V-model.

Figure 2: V-model according to John O. Clark [12]

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 12

The V-model is basically an enhanced waterfall model that puts an increased

emphasis on quality assurance. There are in particular two new dimensions added to

the waterfall model: verification and validation. Both terms try to answer the

questions, “Are we doing things right?” and “Are we doing right things?”. These

questions and the right side of the “V” make it now possible to check and test the

software upon desired quality and intended operability.

The latest V-Model is commonly known as the V-Model XT. It describes a

sophisticated software development process that became the standard for software

projects of the German government. It provides about 20 modules that can be

tailored. The V-Model XT is thereby easier to implement as any V-model before [13].

2.2 Agile methodology

Agile methods describe a variety of process models such as Scrum, XP, Crystal, or

Feature Driven Development to name a few. These lightweight processes all share

the Agile Manifesto that was published by a group of software practitioners [14]:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

All agile methodologies have in common that they rely on short processes and linear

development models which are based on iterations. Short iterations and frequent

user feedback are important to minimize risk and to adapt quickly to changing

requirements [15].

2.2.1 Extreme Programming

Kent Beck, one of the founders of the Agile Manifesto, explains the idea of Extreme

Programming. XP is in his words a “style of software development focusing on

excellent application of programming techniques, clear communication, and

teamwork.” [16].

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 13

Values

Beck is addressing some important principles in his definition of the lightweight

discipline. The main values are communication, feedback, simplicity and courage.

These values are mentioned very explicit in XP to affirm the impact and significance

of them.

Communication is all about the interaction with the customer and between

developers. The intention of a transparent communication is to remove any barriers

that can exist between the customer and the developer. Moreover, the

communication takes the given roles in responsibility and allows for adjustments and

changes.

Customer feedback is not the only valuable source. Also builds of the software code

can provide useful information. Frequent release cycles help the developer team to

observe what is working and what not. These feedback loops indicate the progress

and pitfalls of a development project.

The development team is also advised to find the simplest solution that is possible. It

is important to internalize the feedback that is given by means of communication to

build a simple and working project. Making it complex neglects the XP value of a

simple solution.

The values of XP also encourage developers to admit if things are going wrong or

getting too complex. It is Sometimes a painful decision to fix software code or get rid

of features. However, meeting these challenges and communicating them frankly is

important in XP [17], [18].

Best Practices

XP provides a set of best practices that can ideally be used and combined. The

original twelve practices and their dependencies are highlighted in Figure 3. Today

these best practices are extended by further ones. Nevertheless, the focus of this

thesis is limited to the three following practices that were also applied in the AMOS

project of 2011.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 14

Figure 3: Twelve practices of Extreme Programming [19]

 Pair programming

Pair programming or pilot and navigator is probably the most known and applied

XP practice. The concept of pair programming is described as two developers

sitting in close proximity and working at one workstation. One of them is

implementing the code and the other one is reviewing and commenting the written

code. This setting encourages the sharing of ideas and contributes to a less

buggy and more conceived software code [20].

 Continuous integration

A fully integrated system is proposed by the continuous integration practice. Daily

builds or builds that are made a few times per day help to maintain working code

keep the system running [18]. Thereby, situations where the system is going

broke due to implementation problems are reduced. This practice is especially

important if you are working with a development method that is based on short

iterations and release cycles.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 15

 Short releases

The practice of short releases is takes place at the end of each iteration. The next

step after passing all acceptance tests, is to release the software. Regular

releases and releases within short iterations allow the customer to get an idea of

the progress and state of a software product. The customer can use this

information to provide feedback and prioritize new features or bug fixes [17].

Organization

Although that there might be a lot of different names for the roles in XP, it consists

mainly of two: the customer and the developer. It can be added a management role

for lager teams, but XP is in general not paying as such attention to roles as other

agile methods do.

XP is principally organized by user stories and the planning game. Both elements

require the roles of customer and developer. The customer is writing down the user

stories on an index card and prioritizes them according to their value. The stories are

rather a description of what the customer wants to see in the final product than an

entire requirements document. These user stories are being evaluated then upon

their effort by the developer in the planning game in order to estimate the

implementation costs. Customer and developer are in the following both discussing

the value of user stories for the next release. Some of the stories can be accepted

easily if they are small enough to implement and low on risk, others might be too big

and complex and have to be broken down for later implementation. The

implementation of user stories will subsequently take place in releases which can be

further divided in iterations to ensure a better control [21].

All the practices that are mentioned beforehand can be used to develop a software

solution that follows the values and principles of XP.

2.2.2 Scrum

The term Scrum originates from a formation of players in the rugby sport. In the

context of Computer Science, it describes next to XP one of the most common agile

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 16

methodologies. Nowadays, Scrum is also about to become the predominant

development practice [9]. The concept of Scrum became popular in the nineties and

was first applied by Jeff Sutherland at Easel Corporation and introduced at Advanced

Development Methods by Ken Schwaber [22].

As many other agile methods, Scrum describes roles, artifacts and practices that will

be explained in the following.

Roles

Scrum basically manages the agile development with three roles as it is shown in

Figure 4: Team Member, Product Owner and Scrum Master.

Figure 4: Roles in Scrum [11]

 Team Member (TM) are standing for developers in the Scrum model. They are

delivering the features that are described in the Sprint Backlog. It is their area of

responsibility to code and test the software product upon the agreed

requirements. A senior developer or lead architect can complement this team.

 Another role is described by the Product Owner (PO) who is in charge of the

product backlog and release plan. The functionality, scope and priority of features

in the product backlog are defined by the PO. Besides, the PO communicates the

vision of the project, interacts with the customer and answers the questions of the

development team.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 17

 The Scrum Master (SM) is holding the overall responsibility for the Scrum

process. The practices and techniques that are used in Scrum are best known by

the SM. Any impediments during the Scrum should be removed by the SM who

is also responsible to solve conflicts between TMs and PO [22].

To summarize these roles, it can be said that the PO determinates what is to do, the

TM decides how to do it, and the SM ensure the framework to do so.

Artifacts

There are several documents that support the development process in Scrum. The

Product Backlog, Sprint Backlog, Feature Archive, Release Plan and Burndown

Chart are the most important artifacts in Scrum. The Product Backlog, Sprint Backlog

and Feature Archive are closely linked. Figure 5 illustrates the relationship between

those artifacts.

The Product Backlog is the main document that contains the majority of functional

and non-functional features at the project start [23]. All these features are available

as user stories in the Product Backlog. User Stories should follow the INVEST criteria

if they are created. INVEST is the guideline how to write good user stories and

stands for independent, negotiable, valuable, estimable, small and testable. This

standard ensures that features are worded in a proper way so that they can be

understood by the TMs. Since the Product Backlog is not definite, User Stories can

always be added, changed or deleted. Most important for the Scrum process is the

maintaining and prioritization of User Stories on the Product Backlog. High prioritized

features are determined for the next or future sprints.

User Stories which are getting accepted during the Planning Poker are in the

following moved to the Sprint Backlog. Features that are not agreed on for

implementation remain in the Product Backlog. The Sprint Backlog contains the User

Stories and the estimated effort in story points to put these features into operation in

the concurrent sprint. In the event that implemented features are not accepted by the

PO, they will be put back to the Product Backlog and waiting to get prioritized again.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 18

If features are signed-off by the PO, they will be moved to the Feature Archive. The

Feature Archive is an historical document that tracks already implemented features

on a list. Attributes like release date or actual and planned effort can also be added

for a comprehensive documentation.

Figure 5: Product Backlog, Sprint Backlog and Feature Archive in Scrum

The Release Plan and Burndown chart are documents that facilitate the release

planning and progress tracking.

Figure 6 shows an exemplary Release Plan. This plan combines the two dimensions

of sprints and features in one document and allows for predicting possible releases.

Figure 6: Release Plan in Scrum [11]

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 19

The Release Plan includes the starting and end dates of sprints, the description of

goals, features and their estimated effort for every sprint. This information can be

used to measure the progress of a team and to detect slowdowns. The Release Plan

makes, just as the product backlog, changes on the plan possible.

The Burndown Chart is, as described later on (see Chapter 4.3.3), as well an

effective tool to forecast the release and gauge the progress of a project [22]. The

sprint number and the estimated effort in hours or story points of a Scrum project are

displayed in the burndown chart. By adding a trend line, it is also possible to illustrate

the number of sprints that remain for the final release. The projected trend line also

serves as an indicator for the target-performance comparison. It can be made a

statement on the achievement of sprint goals by comparing the average effort per

sprint with the actual effort per sprint.

Practices

Scrum is, just like XP, an agile method that relies on short iterations. Iterations are

called Sprints in Scrum and are supposed to be equal in length and size. The

duration of a sprint can, however, vary across projects. A sprint can last one up to

four weeks.

Every sprint consists of the three consecutive phases:

 Sprint Planning

 Sprint Execution

 Sprint Review, Release, Retrospective

A more detailed description for each single sprint phase is given in the following.

Development projects that apply Scrum start typically before the Sprint Planning

phase. The Product Backlog, the artifact containing a feature-list of the final product,

has to be created ahead of the first sprint. This can be done jointly by the PO and

TMs. Both parties are working out user stories that are based on the input of the

customer and the product vision. Afterwards, these features are getting prioritized by

the PO and are made available for actual sprint planning.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 20

 Sprint Planning

The PO determines features in the sprint planning that generate a high value and

should be implemented within the next sprint. The job of the PO is to also present

those prioritized features in front of the development team during the Planning

Poker. The developers are then asked to determine the effort for each feature.

TMs are doing this by evaluating the features by story points (see Chapter 4.3).

The agreed on features are in the following moved to the sprint backlog as long

as the developers think they are able to complete them within the next sprint (see

Figure 5). The planning poker ends if the developers cannot take on any more

features.

 Sprint Execution

The attention of the sprint execution is directed to the implementation of features.

The TMs are now responsible to implement features according to the User Stories

in the Sprint Backlog while the PO is working the product backlog and release

plan. The PO is also acting as an intermediary between the costumer and the

developers in order to support the developers if any questions need clarification.

The same time, the PO updates the Scrum documents according to the

requirements and feedback of the customer. The SM manages the whole process

to keep it self-sustaining.

A Daily Scrum meeting can also be part of the Sprint Execution (see Figure 5).

That meeting is supposed to take place every day, possibly in the morning and

should last no longer than 15 minutes. The following questions should be

addressed briefly by each TM [15]:

 What did you do since the last Scrum?

 What are you doing until the next Scrum?

 What is stopping you getting on with your work?

These questions help to get an idea of the actual progress in the Sprint and if

there are any impediments that may delay the implementation of features.

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 21

However, the daily scrum is not designed to solve problems. Further meetings

would be necessary for troubleshooting.

 Sprint Review, Release, Retrospective

The end of every Sprint is composed of a review process and optional release as

well retrospective.

The functionality of new features that were implemented during the Sprint is

presented in the sprint review by the TMs. The features that are passing all the

acceptance tests and are implemented as required can be signed-off by the PO

and moved to the feature archive. Not accepted features will be taken back to the

Product Backlog and get prioritized again (see Figure 5).

A release of the software product subsequent to the sprint review is also possible

if features add new functionality to the product and are implemented according to

their acceptance criteria. The SM can also make use of a retrospective at the end

of every sprint. This session is normally brought into play to review the last sprint

along with the development team and propose improvements to the process [23].

This is in particular necessary if acceptance tests fail and features are not being

implemented as supposed to.

2.3 Open Source

The term Open Source classifies both, software which is provided under an Open

Source license and the development practice.

2.3.1 Open Source Software

Open Source software is in lieu of proprietary software characterized by the free

redistribution and modification of source code. That means, the license of Open

Source software allows the usage and change of software without paying a license

fee. But these usage rights involve also the requirement to distribute modified

software under the same terms as the license of the original software [24].

Improving the Agile Methods and Open Source Lab Course

Fundamental principles 22

2.3.2 Open Source development

The development model of Open Source is basically embracing the three principles

of Open Collaboration [25]:

 Egalitarian

 Meritocratic

 Self-organizing

Egality stands for the way how development takes place in Open Source projects.

The programming work is egalitarian so that everyone can access and contribute in a

dispersed community. In addition, Open Source development follows a meritocratic

process where contributions are merit-based and evaluated upon their quality. Peer

review is in this regard a widely used element of Open Source development. Open

Source is also always a self-organizing process where collaborators are developing

and customizing their own process as they require it. The contributors are working in

a dynamic virtual enterprise where they are relying on e.g. electronic communication

media, virtual project management and version management to coordinate and

manage dispersed projects [26].

The way Open Source works is highly efficient as it is described by Bruce Kogut and

Anca Metiu. They found that Open Source avoids the inefficiencies which are

apparent in companies that are relying on intellectual property rights. They also

explain the success of Open Source by the implementation of the concurrent process

to design and test software modules [27].

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 23

3 Scrum in academic courses

Despite the success of Scrum in the software industry [2], it is a relatively new

development methodology to universities [8]. University courses that do not only

teach students the theory and basics of Scrum have to make more of an effort to

apply the agile practice in lab courses since Scrum was originally designed for the

development in the software industry.

Scrum has a lot of practices, artifacts and roles that are designed to meet the general

conditions of the business world (see Chapter 2.2.2). As a matter of fact, universities

have to the customize Scrum that it fits the academic setting. The following two

subchapters describe first the use of Scrum in different academic courses [6], [28],

[29] and the way how Scrum was adapted in the AMOS project of 2011. Last but not

least, Chapter 3.3 compares the chosen courses in terms of roles, practices and

artifacts.

3.1 Related work

The agile method Scrum is a non-prescriptive practice that allows for changes and is

not further restricted to a certain development environment. A few universities are

using this approach along with some modifications to develop a project of their

choice in the classroom. Three academic courses that are distinguishable in the

project type and use of Scrum are selected for an analysis. The development of

android applications, computer games and a web service are the paradigmatic

university courses that are studied in this thesis. More information on the context of

three different courses is given below.

3.1.1 Android applications

The first academic course that is analysis describes the development of Android

applications at the Rochester Institute of Technology [28]. The elective course that

was designed in order to teach students the agile software development using Scrum

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 24

was open to undergraduates. It was split into two parts to separate the preliminary

course work from the development process.

Before the actual development started, preparatory work was necessary to set the

stage for the forthcoming weeks. The first few weeks of the course were used by

students to become familiar with the Java-based development kit – Android

Development Tools. An “Android boot camp” was set up to prepare students for the

development of android applications. Furthermore, students were asked to write user

stories with regard to their application (App) idea. By doing so, all students were

involved in the process of collaboratively defining Android Apps.

The actual application development process followed after the preliminary “Iteration

Zero” sprint. Three teams with 6-7 students each were developing their own

applications in the second part of the course. The following app ideas were created

by students [28]:

 A training app that could be used by runners to track their distance (using

GPS) and time during training runs

 An app that accessed the university’s bus system to alert the user when the

next scheduled bus was approaching a bus stop

 A Black Jack card game which tutored the user in casino betting strategies

The development using the agile method Scrum took place in the following three

sprints. Each sprint was thereby three calendar weeks long.

