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A B S T R A C T

Is the development of Free/Libre/Open Source Software (FLOSS) still like
roughly 20 years ago, when a Finnish student wrote the basis of a nowadays
successful operating systems in his spare time at home? Or is FLOSS becoming
mainstream in the perception of companies? How much of the work on FLOSS
is done during working hours?

To answer these questions, this thesis examines the history of over 9 000 projects.
Based on the commit times, it is evaluated if open source software development
has become commercial and if this fact can be shown using empirical data. As
a prominent example, a special focus is put on the Linux kernel.

By analyzing the work rhythms in Open Source Development based on the time
when each contributed change was performed, it can be shown that most of
the development work is done during the working week on company time. In
addition, trends spanning over a period of seven and eight years, respectively,
are compared, providing insights about how the ratio of working to spare time
developers changed over time.

By measuring how much work is professionally performed based on a large va-
riety of distinct projects, this thesis helps understanding the amount and impact
of commercial entities on Free/Libre/Open Source Software development.

Z U S A M M E N FA S S U N G

Ist die Entwicklung von Open-Source-Software (FLOSS) immer noch wie vor
rund 20 Jahren, als ein finnischer Student die Grundlage für ein heutzutage sehr
erfolgreiches Betriebssystem in seiner Freizeit am heimischen PC schuf? Oder
ist FLOSS inzwischen etwas Selbstverständliches für Unternehmen geworden?
Wie viel der Entwicklungsarbeit an FLOSS erfolgt hauptberuflich, also während
der bezahlten Arbeitszeiten?

Um diese Fragen zu beantworten, untersucht die vorliegende Masterarbeit
die Historie von über 9000 Projekten. Sie untersucht, ob FLOSS-Entwicklung
von Unternehmen betrieben wird und ob jene Tatsache anhand empirischer
Daten nachgewiesen werden kann. Als prominentes Beispiel wird hierzu das
Linux-Kernel-Projekt gesondert betrachet.

Durch die Analyse der Arbeitsrhythmen von Softwareentwicklern, basierend
auf dem Zeitpunkt, wann eine beigetragene Veränderung in einem Projekt
akzeptiert wurde, kann gezeigt werden, dass die meiste Entwicklungsarbeit
an offener Software unter der Woche während der regulären Arbeitszeiten
durchgeführt wird. Zusätzlich werden die Trends über Zeiträume von sieben
bzw. acht Jahren verglichen, was Aufschlüsse darüber gibt, wie sich das Ver-
hältnis von Arbeits- zu Freizeitentwicklung über die Zeit verändert hat.

Basierend auf der Analyse einer großen Anzahl unterschiedlicher Projekte hilft
diese Arbeit, den Einfluss von Firmen auf die Entwicklung von FLOSS besser
zu verstehen.
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1
I N T R O D U C T I O N

While traditional software companies try to keep the source code of their
applications proprietary, so-called Free/Libre/Open Source Software (FLOSS)
tries to do the opposite [Wei12]. In general, the latter describes software that is
licensed under an open source license and, thus, complies to the requirements
constituted in the open source definition [OSI].

FLOSS has grown from a negligible phenomenon to an omnipresent part
of today’s life [Rie11]. Products such as Firefox, Open-/LibreOffice, Linux,
WordPress, or VLC are popular and well known. Several studies indicate that
FLOSS has also become a substantial part of today’s business world and is
used in nearly all areas of industry and government [EY11; Rie11; Rie07].

In 2009, an analyst of the Gartner Group estimated that at least 80% of all
software product companies will use FLOSS by 2012 [Dri09]. Moreover, also in
2009, 46% of all responding enterprises in Forrester’s Enterprise and SMB Software
Survey, North America and Europe were using or implementing free software
products [HGS09]. It can be assumed that this number has grown since then.

FLOSS products are the market leaders since years in some business areas,
such as web-servers or High-Performance Computing (HPC) [Net12; Top12].
Another recent example can be found when considering the development of
mobile phone market. Here, the Android operating system, initially announced
in 2007, already had a market share of more than 59 percent on all smart
phones in the first quarter of 2012 [Ben12]. In addition, the commercial value of
FLOSS can be demonstrated by the fact that the open source company MySQL
AB was acquired in 2008 for a price of one billion US-dollars [MyS08] by Sun
Microsystems, that had already multiple open sourced products in its portfolio.
Shortly afterwards, in 2009, the buyer was taken over as well in a deal valued
at more than 7 billion US-dollars by Oracle [Fin09].

In the light of these activities, this thesis examines if FLOSS has become
mainstream in the perception of companies like e.g. Forrester predicted[HGS09].
Assuming that not only the usage but also the development has become
common, evidences are searched as proof that FLOSS is not solely developed
by hobbyists as spare-time projects.

The document at hand evaluates if the influence of commercial enterprises
can be identified in FLOSS projects. It inspects how much of the work is
performed during general working hours and, hence, on a paid basis, backed
by companies. Therefore, the commit history of over 9 000 projects is analyzed.
Based on the individual commit times, this thesis evaluates if open source
software development has become commercial and if this fact can be shown
using empirical data.
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2 introduction

Furthermore, general patterns in the behavior of committers are highlighted
that become visible when inspecting the evolution of one or multiple projects,
respectively, over the time frame of several years. By aggregating the commits
into different time spans, multiple patterns regarding development activity are
examined.

The insights presented here might be used to better understanding work
rhythms in FLOSS development, e.g. for more effective coordination of meetings
(micro level) or releases (macro level). In addition, by highlighting patterns in
the behavior of contributors of thousands of projects, general trends can be
made visible, such as the close to stable ratio of working time to volunteer
work in FLOSS presented in Section 4.3.

This thesis is outlined as follows:

In Chapter 2 the reader is introduced into the foundations for later discussions,
such as background information and definitions. Moreover, a short overview
of the work needed for creating this document and the performed evaluations
in this context is given. The chapter is concluded with a review of existing
literature in the field of interest.

After that, Chapter 3 discusses the Linux kernel project as a single but promi-
nent example of FLOSS work in detail. Based on its comprehensive publicly
available repository data, the behavior of close to eight thousand contributors
who submitted patches over the last seven years is analyzed. Furthermore,
having the possibility of accessing the precise release dates, an evaluation
is performed if the regular cadence of this project has an influence on the
integration of patches. In addition, the ratio of committers’ work with authors
over time is inspected, as the Version Control System (VCS) of the Linux kernel
project allows the extraction of such information.

Then, a large variety of several thousand distinct FLOSS projects is analyzed in
Chapter 4 and it is evaluated if the patterns, found for the Linux kernel, can
also be observed in general in FLOSS development. The collection of a data
source with such a large number of projects from multiple origins cannot be
performed without trade-offs. Consequently, the compromises as well as the
needed data preparation are outlined before starting the analysis.

Finally, Chapter 5 provides a summary and concludes with an outlook of how
the findings can support a better understanding of Free/Libre/Open Source
Software and the impact of commercial entities to its development. Aspects
and ideas that could not be worked on due to time or scope restrictions are
listed here as well. The following appendix contains code extracts of scripts
and queries used for the creation of this work.



2
B A S I C S

2.1 research definitions

2.1.1 Author vs. Committer

There are several options for classifying members of a programming project.
The following explains one by introducing the concept of authors and commit-
ters/maintainers:

Independent of their size, FLOSS projects can be considered as projects with
a large number of involved parties, since they are – due to their open nature
– in theory globally accessible and changeable. Thus, the number of potential
developers of a single FLOSS project can be seen as equal to the total number
of people alive on earth. During the development of larger projects with many
participants, one can distinguish between the role of an author, meaning
people who contribute new code or change existing functionality, and the
role of a committer or maintainer, representing people who validate the
contributed pieces and eventually integrate them into the official repository
[Han+04; Rie06].

In this context, a maintainer is responsible for a distinct part of the project’s
codebase, or so-called subsystem. He or she also acts as an (additional) quality
assurance instance to ensure, as well as possible, that no malicious behavior is
introduced into the code and that guidelines are respected. In large projects, like
the Linux kernel, domain experts manage the code e.g. for specific file systems,
drivers, or hardware architectures. As a result, one needs the acceptance of
the respective maintainer(s) to introduce a new functionality or a change to a
subsystem. [Tor+12; Cor09]

In most FLOSS projects only a small part of all developers has commit rights
to the official repository. If someone wants to change a part of the software, he
or she has to download (or “checkout”) the source code and write an initial
version of the change locally. Once that is done, a patch needs to be created
with the diff program and then sent to a mailing list or uploaded to an issue
tracking application. The proposed changes are then evaluated by a maintainer
or a person who has been contributing for a longer period and, as a result of
his or her work, is trusted by the maintainer. If one or multiple programmers
approve the change after their review, it will be integrated into the project’s
codebase [Rie06]. This means, that it will be merged with the existing code in
the project’s repository by a committer and might get additional information
such as a pointer to the solved issue. Otherwise the author gets a negative
response over the preferred communication channel, most of the time with a

3



4 basics

request for further improvements, some hints, and the motivation to re-submit
the updated patch.

To find out who was responsible for the introduction of potentially faulty code
in case of an error, already early, centralistic version control systems – e.g. the
Concurrent Versions System (CVS) or its successor Subversion (SVN) – store
information about a committer at check-in, such as user name and commit
time [CVS12; ASF12].

In contrast to that, the modern generation of today’s distributed version con-
trol systems follows a different networking principle. Instead of having the
repository solely on a central server, every user has a full local copy on his
or her computer. This has the advantage of availability, allows working and
committing while being disconnected (e.g. on a plane) and simplifies handling
backups and availability problems, due to the fact that every copy has all
data [Tor07a]1.

In such distributed systems multiple developers can change parts of the code
before merging them back into one collaborative codebase, using commands
such as push, pull and merge [ASM12]. This allows new models of collaboration,
such as a lieutenant system built around a “chain of trust” or integration-
manager model, like e.g. used for the development of the Linux kernel, or a
Benevolent dictator model, e.g. used for the development of Python [Cor08; RA12;
Rup10]. Since not only the person who integrated the code from different
repositories, but also the original developer, would be of interest in case of later
problems, distributed version control systems distinguish explicitly between
author and committer and store information like a person’s name and the
local time of a commit (preserving a person’s time zone) for both contributors
individually. [Cha09; Bir+09]

For trend analysis, in projects with centralized Version Control Systems the cre-
ation time of a patch can be only – if at all – found by searching the mailing list
history or old reports in issue trackers. In contrast to that, modern distributed
solutions provide direct access to this information by storing both commit
times for each change. This fact allows more profound analyses of contributors’
behavior by also considering the author’s time stamp (cf. Sections 3.2 and 3.3).

Using the information provided by the Linux kernel repository, Section 3.4.3
shows how this ratio of authors and committers changed over time. While this
is specific to a single project, it might provide an indication of how such a ratio
evolved for centralized VCSs as well.

2.1.2 Commit Size

A software project is typically developed in multiple iterations, in a series of
changes to its artifacts [KSR12]. A commit is an individual code contribution
of an author that has been integrated into the code repository by a commit-

1 Quoting Linus Torvalds (00:17:18–00:17:35): I have a theory of backups, which is: I don’t do them. I
put stuff up on one site and everyone else mirrors it. And if I crash my own machine, I don’t really care
because I can just download my own work right back – and it works beautifully well.



2.1 research definitions 5

ter [KRS10]. For programming projects, Lind and Vairavan [LV89] show that
the changed lines of code are an appropriate proxy for work spent on code.
Consequently, a commit represents the basic unit of work performed by a
contributor.

The lines changed by a commit are counted per file. The computation is typically
performed by a utility with the name diff. As a result, a single commit consists
of one diff per changed file. Each diff captures the changes made between
consecutive versions of the same file. [HM76; Hec78]

Several different implementations are available today that differ in the algorithm
for change determination. However, a diff tool in its essence can only reliably
measure the number of lines added and removed. This becomes problematic
when having an equal number of added and removed lines for a single file.
In that case it might be possible that (a) only a slight change occurred or
(b) a file was renamed or (c) a part of the file was deleted and new code
was introduced that coincidentally resulted in the same number of changed
lines. Unfortunately, the diff utility cannot determine this with certainty,
which makes it in hindsight impossible to determine the correct total size of a
commit. [HR09]

As Kolassa, Riehle, and Salim [KRS10] state, a changed line is always counted
as one line removed and one line added, but should count as one line of work,
while an added and a separately removed line of code should count as two lines
of work. For getting more precise results, Canfora, Cerulo, and Di Penta

developed a sophisticated algorithm using the Levenshtein distance algorithm
to measure the distance between two strings [CCDP09; CCDP07]. However, it is
computationally expensive and does not scale to the large amounts of source
code analyzed here. Instead, a simpler algorithm developed by Hofmann

and Riehle [HR09] is used that calculates the size of a commit as the mean
of the minimum and maximum number of lines possibly touched in a given
diff-block:

min_size = max(lines_added, lines_removed)

max_size = lines_added + lines_removed

commit_size = (min_size + max_size)/2

2.1.3 Time

The concept of local time is an essential part of the calculations that serve as the
basis for this thesis. Consequently, this section provides an introduction into the
topics of time zones, daylight saving time, as well as the internal representation of
time in computers, the so-called POSIX time. Based on that, the foundation of
this thesis, namely working time and spare time, are defined.



