Open Source Collaboration Codified

Diplomarbeit im Fach Informatik

vorgelegt von

Ke Chang

geb. 19.09.1981 in Chengdu, VR China

angefertigt am

Department Informatik
Lehrstuhl fiir Informatik 2
Programmiersysteme
Friedrich-Alexander-Universitat Erlangen—Niirnberg
(Prof. Dr. M. Philippsen)

Betreuer: Prof. Dr. Dirk Riehle, Dipl.-Inf. (FH) Carsten Kolassa, M. Sc.

Beginn der Arbeit: 16.08.2010
Abgabe der Arbeit: 16.02.2011

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder d&hnlicher
Form noch keiner anderen Priifungsbehorde vorgelegen hat und von dieser als Teil einer
Priifungsleistung angenommen wurde. Alle Ausfithrungen, die wortlich oder sinngeméf
iibernommen wurden, sind als solche gekennzeichnet.

Der Universitiat Erlangen-Niirnberg, vertreten durch die Informatik 2 (Programmier-
systeme), wird fiir Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich
und ortlich unbeschrinktes Nutzungsrecht an den Arbeitsergebnissen der Diplomarbeit
einschliellich etwaiger Schutzrechte und Urheberrechte eingerdumt.

Erlangen, den 16.08.2010

Ke Chang

Abstract

When using mailing list as a collaboration tool, (open source) software developers are
following various usage patterns. In order to improve the efficiency of open source
collaboration, this thesis tries to identity these existing patterns by analyzing the mailing
lists of popular open source projects, then proposes an annotation schema to codify these
patterns. A mailing list archiver application is also implemented, which applies the
codifications to handle email messages, provides tool supporting for the improvement.

Keywords: Open Source Software Development, Collaboration, Mailing List, Con-
versation Action, Usage Pattern, Email Message, JavaMail API, Google Web Toolkit
(GWT), Hibernate, PostgreSQL

Contents

1 Introduction 1
1.1 Open Source Software Development 1

1.1.1 Characteristics and Collaboration................ 1

1.1.2 Supporting Toolso 2

1.1.3 Mailing List and Its Usage ... 3

1.2 Problem and Motivation......... 3

1.3 Thesis Outline 4

1.4 Related WOTKS 5

2 Conceptual Model of Communication 7
2.1 The Language Action Perspective i 7

2.1.1 Categorization of Conversations.............. 8

2.2 Conversations in Mailing Lists............ ... i 9

2.3 Tags and Folksonomy i 10

3 Analysis of Mailing Lists 11
3.1 Data Source and Analysis Method............ 11

3.1.1 Retrieving Messagest 11

3.1.2 Analysis for Tag Frequency ... 13

3.2 Results and Interpretations.............. i 14

3.2.1 Analysis Results. ... 15

3.2.2 Representativity of Selected Mailing Lists.......................... 23

3.2.3 Comments to the Results........ 24

4 Proposal for Collaboration Patterns Codification 25
4.1 Open Source Software Development Process............................. 25

4.2 Proposed Tags Schema i 25

4.2.1 Categorizations 25

4.2.2 Usage Pattern of Each Tago .. 28

4.3 Survey Result for Proposal Acceptance.................................. 33

A4 USE CASES .ttt ettt et e 34

il

Contents

v

Design and Implementation of Tool Supporting

5.1
0.2

5.3

0.4
2.5

Requirement Analysis........... ..o
System Design
5.2.1 Data Modeling. ...
5.2.2 Application Architecture.........
5.2.3 Toolkits and Frameworks i i
System Implementation
5.3.1 ORM and Persistence.............. i
5.3.2 Fetching, Tagging and Storing of Emails
5.3.3 Data Transfer Objects
5.3.4 Web Ul ..o
5.3.5 Deployment
Survey Result for Feature Acceptance oiiiiii...

USage SCENATIOottt e

Conclusion and Perspective

6.1
6.2
6.3

COonCIUSION . . . oo
Perspective.
Acknowledgement

Appendix: Source Code Listing

7.1

7.2

7.3

Hibernate Entity Mapping Files........ i i
7.1.1 Email.hbm.xml o
7.1.2 EmailBody.hbm.xml
7.1.3 EmailTag.hbm.xml
7.1.4 MailingList.hbm.xml.......
Server Side Code
7.2.1 EmailFetcher.java.....o
7.2.2 EntityCruder.java.
7.2.3 EmailTagDataProvider.java.......... ... i,
7.2.4 EmailTitleParsingSimple.java........... o i,
Client Side Code
7.3.1 Etikett.java.

23

53
93
o4

1 Introduction

The term “open source”, when used on software, stands not only for a characteristic — the
source code of these software are publicly available, but also stands for a development
method or practice, which utilizes distributed peer collaboration and transparency of
process [15].

1.1 Open Source Software Development

Open source software development describes the process, in which open source software
is developed [31]. Nowadays, compared to the development process of most commercial
software, open source software development shows some clear distinctions. One well
known metaphor is treating the two processes as “The Cathedral and the Bazaar”,
respectively [23]. Most commercial software, as well as free software like Emacs and
GCC, are developed using a “cathedral” model, where a small group of developers employ
a top-down design method to craft the product, the source code is restricted to them
only; In the contrary, most free and open source software is developed using a “bazaar”
model, where the source code are publicly available, lots of people, including developers
and users, participate in the project from distributed locations, and employ a bottom-up
design method.

1.1.1 Characteristics and Collaboration

As is summarized in [24, 30], open source software development should show the following
characteristics:

e Users should be treated as co-developers. They could access the source
code and are encouraged to contribute, such as giving feedbacks, submitting bug
reports and patches, write documentations etc. Quoting the “Linus’s Law” —
“Given enough eyeballs all bugs are shallow” — If lots of developers and users
collaborate on a project, that project will eventually obtain a very good quality.

e Early releases. Open source software tend to be released early and often, in
order to get more potential co-developers to contribute early.

e Frequent integration. Patches and/or code changes are merged into code base
as often as possible. So bugs could be fixed in a relative short time.

1 Introduction

e Several versions. Such as a stable release version and a buggier development
version. Users can choose to use the latest features and help the development by
reporting bugs etc.

e High modularization. Modular structure enables parallel development of inde-
pendent components.

e Dynamic decision making structure. There is usually an organizational struc-
ture behind the project to make strategic decisions.

From those characteristics listed above, it can be concluded that one important as-
pect of open source software development is “collaboration”. Whether the “enough
eyeballs” inspect bugs, potential co-developers contribute project assets, or parallel com-
ponents development and decision making, to ensure all these activities to run correctly
and effectively, a well organized cooperation is required. Also, geographically distributed
development could lead to misunderstanding, miscommunication and coordination prob-

lems, because the awareness of the activities of developers at remote sites is significantly
reduced [1].

1.1.2 Supporting Tools

Open source software development, and it is supported by various tools. These tools
include [31]:

e Communication channels. Some electronic means of communication are re-
quired to overcome the lack of face-to-face meetings. E-mail is one of the mostly
used medium among open source developers and users. Usually mailing lists are
set up to deliver emails to all interested parties at once. Mailing list is often the
most active place for communicating in the project, it also serves as the “medium
of record” [6]. For real time communication, many projects use an instant mes-
saging method such as IRC (Internet Relay Chat). Recently, web-based forums
and wikis also become a popular way for users to get support information and to
interact with developers.

e Software engineering tools

— Version control systems. These tools enable open source software develop-
ers to manage code changes, such as version reverting, code forking/merging,
conveniently. They also enable the public to get access to the source code.

Examples of such systems are Concurrent Versions System (CVS), Subversion
(SVN) and Git.

— Bug trackers and task lists. For large-scale projects a bug tracking system
is needed to keep track of the status of various issues in the development of
the project. It also enables developers to coordinate with each other and plan

1.2 Problem and Motivation

releases. Some commonly used bug tracker systems include: Bugzilla, Trac,
GNATS and Mantis.

e Testing tools. Because open source projects undergo frequent integration, tools
that can help automate testing during system integration are used.

e Package management. This type of system is a set of tools that automate the
process of installing, upgrading, configuring and removing software from the oper-
ating system. Examples are the Red Hat Package Manager (RPM) and Advanced
Packaging Tool (APT). Both of which are commonly used by Linux distributions.

Since collaboration is vital in open source software development, the tools that support
communication are especially important, one of which is the mailing list.

1.1.3 Mailing List and Its Usage

Mailing lists are essential for project communications. Basically, it is a special usage
of email that allows for widespread distribution of information to many Internet users.
Modern mailing list systems usually provide features like email- and web-based sub-
scription, digest mode, moderation, administration interface, header manipulation and
archiving [6, 28].

As stated in the sections above, mailing list is the place where open source software
developers communicate most actively. There are various usages, for example: general
discussions, release announcements, questions and answers, vote for decisions, etc. The
archive function of mailing list software provides a way to collect and store past messages,
indexing and searching for these messages can also be supported.

1.2 Problem and Motivation

In this thesis, two problems will be concerned.

First. In order that a complex project be successful, its team member should be able to
interact productively, so that relevant knowledge can be acquired, generated and
circulated effectively in terms of time and cost [26]. Therefore, if developers could
communicate — through the main communication channel: mailing lists — more
effectively, the projects they are participating would benefit from the increased
productivity.

The messages in a mailing list, by their nature, are only normal emails. There are
no built-in properties or components in an email to give itself semantic meanings.
There is also no formal rules to categorize emails. Thus, some activities in the
use of mailing lists could be less effective, such as identifying emails of a specific
type, which the developers are interest in, or obtaining emails of a same context.

1 Introduction

Nevertheless, participants in a mailing list are actually following various usage
patterns, e.g. using certain keywords in an email’s subject to highlight its purpose.
One possible contribution is to find out and document these usage patterns, make
them best practices and encourage developers to use them. This way, developers
in mailing lists could communicate based on an acknowledged convention, thus the
communication becomes more effective.

By analyzing the common usage patterns of mailing lists and following the develop-
ment process of open source software, this thesis proposes a schema for categorizing
the messages in a mailing list. More specifically, it is an annotation (tag) schema,
in which various annotation tags can be used to flag certain message with various
semantic meaning. Furthermore, this tag schema also serves as a codification for
some of the best practices being used in open source collaboration.

Second. Unfortunately, most popular mailing list software today (e.g. GNU Mailman,
Procmail SmartList, Ezmlm and Hypermail etc) serve a generic purpose, they are
not specifically tuned to support open source software development. They may
have powerful features of email distribution and subscription management, but
most of them are lack of features like organizing emails by type, or performing
certain actions based on email’s semantic meaning, which, as mentioned above,
could improve the efficiency of open source collaboration.

One possible contribution to this problem is that, based upon the above mentioned
codification of the best practices, implement support for these best practices on
top of mailing list software. For example, in the mailing list archive, one can filter
emails by type, emails could be marked up with tags by their semantic meanings
to draw developer’s attention, and so on.

1.3 Thesis Outline

In the following chapters, the two problems stated in the above section will be addressed
in details.

In chapter 2, the theory basis for modeling communications will be introduced, as
well as the annotation tag schema and the categorization criteria for emails. In chapter
3, with respect of the tag schema, selected mailing lists will be analyzed to find out
the actual usage patterns. Results analysis are also demonstrated. In chapter 4, the
codification for the practices, or the tag schema, is proposed in details, with explanations
and usage scenarios. The validation for the contribution will also be shown in form of a
survey result. Then in chapter 5, an mailing list archiver application prototype, which
supports the use of tags on emails, will be presented, from its requirement analysis to
design and implementation, as well as its usage scenario. Besides conclusion, chapter 6
will also suggest some improvement possibilities / future works for the tag schema and
the supporting tools.

1.4 Related Works

1.4 Related Works

There are several contributions that are related to open source collaboration and mail-
ing lists. Some of the works examine the collaboration characteristics of open source
development by analyzing data (most of which are retrieved from mailing lists); Some
works also propose categorization/annotation schema to identify different communica-
tion patterns in open source collaboration.

Madey et al hypothesize that open source software development can be modeled as
self-organizing, collaboration, social networks. They’'ve analyzed structural data on
open source projects from SourceForge.net to find evidence in the presence of power-
law relationships on project sizes, project membership and cluster sizes [18]. Toral et
al model mailing list behavior in open source software projects, use a set of descriptors
that could inform about their quality and evolution. They select the mailing list of ARM
embedded Linux, analyze the messages to obtain the underlying patterns of behaviors
based on several factors, e.g. number of messages, number of threads without an answer,
etc [26]. Tang et al investigate the impact of global participation on communication on
the developer mailing lists of PostgreSQL and GTK+ [25]. Ohira et al propose an
analysis method for observing the time-lag of communications among developers in an
OSS project and facilitating the communications effectively, they have conducted a case
study based on the data from the mailing list of the Python project [21].

Yamauchi et al. have employed content analysis methods to find out the commu-
nication patterns in mailing lists, their findings suggest that spontaneous work coor-
dinated afterward is effective, rational organizational culture helps achieve agreement
among members and communications media moderately support spontaneous work [36].
Ankolekar et al. consider the application of semantic web technology to enhance the
open source development environment [1]. Koivunen et al describe a metadata based
annotation infrastructure and explain how it can be extended [16].

This thesis focuses on finding out practices that developers are already using. The
data being analyzed are restricted on the subject text of the messages in mailing lists.
The proposed annotation schema is made up by a number of recommended tags which
also codify the collaboration practices in many open source projects.

2 Conceptual Model of
Communication

In order to address a suitable categorization criteria for the messages in mailing lists, it
is necessary to examine some of the existed conceptual models of communication first.
In this chapter, the theory basis for modeling communication and collaboration will be
introduced, the proposed annotation schema are based on the theory.

People communicate mainly by using languages, both in real life and in electronic
media, which include mailing list. One perspective used to investigate the human coop-
erative activity, is that takes language as the primary dimension [35], this is called the
“Language Action Perspective”.

2.1 The Language Action Perspective

The language action perspective (LAP) is the basis of several approaches to business
modeling and information systems modeling. This perspective emphasizes that commu-
nication is not limited to transfer of information, but is one kind of action [7]. The major
source of inspiration for LAP approaches is the “Speech Act Theory” (SAT). In thses
LAP approaches, different communicative actions are classified in accordance with the

classification scheme defined by Searle (1979) — things one can do with an utterance:
(32, 35]

Assertive/Representative Commit the speaker to the truth of the expressed proposi-
tion, e.g. reciting a creed.

Directive Attempt to get the hearer to do something, including both questions and
commands.

Commissive Commit the speaker to some future course of action, e.g. promises.

Declaration Bring about the correspondence between the propositional content of the
speech act and reality, e.g. pronouncing someone guilty or pronouncing a couple
married.

Expressive Express a psychological state about a situation, e.g. apologizing and prais-
ing.

2 Conceptual Model of Communication

However, some LAP approaches go beyond single speech acts, there is a great interest
for speech act patterns, i.e. how different acts are related to each other [7]. These ap-
proaches classify communicative actions using their own variant schemes. For example,
in Action Workflow as well as DEMO [5] there is a pattern of four sequentially organized
speech act types:

e Request

e Promise

e Statement
e Acceptance

One can conclude that the LAP approaches are built upon two theoretical basis: 1)
Communication is action in accordance to generic speech act types; 2) Communicative
acts are organized and framed in accordance with predefined patterns [7]. Another im-
portant example of the latter is Winograd and Flores’ (1986) “Conversation for Action”.