The outcome of this development project is that students profit from the use of Scrum

in a few ways. Students learn about requirements engineering, project planning,

tracking, testing and effective team collaboration in using Scrum. Nevertheless a

more effective learning success can only be achieved if students have the possibility

to complete multiple iterations and apply suggested improvements during these

Sprints [28].

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 25

3.1.2 Computer games

The game design lecture that was offered for Computer Science students at the

University of Duisburg-Essen in 2009 was divided into two phases [29]. The first

phase was called Design phase or Pre-production and included the theory on game

design, structure and production. The second phase was known as the Development

phase and contained the practical development of a computer game in ABC-Sprints

using the development method Scrum (see Figure 7).

Figure 7: Course schedule of Computer games [29]

Students had to generate a mind map of their computer game ideas in brainstorming

sessions in the first phase. The information gathered in these meetings was used by

the students to develop a high concept. These concepts were in the following

discussed in groups to create a common understanding and to describe a Game

Design Document. Students proactively formed teams of 4 to 5 members for this

purpose. The teams were required to create and discuss the Product Backlog with

the PO after the group formation process took place.

The second phase started in Week 6 and was split in an Alpha, Beta and Completion

Sprint (ABC-Sprints). The Alpha sprint lasted four weeks and was planned to deliver

a first prototype with basic functionality. Further features were intended to be

implemented during the four-week long Beta sprint. The final release of a feature-

complete game was the goal of the Completion Sprint that was designed for

debugging and polishing in last two weeks of the semester. All the Sprint work was

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 26

accompanied by weekly lectures on game design (see Figure 7). Apart from that the

development teams were working as self-organized Scrum teams during the second

phase of the game course, solely the monitoring of the teams was assigned to the

instructor of the course.

The implication from this case study is that using Scrum in game development leads

to an improved productivity and more sophisticated games. However, students were

claiming a very high course workload in a survey that was carried by the end of the

course even though that they admitted the benefits of Scrum [29].

3.1.3 Web service

Another course that is using the agile method Scrum was held at the University of

Ljubljana [6]. This undergraduate course was taking place the first time in the

academic year 2008-2009. A year later, the second instance of the course was

running. The goal of this development course was to develop a web service in the

review period of 2009-2010. Like the two courses aforementioned, this course was

also composed of two parts (see Figure 8).

Figure 8: Course schedule of Web service [6]

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 27

The course started with introductory lessons on the theory of Scrum in the first three

weeks of the academic term. The so called Sprint “0” involved students to become

acquainted with the idea and use of user stories as well as the Product Backlog. At

the same time the development environment was prepared. In addition and prior to

the following sprints, 13 teams with four students each were formed.

The remaining three sprints were each four weeks long and used for the

development of a Web-based student record system. The teams were asked to

develop the web service by the user requirements that were the same for all the

teams and already predefined by the instructor. 60 prioritized user stories were

therefore introduced to student teams. The user stories were prioritized according to

the categories of “must have”, “should have”, “could have” and “won’t have this time”.

Although that the majority of teams implemented all 24 “must have” and 5 “should

have” features, only the best participating team completed also all 4 “could have” and

some of the 27 “won’t have this time” user stories.

The bottom line of this academic course is that students enjoy learning Scrum and

show and increased performance from Sprint to Sprint by applying this agile method.

But going in a more detailed analysis reveals that students often not entirely

understand the concept of Scrum and misinterpret the definition of when a user story

is “done” [6].

3.2 AMOS project

The Agile Methods and Open Source (AMOS) lab course is a semester-long

programming course at the University of Erlangen-Nuremberg. This course is offered

by Prof. Dr. Prof Riehle at the Open Source Research Group and takes place every

summer semester.

The concept of the AMOS course was originally described in 2010 when the course

took place for its first time. It was updated to match the setting of the AMOS course in

2011 after first practical experience was gained and feedback was given from

participating students in 2010 [30], [5]. Since the circumstances of the university lab

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 28

course are changing every year also the AMOS concept is likely to be refined in

future instances in order to respond to the lessons learned and meet the conditions

of upcoming projects.

The project concept of the AMOS course and some of the adaptations for the AMOS

project of 2011 are described in the next paragraphs. The AMOS concept is

subdivided in the objectives (Chapter 3.2.1), the roles (Chapter 3.2.2) and the

process (Chapter 3.2.3) of the university project.

3.2.1 Objectives

The general idea of the AMOS course is to combine the teaching of agile methods

and Open Source with the development of a software solution. The objectives that

can be derived from the idea of the AMOS project are drawn in the following [1]:

 Effective learning outcome in a real-world environment

 Sustainable project for a good cause

 Start-up foundation for interested students

The learning process of the AMOS project is taking place in a real-world environment

that comprises a real customer and real product. This authenticity facilitates the

knowledge transfer and the understanding for students. A sustainable product is

furthermore an incentive for students to attend this course. Developed software that

is still available and used after the AMOS course is finished, can as well contribute to

the foundation of a start-up. Especially students that are about to graduate are

offered a great chance to create a start-up company.

3.2.2 Roles

Computer Science students as well as Information Systems students are the target

group of this course. University courses that make use of agile methods are often

offered exclusively as capstone courses, either for undergraduate or graduate

students [4], [7], [8]. This distinction was not made for the AMOS project of 2010 and

2011. Both, bachelor and master students are allowed to enroll for this course.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 29

An overview of the specific roles for the AMOS project of 2011 is given in Table 1.

Table 1: Roles in the AMOS project of 2011

SCRUM Roles AMOS Roles Recruiting

Scrum Master Lecturer Professor

Product Owner
Main Product Owner Senior Student

Student Product Owner Students

Team Member
Senior Architect Senior Student

Team Member Students

Customer Domain Expert Extern

 Operation Manger PhD students

 Controller Students

 Web Designer Students

 Tester Students

 Business Planner Students

The traditional Scrum roles that were described beforehand (see Chapter 2.2.2) are

adapted to meet the requirements of AMOS project concept. The SM is represented

by Prof. Dr. Dirk Riehle who is giving the annual AMOS lecture. The role of the PO

was divided in Main Product Owner (MPO) and Student Product Owner (SPO). This

was new to the AMOS product and necessary due to the vast amount of students

with a background in business that were enrolled in the AMOS project of 2011.

These students were now assigned the role of SPOs that were guided by MPOs. In

2011, there were two senior students taking on the role of MPOs and 14 SPOs. The

author of this thesis was one of the MPOs. The TMs were composed of one senior

student who was acting as the lead architect of the project and 5 Computer Science

students. Domain expertise was provided from the philosophical leader of OSM.

Not all of the enrolled students could be assumed the traditional Scrum roles. There

were for instance some PhD students available that ensured the operability of the

project server and release system. Next to it, new roles for students were established

in the AMOS project of 2011. This step involved all the students that participated in

the course and were not assigned the role a SPO or able to work as a TM. The

special roles that were created are displayed with a green background in Table 1.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 30

Students were now taking on the roles of controller, web designer or tester. Moreover

one team consisting of five members was responsibility to work on the business plan.

3.2.3 Process

The AMOS project consists of the four phases that are explained hereinafter [11]:

 idea creation

 preliminary work

 lab course

 start-up foundation

Idea creation

Preliminary to creating the vision of the project and the project plan, is to find external

partners or sponsors and students that are willing to support and be part of the

AMOS project.

If there are ideas provided by external sources, there should always be a contact

person available that is at the same time an expert in that domain. Philosophical and

technical leaders are in this regard very valuable to the AMOS project as they can

give their input to the concept and development of the project.

The ideas that are proposed should also be of commercial interest and call for

domain expertise that can be communicated easily to the students. Without these

attributes, it is difficult to go for a project that is interesting for students and likely to

be commercially successful. Social software solutions are in this matter neglected

since they are most likely already developed by someone else or lacking domain

knowledge.

One of the ideas for the AMOS project of 2011 was suggested by the stakeholders of

Open Sea Map (OSM). To be precise, the philosophical leader and technical leader

of OSM were proposing their ideas and offering collaboration. The contact persons of

OSM were represented by the domain expert Markus Bärlocher and the technical

expert Olaf Hannemann.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 31

The idea to create a social network for sailors did not entirely meet the requirements

of the AMOS concept since the final product was a category of social software.

However, this social network was requiring domain expertise in development and

focusing on a niche market is of commercial interest. Further information on the

domain model of FSAhoy is explained in Chapter 4.1.

Preliminary work

The output of the preliminary work should be a concrete product idea that is

summarized in the vision and plan of the product. To accomplish this goal, it is first of

all necessary to generate ideas for a later use in the AMOS project and assess them

based on their feasibility. The feasibility study can then also help to create a product

strategy or first business plan. All the information that is collected and generated can

be part of the product vision. It is also recommended in the concept of the AMOS

project to develop a product plan next to the product vision. This plan is a valuable

document as it contains also the requirements of the final product. Since the AMOS

project is making use of the development method Scrum, the product plan can be

realized easily by the Product Backlog.

Apart from the contextual work, it is also essential to solve all technical issues to

ensure a smooth project start. The development environment and tools have to be

set up by the PhD students and a senior architect should be determined to prepare

the technical ground for the AMOS project.

Possible ideas for the AMOS project of 2011 were gathered in conference calls with

potential customers. The concepts that were developed by the input of the telephone

conferences were documented in the project wiki next to the meeting minutes. These

documents presented the basis for a market research and feasibility analysis. The

obtained studies revealed that the idea of a social network for sailors would be the

most promising concept. This concept was then framed as a product strategy and

summarized in the product vision. Beyond that, the POs were working on the product

plan that was implemented in the Product Backlog whereas the senior architect was

setting up and configuring the development environment.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 32

Lab course

The lab course is in general designed for the time period of 13-14 weeks that are

available during a summer semester. However, the first class is used as a kick-off

and the last class as a wrap-up. In the end, there are only about 11-12 weeks

remaining for the actual development of the first prototype. The number of iterations

that were available for the development of FSAhoy was even reduced to 10 sprints in

2011 due to the arranged absence of the SM in one instance.

The AMOS course itself starts in the first week of the semester and contains a

theoretical and practical part. The weekly lecture on the theory of agile methods and

Open Source are held in the morning. The hours after the lunch break are reserved

for the Scrum process that includes the Sprint Review, Sprint Planning and next

Sprint Preparation (see Table 2).

Table 2: Structure of the class day in the AMOS project of 2011

Type Start End

Lecture 10:15 a.m. 11:45 a.m.

Lunch break

Sprint Review 12:15 p.m. 01:00 p.m.

Sprint Planning 01:00 p.m. 02:00 p.m.

Sprint Preparation 02:00 p.m. 02:45 p.m.

These time slots were not set for all practical purposes. The Sprint Review could be

also prolonged. This decision was always depending on the team performance

during the sprint, the release decision after the Sprint Review and the necessity of a

retrospective.

The development and software project management is taking place during the week

of a sprint. The POs are herby working on the Product Backlog and the TMs are

responsibly to implement and test the accepted features. Once in a week is the

AMOS class day, where the completed user-stories are presented by the review

manager during the Sprint Review. The Sprint Review can contain the release of the

software product if new features are implemented and no greater challenges are

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 33

faced. Otherwise, a retrospective can be held to clarify occurring issues. Subsequent

to the Sprint Review is the Sprint Preparation for the next week. The MPOs are using

this session to brief the SPOs how to write good user stories and what user stories

they are responsible for. SPOs are the same time also instructed how to lead the

upcoming Sprint Planning and Sprint Review.

Start-up foundation

The AMOS lab course is embedded in a start-up incubation process and thereby

encouraging students to create a start-up after the end of the semester-long course.

There are normally quite a few stakeholders involved in the AMOS project that might

also be interested in the idea of a start-up foundation.

The possible members of a start-up team could be:

 Students in the role of Product Owner or Team Member

 Customer or Sponsor of the project

 Professor as the Scrum Master

If the product is running and marketable by the end of the AMOS course, it is very

likely that students will be motivated to create or join a start-up. The MPO and the

senior architect that are involved in the AMOS project from the outset are

predestined to continue working on the project. Students in the role of SPO or TM are

as well qualified to work in the start-up as they have learned a lot about the product

during the sprints. A sponsor or customer can also be part of a start-up team as they

are providing the domain expertise throughout the development project. The

professor of the AMOS course cannot be a founding member in a narrow sense, but

he has the ability and network to support the start-up.

A possible start-up team can refer to the first product prototype that was developed

during the semester and fall back on the SCRUM artifacts that are available. In 2011,

there was even a group of students working on the business plan of the AMOS

project. This document can serve as the basis for the start-up to apply for a

sponsorship or venture capital.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 34

3.3 Academic courses in comparison

Chapter 2.2.2 describes the roles, practices and artifacts in Scrum. These properties

of the agile development method are serving now the foundations for the comparison

between the three academic projects aforementioned and the AMOS project of 2011.

3.3.1 Roles

Table 3 clearly indicates that all evaluated Scrum teams are composed of a minimum

of 4 up to a maximum of 7 students. Although the total number of participating

students is different, there is not much variation in the number of students per team.

The average number of approximately 5 students per team describes probably best

that working in too small or too large groups is less productive. Small teams lack the

manpower and knowledge to work effectively and large teams face issues in matters

of organization and communication that are related to the size of a team [31].

The POs were represented by students in two out of four agile projects while the

other half assigned the course instructor for the role of the PO. These significant

differences in roles are mostly a result of the unlike project philosophies. The AMOS

project of 2011 was for instance designed to offer the role of PO to Information

System students and to provide the role of TM for Computer Science students. Since

there were a lot of students participating in the AMOS course 2011 that could not be

assumed the role of a developer, there were way more POs than TMs available. The

development course of Android applications was also composed of students as POs

that were the same time TMs. Opposed to these approaches, the development of a

Web service and Computer games were relying on the instructor as a PO. The

instructor had in these courses greater possibilities to provide directions for

development. In the role of PO, the instructor could reduce the workload and

complexity in the game development course and was able to answer questions

regarding the Product Backlog in the Web service project.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 35

Table 3: Adaptation of Scrum roles, practices and artifacts in academic courses

SCRUM AMOS 2011 Android applications Computer games Web service

R
o

le
s
 Team Member

1 Team:
5 Students, 1 Senior Student

3 Teams:
6-7 Students each

3 Teams:
4-5 Students each

13 Teams:
4 Students each

Product Owner
14 Students,
2 Senior Students

1 Student per team Instructor Instructor

Scrum Master Instructor Instructor, Students 1 Student per team Instructor

P
ra

c
ti

c
e

s

Sprint Planning Planning poker
Planning Poker
(tasks in hours)

Planning Poker
(manageable tasks)

Planning Poker
(tasks in hours)

Sprint Execution

Kick-off meeting
10 sprints
(1 week each)
Daily Scrum
(mailing list)

Iteration Zero sprint
3 development sprints
(3 weeks each)
Stand-up meeting
(once per sprint)

Design and ABC-Sprints
(2-4 weeks each)
Daily Scrum
(twice a week)
Scrum of Scrums
(once a week)

Sprint 0
(3 weeks)
Sprint 1,2,3
(4 weeks each)
Daily Scrum
(twice a week)

Sprint Review
Review, Release,
Retrospective

Review, Release,
Retrospective

Presentation,
Release

Review, Release,
Retrospective

A
rt

if
a
c

ts

Documents
Product Backlog,
Sprint Backlog,
Feature Archive

Product Backlog,
Sprint Backlog,
Burndown Chart

Product Backlog,
Sprint Backlog,
Burndown Chart

Product Backlog,
Sprint Backlog,
Release Plan

Tool support Google Docs Board Agilo for Scrum

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 36

The SM originally describes the role of someone who has experience in applying

Scrum and a broad knowledge on that methodology (see Chapter 2.2.2). It is all the

more astonishing that this role was the job of a student in the Computer games

course whereas all remaining courses were at least starting with the instructor as the

SM. However, the disposition of the SM in the development of Computer games was

different. This role was seen “as interface between the Scrum Team and the Product

Owner” and therefore responsible to mediate between the TM and PO [29]. The

android development course started with the lecturer as SM. This role was later on

transferred to students as they gained more experience in working with the agile

method Scrum.