6 basics

2.1.3.1 Time Zones

A time zone is a region on earth that has a uniform standard time for legal, com-
mercial, and social purposes. These time zones tend to follow the boundaries
of countries and their subdivisions, as depicted in Figure 2.1.

Figure 2.1: World Map with Time Zones

Source: http://en.wikipedia.org/wiki/File:Worldwide_Time_Zones_(including_DST).png
(under CC-SA3.0)

ISO 8601 is an international standard covering the exchange of date and time-
related data [ISO04]. It was first published by the International Organization
for Standardization (ISO) in 1988 and is available in version 3 since 2004. The
specifications in it provide a standardized method of communicating time-
based information across time zones by attaching an offset to Coordinated
Universal Time (UTC). Most of the 40 time zones are offset from UTC by a
whole number of hours (from UTC-12 to UTC+13), but a few are offset by 30

or 45 minutes. Figure 2.1 depicts an overview of this concept.

The standard does not cover dates and times with words in their representation.
This includes previous representations of time zones, e.g. CET for Central
European Time, which is now defined as UTC+1. As a result, ISO 8601 is
applicable whenever representation of dates in the Gregorian calendar, times
in the 24-hour timekeeping system, time intervals and recurring time intervals
are included in information interchange. [ISO04]

In this thesis the more familiar term UTC offset is used rather than the term
zone designator used by the standard.

2.1.3.2 Daylight Saving Time

Daylight Saving Time (DST) – also summer time in several countries, e.g.
German (Sommerzeit), Spanish (Horario de verano), and many others, as well
as in British English, and European official terminology – is the practice of
advancing clocks so that evenings have more daylight and mornings have less.

http://en.wikipedia.org/wiki/File:Worldwide_Time_Zones_(including_DST).png
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Typically clocks are adjusted forward one hour near the start of spring and are
adjusted backward in autumn. [Pre05]

Though mentioned by Benjamin Franklin in 1784
2, the modern idea of daylight

saving was first proposed in 1895 by George Vernon Hudson (1867–1946). It
was first implemented during World War I as a wartime measure aimed at
conserving coal [Gib10]. Most countries around the equator do not observe
DST, since there the seasonal difference in sunlight is minimal.

The name of local time typically changes when DST is observed. American
English replaces standard with daylight: for example, Pacific Standard Time
(PST) becomes Pacific Daylight Time (PDT). British English typically inserts
summer into other time zones, e.g. Central European Time becomes Central
European Summer Time. In contrast to that, the ISO standard solely adds an
hour without further indication of DST [ISO04].

Figure 2.2: Countries with Daylight Saving Time

Source: http://en.wikipedia.org/wiki/File:DST_Countries_Map.png (under CC-SA3.0)

Despite controversy, many countries have used the concept off and on. Fig-
ure 2.2 depicts the worldwide usage of DST by highlighting all countries that
currently change clocks (January 2012).

The time zone database3 of the Internet Assigned Numbers Authority (IANA)
maps zone information to the named location’s historical and predicted clock
shifts. This database is used by many computer software systems, including
most Unix-like operating systems – like Linux or Mac OS X – Java, and Oracle
databases [EO07]. Internal time is stored in time zone independent epoch
time (see next chapter). This allows to independently localize time display for
each of potentially many simultaneous users and processes interacting on a
single computer. Since October 2011 the Internet Corporation for Assigned
Names and Numbers (ICANN) took responsibility for the maintenance of the
database.4

2 http://www.webexhibits.org/daylightsaving/franklin.html (visited on 07/16/2012).
3 http://www.iana.org/time-zones (visited on 07/18/2012).
4 The mailing list announcement can be found under http://mm.icann.org/pipermail/tz/
2011-October/008090.html (visited on 07/18/2012).

http://en.wikipedia.org/wiki/File:DST_Countries_Map.png
http://www.webexhibits.org/daylightsaving/franklin.html
http://www.iana.org/time-zones
http://mm.icann.org/pipermail/tz/2011-October/008090.html
http://mm.icann.org/pipermail/tz/2011-October/008090.html
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2.1.3.3 POSIX Time

The Unix time stamp, sometimes also known as Epoch time5 or POSIX time, is a
way to represent time by a single number. It is defined as the number of seconds
that have elapsed since midnight of January 1

st, 1970 (UTC). [ISO96] The name
originates from the acronym for Portable Operating System Interface, a family
of standards (IEEE 1003.x) for maintaining compatibility between operating
systems. However, in its original form, it is neither a linear representation of
time nor a true representation of UTC since it does not consider leap seconds6.

As an example, the date and time “Sat, 31 Dec 2011 23:59:59 (UTC)”, is rep-
resented as a Portable Operating System Interface (POSIX) time stamp by the
single number 1325375999.

2.1.3.4 Working Time

The EU Council Directive 93/104/EC states that “working time shall mean any
period during which the worker is working, at the employer’s disposal and
carrying out his activity or duties, in accordance with national laws and/or
practice; rest period shall mean any period which is not working time” [EU93].
Thus, the workweek and weekend are those complementary parts of the seven-
day week devoted to labor and rest, respectively.

In most Western countries the legal workweek ranges from Monday morning
until Friday noon or evening. The weekend in Western countries comprises
Saturday and Sunday, when most employees do not have to work. In cultures
with a seven-day week, the day of rest derives from the main religious tradi-
tion: Sunday (Christian), Saturday (Jewish), or Friday (Muslim). Since most
of the inspected FLOSS projects were developed in the western world, as de-
picted in Figure 2.3, a workweek is considered to be the weekdays Monday to
Friday [Cen10].

Historically, Henry Ford was the first prominent employer in the United States
who standardized his factories on a five-day workweek, instead of the prevalent
six days, without reducing employees’ pay in 1926. Twelve years later Presi-
dent Franklin Roosevelt signed the Fair Labor Standards Act of 1938, which
established a five-day, 40-hour workweek as a standard for every worker. Since
then the phrase 9 to 5 is an expression in the United States originating from
the traditional American business hours of 09:00 to 17:00, Monday through
Friday, representing a workweek of five days with eight hours of work on each,
comprising 40 hours in total. [Lom10]

In Germany, as another example, an 8-hour-workday was constituted by law
in 1918, while the 40-hour-week, consisting of five days with each 8 hours
of work on average, was established in 1965 (West) and 1967 (East) [HBS10;
DKW09]. Here, the Working Hours Act (in German: Arbeitszeitgesetz, ArbZG)

5 See e.g. http://www.postgresql.org/docs/8.4/static/datatype-datetime.html#
DATATYPE-DATETIME-SPECIAL-TABLE.

6 A more detailed discussion of this topic can be found under http://www.ucolick.org/~sla/
leapsecs/onlinebib.html#POSIX (visited on 07/18/2012).

http://www.postgresql.org/docs/8.4/static/datatype-datetime.html#DATATYPE-DATETIME-SPECIAL-TABLE
http://www.postgresql.org/docs/8.4/static/datatype-datetime.html#DATATYPE-DATETIME-SPECIAL-TABLE
http://www.ucolick.org/~sla/leapsecs/onlinebib.html#POSIX
http://www.ucolick.org/~sla/leapsecs/onlinebib.html#POSIX
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Figure 2.3: Western World Countries

Source: en.wikipedia.org/wiki/File:Westerncultures_map.png (under CC-SA3.0)

constitutes working time as the time span between start and end of daily labor
without rest periods (§2.1 ArbZG). Furthermore, it specifies that an employee
must not work more than eight hours per day on average over the period of six
months, with a maximum of ten hours per day (§3 ArbZG). [BdJ12]

According to the Organisation for Economic Co-operation and Development
(OECD), several countries have adopted a 40-hour workweek [OEC12].

While 9 to 5 is an established expression in the United States, the time period
was originally defined with physical labor and manufacturing work in mind
which might not apply to today’s work anymore, especially in the informa-
tion technology sector [Lom10; Fal07]. In addition, the definition does not
consider rest periods, in contrast to e.g. Germany where they are defined by
law (§4 ArbZG).

Since working time differs between countries with regard to start and end time,
as well as resting breaks, this thesis adds a buffer of one hour to each edge
of 9 to 5 and defines working time as the period between 08:00 and 18:00

local time, while spare time is all time outside of the defined working time.
Consequently, these time definitions are dependent on a person’s time zone (cf.
Section 2.1.3.1).

2.1.4 Types of Developers

After introducing the concepts of time in the previous sections and defining
the related terms working time and spare time, contributors to FLOSS projects
will be classified as follows in this thesis:

• Professionals contribute mostly during working time.

• Volunteers work mostly during spare-time and weekends.

When analyzing working behavior, a hobby or spare time developer might
have some commits that are not done during his or her spare time. This might
happen due to events such as vacation or sickness, or due to a working period

en.wikipedia.org/wiki/File:Westerncultures_map.png
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slightly outside of the defined working time. Consequently, an assumption that
hobbyists work solely during evening and weekend hours might be too strong.
The same applies for the other extreme: professionals who are work full-time
on an open source product might start their work before 08:00, end later or
even finish work on weekends. As a result, a threshold of 80 % is assumed in
the following, meaning that if 80% of a person’s commits are done in his or her
spare time, then this individual is counted as a hobby FLOSS developer, while
if 80% of the commits are executed during working hours he or she is assumed
to be a professional.

2.2 procedure of work

2.2.1 Sequence of Work Performed

Due to the fact that the author was not the first person at the professorship
working on the data inspected in Chapter 4, the work and R-scripts of prede-
cessors were first analyzed. In addition, those scripts were extended to make
them more generally applicable, while also fixing some erroneous behavior.
Moreover, access was requested to the database that contains information
about the various open-source projects provided by Ohloh (for more details
see Chapter 4).

At the same time, an evaluation of multiple Integrated Development Environ-
ment (IDE) solutions for R took place. Here, open-source as well as proprietary
software was taken into consideration.

One of those commercial products was Revolution R Enterprise7, which
offers free academic subscriptions and claims to be optimized for working
with large amounts of input data (also known as BigData). However, the IDE
is based on Microsoft Visual Studio 20088 and hence only works under
Microsoft Windows, while the customized R runtime is also available for Red
Hat Enterprise Linux (RHEL). Revolution’s IDE does not provide an option to
cancel running calculations and, thus, does not allow blocking constructs, like
infinite loops, to be stopped without a complete shutdown of the software. As
a minor fact, the runtime was based at that time on version 2.13.1 of R, even
though the upstream open-source version was already 2.15.1 and provided
most notably a highly improved stack for parallel computation. Consequently,
by offering no platform independence and only minor advantages due to
proprietary extensions, this solution was not included in further evaluation.

Since it should be possible to perform all calculations on all major operating
systems (Windows, Mac OS X, Linux), different IDEs running on the Java9 plat-
form were inspected. One of them, the Java Gui for R10, could not handle the
massive amount of input and crashed each time after loading the research data.

7 http://www.revolutionanalytics.com/products/revolution-enterprise.php
8 http://www.microsoft.com/visualstudio/en-us/products/2008-editions
9 http://java.com/

10 http://rforge.net/JGR/

http://www.revolutionanalytics.com/products/revolution-enterprise.php
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://java.com/
http://rforge.net/JGR/
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Another, StatET for R11, that is based on the well-known Eclipse12 platform,
provides the advantage of familiar components and, hence, a short training pe-
riod. In the end, a majority of coding for this thesis was done using RStudio13,
a new cross-platform open source IDE started in 2010 that is under active
development and has good community support.

At the same time, the author organized the existing R-code into multiple
packages that encapsulate the procedures for database access, data aggregation,
and the different analytic methods.

As soon as access was provided to the database, the table structure of it was
analyzed using SchemaSpy14. The software works similar to e.g. Doxygen15 and
outputs an HTML documentation of all tables, columns and relationships in a
database. When providing the dump of their database, Ohloh did not supply
further documentation about the various tables or their content. The only source
for further information are archived e-mail conversations from 2007 that do not
help much for a better understanding of the structures and relationships. After
performing a few calculations, it became obvious that the data needed a lot of
cleanup upfront, since around 60 percent of its entries were duplicated16 and
most tables did not have properly defined relationships, i.e. foreign keys. More
information regarding this topic can be found in Section 4.1.3. In addition, the
large amount of data led to long running calculations and consequently some
errors in the existing scripts only appeared after several hours of processing.