2.1.1 Categorization of Conversations

In conversation for action, one party (A) makes a request to another (B). The request is
interpreted by each party as having certain conditions of satisfaction, which characterize
a future course of actions by B.

Figure 2.1 shows the structure of this model. After the initial utterance (the request),
B can accept (and thereby commit to satisfy the conditions), decline (and thereby end
the conversation), or counter-offer with alternative conditions. Each of these in turn has
its possible continuations (e.g. after a counter-offer, A can accept, cancel the request,
or counter-offer back) [35].

While conversations for action form the central fabric of cooperative work, there are
additional categories of conversations to be distinguished: conversation for clarification,
conversation for possibilities, and conversation for orientation. A summary of those
categories is listed below [27]:

e Conversation for action usually begins with a request or an offer, the intention
of the conversation is that some actions need to be taken.

e In conversation for clarification, the intention of the participates is to obtain
more information about something already said or a previous conversation.

e In conversation for possibilities, the intention of the participates is creating
ideas or to settle on several existed ideas.

e In conversation for orientation, the intention of the participates is to exchange
information.

2.2 Conversations in Mailing Lists

A:Decline
Report

m A:Declare

A:Request B:Promise Complete

1 o2 S s S 4 o
[- B:Report -

/R\ A:Accept

B:Counter

Completion
A:Counter

B:Cancel

A:Cancel

B:Decline
A:Cancel

B:Cancel
A:Cancel

Figure 2.1: State transition diagram representing a conversation for action [35]

The typical activities in a mailing list could also be viewed as conversations. For
example, asking and answering questions, discussing on a certain decision, commenting
about certain topic, and so on. So Winograd’s classification scheme also applies.

2.2 Conversations in Mailing Lists

Messages in a mailing list also have their intentions, or pragmatics. An email that
reports a bug, has the intention of raising developer’s attention so that the bug could
be fixed. An email that starts a topic about a new idea of a project, has the intention
of settling down ideas. These two cases are clearly to be classified into “conversation for
action” and “conversation for possibilities”, respectively. Yet, due to the broadcasting
nature of mailing lists, every subscriber will get all the messages sent by others. In a
busy mailing list, the amount of messages in one’s inbox could be huge.

Another problem is that, as mentioned in chapter 1, a general email have no specific
field that represents the (pragmatic-)semantic of itself. Custom headers could do the
job but currently there is no standard for such headers. A good classification schema for
emails might be useful for machines that can automatically parse an email to determine
the suitable category for it, but for human developers, scanning lots of emails and quickly
getting know each one’s intention behind the plain subject text, is a hard task.

2 Conceptual Model of Communication

A practical solution is to include the semantic meaning of each email right in its
content, such as subject or body text. A simple way of doing this is using annotations,
e.g. adding one or more keywords in an email’s subject line to indicate its main type: Is
this email a bug report, or a idea proposal, or a support ticket? In this case, one could
simply add keywords like “bug”, “proposal” and “help” in each email’s subject line. This
makes the emails visually stand out, also reduces the effort to identify whether he or she
is interested in this email — one does not need take time reading up the whole subject
text to understand its possible intention. This “annotation” solution can be viewed as
tagging and the keywords here are actually different tags.

2.3 Tags and Folksonomy

In online computer systems terminology, a tag is a non-hierarchical keyword or term
assigned to a piece of information. It is a kind of metadata that helps describing an item,
allowing it to be found by browsing or searching. Tagging was popularized by the “Web
2.0” trend and is an important feature of many Web 2.0 services, e.g. “Delicious” and
“Flickr”. Tags may be a “bottom-up” type of classification, compared to hierarchies,
which are “top-down”. In a tagging system, there are unlimited number of ways to
classify an item. Instead of belonging to one category, an item may have several different
tags [34]. Typically, users can freely choose tags, thus they create a folksonomy.

A folksonomy is a system of classification derived from the practice and method of
collaboratively creating and managing tags to annotate and categorize content. This
term itself is a portmanteau of folks and taznonomy [29].

Using tags to annotate the messages in a mailing list is a simple and effective way
to add semantic/pragmatic meanings to them, this in turn could help improving the
efficient of collaboration. In fact, there is already such kind of practices being used
by open source developers in various mailing lists. For example, in the Linux Kernel
Mailing List (LKML), it is common to find emails containing a keyword in their subject
line. The keyword is usually put in square brackets, like: “[PATCH] kernel/cpu.c: Fix
many errors related to style.”, “Re: [RFC] add pwmlib support” and “{/ANNOUNCE]
undertaker 1.0”.

The challenge now is to find out a proper tag schema, which can be used to identify
the most common and important activities and/or practices in mailing list collaboration.
Also, in respect to folksonomy, these tags should already have their presence in develop-
ers’ mind; Lastly, if the tags could fit into the four categories of conversation action too,
it would lead to even better information retrieval result, because of the combination of
tagging and hierarchy classification. In the next chapter, selected mailing lists will be
analyzed to find out the existed tagging practices.

10

3 Analysis of Mailing Lists

In this chapter, four selected mailing lists of popular open source projects will be an-
alyzed. The purpose is try to find out whether developers are actually using tags in
email’s subject line, and which tags are used most frequently.

3.1 Data Source and Analysis Method

The projects, whose mailing lists were used for analyzing, were selected according to
their popularities ranked by the open source public directory Ohloh.net [22].

e Linux Kernel: Linux is a free software kernel, which combined with the GNU
libraries, core utils and shell form the GNU/Linux operating system.

e Apache HTTP Server: The Apache HTTP Server Project is a collaborative
software development effort aimed at creating a robust, commercial-grade, feature-
rich, and freely-available source code implementation of an HTTP (Web) server.
The project is jointly managed by a group of volunteers located around the world,
using the Internet and the Web to communicate, plan, and develop the server and
its related documentation. This project is part of the Apache Software Foundation.

e X.Org: X.Org provides an open source implementation of the network-transparent
X Window System, as well as working on the standard itself. The development
work is being done as part of the freedesktop.org community, sponsored by the
X.Org Foundation.

e Ubuntu: Ubuntu is by far the most popular Linux distribution.

3.1.1 Retrieving Messages

X.Org and Ubuntu use “GNU Mailman” as their mailing list systems. All the messages
are publicly available in the archives and can be downloaded in “mbox” format. Apache
HTTP Server uses another mailing list system but the message archives are also down-
loadable in “mbox” format. The mbox format as defined in RFC 4155 [11] is actually
a plain text file, in which email messages are concatenated in their original Internet
Message (RFC 2822) format.

The Linux Kernel Mailing Lists, on the other hand, did not provide downloadable
archives (There are 3rd party mbox packages, but are outdated). The message archives

11

3 Analysis of Mailing Lists

are, however, fully browsable on web (https://1lkml.org). Messages are organized in
days, each day has a corresponding URL. For example, the messages from April 1st, 2010
are listed on a page with the URL address “https://1lkml.org/1kml/2010/4/1” so the
pattern here is “https://1lkml.org/1lkml/ [yyyyl/[m]/[d]”. In addition, the message
list page is a valid XML document, this makes it possible to use a “page crawler” to scan
and fetch the messages, then use an XML Parser to extract the information needed, i.e.
the subject line of each message.

A small python program was written, when executed, the code will create a list con-
taining the URLs of the message list pages, Next step is visiting these URLs and fetching
the page contents.

The Python library urllib2 is used to fetch data from a remote location, the retrieved
data is sent to another function called process_page_content (), which stores the data
into files for further use. As mentioned above, the LKML’s message list page is a valid
XML document, so the information contained in the page can be extracted by parsing
the XML DOM Structure, this is completed with the following function:

def parse_html_file(file_path):
title_list = []
f = open(file_path)

xmldom = minidom. parseString (f.read ())
t_list = xmldom.getElementsByTagName(tr ")
for tl in t_list:
if tl.attributes.has_key(’class’):
cl = tl.attributes[’class’].value
if cl = 'c0’ or cl = ’cl’:
try:
a_text = tl.childNodes[1]. firstChild. firstChild.data
if len(a_text.strip()) > 0:
title_list .append(a_text + ’'\n’)
except AttributeError:
print ’Error encountered while processing XML data!’
continue

f.close ()
return title_list

For the analysis, only the subject line of each message is needed. In the XML document,
these lines are placed in the tr elements with the class “c0” and “cl1”, and they were
displayed as HTML hyperlinks. The above function first builds an XML DOM Tree
from the XML text, then selects all the tr elements, iterates them to locate those with
the correct classes, and extracts the text from the hyperlinks, then pushes those text,
which are the message subject lines, into a list.

Extracting the subject lines of messages from “mbox” files is easier. As said above,
“mbox” are in fact plain text format. In an “mbox” file, the beginning of each email
message is indicated by a line starts with five characters consist of “From” followed by

12

3.1 Data Source and Analysis Method

a space and the return path email address [11]. The subject line of each message is the
value of the “subject” header field: Header fields are lines composed of a field name,
followed by a colon ("), followed by a field body, and terminated by CRLF [10]. The
basic algorithm to find the subject lines is to iterate the “mbox” file line by line, locate
the lines star with “Subject: ” — these are the “subject” header fields — and extract
the text after the headers.

3.1.2 Analysis for Tag Frequency

Before getting started with the analysis, it should be clarified that, the “tags” being
analyzed are defined as the words containing in square brackets in the subject lines of
the messages. For example, given an email subject “[PATCH] kernel/cpu.c: Fix many
errors related to style”, the tag in this case is “PATCH”. Of course, tags could also be
written in any forms, such as in curly brackets or without any brackets just in upper
case letters; And there could be simply no tags at all. So, besides searching for square
brackets, it also makes sense to analyze the word frequency of the whole subject line as
well.

The tool for this analysis is a Python program “histogram.py” [19]. This program can
count the occurrence frequency of each words (except digits, punctuations and other
words that need to be filtered). The main part of the program is as following:
from string import split , maketrans, translate , punctuation, digits
import sys
from types import x
import types

def word_histogram (source):
777 Create histogram of normalized words (mno punct or digits)”””

hist = {}
trans = maketrans(’’, ')
words to be filtered
ign_-words = [’a’, 'vr’, 'v’, ’of’, ’to’, ‘re’]
for word in split (source):
word = translate (word, trans, punctuation + digits).lower ()

if len(word) > 0:
if not (word in ign_words):
hist [word] = hist.get(word, 0) + 1
return hist

def most_common (hist , num=1):
pairs = []
for pair in hist.items():
pairs.append ((pair[1], pair[0]))
pairs.sort ()
pairs.reverse ()
return pairs [:num]

13

3 Analysis of Mailing Lists

if __name.. = ’'__main__":
if len(sys.argv) > 1:
hist = word_histogram (open(sys.argv[1l]))
else:
hist = word_histogram (sys.stdin)

print ”The most common words:”
for pair in most_.common (hist , 25):
print str(pair[1]) + ’,’ + str(pair[0])

Basically, this program uses the Python dictionary to store each word and its occurrence,
sorts the items by occurrence and outputs the result. The analysis is interested only in
meaningful words, so some grammar components such as articles (“a”, “the”...) and
prepositions (“of”, “to”, “in”...). These words can be added into the list ign words.
This program takes either a string or a file as input. As the email subject lines are
retrieved and stored by the code in the previous section, the analysis for word frequency
can be started already. What still missing is the tags, which must be extracted from
the subjects. The simple way is using Regular Expression to find out square brackets as
well as the words in them. Example code are:
def analyse_title_tags(input_file):

all_tags = []

f = open(input_file)

bracket_pat = re.compile(r’\[(.*7)\]")

for line in f.readlines ():

if len(line) = 0:

continue
found = bracket_pat.search(line)
if found:

grps = found.groups()
for t in grps:
all_tags .append(t)

return all_tags

These code will iterate the file that contains all the message subjects line by line, in
each line it will search if it contains square brackets, if so, extract the word inside each
of the brackets and store them into a list. So, if a subject line is like “/ANNOUNCE]
xf86-video-ati 6.12.5”, the word “ANNOUNCE” will be extracted; If there are more
than one square bracket containing keywords, e.g. “[ANN][RFC] Plug-in XYZ", then
both “ANN” and “RFC” will be extracted.

3.2 Results and Interpretations

In this section, the results of the word/tag frequency are presented and examined. For
each project, the result contains the top 20 words and top 15 tags with the most occur-
rence from the mailing lists.

14

3.2 Results and Interpretations

3.2.1 Analysis Results

LKML

Table 3.1: Mailing List Analysis Result: LKML
Project: | Linux Kernel
Mailing List(s): | LKML
Data Source: | Archive emails from January 2007 to June 2010
Total Message Count: | 503,229
Messages with Tags: | 370,959 (73.7%)
Top 20 Words: | See Figure 3.3
Top 15 Tags: | See Figure 3.2

0%

80%
20% Tag
. patch
rfc
. bug
git
Other (Mails without Tags)
Other Tags

Number of Occurences

Figure 3.1: Percentage of tags in LKML

15

3 Analysis of Mailing Lists

N
o
|

Number of Occurences

|IIII|II...---_

Tag abbreviation

patch

pull
announce
linuxpm
resend
regression
patchv
patches
stable

Figure 3.2: The top 15 most frequently used tags in LKML

N
3
|

Number of Occurences

Words

remove
regression
rfcpatch

Figure 3.3: The top 20 most frequently used words in LKML

16

3.2 Results and Interpretations

Apache HTTP Server

Table 3.2: Mailing List Analysis Result: Apache HTTPD
Project: | Apache HTTP Server
Mailing List(s): | Development Main Discussion List (dev@httpd.apache.org)
Data Source: | Archive emails from January 2007 to June 2010
Total Message Count: | 13,293
Messages with Tags: | 2,714 (20.4%)
Top 20 Words: | See Figure 3.6
Top 10 Tags: | See Figure 3.5

0%

Tag

vote
patch

status
proposal
Other (Mails without Tags)

Other Tags

Number of Occurences

Figure 3.4: Percentage of tags in Apache HTTP Server development mailing list

17

3 Analysis of Mailing Lists

Tag abbreviation

N
©
|

Number of Occurences

vote

patch
status
proposal
modfcgid
more
issue
community

Figure 3.5: The top 10 most frequently used tags in Apache HTTP Server development
mailing list

10,

28

26

Number of Occurences

modfcgid
modproxy
tarballs
configuration

httpdhttpdtrunk

Words

Figure 3.6: The top 20 most frequently used words in Apache HTTP Server development
mailing list

18

3.2 Results and Interpretations

X.Org

Table 3.3: Mailing List Analysis Result: X.Org
Project: | X.Org
Mailing List(s): | X.Org user support and discussion
(xorg@lists.freedesktop.org)
Data Source: | Archive emails from January 2008 to June 2010
Total Message Count: | 20,213
Messages with Tags: | 4,856 (24%)
Top 20 Words: | See Figure 3.9
Top 15 Tags: | See Figure 3.8

0%

20% Tag

I patch
announce
rfc
xorg
Other (Mails without Tags)

Other Tags

Number of Occurences

Figure 3.7: Percentage of tags in X.Org user support mailing list

19

3 Analysis of Mailing Lists

210,

28

26 ||II|III

Tag abbreviation

Number of Occurences

patch
announce
xorg
intelgfx
issue
digest
rant
newb
mesaddev
xfvideointel
intel
xorgserver

Figure 3.8: The top 15 most frequently used tags in X.Org user support mailing list

n
o
1

Number of Occurences

< o @ o} 5 5 o} c = o kol c [0} c %] ‘=
S 5 5} 2 o [2 15} g S [193 <} @ 15} IS S
T X 5 £ £ 3 5 3 s & & 8 3 g § s £
o 3 S 3 8 @ °c 3 @ 2 B £ 9 s 3
13 x z = s @ ° a °
S > S o =3
14 x

Figure 3.9: The top 20 most frequently used words in X.Org user support mailing list

20

3.2 Results and Interpretations

Ubuntu

Table 3.4: Mailing List Analysis Result: Ubuntu
Project: | Ubuntu
Mailing List(s): | Ubuntu Development (ubuntu-devel@lists.ubuntu.com),
Bazaar Discussion (bazaar@lists.canonical.com) and Kernel
Team Discussions (kernel-team@lists.ubuntu.com)

Data Source: | Archive emails from the first message to June 2010

Total Message Count: | 113,271

Messages with Tags: | 42,405 (37.4%)

Top 20 Words: | See Figure 3.12

Top 15 Tags: | See Figure 3.11

0%

Tag

. merge
. patch
. rfc

bug
Other (Mails without Tags)
Other Tags

Number of Occurences

60% 40%

Figure 3.10: Percentage of tags in selected Ubuntu mailing list

21

3 Analysis of Mailing Lists

Number of Occurences
[\]

N
oo

2107 |III

Tag abbreviation

merge
patch
success
mergerfc
lucid
applied
jaunty
review
karmic
plugin
hardy

announce

Figure 3.11: The top 15 most frequently used tags in selected Ubuntu mailing list

12
2
10— IIIIIIIII.I..