3.3.2 Practices

The sprint planning is very similar in the surveyed projects. Each development team

was playing planning poker in order to estimate the effort of user stories that were

accepted for implementation in the upcoming sprints. All but one development project

were breaking user stories down into more specific and smaller development tasks.

Those development tasks were estimated in hours in two projects (Android

applications and Web service) defined as manageable tasks in one project

(Computer games). On the contrary, the AMOS project of 2011 did not decompose

the user stories further in development tasks. There was just the approach, late in the

project, to assign features to different developers (see Figure 9). Only one user story

was decompounded in the user story itself and related acceptance as well as JUnit

tests. But no estimates were given for the expected development time in hours.

All development projects have in common that the first weeks of the semester were

used to get acquainted with Scrum. Next to it, two projects were creating the concept

and user stories of their projects (Android applications and Computer games) in the

first sprint. Others were setting up the development environment (Web service) or

getting familiar with the development tools (Android applications). The AMOS project

was an exception in this regard as the product vision and majority of user stories was

already in place at the project start. Also the development environment was for the

most part set up and the developers experienced in the programming language of the

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 37

project. By having this preliminary completed by the semester start, the attention of

the first week was directed on the team formation and getting to know each other.

Especially the large group of participants made it necessary to start the AMOS

project with team building exercises (see Chapter 4.2.1).

Figure 9: Feature responsibilities in the AMOS project of 2011

The duration of sprints was different for the academic courses. The sprints of the

AMOS project lasted only one week whereas the sprints for the development of the

Web service were scheduled for 4 weeks. In the end, the total amount of weeks was

roughly the same, allocating for 10 sprints in the AMOS project and one preparation

plus three development sprints for the remaining projects.

The Daily Scrum practice was adapted in various ways to comply with the limitations

of academic courses. Since students were not working for the development projects

on a daily base, adjustments had to be made to the original concept of the Daily

Scrum. A meeting twice a week was feasible for students in the computer games and

web service course. The development course for android applications established

stand-up meetings once a week. Again the AMOS project was an exception. This

project was also asking three questions according to the Daily Scrum rules (see

Chapter 2.2.2) but used a mailing list for the weekly consultation. Figure 10 shows

the Daily Scrum practice as it was introduced on the mailing list of FSAhoy early in

the project by a senior developer.

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 38

Figure 10: Daily Scrum on the mailing list in the AMOS project of 2011

In addition to the Daily Scrum, there was also established a Scrum of Scrums that

covered the exchange of communication and technical issues between the SMs

across the teams in the computer games development project. The SMs were

expected to provide the solutions that were discussed in the Scrums of Scrum for

every development team.

Review, Release and Retrospective were as part of the Sprint Review implemented

equally in development projects. The Sprint Review in the Computer games course

involved a presentation of the students at the end of each sprint. This presentation by

the development teams was used to showcase the development progress, outline

problems and discuss improvements as it is common for the review and

retrospective. Releases were also often determined by the preset course structure as

it is shown by Figure 7 and Figure 8 (Computer Games and Web service).

3.3.3 Artifacts

Artifacts, such as the Product Backlog and Sprint Backlog are a widely used practice

in the development projects. All evaluated projects contained as their main

documents in the Scrum process a Product Backlog with user stories and a Sprint

Backlog for the sprint execution. The Feature Archive that was not mentioned in the

Improving the Agile Methods and Open Source Lab Course

Scrum in academic courses 39

surveyed case studies was essential for the AMOS project to measure the project

progress and velocity (see Chapter 4.3.1) since there was no burndown chart or

release plan available. The Release plan was in fact only an integral component for

the Web service project. One of the early activities of the TMs in the development

project of a Web Service was to create the Release Plan. The Burndown chart (see

Chapter 2.2.2) is an artifact that was used of in half of the projects (Android and

Game development). It was widely used to compare and monitor different teams in

the Game development course. The Android applications course used the burn down

chart extensively to track the scheduled and remaining sprints hours against the

background of a limited budget of hours [28].

The tool support for the Scrum artifacts is above all relatively low. The course for

android applications maintained its Scrum documents manually on a Board which

highlighted the user stories and burndown chart. The AMOS project was setting up

the Product Backlog, Sprint Backlog and Feature Archive on Google Docs to facilitate

the communication and access via shared spreadsheets. A professional project

management tool was only applied in the course designed for the development of a

Web service. The commercial software Agilo for Scrum was used to collect and

compare data about the planned and achieved story points [32].

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 40

4 AMOS project of 2011

After looking at the basics of agile methods and considering Scrum in an academic

setting, it is getting time to shed more light on the AMOS project of 2011. The general

set-up, the roles, practices and artifacts are explained in Chapter 3.2. Missing is the

description of the domain model and the actual development process. Chapter 4.1

will outline the idea and domain model of FSAhoy before a review of the single

sprints and development process is given in Chapter 4.2.

4.1 Domain model

In order to provide an understanding of the AMOS domain in 2011, the big picture of

FSAhoy is described first by the product summary. This product summary which is

based on the product vision will outline the general idea of the social network for

sailors. The target group and features of the social network are further details of the

AMOS domain model that are presented afterwards.

4.1.1 Product Summary

The AMOS project of 2011 describes the new generation of an open social

networking portal for sailors and anyone interested in sharing nautical information

and experience. Interested parties can sign up directly, via OSM or with Facebook

Connect. Users of the social network can share information about their past, present,

and future sailing trips with their friends. This includes among other things: trip dates,

nautical information, photos and travel reports. A key component of FSAhoy is the

use of OSM, the free sea map of the world. Using OSM data, sailors can plan,

describe and annotate their trips.

4.1.2 Target Audience

Initially, the social network is designed for a variety of non-commercial sailors who

want to connect to like-minded sailors for the purpose of learning more about the

sailing sport and present themselves with their sailing hobby. Moreover, sailors can

make use of this portal to stay in touch with their family while they are on sailing trips.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 41

Amateur as well as experienced sailors are invited to share their knowledge about

sailing, to look for crews and plan boat trips. Boaters striving for competitive sail

events are addressed in the same way as pleasure boaters who are organizing

private cruises. In addition, event managers are encouraged to participate in the

social network to create and spread their nautical events. Stakeholder with a

commercial interest such as sailing schools, port operators or travel agencies will be

attracted by the community of the social network.

4.1.3 Features

Users of the social network can access all the features FSAhoy is offering as soon as

they are logged in successfully. The menu bar of FSAhoy in Figure 11 displays the

main features of the Web Service that are visible after the login. The user can

navigate through the menu bar to discover the functionality of the social network, the

trip planning feature and the integration of OSM.

Figure 11: Menu bar in FSAhoy

Social Network

For the reason that FSAhoy is a network which is connecting sailors, it requires a lot

of social features that match the demands and expectations of sailors. Basic profile

information is in this manner enriched by sailing skills and interests (see Figure 12).

Sailors can not only portray their personality in FSAhoy, they can also tell about their

sailing profession as well as their favorite travel destinations. Providing this data

enables users of the social network to search and find like-minded people. The social

component is also extended by the profile picture. Users can upload or change their

profile picture. By attaching a photo to their profile they can present themselves

visually and make their profile more attractive for other users of the social network.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 42

Figure 12: User profile in FSAhoy

Trip planning

Sailing trips can be planned directly in FSAhoy. The Trip section allows users of the

social network to create new trips by naming trips, providing a start and end date as

well as an optional description. Every trip can have multiple logbook entries that can

be attached to the trip. Figure 13 shows an overview of the trip “Nordcup” that is

consisting of three logbook entries as it can be found in FSAhoy. All information can

be viewed, updated or deleted. In addition, it is on the user’s hands to decide on the

level of visibility. The trip can be made available to the public or remain private.

Figure 13: Trip planning in FSAhoy

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 43

A logbook entry as it can be added to any trip is displayed in Figure 14. The logbook,

which is a mandatory document for sailors, addresses the course of a sailing trip in

depth. Departure as well as arrival places and trip dates are next to the coordinates

of a trip the most important and required logbook entries. The electronic logbook of

FSAhoy comes also with nautical information such as water level, wind direction and

speed, sea state, weather and air temperature. It embraces beyond these data also

the possibility to write down notes or add crew members to the logbook.

Figure 14: Daily logbook entry in FSAhoy

OSM

The integrated map of OSM is a major feature of FSAhoy. It is accessible after a new

trip is created. The link to the map is available in the trip overview (see Figure 13)

and allows the user of the social network to plan a sailing route on the open layer of

OSM. The user can to be more precise, interactively mark waypoints on the map of

OSM (see Figure 15). These recorded coordinates, which are listed in a pop-up

window, can be transferred to a new logbook entry as it is shown in Figure 14.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 44

Besides, the new window also presents the total trip distance and the difference

between waypoints in nautical miles.

Figure 15: OSM integration in FSAhoy

The traditional web service was also planned be accompanied by an android

component that includes the same functionality as the network portal and additional

features. The possibility to use the compass and GPS of a mobile device allows for

embedding a mobile navigation module and uploading of real-time geographic

information. The geo-data can be used to track the sailing trip, change the sailing

route or to give feedback to OSM. Local businesses and points of interest at the

harbor site can be located easily by the GPS module and OSM data. In addition,

information about the fresh water, grey water, fuel, and battery level of the vessel is

retrieved by the mobile application.

However, the android application was not realized in the AMOS project of 2011.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 45

4.2 Weekly sprints

To obtain a better understanding of the applied agile methods in the AMOS project of

2011, a more detailed description of the weekly sprints is given in the following. Not

only the idea and domain model of FSAhoy will be evaluated, but also insights on the

circumstances and noteworthy events will be provided. The presented information is

gathered from the meeting minutes of the weekly Scrum sprints, discussions

throughout the AMOS course, Emails with stakeholders, Skype-logs and the

developer’s mailing list.

4.2.1 Kick-off

The kick-off of the AMOS project of 2011 was taking place on May 4, 2011. That

makes a week before the first sprint was scheduled. Prof. Dr. Dirk Riehle made use

of the first AMOS session to outline the course organization and to give an

understanding of the development process. The domain model of FSAhoy was

introduced by Markus Bärlocher, the customer of the project. After briefing all

attending students, two team building exercises took place. A ball game was played

and a pipeline was constructed jointly by the participants of the AMOS project in

order to become acquainted with the names and hobbies of the fellow students. Both

exercises were in manner of speaking icebreakers that facilitated the process of

getting to know each other and set the same time the stage for a successful

collaboration in the upcoming weeks. Afterwards, the SM, PO and customer were

meeting up in order to define the domain model more precisely and to talk about

further actions.

Since more students than initially expected were enrolling and attending the first

lecture, there were a lot of organizational matters to be discussed within the first days

of the project. Students with a background mainly in Business studies were either

assigned the role of a SPO, part of the business plan team or responsible for a

special job (see Chapter 3.2.2). Computer science students or Business students

with experience in programming were assumed the developer’s role. The

development team was complemented by the senior developer and architect Frank

Denninger, who was also taking on an active part in the AMOS project of 2010.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 46

4.2.2 Sprint 1

The TMs played planning poker for the first time in the AMOS project of 2011 in the

second week of the semester. Right after the features were described by Prof. Dr.

Dirk Riehle, the developers had to estimate the effort to implement the features within

a weekly sprint. In consequence the developers mutually agreed to implement the

two features Register new user and Login on FSAhoy.

The POs had to clarify a few questions concerning the localization and password

setting of FSAhoy during the first sprint week before the user stories could be

implemented by the development team. Prior to the first release, the implemented

features were presented by the week’s review manager. The features were in this

respect tested upon their acceptance criteria and signed off by the lecturer, who was

the PO for the first week. The release process itself was explained and carried out by

the senior developer of the AMOS project. He was assisted by a PhD student during

the release preparation.

4.2.3 Sprint 2

For the second sprint, the developers accepted the user-stories Verify user by email

and Recover the password to enhance the registration and login process. As the

senior developer Frank inspired and convinced the POs to work with the Spring

framework in matters of security, it was discussed with the TMs. Lacking an expert

for Spring security, it became important to acquire knowledge on that topic.

Accordingly, a new feature called Explore Spring security was created to afford an

opportunity to study Spring security.

In addition, a few minor bugs concerning already implemented and approved

features were documented during the second sprint. A major issue was thereby the

blocking of the Internet Protocol address (IP address) in the event of an unauthorized

login attempt. Not only the IP address blocking was difficult to implement, but also

the intended use of this security feature was not applicable. It turned out that

securing the login would work best with the CAPTCHA procedure. CAPTCHA is a

challenge-response test which is designed only to be solved by a human. The

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 47

implementation of CAPTCHA was however postponed. For the time being, it was

more convenient to fix the IP blocking bug.

4.2.4 Sprint 3

Since the Spring framework was well received by the exploration of one TM, corollary

was to re-implement the login process with the help of Spring security to ensure a

higher level of security. This framework was also proposed to facilitate future

modifications or extensions to the source code. Besides, Spring is supposed to work

well with the open standard for authorization (OAuth). OAuth is a protocol which was

in this case a requirement to enable access on OSM user accounts. By using request

and access tokens, the user allows FSAhoy to access the OSM account information.

This procedure makes it possible to login on FSAhoy via the user account that was

created for OSM.

Contrary to previous assumptions, implementing Spring security caused by far more

issues as it turned out at the end of the third sprint. What made it is worse, was the

dependency of the user stories concerning Spring Security and OAuth. In order to

use OAuth, the Spring framework had to be running first. Since there was a major

problem in applying Spring Security, the OAuth features could not be realized. The

development team was consequently stuck in implementing new features and mainly

focused on the finding and fixing of bugs throughout the third sprint.