After a while of working on and cleaning the Ohloh data, the idea arose to also
use checkouts of the current repositories of the open source projects and to
analyze them in addition. However, this approach was discarded, although an
exception was made for the Linux kernel project (see Chapter 3). The reason for
this step was not the storage requirement of several hundreds of Gigabytes, it
was rather due to the fact that after 2008 (the time at which the database dump
was provided) many projects migrated from a centralistic Version Control
System (VCS), such as CVS or SVN, to a distributed VCS, e.g. Git. Having
over 9 000 distinct projects, this would have meant quite some manual effort in
finding the new sources. Furthermore, some of the projects were abandoned
after 2008 and, thus, the repository is nowadays not available anymore.

In addition to that, the process of extracting a complete history from centralistic
repositories took more time than anticipated. As an example, reading and
parsing the data of the Apache SVN project17 – with at that time 1 245 446

revisions – took more than 76 computational hours. Other repositories, as
e.g. that of the Boost C++ library18, suffered serious performance problems
due to the analysis with git-svn19 (which downloads every single revision

11 http://www.walware.de/goto/statet
12 http://www.eclipse.org/
13 http://rstudio.org/
14 http://schemaspy.sourceforge.net/
15 http://doxygen.org/
16 A more detailed discussion of this can be found in [Hof12].
17 http://svn.apache.org/repos/asf/subversion/trunk/
18 http://svn.boost.org/svn/boost/trunk
19 The manual page can be found at http://git-scm.com/docs/git-svn (visited on 06/21/2011).

http://www.walware.de/goto/statet
http://www.eclipse.org/
http://rstudio.org/
http://schemaspy.sourceforge.net/
http://doxygen.org/
http://svn.apache.org/repos/asf/subversion/trunk/
http://svn.boost.org/svn/boost/trunk
http://git-scm.com/docs/git-svn
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individually for analysis) and as a result, the repositories completely blocked
anonymous read-only access for several days.

However, not only the download itself provided some hurdles. Since these types
of VCSs do not store time zone information, all time-related data would have
had to be calculated afterwards. In addition, the usernames would have been
needed to be mapped to the real names and email addresses of the contributors
to be able to analyze development activities over multiple projects. This can be
handled using svn2git20, which not only maps internal repository structures,
such as tags and branches, better than git-svn but also provides ways to map
user data. Nevertheless, researching user data of roughly 40 000 contributors
exceeded the scope of this thesis and, consequently, this idea was scrapped as
infeasible.

In contrast to the centralistic VCSs, the checkout of projects using Git repos-
itories worked seamlessly and also contained all time information. However,
a majority of projects was either too small to be relevant here or not active
anymore. Consequently, this path was also not followed further. The data
collected were solely used to verify the validity of the algorithms described in
Section 4.1.5.

An analysis with GitDM21 (git data miner), initiated by Jonathan Corbet for
generating statistics to describe the development of the Linux kernel (e.g.
[CKM12]), was evaluated as well. The software provides the option of utilizing
Git’s user mapping capabilities, as discussed in Section 3.1.1, and calculating
various key figures based on the repository data. In the end, GitDM was not
used since

• a majority of the projects were missing information, as described above,

• the heterogeneity and sheer number of repositories complicated the taks
and most significantly,

• a great deal of effort would have been needed to program the required
metrics into the program as they are currently unsupported.

As a result, the decision was made to work solely with the statistics software
R [R12], which already provided implementations for most of the needed
functionality.

Having a wide spectrum of potential options of investigation with this ample
data set at hand, various ideas were discussed, evaluated, calculated, and even-
tually discarded over time. Due to the large amount of data under inspection,
each of these steps takes days and, thus, most of the time, multiple paths were
followed in parallel. One of those was the investigation of a variety of cluster
algorithms (hierarchical clustering, k-means/k-medoids, etc.) and approaches
to classify contributors and projects. However, due to the high heterogeneity
and large size, non of the tried methods provided additional insight to the
metrics already known or to those presented in Section 4.4.2.

20 https://github.com/nirvdrum/svn2git/
21 Repository at git://git.lwn.net/gitdm.git

https://github.com/nirvdrum/svn2git/
git://git.lwn.net/gitdm.git
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Furthermore, additional features, such as the import of Git’s data into R, were
programmed and calculations were performed using a variety of computers, as
described in the next section. The results of these calculations are presented in
this thesis, which itself has been typeset using LATEX.

For the high-quality presentation of the resulting plots, several options and
plotting solutions, such as gnuplot22, were evaluated. Most of them provided
only pixel-based output (e.g. PNG or JPEG format) or generated plots that
were not pleasing to the eye as they looked if they were made 20 years ago. If
scalable vector graphics, such as EPS or SVG, were supported, the programs
only provided a small selection of fonts, which made the graphics look not
proper. Eventually, GGPlot2 [Wic09], a free visualization package for R, was
selected due to its quality and tight integration with the statistical analysis
platform. The plots were converted into TikZ23 graphics, which stands out due
to the fact of being native LATEX files with support for transparencies and vector-
based plotting [MS07]. Consequently, the graphics do not show compression or
scaling artifacts or other issues related with pixel-based images when zooming.
In addition, they have the correct font styles also used for the rest of the text
and not just a font of the few provided by the plotting program. Thanks to
TikZ, also the texts of the illustrations can be selected, searched and copied in
the PDF version of this thesis.

2.2.2 Computers Used

Most of the presented analyses were computed using the author’s personal
workstation equipped with 4+4 CPU cores (each 2.4 GHz) and 24 GB of memory.
In addition, the professorship of open source research has a virtual machine
with 4 CPU cores (each 2.8 GHz) and 16 GB memory. It hosts the database
instance and other projects so that it could not be used for calculation, as other
services would have suffered performance issues, but was solely considered as
additional storage.

With this large amount of data used here, several calculations would have
taken weeks with the hardware on hand. Consequently, the author requested
access to the HPC infrastructure of the Regionales Rechenzentrum Erlangen
(RRZE), the service provider and supercomputing department of the Friedrich-
Alexander University Erlangen-Nuremberg (FAU). Later, the allowance was
given to use the high-memory servers there, each with 16 CPU cores (each
2.3 GHz) and 128 GB of memory. However, R could only be used in a single-
threaded manner running on only one core per calculation. Since this did
not provide calculation speedup [MW11], another request was sent to the
Leibniz-Rechenzentrum (LRZ), the supercomputing facility of the University of
Technology in Munich (TUM), where an installation for R exists that can utilize
multiple CPU cores.

22 http://www.gnuplot.info/
23 http://sourceforge.net/projects/pgf/

http://www.gnuplot.info/
http://sourceforge.net/projects/pgf/
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The cluster at TUM with the name “UltraViolet3” consists of 2 240 CPU cores
(each 2.4 GHz) and 3.5 TB of main memory. It was used for all large-scale
calculations. At peak times up to 1 500 cores were computing in parallel for the
presented work here, utilizing approximately two terabyte of memory at that
time. Even then, some calculations had to be largely customized to finish in the
given time limit of 48 hours for a single job.

The option of working together with the Distributed Data Mining project at
BOINC24 was quickly rejected since too much programming effort would have
been needed upfront and the results would not have been available in time.
A request to Amazon, where EC2 instances can be used for free by selected
academic research projects, was sent but the next approval and selection process
was scheduled on a date at which this analysis should already be finished.
Consequently, a potential successor of the author’s work might have the option
of working on Amazon’s infrastructure, while for the work presented here this
option would have been too expensive.

2.3 literature review

A few studies exists that examine distributed development of FLOSS projects.
Spinellis [Spi06] investigates the impact of geographical location on code
quality in FreeBSD. He concludes that global development allows working
around-the-clock on a project, but finds significant differences between the
types of work performed at the various inspected locations. However, impacts
on the quality of code and on productivity are negligible. In contrast to that,
Cataldo and Nambiar [CN09] find that there is a high impact, and that the
more distributed a project is the less impact does process maturity have.

Tang, Hassan, and Zou [THZ09] identifies the locations of contributors of
PostgreSQL and GTK+ using e-mail metadata, such as top level domains and
IP addresses. They find that a majority of contributions were performed in the
United States and Germany. This finding is in line with Robles and Gonzales-
Barahona [RG09], who analyze projects at SourceForge with the help of the
time zone and e-mail data stored at the website, and conclude with the same
two countries being the leaders in FLOSS development. Moreover, another
study analyzing projects at GitHub25 finds a majority of developers being
located in the United States and Europe [TH10]

In a paper published this year, Bird and Nagappan [BN12] identify the top
contributors in the CVS repositories of the Firefox and Eclipse projects until
2008. For finding out their location and employer information, they perform a
completely manual look-up using a large number of different online sources.
Similar to the previous mentioned publications, they conclude that the primary
regions involved are the United States and Europe. Furthermore, the authors
point out that solely approximately 22 % of Firefox and 3 % of Eclipse were

24 http://www.distributeddatamining.org/
25 https://github.com/

http://www.distributeddatamining.org/
https://github.com/
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contributed by volunteers, while the rest was coded by professionals employed
by various companies.

Di Penta and German [DPG09] describe the difficulties to identify copyright
owners for parts of a system for legal reasons. In addition to former work, they
not only consider committer information but also parse the source code for
further information to find e.g. pointers to organizations. They also point out
that matching CVS committer-ids and contributors is not trivial as individuals
might have different credentials or multiple accounts.

The general identification of developers and the tracking of them across multi-
ple projects is a common task of researchers since the beginning of software
repository mining. Centralized VCS rely on usernames, while auxiliary sys-
tems, e.g. issue tracking, uses e-mail addresses for identifying users. The first
paper describing simple heuristicts to match developers between Subversion
repositories and mailing lists was published in 2005 [RG05]. Bird et al. [Bir+06]
use similar methods to semi-automatically align multiple e-mail addresses to
unique users with the help of social network analysis. Based on that, Gousios

and Spinellis [GS09] add string matching heuristics to this approach, which
slightly improves the results. Moreover, Poncin [Pon10] addresses this topic in
detail in his master thesis, by combining similar string and partial matching
heuristics with the ability to weight them to compensate different conventions
for username generation across various projects [Pon11]. Also only recently,
Cadenas [Cad12] proposes an approach for cleaning low quality data sets in
various text formats and for replacing missing elements using interpolation
techniques for the research of software repository databases.

Using modern VCSs, such as Git, the identification is alleviated, as those use
e-mail addresses to identify contributors. Consequently, matching these e-mails
with the ones used in bug descriptions and other auxiliary systems becomes a
close to trivial task. Some issues in this regard are addressed in Section 3.1.1.
By combining these information with public hosting providers, such as GitHub,
this allows mapping users with metadata as well as the activity of a single
person across multiple projects with higher precision [GS12; TH10].

The topic of distributed VCSs is also not widely discussed in publications,
yet. Two papers as well as several blog posts of developers26 point out that
distributed VCS have advantages compared to centralized VCS by allowing
non-core members to easier contribute and keep authorship of their submis-
sions, in addition to the advantage of being able to work offline [Bir+09; AS09].
Rodriguez-Bustos and Aponte [RA12] discuss the impact of distributed VCSs
on FLOSS projects by comparing the history of the Mozilla project before 2007

(CVS) and since then (Mercurial). They find that while the average number of
changes per month is similar for both types of repositories, the distributed sys-
tem lowers the entry barrier for new contributors. In addition to that, Bird et al.
[Bir+09] find that the size of commits differs by only two lines on average when
comparing the history of a project before and after switching to a distributed

26 E.g. http://lwn.net/Articles/246381/, http://www.python.org/dev/peps/pep-0374/, http:
//planet.mysql.com/entry/?id=13353, or http://use.perl.org/use.perl.org/articles/08/
12/22/0830205.shtml (all visited on 08/20/2012)

http://lwn.net/Articles/246381/
http://www.python.org/dev/peps/pep-0374/
http://planet.mysql.com/entry/?id=13353
http://planet.mysql.com/entry/?id=13353
http://use.perl.org/use.perl.org/articles/08/12/22/0830205.shtml
http://use.perl.org/use.perl.org/articles/08/12/22/0830205.shtml
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VCS. In their work, the authors point out several advantages of the latter for
repository mining, such as easier access to the data, author information, and
smaller repository sizes. In 2012, the MSR mining challenge [SKB12] is the first of
theses challenges that is performed using data from a Git repository. Previous
ones were based on either CVS or SVN data. As one of the participants, Sinha,
Mani, and Gupta [SMG12] profile the developer community and industrial
contributions to Android, and find a high influence of large companies, such
as Google, Intel, IBM, or RedHat. Already since 2008, the Linux Foundation
publishes an annual report of the Linux kernel development based on the
metadata extracted from the Git repository of the project [CKM12]. The latter is
also considered by Corbet [Cor09] who examines the way patches take until
they appear in the main line repository of Linus Torvalds.