Words

Number of Occurences

merge
patch
ubuntu
bazaar
support
branch
kernel
error
repository
request
file
default
update

Figure 3.12: The top 20 most frequently used words in selected Ubuntu mailing lists

22

3.2 Results and Interpretations

3.2.2 Representativity of Selected Mailing Lists

A survey has been conducted with support from the Open Source Research Group of
the University of Erlangen-Nuremberg. The purpose of this survey is to validate the
contributions in this thesis, based on the feedbacks from open source community.

There are several question groups in the survey. For this chapter, the most important
questions are whether the selected mailing lists are representative. These questions
include:

e “Do you think that the mailing lists of the following projects are good examples
for best practices of collaboration in mailing lists?”.

The answer options contain the four projects, whose mailing lists were analyzed
in the previous sections. Survey participants are required to give each project a
score by choosing from “1” to “5”, whereas score 1 means “No, there is not much
of best practices shown in this mailing list”, and score 5 means “Yes, one can find
lots of best practices in it”, If a user gives no answer, that means “I don’t know
enough about this mailing list”.

e “Do you think that the mailing lists of the following projects are representative
for all open source project’s mailing lists?”

Answer options are the same as the first question, while score 1 means “not rep-
resentative” and score 5 means “definitely, it is the blueprint for open source
projects”.
The survey result was processed in R, and the results of the two questions above are
shown in Table 3.5 and Table 3.6:

List Mean Standard Error Lower Bound Upper Bound
1 LKML 4.50 0.22 4.08 4.92
2 X.Org 4.40 0.23 3.94 4.86
3 Ubuntu 3.60 0.38 2.86 4.34
4 Apache 4.80 0.19 4.43 5.00

Table 3.5: Best Practices shown in Mailing Lists

List Mean Standard Error Lower Bound Upper Bound
1 LKML 4.50 0.22 4.08 4.92
2 X.Org 3.80 0.19 3.43 4.17
3 Ubuntu 4.20 0.19 3.83 4.57
4 Apache 4.40 0.38 3.66 5.00

Table 3.6: Representativity of Mailing Lists

23

3 Analysis of Mailing Lists

Results show that these four selected open source projects are representative, their
mailing lists contain good examples for best practices of collaboration as well. Since
Linux Kernel, Ubuntu and Apache are all among the top 10 most popular open source
projects ranked by Ohloh.net, this result is not surprising.

3.2.3 Comments to the Results

The analysis results of the selected mailing lists from the four open source projects show:

Tags are widely used. For the analyzed mailing lists, more than 20% of their
messages have used tags in the subjects. In LKML there are even as many as
73% of the messages using tags. This also indicates that the “annotation form”
— keywords within square brackets — is widely accepted.

Some tags (including their synonyms) not only have large number of usage, but
also are adopted across different projects’ mailing lists. Most notably: “Bug”,
“Patch”, “Announce” and “RFC”.

The frequently used words of each project reflect the project’s specific properties,
such as features or components. For example, in LKML, the frequently used
words “kernel”, “git”, “driver”, “mm” and “linux” are all highly relevant to the
development of Linux kernel. This may imply that the messages in the mailing
lists share a central context — the project itself.

Some frequently used tags are in accordance with the typical development process
and artifacts of open source projects. Notably “Announce”, “Proposal”, “Bug”
and “Patch”. The tag “Patch” has a dominate majority in almost all these lists,
this may be interpreted as when developers publish patch information in mailing
lists, they tend to use tag to emphasize them.

The top tag used in LKML — “Patch” — may indicate that the development of
Linux kernel is rather code-driven. Developers post patches directly into mailing
list and the discussions are also focused on patch information. While in the Apache
mailing lists, the top tag is “Vote”, this may be interpreted that a democratic
decision making is so important in the Apache community that such messages are
clearly flagged using tags. So the use of tags could also reflect the development
culture of different projects.

So far, the actual usage practices of tags in mailing lists have been examined. The
following chapters will try to bring up a proposal for a schema of tags as well as tools
that provide further support.

24

4 Proposal for Collaboration Patterns
Codification

Based on the “conversation for action” theory from chapter 2, as well as the analysis of
actual tag usage practices in mailing lists of selected open source projects from chapter
3, this chapter will try to propose a schema of tags that codify open source collaboration
patterns.

The identification criteria for the tags schema are:

e The tags should already be used by developers in mailing lists.
e The tags could be classified into the categories of “conversation for action”.

e The tags should conform with the process of open source software development.

4.1 Open Source Software Development Process

Open source software development can be divided into several phases [31]. Figure 4.1
shows the process-data structure of open source software development, including phases
and the corresponding data elements. The process starts with a choice between the
adopting of an existing project, or the starting of a new project. If a new project is
started, the process goes to the “Initiation” phase. If an existing project is adopted, the
process goes directly to the “Execution” phase.

4.2 Proposed Tags Schema

Currently, this thesis proposes a total of 10 tags: “Bug”, “Patch”, “Issue”, “RFC”,
“Tip”, “Proposal”, “Vote”, “Announce”, “Solved” and the so called “Project Name”,
which is actually the name or codename of a project.

4.2.1 Categorizations

7 of these 10 tags can be found in the most frequently used tags from the analysis results
in the previous chapter. So they should already be familiar to developers. The tags “Tip”
and “Solved” was inspired from many Internet forums: Posts with “Solved” in the title

25

4 Proposal for Collaboration Patterns Codification

[existing project]

N

[else]

(Initiation
A4

C Problem Discovery } - _-> Problem Description
(Finding Volunteers }

C Solution Identification }

(Execution

- -- > Development Team

- - - = Workplan

Y
<

Code Development and
Testing |
1
1
|
C Code Change Review } - - 9 - > Code
I
1 I%as a »
1 1
Code Commit and ; Code Documentation
Documentation - == =>>
Releasing
VY
C Release Management } - - - = Release 4_
\4
\/
-
[continue development]
[else]

Figure 4.1: Process-Data Model for open source software development [31]

26

4.2 Proposed Tags Schema

contain solutions, so that users who just seek for answers could save time by avoiding
open questions. Posts with “Tip” in the title often provide reusable information, worth
being collected.

A quick recall of Winograd’s “conversation for action” categories [35], along with the
intention of each type of conversations:

e Conversation for action: some actions to be taken.

e Conversation for clarification: obtaining more information.

e Conversation for possibilities: creating ideas or settling on several ideas.
e Conversation for orientation: to exchange information.

An email with the tag “Bug” has the purpose of reporting bugs, its intention is
therefore hoping the bug will be reviewed by developers and eventually be fixed. On
the other hand, an email with the tag “Patch” usually provides fixes for a certain bug,
this is also its intention. Judged by their intentions, the categorization of these 10 tags
using Winograd’s schema is shown in Table 4.1.

Table 4.1: Categorization of Tags (Conversation for Action)

Category Tags Comment

Tags for “action” Bug, Patch, Issue, RFC | Messages using these tags have
the intention of taking some ac-
tions, e.g. reporting bugs and
problems, providing fixes, re-
questing for comments.

Tags for “clarification” | Tip, Project Name Messages with the tag “Tip” usu-
ally tend to provide extra (useful)
information; Using project name
as tags could help users distin-
guish messages that refer to spe-
cific projects.

Tags for “possibilities” | Proposal, Vote Messages with the tag “Proposal”
have the intention of raising new
ideas or suggestions, while casting
votes has the intention of mak-
ing a decision, i.e. settling down

ideas.

Tags for “orientation” | Announce, Solved Messages with these tags declare
certain events that cause users’
awareness.

27

4 Proposal for Collaboration Patterns Codification

4.2.2 Usage Pattern of Each Tag

In this section, the usage patterns of the 10 tags will be explained in details. This
includes the usage context/scenario, tag’s appearance variants and usage suggestions.

Bug

This tag is to be used when an email references a bug report or discusses a bug. One
purpose of this tag is to allow bug tackers to automatically dispatch bug reports to
mailing lists. Another purpose is that people can talk about a bug they might have
found (Table 4.2).

Table 4.2: Usage Pattern of Tag “Bug”

Tag Name: | Bug

Variants: | [Bug], [Bug XXX] (XXX may be a number or string that refers to a
bug-id)
Context: | Mailing lists dedicated to the development; Most subscribers are devel-
opers; The project is in the execution phase
Problem: | How to quickly identify emails that are related to certain bugs?
Solution: | Write “[Bug]” as prefix in the email’s subject line, indicate that this
message is about reporting a bug. All the discussions that are related
to a bug should have this tag attached. Alternatively, there can also be
a bug id specified.
Comment: | Bug tracker systems could be configured to automatically send emails
with this tag — usually also with bug id — to mailing lists, when a bug
was created. Although discussions about a bug can take place directly
in the bug tracker, that is not a preferable way of communication [6].
Example: | Re: [BUG] khugepaged crashes on x86_32
[Bug 26922]USB: yurex: recognize GeneralKeys wireless presenter as
generic HID

Patch

This tag is used on emails that reference a patch (Table 4.3).

Issue

This tag is to be used on emails that report general issues, such as software runtime
errors, documentation errors etc. [Bug] is not used here because sometimes when a
problem appears, one can not confirm if it is really a bug or just another broken feature
(Table 4.4).

28

4.2 Proposed Tags Schema

Table 4.3: Usage Pattern of Tag “Patch”

Tag Name: | Patch

Variants: | [Patch], [Patch XXX] (XXX could be a serial number or part number
to identify this patch, or it can be an id number that is identical to the
bug id, in this case, this patch is the response to that bug.)

Context: | Development discussions; Projects in the execution phase.

Problem: | How to quickly identify emails about patch information (and their re-
lated bugs)?

Solution: | Use “[Patch]” as prefix in the email’s subject line, indicate that this
email provides patch/fix to a specific bug or issue. In order to locate the
specific bug to which this patch applies, the bug id can be added in the
tag. Alternatively, if a patch is divided into several emails, there can be
a part number in the tag, e.g. [Patch 1/4], [Patch 7/7].

Comment: | The two tags “Bug” and “Patch” could act as adjacent pair [7]. Bugs
and their corresponding patches (if available) should be “connected” by
the bug id or other identity.

Example: | Re: [PATCH] perf: Cure task_oncpu_function_call() races

Table 4.4: Usage Pattern of Tag “Issue”

Tag Name: | Issue

Variants: | [Issue], [Error], [Problem]

Context: | Mailing lists of general discussions or user supports; Projects in the
execution or releasing phase.

Problem: | For developers and supports, how can they quickly be notified for an
issue or problem report (in contrast to general rants)?

Solution: | Add “[Issue|” tag as prefix in the email’s subject line.

Comment: | With this tag, developers and/or supports can pay less attention in
reading and judging the whole email subject — not to mention in many
cases subjects are not written descriptive enough. Usually for this type
of emails, the sender are waiting for some answers (actions).

Example: | RE: [Issue] External links @ the wiki, aka pagechange wars

29

4 Proposal for Collaboration Patterns Codification

RFC

“RFC” is the acronym of “Request For Comment”. This tag is used to ask other
developers to give comments and feedbacks on certain features and/or functions (Table

4.5).
Table 4.5: Usage Pattern of Tag “RFC”
Tag Name: | RFC

Variants: | [RFC]

Context: | Development discussions

Problem: | How can developers quickly distinguish “request for comments” discus-

sions from bug/patch and other topics.

Solution: | Use “[RFC]” as prefix in the email’s subject line.

Comment: | The difference between “RFC” and “Proposal” is that emails tagged with
“RFC” focus more on the development phase, e.g. to start discussion
about a potential feature/function.

Example: | Re: [RFC] i2c-algo-bit: Disable interrupts while SCL is high
Tip

This tag marks the emails that provide useful information, but are not intended to start
a discussion (Table 4.6).

Table 4.6: Usage Pattern of Tag “Tip”

Tag Name: | Tip
Variants: | [Tip], [Tips|, [Hint]
Context: | Mailing lits of general discussions.
Problem: | How to share useful pieces of information better, so that users could
identify and collect them more easily?
Solution: | Add “[Tip|” as prefix to the email’s subject line.
Example: | [tip] some regedit tweaks to improve 3D performance in WINE

Name of Project

This tag is a bit special. Instead of a specific word, the name or codename of the project
will appear in the square brackets, e.g. [gwt], [kubuntu], [mailman-dev] etc. Sometimes
there are several projects or sub projects, which are discussed in the same mailing list,
so each project’s name or code-name is used as a tag, to group/distinguish them visually

(Table 4.7).

30

4.2 Proposed Tags Schema

Table 4.7: Usage Pattern of (Special) Tag “Project Name”

Tag Name: | Name of Project
Variants: | According to specific project
Context: | General discussions in a mailing list where several projects are involved;
Multiple projects/sub projects share a same mailing list.
Problem: | If several projects are being discussed in one same mailing list, how can
users easily distinguish topics of each project?
Solution: | Add project’s (code)name as prefix in the email’s subject line.
Comment: | The tag text should be short and unique, so using project’s codename is a
good practice. Mailing list system such as Mailman has the configuration
of adding a default prefix to the subject every message, this is the place
that the tag fits best.
Proposal

This tag is used on emails that propose an idea, mostly at the initial phase of a project

(Table 4.8).
Table 4.8: Usage Pattern of Tag “Proposal”
Tag Name: | Proposal
Variants: | [Proposal], [Idea], [Suggest]
Problem: | How to distinguish proposals from the mass? Because proposals gener-
ally bring up different attention.
Solution: | Use “[Proposal]” as prefix in the email’s subject line.
Comment: | Messages with this tag should focus on something creative, such as idea
initiating or brainstorming.
Example: | [PROPOSAL] add a sslport option
Vote

This tag indicates that this email starts a vote to make some decisions. One can reply
to the topic and include [+/-1] in the title to cast a quick vote (Table 4.9).

Announcement

This tag is to be used on "press release’-like emails. To announce news, important
changes, etc 4.10.