4.2.5 Sprint 4

The sprint number 4 was unlike other sprints before and afterwards. There were

certain changes to the SCRUM process taking place. First and as aforementioned

students could take part in the AMOS project of 2011 as SPO. Therefore students

filling the role of a SPO were briefed, how to write user-stories and define acceptance

criteria. Secondly, it was the first time in this project that major issues arose that kept

the developers from putting new features in place. The SPO, who was responsible

for this sprint, was advised to take the feature Implement Login with Spring Security

back to the Product Backlog after it was rejected and to present it again to the TMs.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 48

Thirdly, the sprint number 4 lasted two weeks instead of one week. Compared to the

usual interval, this sprint was extended by one week due to the absence of the SM.

Having all these facts in mind, the developers decided to implement features that

were accounting for 17 story points. The Implementation of Spring Security was

evaluated with the remaining effort of 5 story points, which makes a total effort of 8

story points. Besides, features for the creation of a logbook and trip were accepted.

In addition, a developer responsible for the layout of the webpage was asked to

implement the new GUI of FSAhoy after it was designed by a student specialized in

graphical design.

4.2.6 Sprint 5

After the biweekly sprint, Spring Security was finally properly implemented. The new

layout of the webpage was also available but still lacking implementation and

compatibility in some parts, while new ideas about graphical elements were arising.

IP blocking, as it turned out, would not work with Spring Security in an acceptable

manner. Seeing that a lot of time and effort were invested in finding a solution for

blocking unauthorized access by IP addresses resulted in the decision, to dismiss

this idea and focus on more significant features. So features such as to create trips,

logbooks and daily logbook entries on the social network for sailors were first priority

in that sprint. A few of them could not be signed-off due to missing test cases in the

previous sprint. These features had to remain in the sprint backlog and wait upon the

fulfillment of the acceptance criteria.

4.2.7 Sprint 6

Subsequent to reaching clarification in the cardinality of trips, logbooks and logbook

entries, the database model was refined to meet all predefined criteria. It had also to

be determined in this context, which attributes or data types are allowed in the data

model and whose of them are mandatory. This extra effort and the requirement to

specify user instructions at the logbook entry level made it necessary to estimate

another 5 story points.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 49

Apart from the logbook feature, the cooperation with OSM demanded to implement

the access and login via OSM. In contrast to the third sprint when the linkage on

OSM failed due to issues with Spring Security, all preconditions were established

now. In consequence, there was no drawback in implementing the connection to

OSM.

The security issue was not solved with the work and discussion on Spring Security.

There was still missing an effective security mechanism. Therefore the idea of the

challenge-response test was reactivated and about to be implemented with the help

of CAPTCHAs.

4.2.8 Sprint 7

The seventh sprint was mainly about the integration of features that were not working

as supposed to. The login via OSM was unsuccessful alike the integration of

CAPTCHA’s. These issues had to be fixed first. Important for this sprint week was

also, to make basic functions available at the user profile. This means, the user

should be able to see his profile page after the login process and be allowed to

change his profile information or add more and specific information to the profile

page.

A significant role for the further course of development played the telephone

conversation with the customer. He suggested a few changes to certain features of

the FSAhoy domain model. First, the logbook ought to provide the functionality to

upload GPS tracks. This information can be used to facilitate the trip planning.

Hence, sailors are merely required to upload their GPS information to create a trip

instead of entering trip coordinates. Second, he was explaining the key user

attributes that are meaningful for sailors in a social network. A photo of the sailor, the

sailing skills and experience as well as the travel interests are the most valuable

information for sailors according to Mr. Bärlocher. Last but not least, he drew the big

picture of FSAhoy. In his opinion, OSM ranked foremost as the central element of

FSAhoy. All other features should be provided as add-ons to an interactive map of

OSM. He proposed to integrate a FSAhoy button within the menu bar of OSM.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 50

The MPOs of the AMOS project were analyzing the feedback of the customer and

drawing consequences for the FSAhoy project. The feedback given by Mr. Bärlocher

encouraged the MPOs to put more effort on the logbook. Since the logbook was

already implemented, the next step was to connect the logbook to the map of OSM.

The use GPS information was described in a feature that was kept in mind for a later

stage. For the moment, it was essential to integrate the map of OSM in the social

network. The features concerning the user profile were adapted and extended by the

information of the customer. One of the SPOs was informed to change the user-

stories according to the input of the customer. The new versions of the user-stories

User profile and Update user profile were in this way directly updated in the Sprint

Backlog.

4.2.9 Sprint 8

The sprint number eight adapted a few ideas from the customer and responded to a

major bug. Some users of FSAhoy claimed that they never could login successfully

on FSAhoy. However, the login and a smooth registration process are vital to a social

network. Tracking and analyzing this bug showed that the registration email required

rework. It had to be made sure that emails send for registration purposes are not

filtered as spam and that a verification of an email is required in order to activate the

user account on FSAhoy. The professed goal to design a spam-free registration

email was consequently a new user-story for the weekly sprint.

The connection to OSM was now about to get implemented as it was requested. The

use of Open Layers was a way to embed the world map of OSM in FSAhoy. The map

itself was supposed to be dynamic so that users can navigate through the map by

zooming in and out. In addition, users of the social network for sailors should be able

to plan sailing trips on the map. For that purpose, it was necessary to implement a

route planer that allows for marking the starting point, stopovers and destination of a

trip on the embedded map. It was the developer’s job to integrate an existing trip

planner in a way that user-created routes on the nautical chart are visible in FSAhoy

and waypoints are saved in a database.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 51

Apart from those features, further work was needed at the user profile. The upload of

a user photo was still missing. For the moment there was just a dummy picture as

placeholder available. Hence, a new user story was written to enable the upload and

display of uploaded pictures at the dashboard of the user.

4.2.10 Sprint 9

The last two sprints aimed at making FSAhoy self-contained. That means there were

less new features compared to the sprints before. Although the total number of

features was increasing, the estimated effort per feature was declining. A simple

explanation for this event is the fact that there were just minor changes needed in

order to improve the usability and to work on the bug fixing. Features like Update info

different color or Usability Issue with Registration were in this regard designed in

order to enhance the user-friendliness of FSAhoy. A few features were also proposed

to make the social network more interesting and well-known. The philosophy and

legal obligations of the portal should be explained by the user stories Welcome

Introduction Text, Disclaimer and Policy.

New functionality was in addition added to the trip section. Next to saving and storing

trips, it was also essential to the update and to view the trip. In the context of the

daily logbook, the user was also enabled to transfer coordinates from the OSM map

directly into a new daily logbook entry form. When the user was marking a trip on the

map, there should be a button that allows for taking the trip coordinates to a new

logbook entry. Implemented was also the feature how to Change password. Up to

sprint number 9, it was only possible to send a new and automatically generated

password via Email. Now it was made possible to change the password directly on

the website of FSAhoy.

Another way to optimize the look and feel of the Webpage was to review the design

of the webpage by documenting evident bugs. This review process was taking place

in cooperation with a MPO and TM specialized in the implementation of the graphical

design. Existing bugs were in the following tracked in the bug tracker and prioritized

by the MPOs.

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 52

4.2.11 Sprint 10

Sprint number 10 was the last sprint in the AMOS project of 2011. Almost the same

procedure as last sprint was applied to clean up the code and prepare for the release

of the first product prototype. No risk was taken when the features were presented by

the SPOs. By all means, it should be avoided to work on features that cannot be

implemented entirely within the last sprint.

This time there were even features evaluated with half a story point such as Message

stating activation required and Profile picture on the profile page. Half a story point

stands for something in between no effort and minimal effort (see Chapter 4.3).

Nonetheless, there was also one feature with an effort of five story points. This might

seem risky at first sight but it was accepted and successfully implemented as all other

features of the last sprint.

The logbook and trip planning were not completed before the entire functionality to

create, view, edit and delete these elements was integrated. The related user-stories

Delete trip, View & edit logbook and Delete logbook entry accounted for nine story

points altogether whereas five story points were given to the feature view & edit

logbook.

Remaining and highly prioritized bugs were fixed at the same. The presentation of

the user name on the dashboard and the validation of date entries were for instance

minor improvements that were marked as bug fixes in order to optimize the usability.

Since all features of the last sprint could be signed off by the POs, the major version

1.0 was released.

4.3 Development Speed

Scrum uses a metric to track and forecast the progress of a team or project. This

relative measurement is known as the velocity and based on story points. Story

points are the expected effort that is needed to complete a user story within a given

sprint. The total number of story points for each user story is determined by the team

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 53

during the Planning Poker and can follow the Fibonacci numbers. The AMOS project

of 2011 is relying on the Fibonacci numbers 0, 1, 2, 3, 5, 8 and 13 (see Table 4).

Table 4: Story points and their meaning in Scrum

Story Points Meaning

0 No effort

1 Minimal effort

2 Small effort

3 Medium effort

5 Large effort

8 Very large effort

13 Too large effort

The story points are ranging on a scale from “no effort” up to “too large effort”. In

consequence, a story point of 0 means no effort is required whereas a story point of

13 indicates a too large effort is being required. A user story that was evaluated by

13 story points can be split up in order to get smaller user stories, which can be

completed in one sprint. Opposed to absolute values such as hours or person days,

story points represent a relative measure. The relative value of story points is,

according to Dr. Jeff Sutherland, even more accurate and less variable than those of

absolute values [33]. The co-founder of the Scrum development process exemplifies

in his blog that the story point estimation method at a telecom company was many

times faster and at least as precise as the waterfall estimation practice.

4.3.1 Velocity

The velocity is an indicator of the development speed and an asset for the release

planning in a project. To be more precise, the velocity is calculated as the

completed story points within a sprint .

It is important to note that only story points of completed features are counted in

means of the velocity. If user stories cannot be signed off due to missing test cases

or failing acceptance tests, their story points will not be taken into account at the time

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 54

the velocity is calculated. The seventh principle behind the Agile Manifesto postulates

“working software is the primary measure of progress” [14] and thereby emphasizes

the role of working and completed features, respectively. By estimating the

development speed using completed work measured by story points, a more reliable

point can be made than predicting the progress by hours.

However, the velocity is often volatile and may vary during the development of a

project. It often takes a few sprints until the velocity becomes stabilized. Cohn

argues, new teams or new-product development projects may need up to three

sprints to attain a more steady velocity [34]. Nevertheless, the information presented

by the velocity, even though it might be biased, is crucial to forecast what a

development team can achieve during the next sprints and vital for a realistic release

planning.

It is also interesting to analyze the difference between the story points that were

estimated during the sprints and those that were actually achieved. Table 5 highlights

the planned story points, the completed story points and the difference between both

of them for the AMOS project of 2011.

Table 5: Planned and completed story points in the AMOS project of 2011

Sprint
Planned

story points
Completed

story points
Difference in
story points

1 6 6

2 11 11

3 16 3 -13

4 14 8 -6

5 15 7 -8

6 18 8 -10

7 14 14

8 18 18

9 18 18

10 16 16

Sum 146 109 -37

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 55

Figure 16 depicts more clearly the different between the planned and completed

number of story points. However, in the first instance, both story point series will be

examined independently.

Taking a closer look at the dark blue graph that describes the story points which were

estimated by the development team, it can be stated that it takes about three sprints

until the estimation becomes more stable. From the third sprint on, the accepted

story points are within the range of 14 to 18. Taking the standard deviation of

planned user stories as a basis, the hypothesis of a more stabilized estimation from

the third sprint on can be validated. The standard deviation is declining from 3.75 to

1.73, if the first two sprints are neglected. This phenomenon was, as aforementioned,

also described by Cohn for the development of the velocity. A reason for the

decreasing variation in the estimation of story points after the second sprint might be

due to the fact that the development team had to get to know each other first and

become familiar with the agile practices of Scrum.

The light blue graph which is displaying the completed story points in Figure 16 is

characterized by a greater fluctuation than the graph of planned story points. 5.32 is

the standard deviation of completed story points and thereby surpassing the standard

deviation of planned story points. A reason therefore can be found in the analysis of

the actual project.

Figure 16: Planned and completed story points in the AMOS project of 2011

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

St
o

ry
p

o
in

ts

Sprints

Story points (planned) Story points (completed)

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 56

It is no surprise that the average velocity of 10.9 for the completed story points is less

than the average velocity of 14.6 for the planned story points. In every project there

are issues or impediments that can slow down or almost stop the development

progress.

The same situation emerged during the development of FSAhoy in the third sprint.

Since the Spring framework could not be implemented within this sprint, there was

also no progress on the dependent features Authorize access on OSM and Login via

OSM. The fixed IP blocking bug was the only positive aspect of the third sprint. Thus,

the low point of three story points is on the one hand the negative result of the issues

related to Spring security and on the other hand the positive outcome of the fixed bug

that accounted for three story points. The following sprints 4, 5 and 6 resemble as

well a remarkable difference between planned and completed story points. Missing

test cases were the reason to reject a few smaller features that concerned the

implementation of the design and the creation of trips and logbooks in the fourth

sprint. There was only one feature that was not accepted in the Sprint 5. Four out of

five features were completed. However, a feature evaluated with a very large effort of

8 story points still needed some rework. This feature Daily logbook entry turned out

to be more complex than expected. Only 8 out of 18 planned story points were

completed during the sixth sprint. The feature to login via OSM just as the security

feature using CAPTCHAs continued to cause problems and could not be signed off.

At the same time, additional effort was required to work on the user profile, as one of

the acceptance criteria could not be fulfilled. The graph of completed story points

aligns with the graph of planned story points after the plummet in the sprints 3 to 6.

4.3.2 Sprint Forecasting

The data about completed story points obtained from Table 5 can be valuable for a

number of purposes. Besides comparing planned and completed story points, the

completed story points are also useful for comparing the velocity of teams in a project

or predicting the amount of work that will be completed in upcoming sprints. Since

there was only one development team available in the AMOS project of 2011 and the

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 57

comparison between FSAhoy and other agile projects might be skewed by the nature

of the these projects, the release planning is the focus of the analysis.

Given the SPSS output in Table 6, the sample size (N), velocity (Mean/Velocity) and

standard deviation (Std. deviation) for completed story points can be observed. The

velocity of the team and the standard deviation can be used to compare planned and

completed story points as described before.

What draws more attention is the second row of the table. This row explains the

influence of the third sprint on the aggregated statistic. Neglecting the third sprint

(N=9), a higher velocity of 11.78 and lower standard deviation of 4.816 are obtained.

This adjusted data set makes a more realistic output opposed to what was analyzed

before (see Chapter 4.3.1). At the same time, a higher validity can be retrieved in the

release planning if the statistics of adjusted story points are used.

Table 6: One-Sample Statistics for completed story points

Story points N Mean/Velocity Std. Deviation Std. Error Mean

Completed 10 10.90 5.322 1.683

Completed (adjusted) 9 11.78 4.816 1.605

Table 7 presents a One-Sample Test that is more detailed and provides a deeper

analysis of completed story points. Complying with Mike Cohn’s approach [35], the

90% confidence interval is computed to forecast the velocity for the upcoming sprints.