To overcome the problems with respect to centralized repositories, Gousios

and Spinellis [GS12] suggest using data from the GitHub hosting site, which is
based on Git and, consequently, does not have most of the listed shortcomings.
They propose a combination of MongoDB27 and the peer-to-peer BitTorrent
protocol [Coh08] to gather and distribute event streams and data of the hosted
projects, such as commits, bug tracker entries, wiki pages etc. In combining a
NoSQL database for flexibility against changes of the GitHub API and a high
distribution to overcome the hourly access limitations and to provide scalable
storage space, the mirroring of data from the almost four million repositories
seems feasible in their eyes. In their paper, the authors also analyzed the commit
sizes based on the programming language used as well as the time when
commits were submitted, similar to the work in this thesis. However, in contrast
to Sections 3.2.2 and 4.2.2, Gousios and Spinellis [GS12] transformed all
commit time stamps into UTC to solely show the round-the-clock development.
The authors also find increased productivity during the working week days,
which is in line with the findings presented here.

In a recent paper published this year, Rodriguez, Herraiz, and Harrison

[RHH12] classify twelve common sources for repository mining research based
on the considered sources, research fields, access type, and type of content.
Furthermore, the authors address quality issues and list eight problem classes
with such preprocessed data. Moreover, Gousios and Spinellis [GS12] dis-
cusses some sources, however not in such detail as the previously mentioned
publication.

Using social network analysis, Yu and Ramaswamy [YR07] inspect the interac-
tion frequency between developers and classify them into the groups of core
members and associate members. Crownston and Howison [CH05] examine
the consistency of social structure in FLOSS projects by evaluating the net-
work centrality of communication during bug-fixing processes. They find that
no pattern of communication centralization, or decentralization, respectively,
is characteristic across multiple projects for such task and that each project
has individual characteristics. In line with this, Scacchi [Sca05] outlines the
socio-technical activities in different communities.

27 http://www.mongodb.org/

http://www.mongodb.org/
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Already in 2002, Mockus, Fielding, and Herbsleb [MFH02] discuss how
developers and users are positioned in communities. In their onion model, it is
possible to distinguish between core and co-developers, as well as active and
passive users of a software. Similar that model, Yuan et al. [Yua+10] provide
a similar onion-like classification for developers into 26 different roles, after
clustering the projects and contributors registered at SourceForge by calculating
the social network centralization between each of them. Unsurprisingly, they
find that the most important roles here are developers and project managers.
Robles, Gonzales-Barahona, and Herraiz [RGH09] investigate the evolution
of the most active group of developers in two large projects. In their eyes,
stability and permanence of this group is of great importance for the evolution
and sustainability of a project. In addition, they discuss to which extent non-
coding activities, e.g. writing of documentation, should be considered as well
when identifying the core team of developers. Unfortunately, covering this
information for such a large group of project exceeds the focus of this thesis.

To the best knowledge of the author of this thesis none of the mentioned
publications nor others address the issue of working time versus volunteer work
discussed here. No research could be found that analyzes the commercialization
of FLOSS projects by investigating when what work was done. A reason might
be that modern version control systems, such as Git and Mercurial, have allowed
accessing commit history data in detail, including time zone information, only
recently. Older systems, such as CVS or SVN only store a single UTC time
stamp per commit, leading to the aforementioned issues in data quality, as well
as difficulties in developer identification and time zone prediction.





3
L I N U X K E R N E L

3.1 research approach

In this chapter the data in the Linux kernel repository is analyzed. The project
was chosen since it might be the most popular FLOSS project worldwide. The
Linux kernel is also the largest open and collaboratively developed software
project in the history of computing [CKM12].

The development of the Linux kernel was started by Linus Torvalds at the
end of 1991 [Tor91]. Due to the worldwide expansion of the Internet as well
as the switch to the distributed Version Control System Git [Git12], which was
also initiated by Torvalds, the project’s awareness and collaboration was raised
further. All data of the Linux kernel project are managed in a Git repository
since April 16th 2005 [And05; Tor07b]. Since then approximately 8000 different
developers from nearly 800 distinct companies have participated in the kernel’s
development [CKM12].

An advantage stemming from the usage of Git is that all commit times are
stored in the contributor’s local time, including time zone information as UTC
offset (cf. Section 2.1.3.1). This is in contrast to older solutions, such as CVS or
SVN, where the committer time was internally stored in UTC and was always
transformed and displayed in the user’s time zone (cf. Section 2.1.1). As a result,
the time zone for a contributor’s local time is directly available for analysis and
does not have be calculated upfront (cf. Section 4.1.5).

In addition, thanks to the usage of Git, a clear distinction between authors and
committers (cf. Section 2.1.1) is possible, since commit information is stored for
both [Git12].

The primary source is a clone of the current official Git repository of the Linux
kernel, which can be downloaded with the command “git clone git://git.

kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git”. The project’s
commit history is then examined with the help of R [R12].

In this thesis all commits between April 16th 2005 and December 31st 2011 are
analyzed. The lower bound was chosen due to the fact that Git was introduced
on this date to provide better manageability to the Linux kernel project. All
commits in the repository before that date are most likely due to misconfigu-
ration of the local time settings of individual developers (32 commits in total,
0.01%). While the development of the Linux kernel did not stop at the chosen
upper bound, the latter was chosen in order to analyze data for entire calendar
years. Given these time constraints, a total of 283 905 individual commits were
selected for the analysis.
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git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
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3.1.1 The .mailmap File in Git

Due to the nature of distributed Version Control Systems (VCSs), it might
happen that a single person uses different credentials (name, email) when
contributing. That was not possible in a central Version Control System having
only one point of authorization. The .mailmap file in Git provides the option to
map various e-mail addresses and names with different spellings to a single
user. The easiest way for archiving this is to create a text file with the name
.mailmap in the top level directory of a Git repository. Due to the fact that
the file name starts with a dot it is usually hidden, like the rest of Git’s
configuration, and hence does not disturb the normal work with one’s project
files.

The .mailmap file allows the reduction of author and committer names, as
well as multiple e-mail addresses, onto a unique combination of name and
e-mail. Consequently, it is possible to pool and analyze contributors with
slightly different spelling. In addition, the .mailmap file helps to reduce the
computational requirements by allowing the correction of spelling mistakes etc.
in advance, so that e.g. nearly similar e-mail addresses that would be classified
as different by computers can be marked as identifying the same person.

The following list shows examples of how the .mailmap file might be used (a
similar form can be also found in the man-page of Git-Shortlog1):

• Mapping of different name spellings
Joe has added multiple commits to a project. On most of his computers
he configured the system so that his name contains a middle name
initial (sometimes with a dot afterwards, sometimes without), and on
one computer he just used the combination of his first name and last
name. With an appropriate rule it is possible to map Joe Developer, Joe R
Developer, and Joe R. Developer to the latter version when showing commit
information or creating statistics.

• Normalization of e-mail addresses
Joe’s colleague Jane received a new development machine and started
programming on a new feature without first adjusting the configuration of
her local Git installation. By default, Git uses the user account information
of the operating system if no other settings are configured. As a result,
Jane’s name will probably be correct in the commit information, whereas
the e-mail address defaults to the PC’s name. This leads to entries like
<jane@laptop.(none)> or <jane@desktop.example.com>, in addition to
her official one <jane@example.com>. With a rule in the .mailmap file it is
possible to map all pseudo addresses automatically to the correct version
when listing them e.g. for finding out who introduced a change.

• Reduction of spelling mistakes
When Joe received a new computer he first configured Git before starting

1 If Git is installed on a unix-like operating system (Linux, Mac OS X, etc.) it can be found
via the console command man git-shortlog. In addition, the manual page is online at http:
//git-scm.com/docs/git-shortlog (visited on 06/21/2011).

http://git-scm.com/docs/git-shortlog
http://git-scm.com/docs/git-shortlog
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development. During configuration he got distracted and accidentally
misspelled his name Jeo. Unfortunately, he discovered this fact after he
merged all code of his repository with the official one and thus was
not able to easily change his name entries anymore. However, with an
additional line in the .mailmap file, he can still hide the spelling mistake
from the eyes of his co-workers.

• Separation of Commits with nearly similar credentials
When fixing problems on-site for customers, Joe and Jane used the same
e-mail address <bugs@example.com>, so that the customer can lookup the
correct address for reporting additional features or change requests. How-
ever, for internal analyses it should be possible to distinguish between
the two committers to find out who introduced what change. Since both
developers used their individual name when committing, it is possible to
create rules in the .mailmap file that split the commits with the generic
e-mail address and map them to the specific ones.

For the Git repository of the Linux kernel project such a .mailmap file exists. It
contains only 109 entries. Since there were around 7800 developers contributing
to the project in the time span between 2005 and 2011, this small number of
rules covers just approximately 1% of all existing shortcomings.

As a consequence the author extended the file after analyzing the author and
committer data in the repository. It grew up to 2500 entries and now handles
aliases and spelling mistakes in names and e-mail addresses for most of the
developers. The updated file was also sent as a change request to the Linux
kernel Mailing List2, where it is now under review as of this writing. The
additional work of updating the existing .mailmap file allows more detailed
insights of the work of single contributors without necessitating a manual data
clean before each analysis. Additionally, other researchers would also profit
from this work as soon as the changes are accepted to the official repository.

3.1.2 Linux Kernel Limitations

Even if the Linux kernel project has existed for over 20 years now, only the
data of the official Git repository (see above) over the timespan of seven years
is analyzed.

An attempt has been made to also collect previous activities in a holistic Git
repository spanning the whole project life time [Lan11]. The reasons for not
using it in this thesis are twofold: On the one hand, the Linux kernel project
was using the Version Control System BitKeeper3 between 1998 [McV98] and
2005 [And05], which only stores committer but no author data (see e.g. [Ste12]).
On the other hand, all commits before 1998 were only manually managed by
Linus Torvalds without any Version Control System [McV98]. Consequently,
there exist no precise information about the author’s creation time of a patch
(which, at the latest, is the point in time when he or she sends the mail to the

2 https://lkml.org/lkml/2012/5/16/247 (visited on 05/16/2012).
3 http://www.bitkeeper.com/

https://lkml.org/lkml/2012/5/16/247
http://www.bitkeeper.com/
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mailing list), and there also exists no committer time at which the patch was
integrated into the existing codebase.

Another aspect to consider when working with the Linux kernel is the fact that –
besides being the largest world-wide FLOSS project [CKM12] – the community
also introduced many specialized rules, guidelines, and workflows to be able to
manage the project [Cor08]. Thus, it is often analyzed as a prime example of a
popular and large-size FLOSS project. However, one can assume that especially
smaller projects are showing different behavior. Therefore, a large number of
FLOSS projects (which also includes the Linux kernel for the inspected time
frame) is later analyzed in more detail in Chapter 4, to evaluate if the results of
the current chapter can also be applied to a wider range of projects.

3.2 weekly work pattern

3.2.1 Hourly Commits Condensed into One Week

This section examines in a holistic approach on which day of the week and
at which time of day developers primarily contribute to the Linux kernel
project. To accomplish this, all activities over the whole inspected time frame
are compressed into a single week.

Figure 3.1: Work Distribution of Authors
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Figures 3.1 and 3.2 show the combined number of all commits for the timeframe
from Monday 00:00 (or 12 am) until Sunday 23:59 (or 11:59 pm). Intuitively one
can see that a majority of all commits is contributed between Monday and
Friday. The amount of contribution per hour at the weekend adds up to only
approximately a quarter of the peaks during the working week.
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Figure 3.2: Work Distribution of Committers
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Also intuitively visible is a pattern of the curve in both plots that repeats for
every day from Monday to Friday and consists of a local maximum followed by
a minor drop-off around noon before reaching a day’s peak afterwards. Then
the curve drops and has another local maximum in the evening before a new
day follows and the pattern repeats. That characteristic will be analyzed in
more detail below in Section 3.2.2.