31

4 Proposal for Collaboration Patterns Codification

Table 4.9: Usage Pattern of Tag “Vote”

Tag Name: | Vote
Variants: | [Vote], [+1], [0], [-1]
Context: | General discussions; A decision needs to be made through voting.
Problem: | How to easily cast voting using emails?
Solution: | Add “[Vote]” as prefix in the email’s subject line. When reply the vote
topic, include either “[+1]” for agree or “[-1]” for disagree in the subjects.
One can also use “[0]” for no preference.

Comment: | The initial voting call uses “[Vote]” solely, participants cast vote by
replying in the thread and adding “[+1/0/-1]" in the subjects. The
result of the vote could be parsed by easily.

Example: | Re: [VOTE] Release httpd 2.3.6-alpha

Table 4.10: Usage Pattern of Tag “Announce”

Tag Name: | Announcement

Variants: | [Announce], [ANN], [Announcement]

Context: | General discussions; There are news to be published.
Problem: | How to quickly identify “press release”-like messages?
Solution: | Add “[Announce]” as prefix in the email’s subject line.
Example: | [ANN] Stable version 3.2 released!

32

4.3 Survey Result for Proposal Acceptance

Solved

This tag is inspired from QA-style forums. It reflects that a certain problem is solved.
It allows readers that just want the answer to a question or problem, to skip most of the
thread and read the answer right away without further exploring (Table 4.11).

Table 4.11: Usage Pattern of Tag “Solved”

Tag Name: | Solved

Variants: | [Solved]

Context: | In a discussion where certain problems get solved.

Problem: | How to quickly identify problems that are solved, i.e. closed questions?

Solution: | Add “[Solved]” as prefix in the email’s subject line when replying.
Comment: | Because email cannot be edited once sent, marking a thread as solved
does not works the same way like in forums, So use this tag in a reply
message.

4.3 Survey Result for Proposal Acceptance

The survey mentioned in chapter 3 also contains questions regarding to these proposed

tag schema. A description of each tag is given, survey participants can choose between

“Yes, the description is correct” and “No, the description is not correct”. When choosing

“No”, one can additionally give his or her own thoughts about the meaning of this tag.
The result is shown in Table 4.12.

Tag Acceptance Margin of Error at Margin of Error at
Confidence Level 95% Confidence Level 99%

1 Bug 1.00 0.00 0.00
2 Patch 1.00 0.00 0.00
3 Issue 0.78 0.21 0.28
4 RFC 0.78 0.21 0.28
5 Tip 1.00 0.00 0.00
6 Proposal 1.00 0.00 0.00
7 Vote 0.89 0.16 0.21
8 Announce 0.67 0.24 0.31
9 Solved 0.89 0.16 0.21
10 Project Name 1.00 0.00 0.00

Table 4.12: Acceptance rate of tag schema

33

4 Proposal for Collaboration Patterns Codification

Result indicates that the proposed tag schema has high acceptance rate. Under the
given margin of errors, more than 60% of the survey participants agree the definition of
each tag. Half of the tags are even agreed by 100% of the participants. One exception is
the tag “Announce”, its acceptance rate is relative low, however, the reason could be that
in the survey questions, this tag has used “ANN” as the tag text, some may think these
three letters have meanings other than “announcement”, or simply over-abbreviated.

4.4 Use Cases

The use cases of these tags are organized by the phases of open source development.

Project Initialization If a project is started from scratch, developers could use mailing
list to exchange ideas or workplans about this project, they may also need to
decide among several good ideas. In this case, the tags “Proposal” and “Vote” are
suitable. Project organizers can look for messages tagged with “[Proposal]” if they
want to focus on the project instead of other messages like self introductions.

Project execution Most development works happen in this phase. There are coding
and testing tasks, code reviews, code commit and documentation. Tags that are
especially suitable in this phase are “Bug”, “Patch”, “RFC”.

Project releasing A message with the tag “Announce” to declare the release of the
project may be the best choice. After release, there will also be support/mainte-
nance tasks: Issues reported by users need to be addressed, as well as answering
questions and solving problems. In this case the tags “Issue” and “Solved” and
“Tip” are suitable.

Generally, tags can be used as filter criteria, users could e.g. set their own filters to
obtain customized message lists that they want. This function, however, requires tool
supporting. Now that the tag schema has been validated, in chapter 5, the corresponding
tool supporting for this tag schema will be presented.

34

5 Design and Implementation of Tool
Supporting

The proposed tag schema has has the purpose of improving the efficiency of open source
collaboration. However as mentioned in chapter 1, today’s mailing list systems are
mostly generic, features such as “tagging a message” and “filter messages by tag” are
not supported. As the proposed codification schema has been validated, this chapter
will present the design and implementation of tools that provide support for the use of
tags in mailing lists: 1) A web-based form to enable users to add new tags as well as
edit existed tags. One can set various properties of a tag, e.g. name, description and
keywords that could be identified as this tag. This tool also support output of tag data
in JSON format, so that tag data could be utilized by 3rd party applications. 2) A
mailing list archiver, which, in addition to typical functions of a mailing list archiver
(email aggregation), also provide support for the use of tags, e.g. highlighting messages
with tags, filtering messages by tag, etc.

5.1 Requirement Analysis
For the web form, following requirements should be fulfilled:

e A set of properties that a tag should have needs to be defined, these properties
also need to be exported in JSON format.

e A form that can let users add new tags and edit various properties of a tag.

e Clients should be able to access tag data (the exportable data in JSON format)
via Internet.

This is a typical web application that performs data CRUD (Create/Retrieve/Update/Delete)
operations, it also serve as a data source for tag information. Implementing this appli-
cation based on a hosted platform (e.g. Google App Engine [8]) should be a proper
choice.

Some basic requirements for the mailing list archiver include:

e Ability to access an email server to fetch messages, archive them (in a proper form
of storage), and show them through a UL

35

5 Design and Implementation of Tool Supporting

e The relationships of messages in a mailing list (e.g. topics and its replies) should
be kept.

e Based on the tag data, it should be able to assign proper tags to a message by
parsing its subject.

e Support of filtering messages by tags.

Most current popular mailing list systems have built-in archivers, they provide simple
Web UI, where messages are organized by month or date and displayed in threads.
There are also dedicated mailing list archives which aggregate messages from many
mailing lists, make the messages browseable and searchable. Usually these archivers
have a more sophisticated UI for better experiences. Examples of such archivers are
“The Mail Archive [2]”, “MarkMail [4]”, “Gmane [14]” and “MARC [17]”. The archiver
application to be implemented is also a stand-alone, dedicated mailing list aggregator,
web-based, plus features that support the use of tags.

5.2 System Design

The application infrastructure from Google — Google App Engine — is chosen for the
simple form which do the tag editing, this application is thus quite simple to implement,
the important task is designing the data model of tags.

The mailing list archiver, on the other hand, should be implemented as a typical
multi-tier, data driven web application. Several design aspects need to be concerned,
namely the data modeling for email messages, mailing lists and tags, the mechanism to
access email inbox and fetch messages, the necessary Ul logics to display email threads,
and so on.

5.2.1 Data Modeling

Since the web form application is based on Google App Engine, the modeling of the
“Tag” entity is directly shown in code:

class EmailTag(db.Model):
name = db. StringProperty (required=True)
description = db. TextProperty(default="")
tag = db.StringProperty (default="")
keywords = db.StringListProperty ()
update_time = db.DateTimeProperty (auto_.now=True, auto_now_add=True)
example = db. TextProperty (default="")
author = db.UserProperty ()
version = db.IntegerProperty(default=1, required=True)

Most of the properties are text type and self-explained, worth to note is only the “key-
words” property. Its value is a list of strings, which are the keywords that are used to

36

5.2 System Design

identify this tag. For example, the tag “Announce” has keywords “ANN”, “Announce”
and “Announcement”, if any one of these three keywords is present in an email’s subject
line (more specifically, in the square brackets), then this message can be marked with
the “Announce” tag. This is the simplest algorithm for tagging a message.

Data Modeling for the Archiver Application

An Entity-Relationship Diagram for the mailing list archiver application is shown in
Figure 5.1. The main entity types in the archiver application are “Mailing List”, “Email”

Email Body

H1

1
1 n
Mailing List @ Email @

—_

n

Figure 5.1: Entity-Relationship Diagram for the Mailing List Archiver

and “Tag”. The important attributes of “Mailing List” include its name and its email
address for posting messages. “Email” has attributes that are in accordance with the
header fields of a message defined in RFC 2822 [10], e.g. “Sender”, “Subject”, “Message-
ID” and “References”, as shown in the diagram. The entity type “Email Body” is
separately modeled because of the consideration about possible database performance
issue. The body of an email may contain large amount of data, but normally, when a user
browse or search the archive, the contents of messages will not be listed immediately,
unless the user promptly requests i.e. clicks the subject to view the whole message.

37

5 Design and Implementation of Tool Supporting

5.2.2 Application Architecture

The mailing list archiver application, as described above, will be designed as a multi-
tier data driven web application. Its main architecture is illustrated in Figure 5.2. All

Web Ul

b

PC

Data Provider
RPC Server

)

ORM

Email fetch -

&
store

Predefined
Tag Data

ORM JSON

Figure 5.2: Main architecture of the mailing list archiver application

instances of the data model, i.e. entity set are stored in a database. The “Object-
relationship mapping” (ORM) technique is employed, so that the data model could be
represented in object, without concerning much about the underlying database-specific
aspects.

The tags information is retrieved from the web form and stored in the database. The
corresponded component will take care of tasks such as JSON format converting, web
access and caching. Another component will communicate with an email inbox and fetch
messages, then build instances of the email data model by using the header and body
values of each message, finally persist those instances into database.

On the front-end, the users will interact with a panel-based UI. There will be list
of mailing lists, list of messages (thread topics) that the current selected mailing list

38

5.3 System Implementation

contains, then if a topic is selected, the whole thread will be displayed, which include
subjects and contents.

The data that are presented in the front-end Ul was provided by a middle tier. The
necessary mechanism to get model instances out from database and logics for data
manipulation are performed by this component.

5.2.3 Toolkits and Frameworks

For the concrete technologies that can be employed to implement this application, the
following software, toolkits and frameworks are selected:

e PostgreSQL is chosen to implement the underlying database. It is a powerful,
open source object-relational database system, runs on different platforms, also
supports various enterprise level features [12].

e For the ORM functions, the Hibernate framework will be used. Hibernate is a col-
lection of related projects enabling developers to utilize POJO-style domain models
in their applications in ways extending well beyond Object/Relational Mapping
[13]. Hibernate has built-in SQL dialect that supports PostgreSQL.

e Because Hibernate is a Java-based framework, the programming language for the
archiver application has the clear choice: Java. There are lots of frameworks that
are specialized Java web development, among which, The Google Web Toolkit
(GWT) is selected in this case. GWT is a development toolkit for building and
optimizing complex browser-based applications. Its goal is to enable productive
development of high-performance web applications without the developer having
to be an expert in browser quirks, XMLHttpRequest, and JavaScript [9]. GWT
has its own ways to implement the communication between client JavaScript code
and the server-side code, one of them is “Remote Procedure Call” (PRC). GWT
RPC is a mechanism for passing Java objects to and from a server over standard
HTTP. You can use the GWT RPC framework to transparently make calls to Java
servlets and let GW'T take care of low-level details like object serialization. This
is shown in the architecture figure above.

e The component that handles email fetching will be written based on the JavaMail
API, which provides a platform-independent and protocol-independent framework
to build mail and messaging applications [20].

5.3 System Implementation

The whole application is created upon the basis of a GWT Project. The basis project has
already provided a skeleton of Java web application. All the 3rd party dependencies, e.g.

39

5 Design and Implementation of Tool Supporting

JDBC driver, Hibernate library files and JavaMail library can be referenced by placing
them in the “WEBINF/1ib” directory.

5.3.1 ORM and Persistence

Figure 5.3 shows the object-oriented data modeling of the main objects in the applica-
tion.

MailingList
id: Long
>— -
title: String Email
email: String
. id: Long
emails

messageld: String
references: String
sender: String

> to: String o—

cc: String

0..*

bcc: String

_o replyTo: String

subject: String

emailBody

EmailBody

dateTime: Date

tags

- 1-~1~\‘ bodyId: Long
EmallTag | emailText: Text
emailHtml: Text

tagId: Long Pl
tagFace: String o~
tagName: String

Figure 5.3: OO data modeling of the main objects in the archiver application

For Hibernate to automatically handle the ORM related tasks, such as creating
database schema and the entity classes, corresponding Hibernate mapping file for each
entity Java class must be created. Here shows the mapping file for the class “Email” as
an example:

<?xml version="1.0"7>
<!DOCTYPE hibernate —mapping PUBLIC
”—//Hibernate /Hibernate Mapping DID 3.0/ /EN”
"http://hibernate.sourceforge.net/hibernate —mapping —3.0.dtd”>
<hibernate —mapping>
<class name="de.fau.cs.osr.etikett.entity.Email” table="EMAILS”>
<id name="id” type="long” column="EMAIL_ID”>
<generator class="native” />
</id>
<property name="messageld” type="string” column="MESSAGEID” />
<property name="references” type="text” column="EMAILREFERENCES” />
<property name="sender” type="string” column="EMAILSENDER” />

40

5.3 System Implementation

<property name="to” type="text” column="EMAIL.TO” />
<property name="cc” type="text” column="EMAIL.CC” />
<property name="bcc” type="text” column="EMAILBCC” />
<property name="replyTo” type="string” column="EMAILREPLY TO” />
<property name="subject” type="string” column="EMAIL SUBJECT” />
<property name="dateTime” type="timestamp” column="EMAIL DATE TIME” />
<many—to—one name="emailBody”
class="de.fau.cs.osr.etikett.entity . EmailBody” column="BODY_ID”
unique="true” cascade="all” />
<set name="tags” table="EMAIL TAGGING”>
<key column="EMAILID” />
<many—to—many column="TAGID”
class="de.fau.cs.osr.etikett.entity . EmailTag” />
</set>
</class>
</hibernate —mapping>

An example of generated entity class “MailingList” is shown below:

public class MailingList implements java.io.Serializable {

private long id;

private String title;

private String email;

private Collection<Email> emails = new ArrayList<Email >(0);

public MailingList () {
}

public MailingList (String title , String email) {
this. title = title;
this.email = email;

}

public MailingList (String title , String email, Collection<Email> emails) {
this.title = title;
this.email = email;
this.emails = emails;

}

public long getId () {
return this.id;

}

public void setId(long id) {
this.id = id;

}

// Other getters and setters ...

41

5 Design and Implementation of Tool Supporting

The persisting of entities also uses standard Hibernate methods, an example here is
the persistence of a “Tag” instance.

// Helper class for SessionFactory
public class HibernateUtil {

private static final SessionFactory sessionFactory;

static {
try {
sessionFactory = (new Configuration ()).configure ()
.buildSessionFactory ();
} catch(Throwable ex) {
System.err.println (” Initial SessionFactory creation failed: ” + ex);
throw new ExceptionInlnitializerError (ex);

}
}

public static SessionFactory getSessionFactory () {
return sessionFactory;

}

// initialize the EmailTag table
public Long addEmailTag(EmailTag tag) {

Session sess = HibernateUtil. getSessionFactory ().openSession ();

Transaction trans = null;

Long tagld = null;

try {
trans = sess.beginTransaction ();
tagld = (Long)sess.save(tag);
trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return tagld;

42

5.3 System Implementation

5.3.2 Fetching, Tagging and Storing of Emails

The component that fetches messages from a email inbox has the workflow as shown in
Figure 5.4.