Table 7: One-Sample Test for completed story points

Story points

Test Value = 0

t df Sig. (2-tailed) Mean/Velocity

90% Confidence Interval of the
Difference

Lower Upper

Completed 6.477 9 .000 10.900 7.82 13.98

Completed (adjusted) 7.337 8 .000 11.778 8.79 14.76

From Table 7 it can be concluded, with 90% confidence, between ~8 (7.82) and ~14

(13.98) story points will be completed in the next sprint. If the adjusted data of the

second row is used instead, it can be argued that there will be between ~9 (8.79) and

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 58

~15 (14.76) story points achieved in the next sprint in 9 out of 10 times. At this point,

it is possible to continue the estimation of the range of story points which could be

completed in the upcoming sprints. This can be done by multiplying the number of

sprints by the values of the confidence interval [35]. However, that is not the objective

of this analysis.

4.3.3 Burndown bar

The burndown chart is an effective tool to measure the progress of a project and to

predict the release of a product. Roman Pichler considers the factors “time” and

“remaining effort” as the two main elements of a release burndown chart [36]. The

time is usually displayed by order as the number of sprints while the remaining effort

resembles any artifact that can determine the effort of work. The feature quantity is

used in this thesis as a measurement for the remaining effort. Story points or hours of

work would be possible indicators as well. The burndown bar chart, as it is illustrated

by Figure 17, describes the progress of FSAhoy.

Figure 17: Burndown bar chart in the AMOS project of 2011

114 112
109 108 106

102 100
96

92

83

74

0

20

40

60

80

100

120

 1 2 3 4 5 6 7 8 9 10

Fe
at

u
re

s

Sprints

Improving the Agile Methods and Open Source Lab Course

AMOS project of 2011 59

The burndown bar starts with a planning value of 114 features before the actual

development begins to take place in the first sprint. The following few sprints are

characterized by a slow decline in the number of completed features. Figure 17

conveys the impression that the team formation process took time until the sixth

sprint. As mentioned earlier, another reason for a slow project start can be found in

Spring security impediment. Especially the decrease in numbers of achieved features

during sprint 2 and 3 are expressing the struggle with the Spring framework. From

the seventh sprint on, the project progress is getting more and more constant. There

are at least four features completed in each of the following iterations.

The dashed line which portrays the burndown trend helps to forecast the release.

Following the burndown trend, it is possible to guess the final release date after the

last recorded sprint. If the number of remaining features (74) is divided by the

average number of completed features per sprint (4) a value of 18.5 is given. This

number represents the timeframe in sprints that is required to complete all the

remaining 74 features. As a result, approximately 19 additional sprints are needed to

release the final product. However, this assumption is subject to the condition that

there is no variance in the development speed and there are no additional or dropped

features or any other factors that may have an impact on the project’s progress.

Burndown charts are after all primarily used as an instrument for the release planning

since the development speed is better described by the velocity of a development

project [37].

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 60

5 Mydosis and FSAhoy

The AMOS course takes place each summer semester at the University of Erlangen-

Nürnberg. It is a semester-long course that consists of two parts. The first part is a

lecture that teaches the theory of agile methods and the concept of Open Source

software development [1]. The second and more practical part of the AMOS module

describes the development of a software solution. Opposed to the theoretical part of

the AMOS course, which faces merely incremental changes, the domain of

programming project is different for every year.

The first AMOS project started in 2010 with the development of an electronic

database for dosage information (Mydosis). The web service that was developed

using the agile method Scrum provides dosage information for pediatricians, doctors,

nurses and students [5]. Mydosis was designed in collaboration with Dr. Bernitzki

from the University Clinic of Cologne and is accessible from every web browser and

by the correspondent smart phone App on Android devices.

It was about one year later, in May 2011, when the kick-off for the second instance of

the AMOS course took place (see Chapter 4.2). The idea of the AMOS project of

2011 was to develop a social network for sailors where nautical experiences and

information is shared. Further details and the domain model of FSAhoy were

described in Chapter 4.1.

Both projects Mydosis and FSAhoy, bear a lot of similarities but to some extend also

substantial differences. In order to learn from the pitfalls and success stories of these

agile projects the peculiarities of each project have to be understood first (see

Chapter 5.1). As soon as more knowledge is acquired, both projects can be

compared on a defined set of criteria (see Chapter 5.2). The results of this analysis

can help to suggest improvements for the AMOS course in future instances (see

Chapter 6).

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 61

5.1 Course setting

The first approach is now to identify the general setting of the two courses. Table 8

outlines the key facts of the AMOS project of 2010 and 2011. A more comprehensive

analysis of the factors of the AMOS projects will outline in the following that almost all

of these observed fields draw the picture of two distinct setups.

Table 8: Key facts for the AMOS courses of 2010 and 2011

Factors AMOS 2010 AMOS 2011

Components Web service and Mobile App Web service

Domain Healthcare Sailing Sport

Participants Computer science students
Computer science and
Business students

Roles
Scrum Master, Product Owner,
Product Owner Proxy, Team
Member

Scrum Master, Main Product
Owner, Student Product Owner,
Team Member

Technology
Java, Apache Tomcat, db4objects,
PostgreSQL, Spring

Java, Apache Tomcat,
Open layers, Spring, OAuth

Timeframe 11 weekly Sprints 10 weekly Sprints

5.1.1 Components

Referring to the components of the AMOS projects, Mydosis was made available as

a Web service and mobile App while FSAhoy was only delivered as a Web solution.

Although it was intended to develop an App of FSAhoy for the android market, there

were not as such enough time and developers available to realize this plan. In the

end, only Mydosis was released for both of platforms, the web and the android

operating system.

5.1.2 Domain

The application domain of Mydosis is pointing at the healthcare industry. That is an

industry which is originally more profit-oriented than recreational sports such as

sailing. The main target groups of Mydosis are pediatricians or other doctors with a

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 62

presumed business interest [5]. FSAhoy is primarily addressing non-commercial

sailors and pleasure boaters on an amateur or professional level (see Chapter 4.1.2).

The difference in interest groups could scarcely be greater.

5.1.3 Participants and Roles

The active participants in the AMOS projects are varying through 2010 and 2011. In

the first course, there were only Computer Science students involved in the software

development process. Even though that Business students or students with a major

background in Business studies were enrolled in this course, they just attended the

lecture and were not supposed to take over an active part in the development of

Mydosis. Next to these passive observers, the familiar Scrum roles such as SM, PO

and TM were assigned. New was the role of the Product Owner Proxy. Markus Stipp

was assumed that role in order to represent Dr. Bernitzki who was the PO of the

AMOS project of 2010 [5].

A notable change in the composition of the Scrum roles was taking effect with the

AMOS project of 2011. In response to the feedback from the student evaluation at

the end of the AMOS project of 2010 and the increasing number of Information

System students, new Scrum roles were established. Subsequently, master students

of Information Systems with little or no experience in development were now granted

the possibility to take on the role of a SPO. A SPO that falls within this definition is a

student who is taking over the role of PO for one sprint. The SPO is thereby

instructed and guided by a MPO. The MPO can be a senior student or someone who

has gained previous experience in Scrum. The MPOs in the AMOS project of 2011

were composed of a senior Information Systems student and the author of this

thesis.

5.1.4 Technology

Technology-wise there were fewer differences ascertain. Both projects were

developed with the help of the web-based source code repository SourceForge on an

Apache Tomcat. The Figure 18 demonstrates that the central programming

languages were Java and XML whereas slightly more code was written in XML at

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 63

Mydosis. Java was next to a few other minor languages predominant in the

development of FSAhoy.

Figure 18: Programming languages of Mydosis and FSAhoy [38]

Figure 18 is composed of two analyses generated by the software directory ohloh for

Open Source. It analyzes the project source code and determines the programming

languages of each project. Excluded are comments and blanks [38].

To better understand the proportions of the pie charts, a more profound analysis of

the software architecture is made. The key element of the software architecture in

Mydosis is a database where all the dosage information is stored. PostgreSQL was

deployed for this reason on the server application side of Mydosis. The mobile

Android client was using the database db4objects. The communication with each of

the databases and the structure of the documents was mostly described in XML.

That is probably why XML is playing a superior role in Mydosis.

FSAhoy itself was not based on a database to such a great extent. Certainly, there

was also a database that was used to store and manage customer information. More

important was though the implementation of OAuth and OpenLayers. For these

interfaces it was necessary to make use of Java and Java Script. Java was also

prevailing due to the fact that a lot of new functionality had to be built. There were

quite many diverse features implemented in FSAhoy. The registration process, user

profile and trip planning are just a few examples. CSS was also attaining further

attention in FSAhoy as one of the TMs was specialized in the layout and style of the

social network.

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 64

Last but not least, the Spring framework became a big issue in both projects albeit it

was implemented for different purposes. Spring was implemented in Mydosis to

handle the html interface [5]. In FSAhoy, Spring was used for security purposes. The

technology that should ensure a high level of security was causing a lot of problems

as mentioned before (see Chapter 4.2.4).

5.1.5 Timeframe

Depending on the timetable of the summer semester, there are about 13 to 14 weeks

of classes. The first class in the last two instances of the AMOS project was used as

an introduction [39]. The last class in the semester is a class wrap-up. In

consequence, there remain 11-12 weeks for the actual development process in the

case that there are no further limitations.

The first AMOS project started in 2010 in the third week of lectures and came up to

11 sprints by the end of the semester. In 2011, the Scrum development process was

started in the second week of the semester. However, the development period of

FSAhoy was reduced to 10 sprints due to the single absence of the SM. One sprint

was subsequently planned for a biweekly iteration. The difference between 10 and 11

sprints is in particular important when the velocity and completed features of both

AMOS projects are compared as follows.

5.2 Project Performance

Second to getting a general idea about the setup of the AMOS projects, is a deeper

analysis of the performance and progress of both projects. The velocity and Lines of

Code (LOC) are two instruments which can be used to get a better feeling for the

performance of a team or project.

5.2.1 Velocity

So far it was analyzed, how FSAhoy was doing in terms of velocity and completed

features. It is only in comparison with similar projects, that this obtained data can

prove itself valuable. Therefore, the next step is to evaluate how FSAhoy performed

in comparison with Mydosis and to draw a conclusion from that analysis. While

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 65

comparing both projects, the limitations and constraints that are concurrent due to

different project settings have always to be kept in mind (see Chapter 5.1).

Figure 19: Completed story points of Mydosis and FSAhoy

Figure 19 visualizes the progress of the two AMOS projects by completed story

points per sprint. The average velocity of 14.8 for Mydosis and 10.9 for FSAhoy are

signalized by a purple and blue dashed line. Before the ups and downs are studied

more detailed, some general statements can be made.

It is evident, that the average development speed is greater for Mydosis. A reason

therefore might be found in the deviant number of participating developers. The

Mydosis project started in 2010 with 11 developers divided into two teams whereas

FSAhoy had to manage the development process with 6 developers.

In order to get hold of this situation, the given graph has to be more specified. If the

story points of Mydosis are allocated according to the achievements of each team, a

graph results that is more suitable for a comparison (See Figure 20). Since both

teams in the Mydosis project were merged after the seventh sprint, it is appropriate to

regard the development period of the first to the seventh sprint. The new graph in

8

6

16

26

11

5

17

26

19

16

13

6

11

3

8
7

8

14

18 18

16

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

St
o

ry
 P

o
in

ts

Sprints

Mydosis FSAhoy

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 66

Figure 20 displays the completed story points per sprint and the average

development speed of both Mydosis teams in relation to FSAhoy.

Figure 20: Completed story points of Mydosis teams and FSAhoy

Team 1 of Mydosis consisted of six developers and was responsible for the

development of the Mydosis Web service. Team 2 was composed of five developers

that were mainly developing the Mydosis Android App. A direct comparison of the

Team 1 of Mydosis and FSAhoy is more prudential than comparing the overall

Mydosis project with FSAhoy. Both, the Team 1 of Mydosis and the FSAhoy project

had six developers and were mostly working on a Web service.

When the bars of Team 1 and FSAhoy are evaluated, it is recognizable that both

teams are outperforming Team 2 in means of the velocity. Team 1 has an average

velocity of 8.3 and FSAhoy is close behind with a value of 8.1. The average

development speed of team 2 is characterized by a grey dashed line and with a value

of 4.4 much lower than the ones of team 1 or FSAhoy. The lesson is clear if the

analysis is limited to Figure 20: “Team 2 is not performing as well as Team 1 and

there is no significant difference between Team 1 and the FSAhoy team although the

6

3

10

16

8

0

15

2
3

6

10

3

5

2

6

11

3

8
7

8

14

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7

St
o

ry
 P

o
in

ts

Sprints

Mydosis (Team 1) Mydosis (Team 2) FSAhoy

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 67

overall velocity is higher at Mydosis.” Latter result is just a consequence of the

different number of participating developers in the AMOS projects. If the velocity

would be broken down to the development speed per developer, the result might be

a different one.

The following Table 9 indicates that FSAhoy was surpassing Mydosis if the

comparison is narrowed to the velocity per developer. The average velocity per

developer is at FSAhoy (1.82) greater than Mydosis (1.51). This result reverses the

picture of a considerably larger overall velocity of Mydosis in Figure 19.

Table 9: Velocity per developer of Mydosis and FSAhoy

Comparing teams or projects simply by the velocity is not always convincing. There

are a lot of factors that may influence the story point estimation and completion.

First, velocity can be sustainable. Planning with a velocity that remains constant

during the development period might be a more successful approach than pushing

the project team towards a peak velocity. A team working at a very fast pace for a

long time can burn out and neglect the important qualities of a sustainable product in

the end. Ralf Wirdemann describes the values of a sustainable velocity with the

practices of refactoring and testing [40]. In the long run, a product is more successful

if the software is working fine and developed in a way that allows extensions or

changes to the codes to be implemented easily. A product, which is built with a high

velocity, might compose a lot of features but lacks the quality of a well-factored and

tested product.

Development Speed Mydosis FSAhoy

overall velocity 14.8 10.9

velocity per developer
(sprint 1 – 7)

1.16

1.82
velocity per developer
(sprint 8 -11)

2.06

velocity per developer
(in total)

1.51 1.82

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 68

Second, projects often come with different standards to estimate and evaluate the

completed story points. Especially the definition of “done” may vary across projects

and result in a divergent velocity [6]. Successfully executed acceptance tests may be

a requirement for POs to accept or deny user stories [28]. That means, a feature is

only implemented and the velocity is only taken into account if the user story passes

all the acceptance tests. Other projects may also take story points into account if

features are implemented without passing acceptance test or if only parts of the

features are working.

Third, changes in the team composition can have an impact on the development

speed. According to Mike Cohn, the velocity is very likely to drop when the team size

changes even if the team size goes up [35]. He explains that effect with the

increased communication that is necessary to get new TMs productive. Interestingly

are changes in the team size had a positive effect for the Mydosis project.

Contrary to Cohn’s assumption, the velocity of the Mydosis project was even

increasing in the eighth sprint after the both teams were merged a sprint earlier.

Merging the two teams was preceded by the decision of two developers of team 2 to

leave the AMOS project of 2010 during the seventh sprint. The figures in Table 9

surprisingly show that the average velocity per developer was lower when there were

two teams and 11 developers opposed to 9 developers and only one team remaining.