Table 3.1: Absolute Number of Commits per Day of Week

day of week authors committers

Monday 49 223 (17.3 %) 49 058 (17.3 %)
Tuesday 51 633 (18.2 %) 51 601 (18.2 %)
Wednesday 50 269 (17.7 %) 50 845 (17.9 %)
Thursday 48 175 (17.0 %) 46 753 (16.5 %)
Friday 44 065 (15.5 %) 47 727 (16.8 %)
Saturday 20 195 (7.1 %) 19 372 (6.8 %)
Sunday 20 313 (7.2 %) 18 517 (6.5 %)

Total 283 873 (100.0 %) 283 873 (100.0 %)

Looking at the numbers representing the total amount of commits per day as
shown in Table 3.1, one can see that authors produce approximately twice as
much during workweek days compared to weekend days. In contrast to that,
contributors with commit rights are only pushing approximately a third of the
number of commits on weekends compared to the workweek. The weekend
represents around 28.6% of a 7-day-week; during that time authors submitted
14.3% of their commits while committers integrated 13.3% of all commits.
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When comparing the ranges Monday to Friday and Saturday to Sunday sepa-
rately, the total amount of commits stays nearly equal and no day significantly
outperforms the others. However, when examining the differences between
the daily peaks of the workweek and their average, which is depicted as a
dashed line, it becomes evident that the values for Tuesday and Wednesday are
slightly higher for authors, while committers have higher peaks on Monday,
Wednesday, and Friday that are higher than average.

Especially the latter is interesting, as it seems as if the observed high commit
numbers were submitted at the same hours. Furthermore, a potential expla-
nation for the author’s behavior is that people catch up on things they could
not finish during the previous week. In addition, the break from work over the
weekend allows developers to rethink solutions or think out new requirements
that are then directly discussed and worked-on on Mondays. On Tuesdays ad-
ministrative necessities are also performed and potential questions are resolved,
so that the productivity and thus the amount of commits increases for authors.

In contrast to that, the activities of authors on Friday and of committers on
Thursday and Friday are clearly below average when looking at the total
numbers of commits. The reason for that might be twofold: In some countries,
such as e.g. Germany, most companies try to finish earlier on Fridays while
still conforming to a 40-hour-week. As a result, people might be distracted
by the upcoming weekend planning. It would also explain why the drop on
Fridays is much steeper compared to the days before. Another reason might be
that a problem might be too big to be solved in a single day and – assuming a
professional developer contributing to open source on a payed employment –
is then postponed to the following week and only small changes are made on
that day. In addition, the peak for authors and committers in the evening on
Fridays is much lower than on the days before and only reaches the level of the
weekend activity.

A high-level examination of commits on weekends shows that they do not
contain such an obvious pattern. The number of commits per hour stays – even
if lower than on the days before – on a nearly constant level without a large
difference.

Moreover, the plots for authors (Figure 3.1) and committers (Figure 3.2) differ
only slightly. One detail that catches one’s eye is the fact that committers have
a much steeper curve at the end of a day and seem to have no real peaks in the
evening. A deduction might be that a majority of the Linux kernel maintainers
spend their time on the project as a professional paid FLOSS developer with
a lower number of hobby developers than in the group of authors (see also
[CKM12]). Furthermore, the committer’s curves are not as smooth as those of
the authors and have a stronger maximum in the afternoon.

Interestingly, one can observe that the peak on Thursday afternoon is somehow
missing in Figure 3.2. An idea that comes to mind is that there might be one
or more companies – that are heavily involved in the development of the
Linux kernel – that have a scheduled meeting at that time. By participating in
the meeting, committers are hindered from integrating new changes during
this period of approximately one hour. However, research in this direction,
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based on the repository data at hand, revealed no clear pattern indicating
a single commercial entity, when using the domain names of committer’s
email addresses. Applying a more sophisticated company mapping turned out
to exceed the scope of this thesis, as e.g. companies are acquired by others
and, as a result, the email domain changes for employees. Consequently, this
would have required an individual manual look-up for each contributor of the
inspected 30 releases (cf. Section 3.4.2) over time to assign him or her to the right
employer. There exists cleaned-up lists of email addresses that are available for
free online4, however, these did not provide enough information in this context.
Nevertheless, having a variety of members using other email addresses, the
Linux Foundation seems to be a major factor in the observed drop of commits
on Thursday afternoon when combining multiple data sources5.

3.2.2 Hourly Commits per Day

After the examination of the time span of a whole week in the previous section,
the following pages will delve deeper into the analysis of a single day.

Figure 3.3: Commits of Authors per Hour
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In Figures 3.3 and 3.4 the same approach as described in Section 3.2.1 is used
by aggregating all commits over the whole inspected project’s time into one
week. The plots show each a 24-hour timespan on the x-axis with the number
of commits on the y-axis. The different days of a week are depicted by separate
curves with individual colors, while the lines of those days on the weekend are
additionally dashed to ease visual separation.

4 Repository at https://github.com/gregkh/kernel-history (visited on 06/28/2012).
5 Not only did the Foundation rename itself from “Open Source Development Labs” into “Linux

Foundation” and, thus, changed their domain from osdl.org to linux-foundation.org, but it
also has well-known members, such as Greg Kroah-Hartman, who are pushing commits using
their individual email domains (e.g. @kroah.org)

https://github.com/gregkh/kernel-history
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Like already assumed when describing the overall week trends in Section 3.2.1,
both plots for authors (Figure 3.3) and committers (Figure 3.4) are mostly
similar and only differ in details with the individual curves lying nearly on top
of each other. The majority of developers seems to end their work at the latest
around 02:00 in the morning, independently of their role on the project.

For authors, the productivity – measured here by the amount of commits –
steadily increases starting at 07:00 in the morning and eventually reaches a
peak at the hour between 11:00 and 12:00. Then the curves drop slightly during
the next hour, which might be due to a lunch break common at that time. After
that, the number of commits remains continuously high between 13:00 and
18:00 before it significantly drops. The productivity is then only roughly a
half compared to the hours before. It rises again at around 20:00 (except for
Fridays), peaks between 21:00 and 23:00 depending on the day of the week,
and decreases then towards the overall minimum between 03:00 and 07:00 in
the morning.

This pattern might be due to the fact that most developers commute home in
the evening, which lowers the ability to commit new code during this period.
Having finished dinner, some but not all authors work throughout the evening
as well. Since the number of commits after 19:00 compared to the number
during working hours is significantly smaller, it can be assumed that the
number of hobby developers working on the Linux kernel during their spare
time compared to the amount of professionals is lower as well. Interestingly,
the number of evening commits between Monday and Friday decreases with
each day of the week.

When eyeballing the weekend statistics for authors, nearly all hourly values
are below the ones during the working week. Exceptions are at the transition
between Saturday and Sunday at around 01:00 to 02:00 and at the transition
between Sunday and Monday between 23:00 and 24:00. Both curves represent-
ing the weekend activity are close to each other and do not differ much over
the day, showing nearly consistent activity between 09:00 and 24:00 with only
slight dips during lunch- and suppertime.

Looking at the committer data, a much lower activity during evening and
morning hours can be observed. However, contributors with commit rights
seem to start their day earlier than authors during the workweek by having a
much larger number of commits integrated into the codebase between 07:00

and 09:00. The behavior pattern between 08:00 and 14:00 is not as cleanly
shaped as for authors and shows a high fluctuation. The evening activity is
as high as for authors, but shows a more steady decrease with less late-night
commits. As shown in Table 3.1, the number of commits per day of the week
does not differ much between authors and committers. Consequently, having
less activity in the morning as well as in the evening, results in higher peaks in
the afternoon. However, also during this time frame, the curves differ quite a
lot from each other as well as the points in time for the peaks.

The values of the weekend curves of committers are mostly similar to the ones
of authors. However, a lunch break between 13:00 and 14:00 is more obvious
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Figure 3.4: Commits of Committers per Hour
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here. As an exception, a peak in committer productivity for the period on
Sunday between 10:00 and 11:00 catches the eye.

The observed behavior during the workweek implies that maintainers of the
Linux kernel are mainly paid professionals who work on that project during
their working hours. The fact that committers and authors have nearly similar
shaped curves when inspecting the daily number of commits might be the
result of not every committer being a paid developer, but there are some of
them who also work during their spare time.

Furthermore, one can conclude that authors mainly commit their changes dur-
ing the workweek between 09:00 and 18:00, while committers mostly integrate
those new code pieces from Monday to Friday between 08:00 and 17:00. This
supports the time frame assumed in the working hour definition made in
Section 2.1.3.4 covering the period between 08:00 and 18:00.

3.2.3 Commit Size Changes per Hour

The previous sections inspected developer behavior based on the number of
commits per hour. In the following, the number of commit size changes is
analyzed as well to examine if there are visible differences between commits
and committed code.

For the understanding of the following, please recall that commit size is defined
as a combination of added and deleted lines of code (cf. Section 2.1.2).

The differences are marginal when comparing Figure 3.5 with Figure 3.3. The
number of commit size changes on Monday and Tuesday between 12:00 and
16:00 is slightly more pronounced while it is in general lower during the
“sleeping phase” (02:00–07:00). The latter indicates that during these hours the
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Figure 3.5: Commit Size Changes by Authors per Hour
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patch size is lower and each patch changes only a few lines of code, while the
former shows that big changes are most likely introduced in the afternoon.
A reason for that might be the available capacity for concentration, which is
typically much lower at night for most people.

Figure 3.6: Commit Size Changes by Committers per Hour
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A comparison of Figure 3.6 with Figure 3.4 also shows no real differences.
Noteworthy is only that the number of code changes on Monday between
19:00 and 20:00 is lower compared to the number of integrated commits at
that time. Here the changes per patch are also smaller. This seems reasonable
in combination with the assumptions mentioned in Section 3.2.2 that most
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maintainers of the Linux kernel are paid professionals and commute home at
that time.

3.3 weekly work pattern trends

In this section a trend over the overall lifetime of the Linux kernel project
under Git is analyzed. The following plots contain a single value per week that
represents the ratio between commits during worktime and the total amount of
commits during that week. As a result, a year is depicted by 52 points that are
connected by a line to visualize the changes. In addition, a Locally Weighted
Scatterplot Smoothing (LOESS) curve is plotted on top of the data to show the
overall trend of the time series.

3.3.1 Trends for Authors

Figure 3.7: Percentage of Commits during Working Time for Authors on a Weekly Basis
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When looking at Figure 3.7, a decrease of fluctuation in the time series for
authors can be observed. The percentage values of distinct weeks representing
the commits in working time at the beginning (ignoring the first few weeks
of Git’s adoption) vary between approximately 20% and 80%. At around the
middle of 2008 the trend stabilizes and the weekly percentages are consistently
above 40%, close to 50%, and mostly below 70%. Also the “running average”,
represented by the light-blue LOESS curve, shows this trend by first rising only
slightly until mid of 2007 before showing a clear upwards slope. Since 2010 it
plateaus shortly below 60% and neither increases nor decreases further over
the timespan of two years.

Comparing these facts with the clear upwards trend of the number of involved
authors per week, as depicted in Figure 3.8a, a reduction of the fluctuation
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Figure 3.8: Additional Time Series Plots for Authors
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means a higher involvement of developers working on a professional basis
during the defined working hours.

In contrast, the LOESS curve depicted in Figure 3.8b shows a similar stagnation
in growth for the number of submitted patches. Although one can assume a
high correlation between the number of patches and the number of contributors,
the trend does not rise linearly with the latter. Thus, not only the work rhythm
was adapted, but also the cadence of commits became more stable.

3.3.2 Trends for Committers

In Figure 3.9, which depicts the percentage of commits during worktime for
committers, a similar upwards trend is visible as described previously for
authors.

Figure 3.9: Percentage of Commits during Working Time for Committers on a Weekly
Basis
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It increases even higher and plateaus at approximately 65% of all commits
being integrated in worktime. The fluctuation between weeks does not decrease
as much over time as in Figure 3.7 and varies since 2009 between 35% and 85%,
with a clear drop in each October, which might be due to vacations.

Figure 3.10: Additional Time Series Plots for Committers
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Even if the total number of developers with commit rights per week is –
somewhat intuitively – lower compared to the total number of authors, a steep
upwards trend is visible in Figure 3.10a. It shows an increase from under 20

committers in the first year of the usage of Git up to about 60 per week on
average nowadays. A reason might be the partition of the Linux codebase in a
hierarchy of various subsystems and even smaller administrative areas. This
not only allows a better concentration of domain knowledge but also provides
more options to gain commit rights for a part of the project.

Figure 3.10b is in line with Figure 3.8b shown earlier, since committers can
only integrate as much changes as authors provide. However, the fluctuation
between consecutive weeks is much higher than the author’s one as the gray
ribbon, representing the standard error, around the LOESS curve indicates.
One has to keep in mind that code changes adding new features are only
allowed during a short period after the announcement of a new kernel re-
lease, while over the rest of the period until the next release, only bug fixing
changes are integrated. Consequently, the graph shows a low activity in general
with regularly occurring high peaks. This will be discussed in more detail in
Section 3.4.2.