Read email server . . .
. . Mark email Still emails -
infomation from Finish
. L as read not processed?
configuration file
N
V. Yes
Connect to
. Add tag to
email server and S
email if
fetch unread)
applicable
messages
N
~
”
Y
Current email Create email

belongs to list? instance

ignore

Figure 5.4: Workflow of the email fetching component

One question here is how to obtain only unread emails. This can be accomplished by
using the search method of the Folder object:

Message [] messages = folder.search (new FlagTerm (new Flags(Flags.Flag.SEEN),
false)); // need only unread mails

The function of tagging a message is implemented in another component named
“EmailTitleParser”, it uses the “Strategy design pattern” [33], so that there can be
more than one algorithm defined to parse the subject of a message to determine if it
can be tagged. Currently only one simple algorithm is implemented — Using regular
expression to search for square brackets in the subject, extracting the keywords inside,
then see if they match any of the predefined tags.

Speak of predefined tags, they refer to the exported tags (in JSON format) from the
web form. There is also a “EmailTagDataProvider” that access the web from to get the

43

5 Design and Implementation of Tool Supporting

exported tags, cache them locally, and convert the JSON format into Java objects for
other components to use.
The complete source code of these components are listed in Appendix A.

5.3.3 Data Transfer Objects

Google Web Toolkit has its own mechanism to make the client JavaScript code be able
to call the server side methods (Figure 5.5).

ServiceDefTarget RemoteService Remote
(interface) (interface)

YourServiceAsync - YourService g YourServiceImpl
(interface) (interface) (class)

related
: B mported framework classes
B written by you

implements. YcurSEWiceProxy - Generated automatically
{class)
Translatable Java code Standard Java code
{runs as JavaScript on client) (runs as bytecode on server)

Figure 5.5: The RPC mechanism of GWT [9]

Under the hood, GWT will serialize the server side objects, so that they could trans-
fered to client side. But this serialization process cannot be applied to Hibernate objects
[3]. Unfortunately in this case, the entities of the application are all Hibernate objects.

One solution is using “Data Transfer Objects” (DTO). this introduces a light object
to go between the heavy Hibernate object and its data representation that the client
side care about. The DTO is a simple POJO only containing simple data fields that
the client side can access to display on the application page. The Hibernate objects can
then be constructed from the data in the data transfer objects. The DTOs themselves
will only contain the data that need to be persisted, but none of the lazy loading or
persistence logic, which cause the GW'T serialization failure.

44

5.3 System Implementation

Take the “MailingList” class as example. First, one more constructor needs to be
added so that the Hibernate object can be created from the DTO:

public MailingList (MailingListDTO mailingListDTO) {
this.id = mailingListDTO . getld ();
this. title = mailingListDTO . getTitle ();
this.email = mailingListDTO . getEmail ();
Collection <EmailDTO> emailDTOs = mailingListDTO . getEmails ();
if (emailDTOs != null) {
Collection <Email> emails = new ArrayList<Email>(emailDTOs. size ());
for (EmailDTO emailDTO : emailDTOs) {
emails.add (new Email (emailDTO));
}

this.emails = emails;

Then, in the logic where Hibernate objects are exposed to RPC, the DTOs are used
instead:

// list all the mailing lists at front page
public List<MailingListDTO> getMailingLists () {
Session sess = HibernateUtil. getSessionFactory (). openSession ();
Transaction trans = null;
List <MailingListDTO> listDTOs = null;
try {
trans = sess.beginTransaction ();
Query query = sess.createQuery (

"from MailingList ml order by ml. title asc”);
List<MailingList> lists = new ArrayList<MailingList >(query.list ());
listDTOs = new ArrayList<MailingListDTO >(

lists != null ? lists.size() : 0);
if(lists != null) {

for (MailingList ml : lists) {

listDTOs . add (createMailingListDTO (ml));
}

trans.commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess . close ();

}

return listDTOs;

}

private MailingListDTO createMailingListDTO (MailingList mailingList) {
return new MailingListDTO (mailingList.getId (), mailingList.getTitle (),
mailingList.getEmail ());

45

5 Design and Implementation of Tool Supporting

5.3.4 Web Ul

GWT provides lots of built-in UI components, allow developers to create a web Ul almost
without the need of doing client HTML coding. The archiver application has mainly used
the “LayoutPanels” to build the panel-based UI, and the “Data Presentation Widgets”
to build the message lists (Figure 5.6).

[Project Etikett

- C (@ pro.changke.net:8080/etikett/ O d A
Project Etikett Add Mailing List || Search || Fetch E-mails
Mailing Lists Starter Subject Reply / Date Thread
Apache (httpd) / Bryce Harrington Turbulence ahead: New X stack 2/2011-02- - D 3
apache org joal.com> coming to natty 0105:43 an Dbt per: a short guide
Catlovers / Kees Cook Re: Shall we hide the GUI for 0/2011-01- Emmet Hikory <persia@ubuntu.com> / Thu, 27 Jan 2011 06:01:01 +0100
inzy.info <kees. com> Hibernate in Natty? 31 20:55 .

. : I've heard and/or read a number of complaints over
Mobile Web / mobile- Steve Langasek gemu in natty 072011-01- about how the process of becoming an Ubuntu Develc
web@yahoogroups.com <steve langasek@ubuntu.com> 27 23:53 e -
Ubuntu(devii)“ll;zurn;: Benjamin Drung) Restructuring ubuntu-dev-tools? ;7’222_1;74"* I thought I'd write up a short guide to one of the

becoming a developer. I send this to the Ubuntu D¢
X.0rg dev / xorg- Emmet Hikory Becoming an Ubuntu Developer: a 0/2011-01- maximum distribution, although I realise that many
devel@lists.x.org <persia@ubuntu.com> short guide 27 08:01 already
Matthias Klose Natty test rebuild for ix86 (all 0/2011-01- developers, so won't find this as useful: please s
<doko@ubuntu.com> components) 26 21:52 pass
it on to those you know that are currently interes
W @ 1806 & W Ubuntu Developers (or extending the set of package
Filter by Tag have
ﬂANN"E!UG"ISSUEHPATCHHPmpﬂsalHRFC"SGWQGHTIFHVOTE‘ been granted upload rights).
Step 1: Membership
While it's not required to be an Ubuntu Member bet
be a developer, it is required that the criteria ¢
met
to be approved as a developer. In short, this mear
involved with and contributing to Ubuntu for some
about
a development cycle, although it can be shorter fg¢
strong contributions). Spend time interacting with
the community, and learn as much about how Ubuntu
is [+
= L | E——
© 2010-11 Ke Chang, Open Source Research Group, University of Erlangen-Nuremberg

Figure 5.6: Web UI of the mailing list archiver application

As stated in the requirements analysis, this archiver should list messages in threads,
much like a web forum, the middle panel shows only topic messages, as well as the
number of replies. If a user select a topic, the whole thread will be displayed in the right
panel. The GWT data presentation widget — in this case the “CellTable” — accepts a
Java List object and will iterate it automatically to show its contents. This list object
was obtained through RPC, so in the server side, a proper list of “topics” needs to be
built. This needs some Hibernate query tricks:

public Collection<Topic> getTopics(Long listId , String tagFace) {
Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
Collection <Topic> topics = null;

46

5.3 System Implementation

try {
trans = sess.beginTransaction (

);
MailingList list = (MailingList)sess.load (MailingList.class, listId);

Collection <Email> topicEmails null;
if (tagFace.length() = 0) {
// no tag specified, get all
topicEmails = new ArrayList(sess.createFilter(list.getEmails(),
"where this.references = "77).list ());

} else {
EmailTag tag = getEmailTagByFace(tagFace);
topicEmails = new ArrayList<Email>(
sess.createFilter (list .getEmails (),
"where this.references = '’ and :tag in
elements (this.tags)”).setParameter (”tag”, tag).list ());

}

topics = new ArrayList<Topic>(topicEmails != null ?
topicEmails.size () : 0);

if (topicEmails != null) {
for (Email email : topicEmails) {

// get reply count and last update time for each topic
Topic topic = new Topic(createEmailDTO (email));
Iterator results = sess.createQuery (
”select count(em),
max (em. dateTime)
from Email as em
where locate (:msg_id, em.references) > 0”)
.setString (" msg_id”
email . getMessageld ()).list ().iterator ();
if(results.hasNext()) {
Object [] row = (Object[]) results.next ();
Long replyCount = (Long)row [0];
Date lastUpdateTime = (Date)row[1];
if (replyCount > 01) {
topic.setReplyCount (replyCount);
topic.setLastUpdateTime (lastUpdateTime);
}
}
topics.add(topic);

}

trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess . close ();

}

return topics;

47

5 Design and Implementation of Tool Supporting

This function also does the “filtering by tag” task. On the web UI the available tags
are listed below the middle panel, If a user click a tag, then only topics with this tag
will be shown.

To decide if a message is a “topic”, one can check for its “references” field. If the
field value is empty, then this message should be a starting message, because it does not
reference any other messages. Also by checking this field, one can find out which other
message the current message replies to, so that it is easy to count the reply count of a
topic, as shown in the code snippet above.

5.3.5 Deployment

A GWT project needs be compiled by the GWT SDK before deployment. A JSP
container, e.g. Apache Tomcat is also needed. PostgreSQL server must be accessible by
the application, and the corresponding parameters such as database username, password
and database name need to be set in the Hibernate configuration files.

A email account should be setup before. This email will be used to subscribe mailing
lists, and its account information needs to be written in the application’s own configu-
ration file.

To enable emails being automatically checked after a certain period, a cronjob have
to be added to the operating system. The application provides a URL entry address,
the cronjob can use “wget” tool to initialize an local HIT' TP GET request and force the
component to retrieve emails.

5.4 Survey Result for Feature Acceptance

The survey mentioned in chapter 3 also contains question regarding to the main features
of the archiver application:

e While Mailman and The Mail Archive display emails of the same thread in a simple
"tree” form, our project and MarkMail display them in a "flat” form, like a web
forum, or the Gmail conversation view. What do you think about displaying email
threads in a ”flat” form?

e [assume that, certain emails with tags in their titles can be identified more quickly
because tags can attract your attention visually. I have included this feature in
my project, so that if it finds a certain tag, it will show it separately. What do
you think about this feature?

e Another good use is quick filtering by tags. Instead of typing search keywords, in

my project one can list the emails with a certain tag in one click. What do you
think about this feature?

48

5.5 Usage Scenario

The answers is a scoring from -2 to 2 (will be calculated as 1 to 5), means how much
the participants dislike or like such each feature.
The result is shown in Table 5.1.

List Mean Standard Error Lower Bound Upper Bound
1 Flat-Form Thread 4.56 0.24 4.08 5.00
2 Tags Highlight 4.44 0.34 3.78 5.00
3 Filter by Tag 4.67 0.33 4.01 5.00

Table 5.1: Feature Preferences of the Mailing List Archiver Application

Result shows that all these features have got more than an average score of 4.0, which
is high under the given standard errors. As was expected, these main features of the
archiver application are clearly endorsed by the participants. The reason could be that
the support of tags is unique, compared with other similar products. And the idea of
message tagging is also widely accepted, as shown in other survey results in previous
chapters.

5.5 Usage Scenario

The web form for tag editing provides a way of building folksonomy. FEveryone can
suggest new tags, or refine the keywords match set of current tags, so that these tags
can be used more precisely. Some screenshots of the application is shown in Figure 5.7
and Figure 5.8.

Once a mailing list is subscribed, one can add its name and email address into the
archiver application through a pop-up box. The application will update its message
database regularly following the time interval configured in cronjob. Users choose mailing
list to view the threads it contains, and then choose a thread to view all the messages
with content. If a message contains one of the keywords of a predefined tag, this tag
will be shown in the thread list to call the attention visually. Users can specify to show
only messages with a certain tag by clicking in the tag list area (Figure 5.9).

49

5 Design and Implementation of Tool Supporting

20

C (@ email-tags.appspot.com/tags

emailTags

Home Documentation = CurrentTags About
Announcement B rts Issues
Context: General Context: Mailing lists Context: General
discussion. There is some dedicated to the discussion. Projects in the
news ... development, ... execution ...
Patches Proposals RFCs
Context: Development Context: General Context: Development
discussion. Projects in the | | discussion, especially in discussion. Problem: How
execution ... the project’s .. can developers ...
Tips YVotes
Context: General Context: General
discussion. Problem: How = discussion. A decision
toshare ... needs o ..

Add New

{P) 2010, changke, OSR@FAU

Name of Project
Context: General
discussion in a mailing
list ..

Solved Problems
Context: In a discussion
where certain problem ...

«

Figure 5.7: Web UI listing current tags

» emailTags ~ a propos

C' | © email-tags.appspot.com/edit/1001

emailTags

Home Documentation Current Tags About
Name (required):
Bug Reports

Context: Mailing lists dedicated to the development, most
subscribers are developers. A project in the execution phase.

Problem: How to quickly address mails about bug report?

Solution: Use “[bug]” as prefix in an email's title to indicate that this [+
mail is all about reporting a bug. All discussion related to a bug

Tag Face:

BUG

Keyword Matches:

bug | Add | Del.

Example(s):

[BUG] System gets unresponsive since 2.6.35-rc1

[BUG] IPv6 stops working after a while, needs ip ne del command to
reset

g

Submit

(P) 2010, changke, OSR@FAU.

|28 g Aop Enion

oA

Figure 5.8: Web form for editing tag data

5.5 Usage Scenario

ajix
Project Etikett
« C (@ pro.changke.net:8080/etikett/ bl o i
Projec‘[Etikett Add Mailing List || Search || Fetch E-mails
Malling Lists Starter Subject Reply/Date [~ Thread]
Apache (httpd) / Ke Chang 0/2011-01- : :
e iom A [Catlovers] Noch was 16 23:46 [Catlovers] [todo] Etikett remains
Catlovers Ke Chang [Catiovers] Cron{ob 14201101 Ke Chang <changke@gmail.com> / Tue, 21 Dec 2010 21:15:20 +0100 i
inzy.info om> installed 09 11:36 . .
* polling to fetch emails (thread or crontab?)
Mogl\e Web / mobile- Ee Chaﬁ A Tiei g:eatlavers} ‘[an:num:e] g{; 123141;)1— * tag highlight
web@yahoogroups.com sinzy.info@geoglemail. com: mo is online! b peginaEronsel BRneals
Ubuntu (devel) / ubuntu- Ke Chang 14201101 O T
ubuntu.com om> el st HIMI 05 22:55 Yodnd
X.0rg dev / xorg- Ke Chang [Catlovers] [todo] Etikett 54201101~ g
x.org com> remains 05 18:05 ey
Ke Chang S [Catlovers] [issue] Still 2/2011-01- Ke Chang
<sinzy.net@gmail.com> pending 04 14:09
Ke Chang Proposal [Catlovers] [proposal] 14201012~ _| FAU Erlangen-Nirnberg
<changke@gmail.com> nos Lorem ipsum 09 15:43 ©| +4917620408397
Ke Chang Rre [Catlovers] [rfc] test for 04201012~ changke®gmail.com
<changke@gmail.com> tags in title 00 14:42 http://blog.sinzy.net/changke
Ke Chang [Catlovers] [todo] Project 1/2010-12- s 7
<changke@gmail.com> Etikett 05 22:39 Catlovers mailing list
o — = S Catloverselists.sinzy.info)
<changke@gmail.com> [Coiltees] Elumsmouos 15 11:01 http://lists.sinzy.info/listinfo.cgi/catlovers-
sinzy.info
Ke Chang [Catlovers] Thread starts 2/2010-11-
<changke@gmail.com> here! 1416:35
Ke Chang e 14201011
[Catlovers] H4&T2RFIM
ol g conE ARG Re: [Catlovers] [todo] Etikett remains
H 4 112012 b W Ke Chang <sinzy.net@gmail.com> / Tue, 21 Dec 2010 21:42:25 +0100
Filter by Tag | deployment?
[ann[BUG |issuE|[PaTeH]Proposall[RFc][sowved|[TiR [voTE] -~
© 201011 Ke Chang, Open Source Research Group, University of Enangen-Nuremberg

Figure 5.9: Mailing List Archiver highlights Tags

51

6 Conclusion and Perspective

This chapter summarizes and concludes the works done by this thesis as well as potential
improvements in the future.