The increase of the velocity per developer from 1.16 up to 2.06 after the merger may

probably also be associated with the underperformance of team 2 during the first few

sprints or less challenging user stories after the seventh sprint.

The changes in the team size during the AMOS project of 2010 had another side

effect that is visible if the ups and downs of the two projects are regarded in Figure

21. The curve shape of the Mydosis project is described by two peaks and a low

point. The first drop in the sixth sprint was, according to Markus Stipp [5], a

consequence of the revised domain model. Only the development team 2

responsible for the android application could work on new features in that sprint. In

fact, this argument is well-reasoned if Figure 20 is regarded where only five story

points were completed by the second team. The revision of the domain model may

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 69

have been frustrating and a reason for the two students of Team 2 to leave the

Mydosis project shortly afterwards.

Figure 21: Story point curve of Mydosis and FSAhoy

In contrast, FSAhoy shows a more consistent and predictable development progress.

There were no changes in the team size during the semester-long AMOS course in

2011. The development speed of FSAhoy, which was increasing and almost reaching

at steady state throughout the semester, was not negatively influenced. There were

also issues with Spring security in the third sprint and a minor delay in the fourth and

fifth sprint due to the connection and authorization on OSM which contributed to a

lower development progress in the sprints three to five. If the problems with spring

security in the third sprint are omitted and replaced by the average velocity, a more

constant picture can be drawn. This revised graph in Figure 21 is presented by

dashed light blue line. It indicates that projects without key changes in the domain

model or team size are more predictable and likely to follow a consistent

development speed. Unfortunately the comparison of two projects is not enough for a

representative statement.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

St
o

ry
 p

o
in

ts

Sprints

Mydosis FSAhoy FSAhoy (rev.)

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 70

Going a step further, the two projects can also be analyzed by the distribution of story

points. It is not surprising that the two graphs for the AMOS projects in Figure 22 are

very similar. This is usually the case when the estimates of story points per user story

do not vary a lot throughout sprint iterations. If user stories meet the INVEST criteria

they ought to be small enough to be estimated with a small or medium effort. User

stories that are evaluated with a too large effort are often divided into smaller ones,

reassessed and accepted by the TMs.

Figure 22: Story point distribution of Mydosis and FSAhoy

It can be easily concluded that both graphs in Figure 22 are characterized by a mode

of 3 story points. The medium effort of 3 is therefore the most common estimate in

the two projects. It is followed by the story points of 1 and 5 for minimal and large

effort in Mydosis and the story point of 2 for a small effort in FSAhoy. The mean of

Mydosis is 3.26 story points and compared to 2.79 story points of FSAhoy slightly

higher which results in a positively skewed distribution of Mydosis and a negatively

skewed distribution of FSAhoy (see Table 10). Looking at the highlighted trend line,

both projects are approximately normally distributed with a median of 3 story points.

Table 10: Statistics for the story point distribution of Mydosis and FSAhoy

Statistics Mydosis FSAhoy

Mean 3.26 2.79

Median 3 3

Mode 3 3

Std. Deviation 1.850 1.609

0

8

7

23

8

4

0

0

1

2

3

5

8

13

St
o

ry
 p

o
in

ts

Mydosis

1

7

10

13

7

1

0

0

1

2

3

5

8

13

St
o

ry
 p

o
in

ts

FSAhoy

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 71

In particular, the equal mode and median as well as the normally distributed graphs

corroborate the hypothesis that the curve of achieved features in Figure 23

resembles the curve of story points per sprint in Figure 19. Having said this, there is

still a noticeable event in the last two sprints of the FSAhoy project. The rate of

completed features has more than doubled in the sprint 9 and 10 compared to the

previous sprints. Instead of four features that were achieved on average per sprint,

there were nine features completed (see Figure 23). An explanation for the amplitude

of the last two sprint sessions can be found by investigating the context of these

sprints. The majority of features that were part of the last two sprints were designed

in order to improve the usability and work on the bug fixing of FSAhoy.

Figure 23: Completed features of Mydosis and FSAhoy

Fixing bugs can sometimes be done during the weekly development process if there

is enough time and resources available. If bugs are classified with a severity level like

“major”, “crash” or “block” in the bug tracker, they should be put back to the Product

Backlog and get prioritized again. The same action took place for a few features in

the last two sprints. Besides fixing bugs, smaller features where implemented in the

last two sprints to ensure an enhanced usability and user-friendly product. Being

aware that the final release 1.0 is imminent, larger user stories were dismissed for

the last two sprints.

The observation of a rising number in features towards the end of a project might not

1 2 3 4 5 6 7 8 9 10 11

Mydosis 3 2 6 9 3 3 5 7 4 6 4

FSAhoy 2 3 1 2 4 2 4 4 9 9

0

1

2

3

4

5

6

7

8

9

10

Fe
at

u
re

s

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 72

always be true. The Mydosis project describes a rather uncertain situation for the last

four sprints. Two of the last sprints, 9 and 11, were falling below the average of 4.7

achieved features. Sprint 8 and 10 were on the other hand exceeding the average of

completed features. Markus Stipp was describing this event in the last few sprints by

the effort of the development team to “put all the pieces together” [5]. Bug fixes but

also missing key features were part of the discussion and retrospective in the last few

weeks. This two-track approach of handling bugs and putting key features together at

the same time could explain the ups and downs in Figure 23. However, it is difficult to

draw a conclusion. More information would be needed to make a clear statement.

5.2.2 Lines of Code

The final dimension used to compare the AMOS projects is the number of all time

commits and LOC. The ohloh-output in Figure 24 is basically reduced to these points.

The number of committers in respect of the all time activity is mentioned as well. Yet

those numbers are biased as some of the code contributions were done by the same

developer with several accounts. There were only 11 developers available at

Mydosis and 6 at FSAhoy.

Figure 24: Code analysis of Mydosis and FSAhoy [38]

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 73

Comparing the number of commits, it can be figured out that FSAhoy (767 commits)

is doing slightly better than Mydosis (711 commits). That means there are indeed 56

additional commits for FSAhoy. A high number of commits can represent a

widespread use of practices that are described by the agile method XP. One of the

best practices of XP is Continuous Integration. That concept was initiated by Martin

Fowler and advises developers to submit and integrate code frequently [41]. If code

is committed regularly the system can be integrated and built in a way that feedback

is given with immediate effect. The agile mantra also confirms the practice of frequent

code commits [11]:

Make it run!

Make it right!

Make it fast!

According to these basic principles, code should be implemented first to make

features available and run before the code is refactored and optimized. Bearing the

philosophy of agile development in mind, it can argued that FSAhoy was pursuing the

agile development practises to a greater extend than Mydosis. This statement is

nonetheless only valid if the way of looking is limited to the commits that were made

to the source code.

Figure 25: Commits of Mydosis and FSAhoy [38]

Improving the Agile Methods and Open Source Lab Course

Mydosis and FSAhoy 74

Figure 25 presents the number of commits for both AMOS projects given the period

2009 to 2011. There is not only a higher overall value for FSAhoy but also a peak

that tops Mydosis. Eye-catching is the fact that Mydosis shows still some activity

during the last months in both graphs (Figure 25 and Figure 26) whereas FSAhoy

tends to stand still. The reason for the small growth in the number of total LOC and

commits at Mydosis is the startup incubation process. There was a successful launch

of the Mydosis start-up a few months after the university course was finished. The

start-up is still optimizing and working on the code base which is also reflected by the

ongoing graph activity.

The total lines of project source code, excluding comments and blank lines are

approximately twice as much at Mydosis (see Figure 26). The sharp increase in LOC

comes to a total number of more than 40,000 LOC at Mydosis. This number is

obviously outnumbering FSAhoy with somewhat less than 20,000 LOC. The depicted

trend can account for the difference in the number of developers working on both

projects. Twice as much TMs at Mydosis also make up twice as much source code.

The calculation that a developer can write approximately 3,500 – 4,000 LOC during

one semester draws the conclusion that both projects are almost equal in terms of

LOC.

Figure 26: LOC of Mydosis and FSAhoy [38]

Improving the Agile Methods and Open Source Lab Course

Discussion 75

6 Discussion

The overarching research question of this thesis is how to improve the AMOS project

in future instances. Suggested improvements that are derived from the analysis of

the AMOS project of 2011, the comparison between the AMOS project of 2010 and

2011 and literature review are summarized in Table 11. These ideas for improvement

are framed as hypotheses and discussed for validation hereinafter.

Table 11: Suggestions for future AMOS projects

Hypothesis Category Sub-category Improvement

H1 Academic course Motivation
Team building exercises are
motivating

H2 Academic course Team
Small development teams show
good performance

H3 Academic course Distribution
Distributed development does not
lower velocity

H4 Scrum methodology Artifact
Diversifying user stories in the
sprint planning reduces risk

H5 Scrum methodology Artifact
Software tools facilitate the
administration of artifacts

H6 Scrum methodology Practices
Mailing lists work as daily scrum
replacement

H7 Scrum methodology Roles
Proactive customer involvement
provides valuable feedback

H8 Velocity Planning
Documenting planned story points
optimizes estimation forecast

H9 Velocity Domain model
Revised domain models negatively
impact velocity

H10 Velocity Team size
Changes in the team size
decrease velocity

The suggested improvements can be categorized in the three categories of the

Academic course (Chapter 6.1), Scrum methodology (Chapter 6.2) and Velocity

(Chapter 6.3) as it follows.

Improving the Agile Methods and Open Source Lab Course

Discussion 76

6.1 Academic course

Chapter 3 explained that the use and adoption of Scrum in an academic setting can

differ across projects. Every academic course has distinct underlying principles which

require modifications that are specific to the project. The hypotheses H1 to H3 are

based on the analysis of the AMOS projects and the comparison between the

adaptations of Scrum methods in academic courses.

H1: Team building exercises are motivating

To validate the hypothesis that team building exercises are motivating, the AMOS

projects in 2010 and 2011 are compared.

In 2011, there were two team building exercises taking place at the project kick-off

before the actual development started (see Chapter 4.2.1). The ball game and

construction of a pipeline were not only useful to get to know each other in a large

group of participants, but also highly motivating for the main part of students.

Subsequent to this motivational session, the amount of students showing up for the

AMOS lecture remained stable for the next few weeks. An indicator for the positive

effect of team building exercises is also the overcrowded lecture room. Some

students had to sit down on a provisory ale-bench, even two to three weeks after the

project kick-off, since the room capacity was limited.

The first instance of the AMOS project of 2010 did not involve explicit team building

exercises at the project start. The first weeks of the AMOS project were used to

become familiar with roles and practices of Scrum [5]. Team building activities were

first described by the retrospective in the seventh sprint. The retrospective which was

given by the guest speaker Linda Rising helped on the one side, to learn and speak

about the problems that occurred during the development and created on the other

side a pleasant team atmosphere. The positive outcome of this instructive and

motivational retrospective is also reflected in Figure 19 (see Chapter 5.2.1), which

shows an increased velocity for the sprint 7 and 8 subsequent to the retrospective.

Both AMOS projects validate the motivational effect of team building activities that

can be part of the project kick-off or retrospective throughout the project.

Improving the Agile Methods and Open Source Lab Course

Discussion 77

H2: Small development teams show good performance

The number of members in a Scrum team can vary as it can be concluded from the

comparison of academic projects that use the agile method Scrum (see Chapter 3.1).

The analyzed projects show that development teams are composed of 4 up to 7

students [6], [28], [29].

Teams with too few or too many members are often inefficient [31]. Figure 20 (see

Chapter 5.2.1) proves that teams with less than 4 members lack the manpower and

knowledge to perform as good as teams with 4 to 7 members. After two developers

left the AMOS project of 2010 during the semester, the team was reduced from 5 to 3

members. The same time the velocity dropped from 5 completed story points in the

sixth sprint to 2 completed story points in the seventh sprint. Although that there were

still more than 50% of the developers left, this trend describes a disproportional

decrease of 60% in story points.

Teams with more than 7 members can require more time to coordinate tasks and

tend to have a higher social loafing than smaller teams, argues Cohn [35]. The

organization of meetings is for instance a greater coordination effort the more

members are invited. The same time, members of large teams exert less effort if they

rely on other TMs doing the job. Cohn defines small teams with 4 to 9 members and

large teams with 14 to 18 members. He points out that a team with 5-7 people is

presenting the best performance.

Regarding the experience which was gained in the AMOS project of 2010, the

academic courses in comparison and the literature on the size of development

teams, the hypothesis that small development teams show the best performance can

be corroborated.

H3: Distributed development does not lower velocity

Distributed Scrum as it is attaining more and more attraction in the software industry

comes with several benefits and challenges. The benefits of lower labor costs,

talented employees and scalable projects are opposed to the challenges of

communication, coordination and control issues [42], [43].

Improving the Agile Methods and Open Source Lab Course

Discussion 78

A distributed Scrum team can be beneficial for an academic course where skilled

students are absent. Labor costs are on the other side a negligible factor, if

distributed Scrum is considered in a university course. In the AMOS project of 2010,

there have been 11 developers at the outset of the project. This number of

developers was sufficient to build two teams. A year later, there were just 5

developers and one senior developer available. This trend runs the risk of too few

TMs in future instances. A solution therefore can be described by the use of

distributed Scrum and an offshore development team.

However, this initiative is only promising if the velocity is not being decreased in a

global development team. A few case studies that surveyed several distributed

Scrum projects came to the conclusion, that Scrum has to be tailored to fit the special

requirements of a global project [44]. If Scrum is adapted in a suitable way to meet

the conditions of a distributed environment, it might require additional practices such

as Scrum of Scrums [45]. This practice connects distributed Scrum teams by a

regular meeting of SMs across locations. Studies show that distributed Scrum teams

achieve performance-wise the same velocity as collocated teams [42]. This result

could also be reproduced in many cases [45].

The literature review validates the hypothesis of an equal velocity of collocated and

distributed teams for industry projects. If the same outcome is true for distributed

Scrum that is tailored for academic courses, has to be validated by further research.

6.2 Scrum methodology

The Scrum methodology, which is premised on the Agile Manifesto (see Chapter

2.2), allows for changes as long as the idea and principles of Scrum are not infringed.

The practices, artifacts and roles can be customized in a way that they better meet

the requirements of an academic setting. The hypotheses H4 to H7 propose changes

to the Scrum methodology that are a result of the AMOS experiences and case study

research.

Improving the Agile Methods and Open Source Lab Course

Discussion 79

H4: Diversifying user stories in the sprint planning reduces risk

The writing and prioritization of user stories is crucial to the success of a project. User

stories constitute the features of the final product and require a careful planning to

reduce the risk of not completed or partly implemented features. Since every user

story contains a certain business value, it is helpful to assess these features

according to the four categories of “must have”, “should have”, “could have” and

“won’t have” [37].

Features described as “must have” highly contribute to the profit or loss of a project if

they are implemented properly. “Should have” features, which are accompanied by a

lower priority than “must have” features, are presenting an essential part of the final

product. The features specified as “could have” provide merely optional functionality.

User stories that are classified as “won’t have” express on the other side just a

desired functionality that is not needed but could be a part of future releases [6].