3.3.3 Trends for Both

For inspection of an overall trend of the ratio between commits during working
time and during spare time, Figure 3.11 depicts the combination of both
previously distinct examined time series. Each of the fifty two values per year
represents the average percentage of all commits performed during working
time over the period of a single week.
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Figure 3.11: Percentage of Commits during Working Time for Authors and Committers
Combined on a Weekly Basis
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Inspecting the blue LOESS curve, that represents a robust moving average
in this context, one can observe that the overall number of commits during
working time increases. The latter tops the value of 50% at the end of 2008.
Since then, it remains above this value, with few exceptions, and, hence, higher
than the percentage of commits during spare time. Consequently, one can
deduce that the number of professional developers increased for both groups –
authors and developers – and, thus, that the Linux kernel can be seen as highly
backed by companies.

This is consistent with Corbet, Kroah-Hartman, and McPherson [CKM12],
who state that only approximately 25% of all work on the Linux kernel is done
by the groups “volunteer”, “academia” or “unknown”; all other commits are
done by commercial entities.

3.4 overall trends

3.4.1 Distributions

In the following, trends over the total inspection period of the full seven years
are analyzed.6

Figure 3.12 depicts the distribution of commits during working time. Here,
authors are represented by a dashed line and committers by a solid one. The
values on the vertical axis show the number of contributors having a specific

6 As a technical explanatory note, the presented numbers are based on all commits that changed
at least one line and, hence, also include merge commits that integrate other repositories.
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Figure 3.12: Distribution of Contributors per Percentage of Commits during Working
Time
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percentage of all commits at that level on the horizontal axis. Please note that
the vertical axis is logarithmically scaled.

Intuitively one can see the peaks on both ends, indicating a large group of
contributors working exclusively during spare time as well as a nearly similar
sized group of developers contributing solely during working hours. For the
group of authors, peaks for multiples of 25% as well as for multiples of 33% are
visible; the curve for the group of committers does not show such clear peaks.

A reason for this might be that a large amount of the Linux kernel patch
authors are just committing a rather small number of patches to the project, in
contrast to committers taking care of the work of multiple authors as shown in
Section 3.4.3. For example, assume an author contributed three changes over
time: two were done during spare time and one during working hours (e.g. on
vacation). In that case, the overall percentage of that person will be 33%, which
explains the peaks at exactly these characteristic values and their multiples.

Table 3.2 provides a list of the number of contributors with respect to their
commit behavior and, as such, shows how many of them worked mostly during
spare time or during working hours. Please note that developers having exactly
fifty percent of their work done during working hours are included in both
groups here. Consequently, both rows in Table 3.2 add up to more than a
hundred percent.

As one can observe, nearly thirty percent of all authors worked exclusively
during their spare time. Including also all developers up to ninety percent
spare time contributions does only enlarge this group slightly. The same is
true for the other extreme, when looking for professional authors who only
contribute during working hours (with a maximum deviation of ten percent).
Approximately a third of all authors contribute with more than seventy five
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Table 3.2: Cumulative Number of Contributors

% worktime authors committers

Vo
lu

nt
ee

rs

0 % 2268 28.5 % 28 8.5 %
6 5 % 2293 28.8 % 33 10.0 %
6 10 % 2356 29.6 % 40 12.2 %
6 25 % 2767 34.7 % 60 18.2 %
6 50 % 4192 52.6 % 129 39.2 %

Pr
of

es
si

on
al

s > 50 % 4303 53.99 % 207 62.9 %
> 75 % 2890 36.3 % 130 39.5 %
> 90 % 2388 30.0 % 73 22.2 %
> 95 % 2308 29.0 % 54 16.4 %

100 % 2275 28.5 % 42 12.8 %

percent of their work done during spare time or during working time. Dividing
the overall group in the middle, “spare timers” and “professionals” are close to
equal in size.

In contrast to that, the group of committers performing at least seventy five
percent of their work on the Linux kernel during their spare time reaches
barely a sixth of the total number. On the other hand, nearly forty percent
integrate changes in at least seventy five percent during working hours. A
professionalization is confirmed by the shift towards it, visible when dividing
all committers into two equal groups. Here, over sixty percent of all committers
did their part on the Linux kernel evolution using at least fifty percent of their
(here assumed) paid time. Interestingly, exactly forty two of them performed
all their contributions exclusively during working hours.

Figure 3.13: CDF of Total Number of Commits per Contributor
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(b) Committers
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For getting a better feeling about the analyzed groups, Figure 3.13 depicts
the Cumulative Distribution Functions (CDFs) of contributors by their total
contribution to the Linux kernel. Please note that both axes are logarithmically
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scaled for a better representation of the exponential behavior of the data at
hand. Eventually each curve reaches a value of a hundred percent vertically
and a lower percentage indicates how many contributors of the total group of
authors or committers, respectively, have a less or equal amount of commits
registered in the codebase.

The domain of the horizontal axis for authors, as depicted in Figure 3.13a,
ranges from one commit up to a maximum of approximately 4 000 commits
per person over the period of seven years. As one can observe, fifty percent of
all authors made only one or two commits, with a majority of those having
solely a single contribution (39.89 %, n=3179). Three quarters of all authors
contributed ten or less commits to the success of the project.

The remaining quarter, however, contains a wide value range: Adding ten more
percent to the already discussed group, adds all authors with twenty five or
less commits; five percent more everyone with fifty or less. Thus, the top ten
percent of all authors – still a group of 797 developers – are responsible for
quite a few changes per person. However, half of them (now we are at 95 %)
contributed less then one hundred and forty changes each. Eventually, there
are eight authors with 2 000 to 3 000 commits in total, two have between 3 000

and 4 000 and two, David Miller and Linus Torvalds, contributed more than
4 000 patches per person.

When inspecting the same percentage ranges, as described above, for the
group of committers, as shown in Figure 3.13b, there are interesting differences
observable. Although the total number of developers with commit rights is
smaller compared to the one of authors, the number of code integrations per
person is much higher. Only 2.74 percent, or nine developers, have solely one
commit assigned to them. Half of all committers have 100 or more contributions.
Moreover, ninety five percent of all authors have less registered commits than
forty five percent of all committers.

The upper quarter of all committers has made at least 500 changes per person
during the investigated period of time. As one can observe, the topmost five
percent, or seventeen committers, have over 3 000 contributions assigned to
them. Of this group, five members are in the range between 3 000 and 4 000, six
are between 4 000 and 10 000, and six committers supervised even more than
10 000 changes between 2005 and 2011.

However, when analyzing the amount of code changed by contributors, sorting
them in the described groups by the percentage of work during working
time, the values at the edges of Figure 3.14 are only marginal. Here, authors
developing fifty four percent of their changes during working time are most
influencing with 17.5 % of all changes made with that percentage are done
during working hours. In contrast to that, committers have their maximum
commit size contribution (23.1 %) at sixty three percent and furthermore a peak
(15.7 %) at eighty five percent can be observed.

Figure 3.15 depicts the CDF of commit size changes. A single clear jump in
authors’ code changes located at 53–54 percent can be observed, while the parts
in front of it and also afterwards are close to linear shape.
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Figure 3.14: Commit Size Changes during Working Time per Contributor
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Figure 3.15: CDF of Commit Size Changes during Working Time per Contributor
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In contrast to that, the latter fact is not true for the curve representing the
committers’ changes. Here, multiple increases are observable at the percentage
values already described above. The activity remains low with only approxi-
mately 30 percent of all changes integrated from developers working primarily
in their spare time on the project. There are two remarkable groups, integrating
large parts of changed code, at 62–63 and 84–85 percent working time.

The overall percentage of changes introduced to the “official” Linux kernel
repository of Linus Torvalds during working hours over the period of seven
years is depicted in Table 3.3. As one can see, the numbers for committers are
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Table 3.3: Total Percentage of Changes during Working Hours

authors committers

commits 52.1 % 60.8 %
code changes 52.1 % 61.3 %

higher, indicating a larger professionalization in the sense of commercially paid
development here as well.

3.4.2 The Influence of Releases

In line with the work of Hindle, Godfrey, and Holt [HGH07], the influence
of releases with respect to commit behavior is analyzed in this section. The
inspected period of development starts shortly before version 2.6.12 (announced
05/17/2005) and ends close to the end of version 3.1 (announced 10/24/2011,
version 3.2 01/04/2012). The data at hand contains 30 releases in total, which
is aligned to the Linux kernel’s cadence of a new stable release every 81 days7

on average [CKM12].

Figure 3.16 depicts the day and hour at which each of them was introduced to
the codebase, using the concept of a punched or Hollerith card [Rou08]. Similar
to the plots at GitHub8, a dot represents a day and time when a new version
was released, and the larger ones indicate that more than one release was
announced at that time over the whole inspected period. As one can observe,
the Linux kernel has no preferred time for its releases since they are spread
over the whole week.

Figure 3.16: Time at which Releases were Introduced

Mon

Tue

Wed

Thu

Fri

Sat

Sun

0
0
:00

0
1
:00

0
2
:00

0
3
:00

0
4
:00

0
5
:00

0
6
:00

0
7
:00

0
8
:00

0
9
:00

1
0
:00

1
1
:00

1
2
:00

1
3
:00

1
4
:00

1
5
:00

1
6
:00

1
7
:00

1
8
:00

1
9
:00

2
0
:00

2
1
:00

2
2
:00

2
3
:00

The following figures consist of a gray area indicating the median of all com-
mitters’ contributions in these releases over the time of 60 day before and
after a release. The period of 60 days was chosen due to the fact that it is the

7 For the inspected time frame between release 2.6.11 (03/02/2005) and release 3.1 (10/24/2011)
the development time per release averages 80.94 days.

8 See https://github.com/blog/1093-introducing-the-new-github-graphs (visited on
08/27/2012).

https://github.com/blog/1093-introducing-the-new-github-graphs
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minimum of all release windows during the inspected time frame (cf. [CKM12]).
In addition, a solid line shows the number of commits, again as a median over
all releases, that were contributed by authors. The maximum of each group is
visualized by a light blue horizontal line for better visibility that is solid for
committers and dashed for authors. The release date is centered and depicted
by a dashed, red vertical line. In addition, a dotted, red vertical line indicates
the end of the two week merge window in which new code can be integrated
into the code base [Cor08].

Figure 3.17: Average Commits (daily)
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Figure 3.17 depicts the number of commits contributed per day. Before and after
the merge window, the activity of authors (solid line) remains high with an
average of 89 commits per day. The committers’ activity (grey area) during this
periods is lower with only 63 commits per day on average. Since the number
of changes per release submitted by authors and integrated by committers is
equal with only few exceptions, this relationship consequently swaps during
the fourteen day period where new code is allowed to be introduced to the
codebase. On the first day of it, on average over 500 changes were integrated
per release, indicated here by the median for robustness reasons. Over the
next fourteen days the committers’ activity remains high with 238 commits on
average, with a second peak of nearly 350 commits on average exactly 7 days
later.

Also the number of authors’ commits rises on the first day but not as much as
for committers, reaching approximately 300 commits. A reason for that might
be that authors keep their changes locally in private repositories and propose
them as patches for integration on the mailing list as soon as a new release is
announced. Then, the activity drops again to normal level, before reaching a
second peak similar to the one described for committers before. An potential
explanation for both is the increased testing and fixing of integration issues at
that phase, which needs some time. Furthermore, weekends in between that
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result in less development activity as shown in Section 3.2 might play a role
here, even if new releases were introduced on every day of the week. In total,
authors submit 173 commits on average per day during merging time.

Figure 3.18: Average Percentage of Commits during Working Hours
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When inspecting patterns regarding the ratio of commits during working
time and spare time per day with respect to release windows, as depicted
in Figure 3.18, no clear shape can be observed, neither for authors’ nor for
committers’ activities.

However, both curves drop significantly during the merge window, which
might be due to extensive testing around the clock during that period. Here, the
average percentage for authors is six percent lower and the one for committers
drop by four percent compared to their respective values outside the merge
windows. In addition, during the four days before a release is announced,
nearly all changes were integrated by committers during their spare time;
although this number is quite low as visible in Figure 3.17.

The number of contributors per day is depicted in Figure 3.19. The number of
authors, still represented by a solid line, is continuously approximately twice as
high as the number of committers, represented by the gray area. Interestingly,
this fact remains its validity also during the merge windows. Furthermore, a
correlation between both developer types can be noticed as peaks of committers’
involvement appear at the same day or one day after the number of authors
was high.

3.4.3 Ratio Authors per Committer

In contrast to centralistic VCSs, newer distributed solutions keep not only
information about the committer of a checked-in piece but also about its author
(cf. Section 2.1.1). Consequently, this fact allows the examination of how the
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Figure 3.19: Average Number of Contributors
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ratio changed over time. In a more generalized form the inspected question is,
how many individual authors a single committer supervised by applying the
patches of them after review.