6.1 Conclusion

The main concern of this thesis is the collaboration practices in open source software
development. More specifically, the purpose of the works is to propose a way that can
improve the efficiency of collaboration using mailing lists. The idea is to introduce an
annotation schema that is used to flag the messages in a mailing list as different types,
this in turn provides developers better control to the information flow they consumes,
thus can make the collaboration run more effectively.

To do this, analysis have been conducted on selected mailing lists of several popular
open source projects to find out the usage patterns of developers. For example, reporting
bugs, submitting patches, announcing releases, casting votes and so on. These patterns
are codified into several tags — most of which are already being used in mailing lists
as prefixes to the subject lines of messages. In addition to the practical usage, the tag
schema also conform with the “conversation for action” theory as well as the open source
development process.

Besides the proposal of tag schema, this thesis also contributes tool supporting for it.
With the web form, the tag schema can be continually developed and refined. The mail-
ing list archiver application provides supports to the tags, e.g. highlights tags which a
message may contain, organizes messages into threads and allows users to filter messages
by tag.

A survey was conducted as a validation to the representativity of mailing list data
source, the acceptance of tag schema and the feature set of the archiver application.
Current result shows a positive response.

6.2 Perspective

The contributions of this thesis are still explorative, potential improvements could be
found in following points:

53

6 Conclusion and Perspective

e The tag schema could be extended, in order to represent the best practices of open

source collaboration more accurately. Despite of the popularity of the projects,
the number of mailing lists analyzed in this thesis is still limited.

The tag schema are provided as JSON format data by the web form. One purpose
of this design is aiming to provide data for 3rd party usage. There could be more
tool that use these data to integrate the tag schema. For example, an email client
software could possibly use the data to provide assistance features like tag auto-
complete.

The mailing list archiver application is still in prototype stage. It could implement
more features such as full-text search, auto-actions based on message types, for
example, it could automatically dispatch a bug report message to a project man-
agement system, or it could show the result of a vote by counting the “+1/-1”
tags in the thread. Eventually it could evolve to a new type of information and
collaboration hub for open source software development.

6.3 Acknowledgement

My thanks go to the Open Source Research Group ! of University of Erlangen-Nuremberg,
especially my thesis supervisor Prof. Dirk Riehle and Dipl.-Inf. Carsten Kolassa for their
great ideas and supports.

lhttp://osr.cs.fau.de/

o4

7 Appendix: Source Code Listing

List of important source code of the mailing list archiver application.

7.1 Hibernate Entity Mapping Files

7.1.1 Email.hbm.xml

<?xml version="1.0"7>
<!DOCTYPE hibernate —mapping PUBLIC

”—//Hibernate /Hibernate Mapping DID 3.0/ /EN”

"http://hibernate.sourceforge.net/hibernate —mapping —3.0.dtd”>
<hibernate —mapping>

<class name="de.fau.cs.osr.etikett.entity.Email” table="EMAILS”>

<id name="id” type="long” column="EMAIL_ID”>
<generator class="native” />

</id>

<property
<property
<property
<property
<property
<property
<property
<property
<property

name="messageld” type="string” column="MESSAGEID” />
name="references” type="text” column="EMAIL REFERENCES” />
name="sender” type="string” column="EMAILSENDER” />
name="t0” type="text” column="EMAIL.TO” />

name="cc” type="text” column="EMAIL.CC” />

name="bcc” type="text” column="EMAILBCC” />

name="replyTo” type="string” column="EMAILREPLY.TO” />
name="subject” type="string” column="EMAIL SUBJECT” />
name="dateTime” type="timestamp” column="EMAILDATE TIME” />

<many—to—one name="emailBody”
class="de.fau.cs.osr.etikett.entity . EmailBody” column="BODY_ID”
unique="true” cascade="all” />
<set name="tags” table="EMAILTAGGING”>
<key column="EMAILID” />
<many—to—many column="TAG_ID”
class="de.fau.cs.osr.etikett.entity . EmailTag” />

</set>
</class>

</hibernate —mapping>

7.1.2 EmailBody.hbm.xml

<?xml version="1.0"7>
<!DOCTYPE hibernate —mapping PUBLIC
”—//Hibernate /Hibernate Mapping DID 3.0//EN”

%)

7 Appendix: Source Code Listing

"http://hibernate.sourceforge.net/hibernate —mapping —3.0.dtd”>
<hibernate —mapping>
<class name="de.fau.cs.osr.etikett.entity . EmailBody” table="EMAIL BODIES”>
<id name="bodyld” type="long” column="BODY_ID”>
<generator class="native” />
</id>
<property name="emailText” type="text” column="EMAILTEXT” />
<property name="emailHtml” type="text” column="EMAILHTML” />
</class>
</hibernate —mapping>

7.1.3 EmailTag.hbm.xml

<?xml version="1.0"7>
<!DOCTYPE hibernate —mapping PUBLIC
”—//Hibernate /Hibernate Mapping DID 3.0/ /EN”
"http://hibernate.sourceforge.net/hibernate —mapping —3.0.dtd”>
<hibernate —mapping>
<class name="de.fau.cs.osr.etikett.entity.EmailTag” table="EMAIL TAGS”>
<id name="tagld” type="long” column="TAGID">
<generator class="native” />
</id>
<property name="tagFace” type="string” column="TAGFACE” />
<property name="tagName” type="string” column="TAGNAME” />
</class>
</hibernate —mapping>

7.1.4 MailingList.hbm.xml

<?xml version="1.077>
<!DOCTYPE hibernate —mapping PUBLIC
”—//Hibernate /Hibernate Mapping DID 3.0/ /EN”
"http://hibernate.sourceforge.net/hibernate —mapping —3.0.dtd”>
<hibernate —mapping>
<class name="de.fau.cs.osr.etikett.entity.MailingList” table="MAILING_LISTS”>
<id name="id” type="long” column="LIST_ID”>
<generator class="native” />
</id>
<property name="title” type="string” column="LIST_ TITLE” not—null="true’
unique="true” />
<property name="email” type="string” column="LIST_EMAIL” not—null="true”
/>
<bag name="emails” cascade="all”>
<key column="LIST_ID” />
<one—to—many class="de.fau.cs.osr.etikett.entity.Email” />
</bag>
</class>
</hibernate —mapping>

)

26

7.2 Server Side Code

7.2 Server Side Code

7.2.1 EmailFetcher.java
package de.fau.cs.osr.etikett.server;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.Properties;

import javax.mail. AuthenticationFailedException;
import javax.mail.BodyPart;

import javax.mail.Flags;

import javax.mail.Folder;

import javax.mail.FolderClosedException;
import javax.mail.FolderNotFoundException;
import javax.mail.Message;

import javax.mail.MessagingException;
import javax.mail.Multipart;

import javax.mail.NoSuchProviderException;
import javax.mail.Part;

import javax.mail.Session;

import javax.mail.Store;

import javax.mail.StoreClosedException;
import javax.mail.Flags.Flag;

import javax.mail.internet.InternetAddress;
import javax.mail.search.FlagTerm;

import org.apache.commons.lang.StringUtils;

import de.fau.cs.osr.etikett.entity .Email;

import de.fau.cs.osr.etikett.entity .EmailBody;

import de.fau.cs.osr.etikett.entity.EmailTag;

import de.fau.cs.osr.etikett.server.titleparser.EmailTagEx;

import de.fau.cs.osr.etikett.server.titleparser.EmailTitleParser;
import de.fau.cs.osr.etikett.server.titleparser.EmailTitleParsingResult;
import de.fau.cs.osr.etikett.server.titleparser.EmailTitleParsingSimple;
import de.fau.cs.osr.etikett.util.SimpleConfigUtil;

public class EmailFetcher {

” "

private String imapHost = ;

private String imapUserName = ;

private String imapPassword = 77 ;

private EmailTitleParser titleParser = null;

private EntityCruder cruder = null;

57

7 Appendix: Source Code Listing

public EmailFetcher () {
SimpleConfigUtil scu = new SimpleConfigUtil ();
this.imapHost = scu.getConfig ("IMAP HOST”);
this.imapUserName = scu.getConfig ("IMAP_USERNAME”);
this.imapPassword = scu.getConfig ("IMAP PASSWORD”);

this.titleParser = new EmailTitleParser (new EmailTitleParsingSimple ());
this.cruder = new EntityCruder ();

}

private boolean belongToList (Message message, String listEmail) {
try {
String allRecipients = InternetAddress
.toString (message. getAllRecipients ());
if(StringUtils.contains (allRecipients , listEmail)) {
return true;
1 else {
return false;

} catch(MessagingException e) {
e.printStackTrace ();
return false;

}
}

public void fetchGmail(String listEmail, Long listId) {
String host = this.imapHost;
String userName = this.imapUserName;
String password = this.imapPassword;

Properties props = System.getProperties ();

props.setProperty (”mail.store.protocol”, ”"imaps”);
Session session = Session.getDefaultInstance (props, null);
try {

Store store = session.getStore(”imaps”);

store.connect (host, userName, password);
Folder folder = store.getDefaultFolder ();
folder = folder.getFolder ("INBOX”);
folder .open(Folder .READ WRITE) ;

Message [| messages = folder.search (
new FlagTerm (new Flags(Flags.Flag.SEEN), false));

Collection <Email> emails = new ArrayList<Email >(0);
for (Message message : messages) {
if (belongToList (message, listEmail)) {

emails.add (buildEmailObject (message));
message . setFlag (Flag .SEEN, true); // mark email as read

o8

7.2 Server Side Code

}
}

folder.close(true);
store.close ();

this.cruder.batchAddEmailsToList (emails, listId);
catch(AuthenticationFailedException e) {
e.printStackTrace ();
catch(NoSuchProviderException e) {
e.printStackTrace ();
catch(FolderClosedException e) {
e.printStackTrace ();
catch(FolderNotFoundException e) {
e.printStackTrace ();
catch(StoreClosedException e) {
e.printStackTrace ();
catch(MessagingException e) {
e.printStackTrace ();

R e e s R

}

private Email buildEmailObject (Message message) {
Email email = new Email ();
try {
// message id
String messageld = StringUtils. join (
message . getHeader (” message—id”));
email.setMessageld (messageld);

// references

String references = StringUtils. join (
message . getHeader (" references”));
email . setReferences(references != null ? references : ”7);

// from / sender
String from = InternetAddress.toString (message.getFrom());

email.setSender (from);
// replyTo
String replyTo = InternetAddress.toString (message.getReplyTo());
email.setReplyTo(replyTo);
// to
String to = InternetAddress.toString(
message . getRecipients (Message . RecipientType .TO));
email.setTo(to);
// co
String cc = InternetAddress.toString(
message . getRecipients (Message. RecipientType .CC));
email.setCc(cc);
// bee
String bcc = InternetAddress.toString(
message . getRecipients (Message. RecipientType .BCC));

29

7 Appendix: Source Code Listing

60

}
}
}

email.setBcc(bce);

// subject

String subject = message.getSubject ();
email.setSubject (subject);

// dateTime

Date sentDateTime = message.getSentDate ();
email . setDateTime (sentDateTime);

// email body
Object content = message.getContent ();
String emailBodyText = 77 ;
if (content instanceof Multipart) {
Multipart multipart = (Multipart)content;
for(int i = 0; i < multipart.getCount (); i++) {
BodyPart bodyPart = multipart.getBodyPart (i);
String disposition = bodyPart.getDisposition ();
if (disposition != null
&& (disposition.equals (Part ATTACHMENT))) {
// how to handle attachment(s) here?
continue;
} else {
emailBodyText = bodyPart.getContent (). toString ();
}
}
} else {
emailBodyText = content.toString ();
}
EmailBody emailBody = new EmailBody ();
emailBody .setEmailText (emailBodyText);
email . setEmailBody (emailBody);

// time to parse title for tags
EmailTitleParsingResult parseResult =
this. titleParser.parse(subject);

ArrayList<EmailTagEx> matchedTags = parseResult.getMatchedTags ();

if (matchedTags.size () > 0) {
for (EmailTagEx tagEx : matchedTags) {
EmailTag tag =
this.cruder.getEmailTagByFace (tagEx.getTag ());
if (tag != null) {
email.getTags ().add(tag);
}
}
}

catch (MessagingException e) {
e.printStackTrace ();

catch (IOException e) {
e.printStackTrace ();

return email;

7.2 Server Side Code

}
7.2.2 EntityCruder.java

package de.fau.cs.osr.etikett.server;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;

import org.hibernate.HibernateException;
import org.hibernate.Query;

import org.hibernate. Session;

import org.hibernate. Transaction;

import de.fau.cs.osr.etikett.client.dto.BuglnfoDTO;
import de.fau.cs.osr.etikett.client.dto.EmailBodyDTO;
import de.fau.cs.osr.etikett.client.dto.EmailDTO;
import de.fau.cs.osr.etikett.client.dto.EmailTagDTO;
import de.fau.cs.osr.etikett.client.dto.MailingListDTO ;
import de.fau.cs.osr.etikett.client.dto.PatchInfoDTO;
import de.fau.cs.osr.etikett.client.dto.Topic;
import de.fau.cs.osr.etikett.entity.Buglnfo;

import de.fau.cs.osr.etikett.entity.Email;

import de.fau.cs.osr.etikett.entity .EmailBody;
import de.fau.cs.osr.etikett.entity.EmailTag;

import de.fau.cs.osr.etikett.entity.MailingList;
import de.fau.cs.osr.etikett.entity.Patchlnfo;
import de.fau.cs.osr.etikett.util.HibernateUtil;

/+ Everything CRUD x/
public class EntityCruder {

// create a mailing list
public Long createMailingList (MailingListDTO mailingListDTO) {
MailingList list = new MailingList (mailingListDTO);
Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
Long listld = null;
try {
trans = sess.beginTransaction ();
listId = (Long)sess.save(list);
trans.commit ();

61

7 Appendix: Source Code Listing

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return listId;

}

// list all the mailing lists at front page
public List<MailingListDTO> getMailingLists () {
Session sess = HibernateUtil. getSessionFactory (). openSession ();
Transaction trans = null;
List <MailingListDTO> listDTOs = null;
try {
trans = sess.beginTransaction ();
Query query = sess.createQuery (

"from MailingList ml order by ml. title asc”);
List<MailingList> lists = new ArrayList<MailingList >(query.list ());
list DTOs = new ArrayList<MailingListDTO >(

lists != null ? lists.size() : 0);
if(lists != null) {

for (MailingList ml : lists) {

listDTOs . add (createMailingListDTO (ml));
}

}

trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return listDTOs;