Next to categorizing features, user stories can also be allocated according to

component or feature teams [35]. Component teams are basically created to

implement one component of the final product. These teams are in the manner of

speaking responsible to deliver a single component independent from other parts of

the software. This approach can result in a product, where components are not

working in convergence with other components. Feature teams are on the other side

focusing on one feature that is implemented across all components or layers. Latter

approach tries to ensure functionality and reduce the probability of failure.

The strategy to diversify teams according to features was not exerted in the AMOS

project of 2010. The Mydosis project consisted of two component teams. One team

was responsible for the development of the Mydosis Web service. The other team

was in charge of the Android application. In 2011, there was not this distinction made

since only one team was available and working on the Web service. However, user

stories were split in components in 2011 after the implementation of Spring security

failed in the third sprint (see Chapter 4.2.4). User stories that were touching several

components such as the social network, OSM or logbook, were introduced from the

Improving the Agile Methods and Open Source Lab Course

Discussion 80

fourth sprint on in order to avoid the dependency of features. The risk of a show-

stopper such as Spring security could be avoided by this procedure.

The analysis of user stories diversified by component or feature teams does not

reveal an ideal way. In consequence, the hypothesis of risk reduction by using a

component or feature team cannot be confirmed. Further research and background

information is needed to clarify this topic.

H5: Software tools facilitate the administration of artifacts

The analysis of Scrum projects in an academic setting has shown that there are

basically two ways how Scrum artifacts can be managed (see Chapter 3.3.1). Scrum

artifacts can be administrated manually or by the support of software tools.

The development process of Android applications at the Rochester Institute of

Technology relied on traditional artifacts of Scrum [28]. Poster papers and index

cards were used to illustrate user stories. These stories and broken down tasks were

then pinned on the Product Backlog which was available on a Board. This Scrum

board also contained the Sprint Backlog and Burndown chart.

A Web application that supports and enhances the use of Scrum was deployed in the

agile project at the University of Ljubljana [6]. This software is available as the

proprietary software “Agilo for Scrum” and the Open Source solution “Agilo for trac”.

Both software solutions, which are customized to meet the requirements of Scrum,

are offered with a bundle of features. A digital whiteboard, online Product Backlog,

dashboard with Burndown chart and integrated Wiki are just a few features that are

available by “Agilo for trac” [32]. All these features support the roles of SM, PO and

TM in the Scrum process and offer in addition a valuable analysis tool.

A compromise that was used in the AMOS project of 2010 and 2011 is Google Docs.

The spreadsheets of this Web service were edited to work as Product Backlog, Sprint

Backlog and Feature Archive for the agile development project [39]. The usage of

Scrum was to some extent facilitated by the online repository of Google.

Nevertheless, there were reoccurring issues in illustrating user stories and copying

Improving the Agile Methods and Open Source Lab Course

Discussion 81

user stories from one spreadsheet to another. A more customized software and

advanced tool support would have probably improved the handling of user stories

during the AMOS projects.

Future AMOS projects should try to implement Open Source software like “Agilo for

trac” or use proprietary software such as the “Team Foundation Server” of Microsoft

that is available for free via a university license program. After implementing new

software tools that support Scrum, they should be compared with Google Docs in

terms of ease of use and administration of Scrum artifacts.

H6: Mailing lists work as daily scrum replacement

Daily Scrums are an important practice of the agile methodology Scrum. They are

scheduled to take place every day during the Sprint execution and aim at updating

and synchronizing everybody who is involved in the Scrum project [11].

The three questions of the Daily Scrum “What did you do since the last Scrum?”,

“What are you doing until the next Scrum”? and “What is stopping you getting on with

your work?” are basically analyzing the goals and impediments of the current sprint

[15]. This meeting is supposed to take no longer than 15 minutes in order to briefly

inform all participants on the project’s progress. It can also serve as a basis for

further meetings if major issues are arising. A later meeting can then help to clarify

these problems instead of discussing them in detail at the Daily Scrum.

Implementing Daily Scrum in an academic course can become a challenge. If there

are only one or two days per week available where students can meet for the Daily

Scrum, it is necessary to adjust the Daily Scrum to weekly or biweekly Scrum

meetings. The university courses that aimed at developing Computer games and a

Web service included as a consequence biweekly Scrum meetings [6], [29]. In 2011,

there was only one day per week available during the AMOS project where all

students could meet. This day, however, was used for the Sprint Review and

planning of the next sprint. As there was no other time slot given and nothing related

to a daily Scrum established in the AMOS project a year earlier, it was needful to

improvise.

Improving the Agile Methods and Open Source Lab Course

Discussion 82

The mailing list which was initially used to exchange information between developers

was now assigned a superior role. All the questions that should be asked during the

Daily Scrum were now successfully communicated on the developers’ mailing list

(see Figure 10). A new ”Daily Scrum” thread accounted in the end of the semester for

more than 39 posts, after it was created halfway through the semester. It was on top

also available to the public. That means, not only the developer could get an idea of

the progress and impediments but also the SM, MPO, SPO and anyone else

interested in the project.

The positive experience with the virtual Daily Scrum and the demand for such a

practice, as it was asked for in the AMOS survey 2010 [5], will drive the

implementation of this practice in further instances of the AMOS project. The

replacement of the Daily Scrum by a mailing list is an important improvement that

increases the communication between the developers and facilitates the problem

solving process.

H7: Proactive customer involvement provides valuable feedback

Involving the customer as the stakeholder of a project in the Scrum process is also a

key element of every agile method. The customer has to portray the end consumer,

describe the domain model and draw up guidelines.

The customer can offer help by providing feedback or giving response to any

question that concerns the look and feel of the final product. The domain is usually

known best by the customer who should be contacted if there are domain-related

questions. A close feedback-loop with the customer, who actively commits to the

project, is important.

The customer of the AMOS project of 2010 was actively engaged in the development

process of Mydosis. He was not only describing the domain model but also delivering

data as a valuable input for the development and working side by side with the TMs

to test the product [5].

Improving the Agile Methods and Open Source Lab Course

Discussion 83

The AMOS project of 2011 displayed a different situation. The customer in FSAhoy

was not involved to the same extent as Dr. Bernitzki a year before. Although that the

customer Markus Bärlocher was giving a motivating introductory speed (see Chapter

4.2.1), it was not possible to arrange a face-to-face interaction with him for a second

time. Telephone conferences with the customer and weekly status updates per Email

could not replace the physical presence of a customer who can proactively get

involved in the Sprint Review. The feedback that was given by the customer per

telephone and Email would have been more helpful, if it had been based on a

working prototype and an on-site interaction with the customer.

To improve future AMOS projects, it is imperative to integrate and involve the

customer proactively in a way that the customer knows about the progress and

issues of a project. A face-to-face interaction between the customer and the Scrum

team presents a valuable asset for any agile development project.

6.3 Velocity

The velocity is a significant metric that allows for tracking and estimating the progress

of project (see Chapter 4.3.1). There are a lot of factors that can influence the

velocity of a project or team. The hypotheses H8 to H10 are contemplating the effect

of velocity in the AMOS projects and are describing what can be derived from

literature review.

H8: Documenting planned story points optimizes estimation forecast

Forecasting the velocity of a development team can be crucial for any agile project.

Knowing how many story points the team can achieve per sprint, makes it possible to

foresee how many sprints will be required to release a certain product version. This

planning figure is also important for describing and updating the project plan.

Completed story points are often the only metric that is used in order to forecast the

future velocity by confidence intervals [35]. This approach to consider only completed

user stories (see Chapter 4.3.2) originates from several reasons [37]. First of all, it is

difficult to estimate the percentage of user stories that are partly completed. A user

Improving the Agile Methods and Open Source Lab Course

Discussion 84

story that is 80% complete could still account for more time than the remaining 20%

of effort may suggest, if there is critical work left to do. Secondly, the forecast

becomes inaccurate if decimal values are the basis for a calculation. User stories are

already classified according to a relative measurement (see 4.3). If story points would

be further broken down, it would be even more difficult to use them as a reliant

metric. Thirdly, not fully implemented user stories do not present a business value to

the customer. If user stories are not passing acceptance tests, they are not

implemented as described by the customer and are not presenting the functionality

as supposed to.

Planned story points can on the other hand also prove their value. A target-

comparison analysis can be created by comparing planned and completed story

points [37]. The difference in story points highlights possible impediments that were

preventing the team to complete all assigned story points and shows if the team was

able to complete more story points than expected. The planned value is, as

described by Figure 16, also less prone to variations in story points.

What helps to predict the future velocity are planned and completed story points.

Taking completed story points on its own will not make a valid forecast. The values of

planned story points are more reliant as they provide a greater consistency after the

first few sprints. The TMs are often able to complete the planned number of story

points if there are no problems arising during the Sprint execution.

H9: Revised domain models negatively impact velocity

A domain model is the overarching vision of a project that describes the main

components of a product. The domain model should be created by the customer

along with the PO and TMs. It is the most important document for creating the

Product Backlog and should not face too many changes.

After the domain model of FSAhoy was introduced at the outset of the AMOS project

by the customer (see Chapter 4.2.1), there were only small adjustments made

throughout the course in order to maintain the idea and concept of FSAhoy. The

conference call with the customer in the seventh sprint was helpful to see which

Improving the Agile Methods and Open Source Lab Course

Discussion 85

components were already implemented and what areas require more attention (see

Chapter 4.2.8). The focus of FSAhoy was, as a result of the telephone call, directed

on the logbook as it is the main element in the domain model for the AMOS project of

2011. Incremental changes, which concerned user stories of the next sprints due to

the feedback of the customer, did not show a remarkable change in velocity.

The domain model of Mydosis was not created before the actual development work

started. It was, to be more precise, the job of a few TMs to work on the domain model

during the semester-long course. This approach and new requirements led to a lot of

changes in the domain model. The impact of these changes was greater than those

of the AMOS project one year later. In end, the domain model turned out to be the

main cause of frustration throughout the AMOS project of 2010 [5]. Students were

claiming in the AMOS survey 2010 that they had to work with a poor domain model

which was only created by a few students and not the entire team. Asking the

question if the domain should be agreed beforehand, 50% of the TMs agreed. The

consequences of the changes in the Mydosis domain model are also reflected in

Figure 19 that draws the ups and downs of completed story points. The drop from 11

story points in the fifth sprint to 5 story points in the sixth sprint was due to the

revision of the domain model and the consequent leaving of two students (see

Chapter 5.2.1).

Having said all this, it can be concluded that the domain model should be created

jointly by the customer and POs before the development starts. It can be defined as

well in collaboration with the TMs. Frequent revisions of the domain that negatively

impact the velocity of a development project should to be avoided in any case.

H10: Changes in the team size decrease velocity

The composition of development teams can change in agile projects as well as in any

other software project. There are TMs that are leaving or joining a team. Both events

the adding and quitting of TMs are decreasing the development speed at first.

At the beginning of each AMOS course has to be made a decision on the Scrum

roles for students. Since there is every year a different cohort of students

Improving the Agile Methods and Open Source Lab Course

Discussion 86

participating in the agile project, it is difficult to foresee how many students will be

assigned the role of TM or SPO. As it is not easy to foresee the amount of students

that are taking part in the AMOS project for every year, a decision on the Scrum roles

has to be taken spontaneously.

In 2010, there were 11 developing students involved in Mydosis whereas FSAhoy

had to get along with 5 developers and one senior developer. A team that consists of

more than 7 members should be broken down into smaller teams with 4 to 7

members as it was described by the second hypothesis in Chapter 6.1. This

procedure was not necessary for FSAhoy but for Mydosis. The two teams of Mydosis

were composed of 5 and 6 members each to ensure a high productivity. However,

after two students left team two in the seventh sprint, both teams were merged to a

team consisting of 9 members. This change in the team structure was also described

by Table 9. Contrary to what was expected and described by literature, the velocity

per developer even increased from 1.16 in the first few sprints to 2.06 after two

members left the Mydosis project in the seventh sprint. The velocity is according to

Mike Cohn more likely to drop when the team size changes [35]. An increased

communication can be necessary to get new TMs productive. This phenomenon

could not be observed for the Mydosis project. However, the situation was slightly

different for Mydosis as there were no new TMs added but TMs, which already knew

each other, merged to one team.

A change in the team size can affect the velocity. But it does not necessarily need to

decrease the velocity. It depends on the TMs and the structure of the development

process if a new TM or merged team will have a lower performance at first or not.

Further research on this topic is necessary to make a clear statement, how the

adding or merging of TMs and teams will influence an agile project.

Improving the Agile Methods and Open Source Lab Course

Conclusions 87

7 Conclusions

This paper demonstrates how the AMOS project can be improved in future instances.

By analyzing the AMOS project of 2011 and comparing it with Mydosis, the previous

AMOS project at the University of Erlangen-Nürnberg and similar projects in an

academic setting, several ideas for improvement have been generated. These

suggestions were framed as hypotheses and evaluated for validity.

The research approach of this thesis has some limitations as it is based on a post-

facto analysis and case study research. These restrictions are outlined in the

following Chapter 7.1. Nevertheless, the lessons learned that could be drawn from

the analysis are especially valuable for further AMOS projects or academic courses

that follow a comparable course design. The recommendations that could be

validated are summarized in Chapter 7.2. A few suggestions for how to improve the

AMOS lab course could not be confirmed. Further research is necessary to validate

those changes related to the AMOS project as it is described in Chapter 7.3.

7.1 Limitations

There are limitations for this thesis that must be mentioned when evaluating the

outcome of this research. A post-facto analysis and confirmatory case studies are the

scientific methods that were used for this empirical research. Both, the methods and

specific context of this study limit the validity and representativeness of this work.

The post-facto analysis is built on the analysis of the diploma thesis on the AMOS

project of 2010. Markus Stipp, the author of that thesis was assigned the role of a

Product Owner Proxy and carried out two surveys throughout the development

course to evaluate it and provide recommendations for future AMOS courses. The

results and interpretations of this approach to the survey formed the basis of a

descriptive research used to analyze the AMOS project of 2010. However, the

findings of this research only served as part of a comparison since the survey design

was already predefined and two courses were differing in many aspects.

Improving the Agile Methods and Open Source Lab Course

Conclusions 88

Confirmatory case studies, involved in part of the comparison of Scrum in academic

courses, can help to validate or invalidate theories. Multiple cases across different

course designs and development projects were used in this thesis. Most of these

case studies followed a structured survey approach to evaluate student opinion and

the use of agile methods in an academic course. Since the projects each applied

Scrum differently, it was not always possible to illustrate or confirm theories. The

observations from these case studies are also biased by external validity as some of

the projects lacked sufficient data to portray the case findings to other academic

projects.

The outcome of this research mainly contributes to the improvement of the AMOS lab

course in future instances. The reason being is that the AMOS project of 2010 and

2011 are unique in character and driven by a lot of influencing factors. Hence,

suggested improvements are most likely to work for AMOS projects. Given these

underlying circumstances, it is difficult to generalize, that the findings will fit into any

academic course that is about to apply Scrum. Also, the representative of this study

cannot be entirely proven since only two AMOS projects were the foundation of this

analysis. More AMOS courses are required to make a final statement on how Scrum

can be tailored to be the best fit in this setting.