On the following page the changes of this ratio are examined for the Linux
kernel project. Furthermore, the results of this might then be used for extrapo-
lation, allowing an estimation of the number of involved authors of projects
using Version Control Systems without such a distinction such as CVS or SVN.
This becomes relevant, when analyzing a large amount of different FLOSS
projects in Chapter 4 of this thesis.

Since Git stores all relevant information for this type of analysis, the ratio of
involved authors and committers can be calculated for each point of time by
counting the corresponding contributor information stored with each commit.
Afterwards the two values, the number of distinct authors and the number of
distinct committers, respectively, are divided to get the ratio.

Figure 3.20 depicts the result when aggregating theses values on a weekly basis.
Similar to the previous sections, the light blue line plotted on top of the graph
represents the result of a LOESS function which in simple terms shows the
average of the data. Gray lines in the figure represent the dates of releases. As a
result, a strong correlation between releases and a rise of authors per committer
shortly afterwards is visible.

Although, only bug fixes are allowed to enter the official codebase after the
merge window, the development on the author side does not stop over the
following time. Shortly before a new stable release, the amount of authors’
commits drops significantly, indicating on the one hand the code freeze for
stabilization and on the other hand providing a direct evidence that patches
are restrained until the new merge window is opened.
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Figure 3.20: Ratio of Authors per Committer (weekly)
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Interestingly, release candidates seem to not have a high influence with regard
to this ratio, supporting the aspects already discussed in Section 3.4.2.

Figure 3.21: Ratio of Authors per Committer (monthly)
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When further reducing the granularity down to a monthly timespan, a con-
spicuous monotonically decreasing trend of the LOESS curve becomes clearly
visible. Also the amplitudes are decreasing and after 2008 only minor devia-
tions from the curve are visible. The number of authors a single committer has
to deal with on average falls below ten per month.

A reason for that pattern might be the increasing hierarchization of the Linux
kernel project. By introducing ancillary repositories for single subsystems, it
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is not only possible to concentrate technical know-how in a specific topic but
it also allows to provide more people the rights to evaluate code changes and
add them to their copy of the repository. After a while, new code changes
are integrated via pull requests into the corresponding repository on the
next hierarchy level if the maintainer is trusted until it finally ends up in
the official one of Linus Torvalds. The information related to a commit are
not changed during that “journey” of a commit so that – regardless of how
many intermediate stations were involved – the original author and the first
committer are preserved [Cor09].
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O P E N S O U R C E W O R K R H Y T H M S B A S E D O N O H L O H
D ATA

4.1 data preparation

4.1.1 Data Source

In this chapter a large number of open source projects is analyzed. The data was
collected by the Ohloh webservice (http://www.ohloh.net/), nowadays part
of the company Black Duck Software, that tries to provide statistics for projects
and developers in the area of Free/Libre/Open Source Software (FLOSS), as a
way to provide more visibility into software development [Taf06; Wau10].

For its analysis, Ohloh downloads the project repositories and evaluates the
data stored in them using its own toolchain1.

The web-service started in 2006 with selected projects using the Yahoo! search
engine in-links as the main measure [AR09b]. From that point on, new projects
were added by the website’s users. The anticipated aim behind that is the
collection of all popular FLOSS projects eventually. In an internal mailing
conversation June 2007, one of the representatives states:

In spring of 2006, we seeded the database with about 3000 of the
most popular projects from SourceForge, Java.net, RubyForge, and
GNU Savannah. We manually added some key projects like Apache,
Mozilla, OpenOffice, and the Linux Kernel. Our goal was to quickly
cover as many high-profile projects as we could, so that the most
common searches on our website would be likely to find a match.
Then we unleashed the public on the system, and they’ve added
whatever they pleased.

Ohloh only analyzes projects where the source code is publicly available and
managed using one of their supported VCSs; projects that do not fulfill these
requirements are ignored.2 The internal data is updated on a weekly basis by

1 Based on http://meta.ohloh.net/2007/09/new_subversion_downloader/, all project were
stored and prepared for analyses in Git repositories until 2007. After that SVN reposito-
ries were synchronized with built-in functions. In addition, the company uses their own
software for source code analysis, Ohcount, that was open-sourced in 2008, as written in
http://meta.ohloh.net/2008/01/ohloh_goes_open_source/. (Both sources were last visited
on 07/24/2012)

2 E.g. a blog post at http://meta.ohloh.net/2006/12/missing_repository/ (visited on
08/22/2012) states: Ohloh only offers development metrics to projects with openly-accessible source
control systems. That way our analyses can go back in time and get a clear picture of how the project was
built. Even with only CVS, Subversion and Git source control system support, we get pretty good
coverage. However, it’s not universal. Given our limited development resources, we’ll skip supporting
non-repository projects for now.

43

http://www.ohloh.net/
http://meta.ohloh.net/2007/09/new_subversion_downloader/
http://meta.ohloh.net/2008/01/ohloh_goes_open_source/
http://meta.ohloh.net/2006/12/missing_repository/
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downloading new revisions and re-calculating the statistics for each registered
project. In addition, commits information preceding the date of when the
project was added at the webservice are as well taken into consideration, if the
version control provides such historical data.3

The database acting as source for the presented analyzes in this thesis is an
extraction of the Ohloh database that was made available during the first
quarter of 2008. The projects in it represent a wide spectrum of all areas of
open source, with no apparent bias towards any particular source or hosting
provider. As shown in previous work, the inspected data represents roughly
30 % of the active FLOSS projects during that time [AR09a].

The company provided a comprehensive extract of their own database in that
all user data was anonymized. It allows analyses on a more fine-granular level
compared to the options provided by the public web-interface4, that is available
nowadays, and, in addition, has no daily limitation of requests like the latter.
Since then, Ohloh has been acquired by GeekNet, the provider of SourceForge,
in 2009

5 and by Black Duck Software in 2010
6. As Conklin, Howison, and

Crowston [CHC05] point out, providing such dumps is not a costless process,
as personally identifiable and financial information must be stripped out before
delivery. Maybe due to that, no newer database extract of the Ohloh data was
made available to the university chair since then. However, it is time consuming
and expensive for a research group to build a comprehensive and representative
data set by themselves for all open source (the author has no knowledge of
any successful attempt). There exist various collaboratively created databases,
such as e.g. FLOSSmole [HCC06]. However, using data from centralized VCSs
of multiple sources, these sources do also cope with ambiguous developer
identifications7, and do not provide data that is detailed enough to calculate
and provide the insights presented here [RG09].

Table 4.1: Number of Repositories by VCS

Type Repositories

SVN 10 062 (49.1 %)
CVS 9 202 (45.0 %)
Git 1 201 (5.9 %)

As depicted in Table 4.1, the projects under observation were nearly exclusively
managed at that time using the centralized version control systems CVS and
SVN (one project might have multiple repositories). Due to that reason, the
tables storing contributor information were designed on the least common
denominator, namely data that CVS provides.

3 http://meta.ohloh.net/2007/08/worlds_oldest_source_code_repositories/ (visited on
08/22/2012).

4 http://meta.ohloh.net/getting_started/ (visited on 08/21/2012).
5 http://meta.ohloh.net/2009/05/sourceforge_acquires_ohloh/ (visited on 08/02/2012).
6 http://www.blackducksoftware.com/news/releases/2010-10-05 (visited on 08/02/2012).
7 Citing Conklin, Howison, and Crowston [CHC05]: Different forges can have projects with the

same names; different developers can have the same name across multiple forges; the same developer can
go by multiple names in multiple forges.

http://meta.ohloh.net/2007/08/worlds_oldest_source_code_repositories/
http://meta.ohloh.net/getting_started/
http://meta.ohloh.net/2009/05/sourceforge_acquires_ohloh/
http://www.blackducksoftware.com/news/releases/2010-10-05
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Consequently, there exist entries for committers in the database but no author
relationships are stored even if they would have been available, e.g. when
analyzing Git repositories. It can be assumed that the ratio between authors
and committers dropped over time, as shown for the Linux kernel project in
Section 3.4.3. However, this cannot be verified due to the fact that some of the
repositories are not available anymore today, as well as that no author data is
stored in centralized systems and a manual analysis of nearly 20 000 distinct
projects would take too much time to be feasible.

The database engine used internally is PostgreSQL, storing the various tables.
For analysis, the statistical software R [R12] is used that gets access to that
database with the help of the RPostgreSQL package [Con+12]. This allows
to do pre-aggregations, such as joining tables, using the Structured Query
Language (SQL) [ISO11] on the database side before downloading the results
to a local machine for further examination.

Figure 4.1: Number of Distinct Projects per Year
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While the database contains commit information back to 1983, this thesis only
considers commits after the turn of the millennium as relevant due to the
fact that the number before the year 2000 is too small to be representative, as
depicted in Figure 4.1. Since the last entry in the database is from February 12

th

2008 and, thus, the database only contains a minor part of that year, December
31

st
2007 was chosen as the upper bound so that only full years are evaluated.

As a result, the data under inspection are 7 811 365 individual commits of 45 870

distinct committers contributing to 9 065 projects over the period of 8 years. In
contrast to that, 476 165 commits, representing approximately 5.75% of the total
number of entries, are ignored as they are outside of the inspected time frame.

4.1.2 Data Limitations

The Ohloh website stores only information about commits that change code.
Commits that touch only e.g. images or text files without any programming
source code visible for Ohloh’s internally used tool Ohcount8 are ignored and

8 Repository at https://github.com/robinluckey/ohcount (visited on 07/19/2012).

https://github.com/robinluckey/ohcount
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no entries are created in the database. Consequently, the analysis presented
here shows only the behavior of developers involved in FLOSS projects and,
thus, might have a slight deviation from the overall trend.

Furthermore, in case that a project switches its repository, e.g. when changing
the used VCS, the database keeps both sources and, consequently, collects data
and statistics for both repositories. In cases where both sources are kept in
sync, the same data is analyzed and stored twice. The topic of data quality is
addressed in more detail in Section 4.1.3 below and by Hoffmann [Hof12].

Many of the inspected projects went through an evolution not only of their code
base but also by their choice of the used Version Control System. Therefore,
despite duplication, another issue with the data source at hand is the fact that
some history is already lost forever, in cases where it was not migrated into the
new VCS and the old source was deleted before the project was registered at
Ohloh. However, the analyses performed in this thesis are focused on recent
data, so that the loss of ancient commit history is acceptable.

Another limitation is the assignment of commits to their contributors. Many
projects use abbreviations or nicknames as usernames. While some of the latter
might be unique, in general these are highly ambiguous, as there exists more
than one developer on the world that has e.g. the name John. Ohloh tackles this
issue by providing an option on their web-interface to claim the ownership of
this username. After a registered user clicked on that, the contributions are
linked with his or her account. Unfortunately, not all authors of every project
registered at Ohloh are members of this webservice and, consequently, the data
contains multiple false positives by assigning the data of distinct programmers
with the same credential to the same (virtual) user account. As a result, e.g.
the username root has 182 projects assigned. However, the analyses performed
here do not address individuals but try to provide a general overview on
when FLOSS is being developed. By filtering out those obvious ambiguities
and aligning the unknown ones (cf. Section 4.1.5) most hurdles circumvented.

Even with the limitations mentioned, the database at hand represents the best
research source available at the moment.

4.1.3 Data Cleansing

The Ohloh data taken from the repositories of various projects and several types
of version control systems are aggregated in a central PostgreSQL database
instance. For normalization purposes it is segmented in multiple tables (52 in
total).

As a result of that, a simple mapping between the data of Ohloh’s registered
users and the account data of the various repositories is not possible. Conse-
quently, the relationship between a contributor and his or her metadata has to
be built by a rather complex SQL query, which can be found in listing A.1 in
the appendix.
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Figure 4.2: Diagram of the Used Database Tables

Figure 4.2 shows the relevant database tables for this thesis, of which the table
with the name osswithtime represents the base for this analyses as it contains
an aggregation of the data of all commits as well as their related timestamps.
The database table accounts contains the meta data of Ohloh’s userbase. One
of the existing columns of it stores location information – if a user provided it.

Unfortunately for this analysis, the data is entered in a free form field on the
website without any validation of the entered text and consequently it is quite
error-prone. There are empty strings that only contain zero to up to 8 space
characters and location information such as “undefined” that are invalid. Such
values are filtered out and are replaced by the data type NULL so that their are
ignored during the further processing. The same cleanup is done for the other
relevant columns in the query result.