}

// when fetching emails we need all the ids of the lists
public List<MailingList> getMailingListsForFetching () {
Session sess = HibernateUtil. getSessionFactory (). openSession ();
Transaction trans = null;
List<MailingList> lists = null;
try {
trans = sess.beginTransaction ();
Query query = sess.createQuery (

"from MailingList ml order by ml. title asc”);
lists = new ArrayList<MailingList >(query.list ());
trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

62

7.2 Server Side Code

}

} finally {
sess.close ();
}

return lists;

// add one email
public void addEmailToList (Email email, Long mailingListId) {

}

Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
try {
trans = sess.beginTransaction ();
MailingList list = (MailingList)sess.load (
MailingList .class, mailingListId);
list .getEmails ().add(email);
trans.commit ();
} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();
} finally {
sess.close ();
}

// add more emails
public void batchAddEmailsToList (Collection <Email> emails ,

}

Long mailingListId) {
Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
try {
trans = sess.beginTransaction ();
MailingList list = (MailingList)sess.load (
MailingList .class, mailingListId);
list .getEmails ().addAll (emails);
trans.commit ();
} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();
} finally {
sess.close ();

}

// when setting tags for emails, we need fetch the tag first
public EmailTag getEmailTagByFace(String tagFace) {

Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
EmailTag tag = null;
try {
trans = sess.beginTransaction ();

63

7 Appendix: Source Code Listing

tag = (EmailTag) sess.createQuery (
"from EmailTag as et where et.tagFace = :tag_face”)
.setString ("tag_face”, tagFace).uniqueResult ();
trans .commit ();
} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();
} finally {
sess.close ();
}

return tag;

}

// initialize the EmailTag table
public Long addEmailTag(EmailTag tag) {

Session sess = HibernateUtil. getSessionFactory ().openSession ();

Transaction trans = null;

Long tagld = null;

try {
trans = sess.beginTransaction ();
tagld = (Long)sess.save(tag);
trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return tagld;

}

// get all the emails (with bodies) from one list, not recommended
public Collection <EmailDTO> getEmailsFromList (Long mailingListId) {
Session sess = HibernateUtil. getSessionFactory ().openSession ();

Transaction trans = null;

Collection <EmailDTO> emailDTOs = null;

try {
trans = sess.beginTransaction ();
MailingList list = (MailingList)sess.load(

MailingList .class, mailingListId);

Collection <Email> emails = list .getEmails ();
emailDTOs = new ArrayList<EmailDTO>(

emails != null ? emails.size() : 0);
if (emails != null) {
for (Email email : emails) {

emailDTOs. add (createEmailDTO (email));

}
}

trans .commit ();
} catch(HibernateException e) {

64

7.2 Server Side Code

trans.rollback ();
e.printStackTrace ();
} finally {
sess.close ();
}

return emailDTOs;

}

public Collection<Topic> getTopics(Long listId , String tagFace)

Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
Collection <Topic> topics = null;
try {

trans = sess.beginTransaction ();

MailingList list = (MailingList)sess.load (

MailingList .class, listId);
Collection <Email> topicEmails = null;

if (tagFace.length() = 0) {
// mo tag specified, get all
topicEmails = new ArrayList (
sess.createFilter (list .getEmails (),
"where this.references = 777).list ());
1 else {

EmailTag tag = getEmailTagByFace(tagFace);
topicEmails = new ArrayList<Email>(
sess.createFilter (list .getEmails (),
?where this.references = 7’ and :tag in
elements (this.tags)”).setParameter (”tag”, tag).list ());

}

topics = new ArrayList<Topic>(

topicEmails != null ? topicEmails.size() : 0);
if (topicEmails != null) {
for (Email email : topicEmails) {

// get reply count and last update time for each topic
Topic topic = new Topic(createEmailDTO (email));
Iterator results = sess.createQuery (
"select count(em), max(em.dateTime) from Email as em
where locate (:msg_id, em.references) > 0”)
.setString ("msg_id” ,
email.getMessageld ()). list ().iterator ();
if (results.hasNext()) {
Object [] row = (Object[]) results.next ();
Long replyCount = (Long)row [0];
Date lastUpdateTime = (Date)row[1];
if (replyCount > 01) {
topic.setReplyCount (replyCount);
topic.setLastUpdateTime (lastUpdateTime);
}
}

65

7 Appendix: Source Code Listing

66

topics.add(topic);

}

trans .commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return topics;

}

public Collection <EmailDTO> getThreadEmails (String topicMessageld ,
Long topicld) {

Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;
Collection <EmailDTO> threadEmailDTOs = null;
try {
trans = sess.beginTransaction ();

Query qry = sess.createQuery (
"from Email as em where locate(?, em.references) > 0
order by em.dateTime”);
qry .setString (0, topicMessageld);
Collection <Email> threadEmails = qry.list ();
threadEmailDTOs = new ArrayList<EmailDTO>(
threadEmails != null ? threadEmails.size() : 0);
// fetch topic
Email topicEmail = (Email)sess.load (Email.class, topicld);
threadEmailDTOs . add (createEmailDTO (topicEmail));
if (threadEmails != null) {
for (Email email : threadEmails) {
threadEmailDTOs . add (createEmailDTO (email));
}
}
trans.commit ();
} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();
} finally {
sess.close ();

}

return threadEmailDTOs;

}

// return all tags, for showing on front page to filter emails
public List <EmailTagDTO> getAllTags () {
Session sess = HibernateUtil. getSessionFactory ().openSession ();
Transaction trans = null;

7.2 Server Side Code

List <EmailTagDTO> tagDTOs = null;

try {
trans = sess.beginTransaction ();
Query query = sess.createQuery (

A

”from EmailTag where tagFace != order by tagFace”);
List <EmailTag> tags = new ArrayList<EmailTag>(query.list ());
tagDTOs = new ArrayList<EmailTagDTO>(

tags != null ? tags.size() : 0);
if (tags != null) {

for (EmailTag tag : tags) {

tagDTOs . add (createEmailTagDTO (tag));

}

trans.commit ();

} catch(HibernateException e) {
trans.rollback ();
e.printStackTrace ();

} finally {
sess.close ();

}

return tagDTOs;

}

// Hibernate objects to DIO transformation
private MailingListDTO createMailingListDTO (MailingList mailingList) {
return new MailingListDTO (mailingList . getId (),
mailingList. getTitle (), mailingList.getEmail());
}

private EmailDTO createEmailDTO (Email email) {

Set<EmailTag> tags = email.getTags();
Set<EmailTagDTO> tagDTOs = new HashSet<EmailTagDTO>(

tags != null ? tags.size() : 0);
if(tags != null) {

for (EmailTag tag : tags) {

tagDTOs. add (createEmailTagDTO (tag));
}

EmailBodyDTO bodyDTO = createEmailBodyDTO (email.getEmailBody ());

return new EmailDTO(email.getId (), email.getMessageld (), email.getReferences(),
email.getSender (), email.getTo(), email.getCc(),
email.getBcc (), email.getReplyTo(), email.getSubject (),
email . getDateTime (), bodyDTO, tagDTOs);

}

private EmailTagDTO createEmailTagDTO (EmailTag tag) {
return new EmailTagDTO (tag.getTagld (), tag.getTagFace(),
tag.getTagName ());

67

7 Appendix: Source Code Listing

private EmailBodyDTO createEmailBodyDTO (EmailBody body) {
EmailBodyDTO bodyDTO = new EmailBodyDTO ();
bodyDTO . setBodyld (body . getBodyld ());
bodyDTO . setEmailText (body . getEmailText ());
bodyDTO. setEmailHtml (body . getEmailHtml ());
return bodyDTO;

}

private BugInfoDTO createBugInfoDTO (BugInfo buglnfo) {
// TODO

return null;

}

private PatchInfoDTO createPatchInfoDTO (PatchInfo patchInfo) {
// TODO

return null;

}
}
7.2.3 EmailTagDataProvider.java

package de.fau.cs.osr.etikett.server.titleparser;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.lOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net .URL;

import java.util.ArrayList;

import org.json.JSONArray;

import org.json.JSONException;
import org.json.JSONObject;

public class EmailTagDataProvider {

private String cacheFileContent ;

public String getCacheFileContents () {
return this.cacheFileContent ;

}

public EmailTagDataProvider () {
// check if cache ezists

68

7.2 Server Side Code

File cacheFile = new File(” /tmp/etikett/email—tags.json”);
boolean cacheExists = cacheFile.exists ();
if (cacheExists) {
// read cache file into a string
try {
BufferedReader in = new BufferedReader (
new FileReader (cacheFile));
StringBuilder sb = new StringBuilder ();
String line;
while ((line = in.readLine()) != null) {
sb.append(line);

}

in. close ();

this.cacheFileContent = sb.toString ();
} catch(IOException e) {
e.printStackTrace ();

} else {
// check if dir exzist
File cacheFolder = new File(” /tmp/etikett”);
if (!cacheFolder.exists ()) {
cacheFolder . mkdir ();

}

// download json file for caching
URL url;

InputStream is = null;
BufferedReader br;

String line;

BufferedWriter bw = null;

try {
url = new URL(” http://email—tags.appspot.com/json”);
is = url.openStream ();

br = new BufferedReader (new InputStreamReader(is));

StringBuilder sb = new StringBuilder ();

while ((line = br.readLine()) != null) {
sb.append(line);

}

this.cacheFileContent = sb.toString ();

// save json file
bw = new BufferedWriter (new FileWriter (cacheFile));
bw.write (this.cacheFileContent);

} catch(MalformedURLException e) {
e.printStackTrace ();

} catch(IOException e) {
e.printStackTrace ();

} finally {

try {

69

7 Appendix: Source Code Listing

is.close ();
bw. close ();

} catch(IOException e) {
e.printStackTrace ();

}
}
}
}

public ArrayList<EmailTagEx> getEmailTags () {
// create json object
ArrayList <EmailTagEx> emailTags = new ArrayList<EmailTagEx >();
try {
JSONArray tags = new JSONArray(this.cacheFileContent);
for(int i = 0; 1 < tags.length(); i++) {
JSONObject tag = tags.getJSONODbject(i);
EmailTagEx emailTag = new EmailTagEx ()
emailTag.setName (tag.getString (”name”)
emailTag.setDescription (tag.getString (
emailTag.setTag(tag.getString ("tag”));
JSONArray tagKeywords = tag.getJSONArray(”keywords”);
for(int j = 0; j < tagKeywords.length (); j++) {
emailTag . getKeywords ().add (tagKeywords. getString (j));

}

emailTags.add (emailTag);

~—

)

description”));

}
} catch (JSONException e) {

// TODO Auto—generated catch block
e.printStackTrace ();

}

return emailTags;
}
}

7.2.4 EmailTitleParsingSimple.java

package de.fau.cs.osr.etikett.server.titleparser;

import java.util.ArrayList;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class EmailTitleParsingSimple implements EmailTitleParsingStrategy

/%
(non—Javadoc)
@see de. fau.cs.osr. EmailTitleParsingStrategy#parse (java.lang. String)

* X X X

Simple tag parsing strategy:

70

7.2 Server Side Code

x* 1. locate brackets

x 2. split by 7 7, iterate them for keyword matches
x 3. extra info for [bug] and [patch] TODO

*

o/

private ArrayList<EmailTagEx> availEmailTags;
private ArrayList<EmailTagEx> foundEmailTags;

public EmailTitleParsingSimple () {

}

this.availEmailTags = (new EmailTagDataProvider ()).getEmailTags();
this.foundEmailTags = new ArrayList<EmailTagEx>(0);

private void checkBracket(String bracket) {

}

String [] bracketSegs = bracket.split(” ”);

for (String seg : bracketSegs) {
for (EmailTagEx tag : this.availEmailTags) {
for (String keyword : tag.getKeywords()) {
if (seg.equalslgnoreCase (keyword)) {
this.foundEmailTags.add (tag);
break; // just one keyword match is enough!

}
}
}

@Override
public EmailTitleParsingResult parse(String emailTitle) {

this.foundEmailTags. clear ();

EmailTitleParsingResult result = new EmailTitleParsingResult ();
result.setEmailTitle (emailTitle);

String bracketPattern = ?\\[(.x?)\\]”;

Pattern pattern = Pattern.compile(bracketPattern ,
Pattern . CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(emailTitle);

while (matcher. find ()) {
String bracketContent = matcher.group (1);
checkBracket (bracketContent);

}

result .setMatchedTags (foundEmailTags);

return result;

71

7 Appendix: Source Code Listing

}
7.3 Client Side Code

7.3.1 Etikett.java

package de.fau.cs.osr.etikett.client;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Set;

import com.google.gwt.cell.client.AbstractCell;

import com. google.gwt.cell.client.ClickableTextCell;
import com. google.gwt.cell.client.DateCell;

import com.google.gwt. cell.client.FieldUpdater;

import com. google.gwt.core.client.EntryPoint;

import com.google.gwt.core.client .GWT;

import com. google.gwt.event.dom. client . ClickEvent;
import com. google.gwt.event.dom. client . ClickHandler;
import com. google.gwt.il8n.client .DateTimeFormat;
import com. google.gwt.il8n.client .DateTimeFormat.PredefinedFormat ;
import com. google.gwt.safehtml.shared.SafeHtmlBuilder;
import com. google.gwt.safehtml.shared.SafeHtmlUtils;
import com. google.gwt.user.cellview.client.CellTable;
import com. google.gwt.user.cellview.client .Column;
import com. google.gwt.user.cellview.client.SimplePager;
import com. google.gwt.user.cellview.client .TextColumn;
import com. google.gwt.user.client .Window;

import com. google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.ui.Anchor;

import com. google.gwt.user.client . ui.RootLayoutPanel;
import com. google.gwt.view. client.ListDataProvider;

import de.fau.cs.osr.etikett.client.dto.EmailDTO;
import de.fau.cs.osr.etikett.client.dto.EmailTagDTO;
import de.fau.cs.osr.etikett.client.dto.MailingListDTO ;
import de.fau.cs.osr.etikett.client.dto.Topic;

VEE:
x Entry point classes define <code>onModuleLoad()</code>.
*/

public class Etikett implements EntryPoint {

private EtikettServiceAsync etikettService = GWI

72

7.3 Client Side Code

.Crea

private
private

private
private
private
private
private

private

te(EtikettService.class);

final ListAdminWidget listAdminWidget = new ListAdminWidget ();
final MainLayout mainLayout = new MainLayout ();

CellTable<MailingListDTO> tblMailingLists;
CellTable<Topic> tblTopics;
ListDataProvider<Topic> topicDataProvider;
SimplePager pgrTopicList;

CellTable <EmailDTO> tblThreadEmails;

Long currentListId;

// custom cell for displaying thread emails

static class ThreadEmailCell extends AbstractCell <EmailDTO> {
@Override
public void render (EmailDTO value, Object key, SafeHtmlBuilder sb) {
if (value = null) return;
sb.appendHtmlConstant ("<div class="my—threademail’>");
sb.appendHtmlConstant ("<div class="my—threademail—subject’><h3>");
sb.append (SafeHtmlUtils. fromString (value. getSubject ()));

sb

sb.
sb.