7.2 Recommendations

The following recommendations are made to improve the AMOS project in the future.

The lessons learned which are obtained from this thesis, are summarized below and

validated by the comparison between the AMOS projects of 2010 and 2011 and

literature review on similar courses. The suggested improvements to the AMOS

course embrace change within the agile methods of Scrum and course design.

 Team building exercises are motivating. The project kick-off and the first

weeks of a project are crucial to set the stage and motivate participants. In the

AMOS project of 2011, there was a ball game played and a pipeline constructed

with the intent to get to know each other. These icebreaker activities not only

helped to familiarize with names and hobbies, but also motivated students.

Improving the Agile Methods and Open Source Lab Course

Conclusions 89

 Small development teams show good performance. Scrum relies on small

development teams that are composed of 4 up to 7 students. Teams that are

smaller or larger in size are often not efficient due to a lack of knowledge or

increased communication costs. Productive performance can only be delivered by

teams that are composed of 4 to 7 students.

 Mailing lists work as Daily Scrum replacement. The practice of Daily Scrum

can be difficult to implement in an academic setting. There are possibilities to

retain Daily Scrums even if the physical attendance of TMs is not present. A

mailing list can be deployed to replace the Daily Scrum by a virtual tool.

 Proactive customer involvement provides valuable feedback. A proactive

customer plays an important role in Scrum by defining the domain model of the

project in collaboration with the PO. The customer has also to be informed about

the development progress. It is important to involve the customer in such a way

that feedback on the development of the project can be provided.

 Documenting planned story points optimizes estimation forecast. Story

points are a valuable planning figure used to track and forecast the progress of a

project. Planned and completed story points are often two different things that

both serve as indicators of velocity. The documentation of planned story points

supports the target-performance analysis and helps to predict future velocity.

 Revised domain models negatively impact velocity. A domain model should

be defined at the outset of a development project that is using Scrum. Revisions

to the domain model can be frustrating for the development team, if they are

recurring. Revised versions of the domain model in this consequence also

negatively impact the velocity of a team.

Improving the Agile Methods and Open Source Lab Course

Conclusions 90

7.3 Future research

Not all of the suggested improvements could be confirmed by the time this thesis was

written. Further research is necessary to obtain more data that can be used to

validate some of the suggestions that were lacking sufficient information. Future

AMOS projects should therefore apply the proposed recommendations, analyze and

evaluate them in order to make a qualified statement on the suggested

improvements.

In particular, the diversification of user stories and changes in the team size require

more data for validation. Diversifying user stories through feature teams instead of

component teams should result in a greater functionality and lower probability of

failure. This hypothesis could not be corroborated since there were only component

teams available in the AMOS project of 2010. The impact on the velocity of a project

from changes in the team size could, just as the diversification of user stories, not be

demonstrated clearly. The merging of teams and thereby adding of new TMs

revealed a positive effect in the AMOS project of 2011 even though that some case

studies professed, that changes in team size are always accompanied by a decline in

velocity.

Next steps for future AMOS projects could be the analysis of existing software tools

that support the development methodology Scrum and the consideration of Scrum in

a distributed setting. There are a few Open Source and proprietary software solutions

available that are tailored to meet the requirements of the Scrum development

process. These tools could be beneficial and facilitate the administration and

documentation of artifacts in Scrum, if they are easy to understand and use. A

distributed development team could also be part of a future instance of the AMOS

project. If there are too few developers enrolling in the AMOS course, one possible

scenario would be to work with an offshore development team. This approach may

present a lot of challenges, but the reviewed case studies also indicate that this does

not necessarily have to lower the velocity of a project.

Improving the Agile Methods and Open Source Lab Course

References i

References

[1] D. Riehle. (2010, Dec.) Dirk Riehle's blog about everything computer science,

applied and more. [Online]. http://dirkriehle.com/2010/12/06/das-amos-

projektkonzept-2011/, last access: 20.03.2012.

[2] Forrester Research, "The Forrester Wave™: Agile Development Management

Tools," 2010.

[3] S. Ramakrishnan, "Innovation and Scaling up Agile Software Engineering

Projects," Issues in Informing Science and Information Technology, no. 6, pp.

557-575, 2009.

[4] D. A. Umphress, T. D. Hendrix, and J. H. Cross, "Software Process in the

Classroom: The Capstone Project Experience," IEEE Software, vol. 19, no. 5,

pp. 78-85, Sep. 2002.

[5] M. Stipp, "Agile Methods and Open Source Software Development in Student

Projects," Diplomarbeit, 2010.

[6] V. Mahnic, "A Capstone Course on Agile Software Development Using Scrum,"

IEEE Transactions on Education, vol. 55, no. 1, pp. 99-106, Feb. 2012.

[7] V. Devedžić and S. R. Milenković, "Teaching Agile Software Development: A

Case Study," IEEE Transactions on Education, vol. 54, no. 2, pp. 273-278, May

2011.

[8] D. F. Rico and H. H. Sayani, "Use of Agile Methods in Software Engineering

Education," Agile Conference, pp. 174-179, 2009.

[9] L. Pries-Heje and J. Pries-Heje, "Why Scrum works: A case study from an agile

distributed project in Denmark and India," in Agile Conference, 2011, pp. 20-28.

[10] W. W. Royce, "Managing the Development of Large Software System,"

Proceedings of IEEE WESCON, vol. 26, pp. 1-9, Aug. 1970.

[11] D. Riehle, "Agile Methoden und Open Source," Friedrich-Alexander University of

Erlangen-Nuremberg Lecture, 2011.

[12] J. O. Clark, "System of Systems Engineering and Family of Systems Engineering

From a Standards, V-Model, and Dual-V Model Perspective," IEEE International

http://dirkriehle.com/2010/12/06/das-amos-projektkonzept-2011/
http://dirkriehle.com/2010/12/06/das-amos-projektkonzept-2011/

Improving the Agile Methods and Open Source Lab Course

References ii

Conference on System of Systems Engineering, pp. 381-387, Apr. 2009.

[13] M. Kuhrmann, D. Niebuhr, and A. Rausch, "Application of the V-Modell XT –

Report from a Pilot Project," in Unifying the Software Process Spectrum, L. J.

Osterweil, Ed. Berlin Heidelberg NewYork, Deutschland: Springer Verlag, 2005,

pp. 463-473.

[14] K. Beck. (2001) Manifesto for Agile Software Development. [Online].

http://agilemanifesto.org/, last access: 15.01.2012.

[15] F. H. Cervone, "Understanding agile project management methods using

Scrum," OCLC Systems & Services, vol. 27, no. 1, pp. 18-22, Nov. 2011.

[16] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change,

2nd ed. Amsterdam, Netherlands: Addison-Wesley Longma, 2004.

[17] S. Warden, Extreme Programming Pocket Guide, 1st ed., T. A. Diaz, Ed.

Sebastopol, CA, USA: O’Reilly Media, 2003.

[18] L. Lindstrom and R. Jeffries, "Extreme Programming and Agile Software

Development Methodologies," Information Systems Management, vol. 21, no. 3,

pp. 41-52, 2004.

[19] S. Smith and S. Stoecklin, "What we can learn from extreme programming,"

Journal of Computing Sciences in Colleges, vol. 17, no. 2, pp. 144-151, Dec.

2001.

[20] G. Vanderburg, "A Simple Model of Agile Software Processes - or - Extreme

Programming Annealed," Proceedings of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications (OOPSLA '05), vol. 40, no. 10, pp. 539-545, Oct. 2005.

[21] B. Hindel, K. Hörmann, M. Müller, and J. Schmied, Basiswissen Software-

Projektmanagement, 3üth ed., H. Heilmann, Ed. Heidelberg, Deutschland:

dpunkt Verlag, 2009.

[22] C. Keith, Agile Game development with Scrum. Amsterdam, Netherlands:

Addison-Wesley Longman, 2010.

[23] K. Schwaber, Agile Project Management with Scrum, K. Atkins, Ed. Redmond,

Washington, USA: Microsoft Press, 2004.

[24] O. S. Initiative. Open Source Initiative. [Online].

http://agilemanifesto.org/

Improving the Agile Methods and Open Source Lab Course

References iii

http://www.opensource.org/docs/osd, last access: 23.01.2012.

[25] D. Riehle, et al., "Open Collaboration within Corporations Using Software

Forges," IEEE Software, vol. 26, no. 2, pp. 52-58, Apr. Thomas .

[26] W. Scacchi, "Free and Open Source Development Practices in the Game

Community," IEEE Software, vol. 21, no. 1, pp. 59-66, Jan. 2004.

[27] B. Kogut and A. Metiu, "Open-Source Software Development and Distributed

Innovation," Oxford Review of Economic Policy, vol. 17, no. 2, pp. 248-264,

2001.

[28] T. Reichlmayr, "Working Towards the Student Scrum – Developing Agile Android

Applications," in Proceedings of the 118th ASEE Annual Conference &

Exposition 2011, Vancouver, 2011.

[29] J. Schild, R. Walter, and M. Masuch, "ABC-Sprints: Adapting Scrum to Academic

Game Development Courses," in Proceedings of the Fifth International

Conference on the Foundations of Digital Games (FDG '10), New York, 2010,

pp. 187-194.

[30] D. Riehle. (2010, Sep.) Dirk Riehle's blog about everything computer science,

applied and more. [Online]. http://dirkriehle.com/2010/09/11/the-2010-amos-

project-from-osr-group/, last access: 27.01.2012.

[31] U. Wolz and S. M. Pulimood, "An integrated approach to project management

through classic CS III and video game development," in Proceedings of the 38th

SIGCSE technical symposium on Computer science education (SIGCSE '07),

New York, 2007, pp. 322-326.

[32] Agilo Software GmbH. (2011) Agilo for trac - Feature List. [Online].

http://agilofortrac.com/en/features/, last access: 25.02.2012.

[33] J. Sutherland. (2010, Apr.) Scrum Log. [Online].

http://scrum.jeffsutherland.com/2010/04/story-points-why-are-they-better-

than.html, last access: 20.02.2012.

[34] M. Cohn, Agile Estimating and Planning, first edition ed. Upper Saddle River, NJ,

USA: Prentice Hall Professional Technical Reference, 2005.

[35] M. Cohn, Succeeding with Agile: Software Development Using Scrum, first

edition ed. Amsterdam, the Netherlands: Addison-Wesley Professional, 2009.

http://www.opensource.org/docs/osd
http://dirkriehle.com/2010/09/11/the-2010-amos-project-from-osr-group/
http://dirkriehle.com/2010/09/11/the-2010-amos-project-from-osr-group/
http://agilofortrac.com/en/features/
http://scrum.jeffsutherland.com/2010/04/story-points-why-are-they-better-than.html
http://scrum.jeffsutherland.com/2010/04/story-points-why-are-they-better-than.html

Improving the Agile Methods and Open Source Lab Course

References iv

[36] R. Pichler, Agile Product Management with Scrum: Creating Products that

Customers Love, first edition ed. Amsterdam, The Netherlands: Addison-Wesley

Professional, 2010.

[37] M. Cohn, User Stories - für die agile Software-Entwicklung mit Scrum, XP u.a.,

1st ed., Heidelberg, Ed. München, Deutschland: mitp, Verlagsgruppe Hüthig

Jehle Rehm GmbH, 2010.

[38] ohloh. (2012, Feb.) ohloh - Committed to Code. [Online].

http://www.ohloh.net/p/compare?project_0=Dosis&project_1=Free+Seas+Ahoy!,

last access: 02.03.2012.

[39] D. Riehle. (2012, Feb.) Google Docs - FAU AMOS Schedule. [Online].

http://goo.gl/BZpU8, last access: 05.03.2012.

[40] R. Wirdemann, Scrum mit User Stories, 1st ed., M. Sommer, Ed. München,

Deutschland: Carl Hanser Verlag, 2009.

[41] M. Fowler. (2006, May) Martin Fowler. [Online].

http://www.martinfowler.com/articles/continuousIntegration.html, last access:

15.02.2012.

[42] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, and S. Vishal, "Fully

Distributed Scrum: Linear Scalability of Production between San Francisco and

India," in 2009 Agile Conference, Chicago, Aug. 2009, pp. 277-282.

[43] M. Paasivaara, S. Durasiewicz, and C. Lassenius, "Using Scrum in Distributed

Agile Development: A Multiple Case Study," in 2009 Fourth IEEE International

Conference on Global Software Engineering, Limerick, 2009, pp. 195-204.

[44] E. Hossain, P. L. Bannerman, and R. Jeffery, "Towards an understanding of

tailoring scrum in global software development: a multi-case study," in

Proceedings of the 2011 International Conference on Software and Systems

Process (ICSSP '11), New York, 2011, pp. 110-119.

[45] J. Sutherland, G. Schoonheim, and M. Rijk, "Fully Distributed Scrum: Replicating

Local Productivity and Quality with Offshore Teams," in Proceedings of the 42nd

Hawaii International Conference on System Sciences (ICSS '09), Big Island,

2009, pp. 1-8.

http://goo.gl/BZpU8
http://www.martinfowler.com/articles/continuousIntegration.html

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Context and Contributions
	1.3 Structure

	2 Fundamental principles
	2.1 Plan driven development
	2.1.1 Waterfall model
	2.1.2 V-model

	2.2 Agile methodology
	2.2.1 Extreme Programming
	2.2.2 Scrum

	2.3 Open Source
	2.3.1 Open Source Software
	2.3.2 Open Source development

	3 Scrum in academic courses
	3.1 Related work
	3.1.1 Android applications
	3.1.2 Computer games
	3.1.3 Web service

	3.2 AMOS project
	3.2.1 Objectives
	3.2.2 Roles
	3.2.3 Process

	3.3 Academic courses in comparison
	3.3.1 Roles
	3.3.2 Practices
	3.3.3 Artifacts

	4 AMOS project of 2011
	4.1 Domain model
	4.1.1 Product Summary
	4.1.2 Target Audience
	4.1.3 Features

	4.2 Weekly sprints
	4.2.1 Kick-off
	4.2.2 Sprint 1
	4.2.3 Sprint 2
	4.2.4 Sprint 3
	4.2.5 Sprint 4
	4.2.6 Sprint 5
	4.2.7 Sprint 6
	4.2.8 Sprint 7
	4.2.9 Sprint 8
	4.2.10 Sprint 9
	4.2.11 Sprint 10

	4.3 Development Speed
	4.3.1 Velocity
	4.3.2 Sprint Forecasting
	4.3.3 Burndown bar

	5 Mydosis and FSAhoy
	5.1 Course setting
	5.1.1 Components
	5.1.2 Domain
	5.1.3 Participants and Roles
	5.1.4 Technology
	5.1.5 Timeframe

	5.2 Project Performance
	5.2.1 Velocity
	5.2.2 Lines of Code

	6 Discussion
	6.1 Academic course
	6.2 Scrum methodology
	6.3 Velocity

	7 Conclusions
	7.1 Limitations
	7.2 Recommendations
	7.3 Future research

	References