.appendHtmlConstant (" </h3></div>");

appendHtmlConstant ("<div class="my—threademail—info’>");
append (SafeHtmlUtils . fromString (

value.getSender () + 7 / 7 + DateTimeFormat. getFormat (
PredefinedFormat . RFC_2822). format (value . getDateTime ())));

sb.

sb.
sb.
sb.

sb

}

Vit
x This

*/

public

[/ [

initT

this.

appendHtmlConstant (”</div>");

appendHtmlConstant ("<div class="my—threademail—body’>");
appendEscapedLines (value.getEmailBody (). getEmailText ());
appendHtmlConstant (" </div>");

.appendHtmlConstant (”</div>");

is the entry point method.

void onModuleLoad () {
rst run will fill the email tags to database

ags ();

currentListld = 01;

73

7 Appendix: Source Code Listing

RootLayoutPanel. get ().add (mainLayout);
mainLayout . pnlAdmin . add (list AdminWidget) ;

// events for the (temp—)admin panel
list AdminWidget . btnSubmit . addClickHandler (new ClickHandler () {
@Override
public void onClick (ClickEvent event) {
String title = listAdminWidget.txtTitle.getText ();
String email = listAdminWidget.txtEmail.getText ();
if(title.length() = 0 || email.length() = 0) {
Window. alert (” Fields should not be empty!”);

return;
} else {
addList (title , email);
}
}
1)
listAdminWidget . btnFetchEmails.addClickHandler (new ClickHandler () {
@Override

public void onClick (ClickEvent event) {
testFetchEmails ();
}

1)

// build table for mailing lists
tblMailingLists = new CellTable<MailingListDTO > ();
Column<MailingListDTO , String> colListTitle = new
Column<MailingListDTO, String >(new ClickableTextCell()) {
@Override
public String getValue(MailingListDTO object) {
return object.getTitle() + 7 / 7 4 object.getEmail ();
}

}s
colListTitle .setFieldUpdater (new FieldUpdater<MailingListDTO ,
String >() {
@Override
public void update(int index, MailingListDTO object, String value) {
refreshEmailsTable (object.getld ());
}

1)

tblMailingLists .addColumn(colListTitle , ”Mailing Lists”);
mainLayout.pnlNav.add(tblMailingLists);

// build table for Topics

tblTopics = new CellTable<Topic >();

TextColumn<Topic> colTopicFrom = new TextColumn<Topic>() {
@Override

74

7.3 Client Side Code

public String getValue(Topic object) {
return object.getEmail (). getSender ();

}
};
Column<Topic, String> colTopicSubject = new Column<Topic, String>(
new ClickableTextCell ()) {
@Override
public String getValue(Topic object) {
return object.getEmail (). getSubject ();

}
I
colTopicSubject.setFieldUpdater (new FieldUpdater<Topic, String>() {
@Override
public void update(int index, Topic object, String value) {
showThread (object . getEmail (). getMessageld (),
object .getEmail (). getId ());
}

1)
TextColumn<Topic> colTopicTags = new TextColumn<Topic>() {
@Override
public String getValue(Topic object) {
Set<EmailTagDTO> tags = object.getEmail (). getTags ();
if(tags.size() = 0) {

return 7 7

} else {
StringBuilder sb = new StringBuilder ();
for (EmailTagDTO tag : tags) {
sb.append (tag.getTagFace() + 7 7);

return sb.toString ();

}
}
b

TextColumn<Topic> colTopicRepUpdate = new TextColumn<Topic>() {
@Override
public String getValue(Topic object) {
return Long.toString (object.getReplyCount()) +” / 7 +
DateTimeFormat . getFormat (PredefinedFormat . DATE_ TIME_SHORT)
.format (object . getLastUpdateTime ());

}
}s
tblTopics.addColumn
tblTopics.addColumn
tblTopics.addColumn
tblTopics .addColumn

colTopicFrom, ”Starter”);
colTopicTags);

colTopicSubject , ”"Subject”);
colTopicRepUpdate, ”"Reply / Date”);

S~~~ ~

tblTopics.setPageSize (15); // how many topics per page?

// data provider and pager
topicDataProvider = new ListDataProvider<Topic > ();

)

7 Appendix: Source Code Listing

topicDataProvider.addDataDisplay (tblTopics);
pgrTopicList = new SimplePager ();
pgrTopicList.setDisplay (tblTopics);

mainLayout . pnlTopicList.add(tblTopics);
mainLayout . pnlPager.add (pgrTopicList);

// email thread

tblThreadEmails = new CellTable<EmailDTO>();

Column<EmailDTO, EmailDTO> colThreadEmail = new Column<EmailDTO,
EmailDTO>(new ThreadEmailCell ()) {

@Override

public EmailDTO getValue (EmailDTO object) {
return object;

}

}s
tblThreadEmails.addColumn (colThreadEmail , ” Thread”);
mainLayout . pnlThread.add (tblThreadEmails);

// display mailing lists at startup
refreshMailingListTable ();

mainLayout . pnlTagList.setVisible (false);

}

private void listAllTags () {
if (etikettService = null) {
etikettService = GWI. create (EtikettService.class);

}

etikettService.getAllTags (new AsyncCallback<List <EmailTagDTO>>() {
@Override
public void onSuccess(List<EmailTagDTO> result) {
for (EmailTagDTO tagDTO : result) {
Anchor tagAnchor = new Anchor (tagDTO. getTagFace ());
final String tagFace = tagDTO. getTagFace ();
tagAnchor.addClickHandler (new ClickHandler () {

@Override
public void onClick (ClickEvent event) {
refreshEmailsTableByTag (tagFace);

¥
1)
mainLayout. pnlTagList.add (tagAnchor);

}
}

@Override
public void onFailure(Throwable caught) {

76

7.3 Client Side Code

Window. alert (caught . getMessage ());

1)
}

private void showThread (String topicMessageld, Long topicld) {
if(etikettService = null) {

etikettService = GWI. create (EtikettService.class);
}

etikettService.getThreadEmails (topicMessageld , topicld ,

new AsyncCallback<Collection <EmailDTO>>() {
@Override

public void onFailure(Throwable caught) {
Window . alert (caught . getMessage ());

}

@Override

public void onSuccess(Collection <EmailDTO> result) {
tblThreadEmails .setRowCount (result . size ());

tblThreadEmails.setRowData (0, new ArrayList<EmailDTO>(result));

1)
}

private void refreshEmailsTable(Long listId) {
if(etikettService = null) {

etikettService = GWI. create (EtikettService.class);
}

currentListId = listId;

// get all topics
etikettService.getTopicsFromList (listId , ””
new AsyncCallback<Collection <Topic>>() {

@Override
public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());

}

@OQOverride

public void onSuccess(Collection<Topic> result) {
mainLayout . pnlTagList.setVisible (true);

tblTopics.setRowCount (result.size ());

topicDataProvider.setList (new ArrayList<Topic>(result));

b

1)
}

private void refreshEmailsTableByTag(String tagFace) {

7

7 Appendix: Source Code Listing

if(currentListld == 01) return;

if(etikettService = null) {
etikettService = GWI. create (EtikettService.class);

}

etikettService.getTopicsFromList (currentListld , tagFace,
new AsyncCallback<Collection<Topic>>() {
@Override
public void onSuccess(Collection<Topic> result) {
mainLayout.pnlTagList.setVisible (true);
tblTopics.setRowCount (result.size ());
topicDataProvider.setList (new ArrayList<Topic>(result));

}

@Override
public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());

1)
}

private void addList(String title , String email) {
if(etikettService = null) {
etikettService = GWI. create (EtikettService.class);
}
etikettService.addMailingList (title , email, new AsyncCallback<Void>() {
@Override
public void onSuccess(Void result) {
refreshMailingListTable ();
list AdminWidget . txtTitle.setText (7”7);
listAdminWidget . txtEmail . set Text (””);
listAdminWidget . dlgAddList . hide ();

}

@Override
public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());

1)
}

private void testFetchEmails () {
if (etikettService = null) {
etikettService = GWI. create (EtikettService.class);
}

listAdminWidget . imgAjaxLoading . setVisible (true);
etikettService.fetchAllEmails (new AsyncCallback<Void>() {
@Override

78

7.3 Client Side Code

public void onSuccess(Void result) {
Window. alert (?” Email fetching done!”);
listAdminWidget . imgAjaxLoading . setVisible (false);

}

@OQOverride

public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());
listAdminWidget . imgAjaxLoading . set Visible (false);

});
}

private void refreshMailingListTable () {
if(etikettService = null) {
etikettService = GWI. create (EtikettService.class);
}

etikettService . getMailingLists (
new AsyncCallback<List<MailingListDTO>>() {

@OQOverride

public void onSuccess(List<MailingListDTO> result) {
tblMailingLists .setRowCount (result.size (), true);
tblMailingLists .setRowData (0, result);

}

@Override
public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());

});
}

private void initTags () {
if(etikettService = null) {
etikettService = GWI. create (EtikettService.class);
}

etikettService.initTags (new AsyncCallback<Void>() {

@Override
public void onFailure(Throwable caught) {
Window. alert (caught . getMessage ());

}

@Override
public void onSuccess(Void result) {
// list all tags for filtering

79

7 Appendix: Source Code Listing

listAllTags ();

80

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

3.6

3.7
3.8
3.9
3.10
3.11
3.12

4.1

5.1
5.2
9.3
5.4
2.5
0.6
2.7
0.8
2.9

State transition diagram representing a conversation for action 9
Percentage of tags in LKML 15
The top 15 most frequently used tags in LKML 16
The top 20 most frequently used words in LKML 16
Percentage of tags in Apache HTTP Server development mailing list . . 17
The top 10 most frequently used tags in Apache HTTP Server develop-

ment mailing list oo oo 18
The top 20 most frequently used words in Apache HTTP Server develop-

ment mailing list o 18
Percentage of tags in X.Org user support mailing list 19

The top 15 most frequently used tags in X.Org user support mailing list 20
The top 20 most frequently used words in X.Org user support mailing list 20

Percentage of tags in selected Ubuntu mailing list 21
The top 15 most frequently used tags in selected Ubuntu mailing list . . 22
The top 20 most frequently used words in selected Ubuntu mailing lists . 22
Process-Data Model for open source software development 26
Entity-Relationship Diagram for the Mailing List Archiver 37
Main architecture of the mailing list archiver application 38
OO data modeling of the main objects in the archiver application 40
Workflow of the email fetching component 43
The RPC mechanism of GWT 44
Web UI of the mailing list archiver application 46
Web UI listing current tags 50
Web form for editing tag datao 0oL 50
Mailing List Archiver highlights Tags 51

81

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1

Mailing List Analysis Result: LKML 15
Mailing List Analysis Result: Apache HTTPD 17
Mailing List Analysis Result: X.Org 19
Mailing List Analysis Result: Ubuntu. 21
Best Practices shown in Mailing Lists 23
Representativity of Mailing Lists 23
Categorization of Tags (Conversation for Action) 27
Usage Pattern of Tag “Bug” 28
Usage Pattern of Tag “Patch” 29
Usage Pattern of Tag “Issue” 29
Usage Pattern of Tag “RFC” 30
Usage Pattern of Tag “Tip” 30
Usage Pattern of (Special) Tag “Project Name” 31
Usage Pattern of Tag “Proposal” 31
Usage Pattern of Tag “Vote” 32
Usage Pattern of Tag “Announce” 32
Usage Pattern of Tag “Solved” 33
Acceptance rate of tag schemao 33
Feature Preferences of the Mailing List Archiver Application 49

83

Bibliography

1]

[14]
[15]
[16]

Anupriya Ankolekar, James D. Herbsleb, and Katia Sycara. Addressing Challenges
to Open Source Collaboration With the Semantic Web. 2003.

Jeff Breidenbach. The Mail Archive. http://www.mail-archive.com/.

Sumit Chandel. Using GWT with Hibernate. http://code.google.com/
webtoolkit/articles/using_gwt_with_hibernate.html, 2009.

Mark Logic Corporation. MarkMail. http://markmail.org/.

Jan Dietz. Understanding and Modelling Business Processes with DEMO.
1728:767-767, 1999.

Karl Fogel. Producing Open Source Software. O’Reilly Media, 2005.

Goran Goldkuhl. Conversational Analysis as a Theoretical Foundation for Language
Action Approaches? 2003.

Google. Google App Engine. http://code.google.com/appengine/.
Google. Google Web Toolkit. http://code.google.com/webtoolkit/.

Network Working Group. RFC 2822 - Internet Message Format. http://tools.
ietf.org/html/rfc2822.

Network Working Group. RFC 4155 - The application/mbox Media Type. http:
//tools.ietf.org/html/rfc4155.

PostgreSQL Global Development Group. Postgresql. http://www.postgresql.
org/about/.

Red Hat Inc. Hibernate Community Documentation. http://www.hibernate.
org/docs.

Lars Magne Ingebrigtsen. Gmane. http://gmane.org/.
Open Source Initiative. opensource.org. http://www.opensource.org/.

Marja-Riitta Koivunen and Ralph Swick. Metadata Based Annotation Infrastruc-
ture offers Flexibility and Extensibility for Collaborative Application and Beyond.

85

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[28]

[29]

[30]

[31]

[32]

86

Hank Leininger. Marc: Mailing list archives. http://marc.info/.

Greg Madey, Vincent Freeh, and Renee Tynan. The Open Source Software Devel-
opment Phenomenon: An Analysis Based on Social Network Theory. 2002.

David Mertz. Text Processing in Python. Addison-Wesley Professional, 2003.

Oracle Technology Network. Javamail. http://www.oracle.com/technetwork/
java/javamail/index.html.

Masao Ohira, Kiwako Koyama, Akinori Ihara, Shinsuke Matsumoto, Yasutaka
Kamei, and Ken ichi Matsumoto. A Time-Lag Analysis towards Improving the
Efficiency of Communications among OSS Developers. 20009.

Ohloh. Open Source Projects. http://www.ohloh.net/p. Stand: Jan. 2011.
Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media, 2001.

Gregorio Robles. A Software Engineering Approach to Libre Software. Open Source
Jahrbuch 2004, 2004.

Ran Tang, Ahmed E. Hassan, and Ying Zhou. A Case Study on the Impact of
Global Participation on Mailing Lists Communications of Open Source Projects.
2009.

Sergio L. Toral, Rocio Martinez Torres, and Federico Barrero. Modelling Mail-
ing List Behaviour in Open Source Projects: the Case of ARM Embedded Linux.
Journal of Universal Computer Science, 15(3):648-664, 2009.

Douglas P. Twitchell, Mark Adkins, Jay F. Nunamaker Jr., and Judee K. Burgoon.
Using Speech Act Theory to Model Conversations for Automated Classification and
Retrieval. 2004.

Wikipedia. Electronic mailing list. http://en.wikipedia.org/wiki/Electronic_
mailing list.

Wikipedia. Folksonomy. http://en.wikipedia.org/wiki/Folksonomy.

Wikipedia. Open-source software. http://en.wikipedia.org/wiki/
Open-source_software.

Wikipedia. Open source software development. http://en.wikipedia.org/wiki/
Open_source_software_development.

Wikipedia. Speech act. http://en.wikipedia.org/wiki/Speech_act_theory.

Bibliography

[33] Wikipedia. Strategy pattern. http://en.wikipedia.org/wiki/Strategy_
pattern.

[34] Wikipedia. Tag (metadata). http://en.wikipedia.org/wiki/Tag_%28metadatal
29.

[35] Terry Winograd. A Language/Action Perspective on the Design of Cooperative
Work. Human-Computer Interaction, 3:3-30, 1987.

[36] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida. Col-
laboration with lean media: how open-source software succeeds. pages 329-338,
2000.

87