During the same SQL query, the timestamp of each single commit in the
database is converted into POSIX time format, i.e. the number of seconds since
January 1

st
1970, as described in Section 2.1.3.3. The reason for that step is

that, while the data is internally stored in PostgreSQL as UTC timestamp in a
column of type Timestamp without Time Zone, the output is converted into the
local time zone of the requester [PG12a]. The query contains a construct9 that
converts the date into the corresponding integer values instead of the otherwise
as default returned string representation and thus keeps the time information
in the UTC time zone.

Moreover, this step was necessary since the RPostgreSQL plugin [Con+12] that is
used for the communication between the database and R [R12] has a bug under
Microsoft Windows that leads to the fact that the returned time information is
cropped in some cases. In the latter, only the date would be available for analysis
which would not allow a precise evaluation using the Windows operating
system. While this problem does not exist with Unix-like systems, all scripts
are required to work on all platforms for further research. The usage of this
conversion into integers, hence, solves two issues at once.

9 The exact SQL syntax is: EXTRACT(EPOCH FROM table.column AT TIME ZONE ’UTC’) AS alias
(see sections 9.9.1 and 9.9.3 of [PG12b]).
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4.1.4 Filtering of duplicated data

After extracting all data from the existing database tables, transferring it to a
local workstation, and loading it into an R instance, a filter is used to remove
duplicated entries that might be in the data. Reasons for that might be e.g.
multiple imports due to changes of the underlying version control system when
old data was migrated to the new one. As a selection criteria all instances are
filtered out where author, timestamp of a commit, as well as the project id –
which distinguishes the various stored projects under inspection – are match
with another entry.

In addition to the database tables provided by Ohloh additional ones were
created, containing information about the multiple time zone offsets (cf. Sec-
tion 2.1.3.1). Furthermore, they provide a mapping of what countries use which
UTC offset. Downloading a copy of that tables thus allows to look up based on
his or her metadata in what time zone a user is located.

However, as described above, not every user of an FLOSS project also has an
Ohloh profile, or if he or she does, might not have provided that information.
In cases, that the user’s metadata exists in the table accounts a query extracts
the country and – in cases where a country spans over multiple time zones –
also the state by parsing the string of the related entry’s column.

After that step, potential errors are corrected. For example, the used regular
expression assigns for the city Washington DC, USA the state DC. Even if the
District of Columbia officially is not a part of any US state, for simplicity reasons
the data is substituted by the abbreviation of Maryland since it is located in
that state and, thus, has the same time zone offset. Moreover, some users are
identified manually based on their usernames used in the involved projects.
The time zone information of these ones is also adjusted here.

As a result, there is a segmentation into two groups of users: (1) those where the
time zone offset could be found based on the stored user information or their
username, and (2) as a second group those whose UTC offsets are unknown.
The number of commits for the former contains 646 705 entries of 580 users
while the latter, i.e. that with unknown UTC offsets, consists of 7 164 660 entries
of 45 290 users.

4.1.5 Calculation of Missing Time Zone Information

As described in Section 4.1.4, there exists a group of users for whom the time
zone difference is not known so far. In the next step, which one might call
“educated guessing” and that is described in the following, each of those entries
is compared to every known user’s behavior.

Based on each person’s commit behavior compressed into one week (cf. Sec-
tion 3.2.1) there are daily peaks dependent on an user’s contribution. After
normalizing that data, the value 1.0 is assigned to the highest peak of an user
and a corresponding fraction of it to every lower value. Thus, all values are



4.1 data preparation 49

in a range between 0.0 and 1.0 after this step, so that different developers are
comparable independently of their total number of contributions.

Afterwards, each individual “behavior curve” is compared by performing a
complete enumeration over the same information for every user in a known
time zone and calculating the least square distance while the input data is
shifted in steps of 30 minutes in a range of ±12 hours. Consequently, each user
pair has 48 result values from which the one indicating the lowest differences
is returned together with the related offset information.

Finally, it is calculated which UTC offset was returned most often. The latter
is then assigned for that particular user, since – based on the law of large
numbers [ES10] – it represents the most likely time zone offset.

Subsequent tests with arbitrary values confirmed that more complex algorithms
were not need, since the fitted data substantially matched the reference values.

Table 4.2 shows a detailed overview how many contributors are allocated to the
distinct UTC offsets while Figure 4.3 depicts the same information graphically
on a world map.

Table 4.2: Number of Users per Time Zone in Ohloh

UTC offset Number of Users UTC offset Number of Users

-12 108 150 (1.38 %) +2 571 314 (7.31 %)
-11 53 610 (0.69 %) +3 292 706 (3.75 %)
-10 119 651 (1.53 %) +3.5 548 (0.01 %)
-9 189 354 (2.42 %) +4 130 222 (1.67 %)
-8 408 852 (5.23 %) +5 91 780 (1.17 %)
-7 453 587 (5.81 %) +5.5 10 237 (0.13 %)
-6 563 183 (7.21 %) +6 65 501 (0.84 %)
-5 705 957 (9.04 %) +7 82 576 (1.06 %)
-4 436 968 (5.59 %) +8 94 324 (1.21 %)
-3 268 474 (3.44 %) +9 78 140 (1.00 %)
-2 264 630 (3.39 %) +9.5 2 360 (0.03 %)
-1 412 132 (5.28 %) +10 126 985 (1.63 %)
0 821 995 (10.52 %) +11 56 797 (0.73 %)

+1 1 171 846 (15.00 %) +12 229 486 (2.94 %)

While the group of users with known offsets also contains information about
whether they live in a country using DST or not (cf. Section 2.1.3.1), the
contributors whose offset is calculated in that way do not. This leads to the
minor inaccuracy that a contributor of the latter group who lives in such a
described country and worked primarily in summer would be in another time
zone (e.g. CEST=UTC+2) than his or her colleagues from the same country
who worked primarily during winter months (e.g. CET=UTC+1). Thus, DST is
ignored for all calculated offsets.
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Figure 4.3: Distribution of Users per Time Zone after “Educated Guessing”

4.2 weekly work pattern

4.2.1 Hourly Commits Condensed into One Week

Similar to Section 3.2.1, the overall activity over the whole inspected period is
analyzed in the following by condensing all activities into a single week. Since
the data at hand just provides information for committers, but not for authors,
only those contributors can be depicted in Figure 4.4. Furthermore, Figure 4.5
shows the data by taking solely commits of those contributors into account for
whom the location information could be found in the database.

Both, Figures 4.4 and 4.5, show the combined number of all commits made over
the period of eight years in all projects. They are summed up on an hourly basis
per day of the week. Consequently, the depicted time frame in both figures
ranges from Monday 00:00 until Sunday 23:59.

When eyeballing over these figures, one can see a similar pattern to the one
visible in Figures 3.1 and 3.2 for the Linux kernel. Like there, a pattern seems to
be repeated for every day of the working week for the Ohloh data. It consists of
a steep growth with a small drop around lunch time. Afterwards, the number
of commits rises further and peaks in the afternoon before it drops significantly.
In the evening a small increase of activity can be observed again before a
majority of committers goes to bed, indicated by a number of commits close to
zero at that time. The evening activity decreases with every day that the week
goes on.

The peaks on the weekend in Figure 4.4 are about a third of the ones on Monday
to Friday, also similar to the Linux kernel patterns. However, when inspecting
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Figure 4.4: Work Distribution of All Contributors
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Figure 4.5: Work Distribution of Contributors with Known Time Zone

2000

4000

6000

peak average (Mon–Fri)

Mon Tue Wed Thu Fri Sat Sun Mon
day of the week

nu
m

be
r

of
co

m
m

it
s

(p
er

ho
ur

)

only those committers for whom the time zone information is known for sure,
as depicted in Figure 4.5, the peaks at weekend are more than a half of those
during the working week days. Consequently, the relative amount of developers
working on Saturdays and Sundays, and thus in their spare time, is higher in
the latter group. This is also visible on the other days, as – while the working
week pattern shows the same rhythms – the daily curves are wider and the
evening peaks are higher compared to Figure 4.4.

Again, the average of all peaks from Monday to Friday is depicted in both
figures with a dashed lines, as already done in Section 3.2.1. In contrast to the
latter, the relative differences here seem to be much smaller since all peaks are
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close to that lines. Furthermore, hourly specifics, as e.g. a drop on Thursday
afternoon, are not observable.

Table 4.3: Absolute Number of Commits per Day of Week

day of week all with TZ data

Monday 1 279 139 (16.4 %) 104 413 (16.2 %)
Tuesday 1 291 091 (16.5 %) 103 276 (16.0 %)
Wednesday 1 276 207 (16.4 %) 104 292 (16.1 %)
Thursday 1 253 813 (16.0 %) 102 263 (15.8 %)
Friday 1 178 918 (15.1 %) 97 211 (15.0 %)
Saturday 727 424 (9.3 %) 65 232 (10.1 %)
Sunday 804 773 (10.3 %) 70 018 (10.8 %)

Total 7 811 365 (100.0 %) 646 705 (100.0 %)

In general, due to the high number of commits, the curves are smoother then
the ones depicted in Section 3.2.1. However, the similarity to the Linux kernel
project is highly interesting, since here not only a single but several thousand
projects and approximately 27 times more commits are inspected at once. The
total numbers of commits for each day of the week are shown in Table 4.3.

When looking at that numbers, one can observe that most commits are done
during the first four days of the week. The general activity on Fridays is also
high but, with approximately 15 %, slightly lower compared to the other days
of the working week. Of all time, the weekend represents around 28.6 % of a
7-day-week; during that time, contributors of the projects registered at Ohloh
submitted 19.6 % of their commits, while the smaller group, for whom the time
zones are known, submitted 20.92 %. In comparison with Section 3.2.1, these
values are mush higher than the 14.3 % and 13.3 % observed there. Consequently,
the relative numbers of commits during working week are lower and in general
the values are more homogeneously distributed. Based on this fact, it also can
be concluded that the general percentage of spare time developers in the Ohloh
dataset is higher compared to the one for the Linux kernel project.

4.2.2 Hourly Commits per Day

In the following, the week depicted in the previous section is split into its days,
allowing an analysis on a 24-hour basis and to show similarities of the distinct
days by plotting a line for each of them. Now, areas where similar patterns
occur have their data points at the same coordinate and, thus, close to similar
line section.

Again, Figure 4.6 shows the data of all contributors while Figure 4.7 only
depicts the data of those whose location was stored in the database.

Both figures differ only slightly in their overall shape and are also close to
Figure 3.3 shown for the authors of the Linux kernel. Due to the diversity of
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Figure 4.6: Commits of All Contributors per Hour
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Figure 4.7: Commits of Contributors with Time Zone Data per Hour
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projects and the resulting higher amount of data, the curves are smoother and
more resistant to work rhythms of individual entities (cf. Section 3.2.2). The
major work period shown here ranges from 10:00 in the morning until 18:00 in
the evening and, thus, supports the defined working time of Section 2.1.3.4.

While the Ohloh data only provides committer information but none for au-
thors, the pattern depicted in Figures 4.6 and 4.7 are closer to the latter than to
the former in comparison with the Linux kernel. A reason for this interesting
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observation might be the high amount of projects managed with centralistic
VCS where contributors have to submit their changes to the central server
before they can continue working on the next work item.

Another result of the high amount of commits is the fact, that the lines rep-
resenting the days of the working week are all on top of each other, except
for the hours between 19:00 and 00:00. One can observe that the curve on
Friday falls earlier and deeper than the ones of Monday to Thursday. This is in
agreement with working patterns in the western countries where the weekend
starts already at Friday afternoon, as discussed in Section 3.2.1.

Also both curves representing the days of the weekend are similar to each other.
However, in contrast to the ones of the Linux kernel, here, the activity is higher
on Sundays. The two lines split at around 11:00, and in the evening hours
between 18:00 and 23:00 there are even more commits per hour on Sundays
than on Fridays.

When comparing Figure 4.6 directly with Figure 4.7, the previously described
differences in the evening hours are catching one’s eye. The group of developers
with known time zone information shows not such a steep descent, instead the
number of commits between 18:00 and 23:00 also stays high. As a result, the
latter group consists – relatively – of more commits of spare time developers
than when looking at all of Ohloh’s data. Since the known committers are a
strict subset of all committers, they are also included in that group.

4.2.3 Commit Size Changes per Hour

In this section, the commit sizes are analyzed, based on the definition in
Section 2.1.2, to provide an overview if the number of commits (previous
section) and the number of changed lines of code (this section) correlate. To do
so, Figure 4.8 depicts the consolidated commit sizes per hour for all contributors,
while Figure 4.9 depicts the same for the subset of those committers with a
known time zone.

In general, both figures correspond to the ones shown in the previous section.
Especially the sample size for all contributors seems to be too large to show
individual patterns, as the two figures are identical in their shapes.

The number of commit size changes per hour for the group of developers with
known time zone information is approximately 1.5 times larger than the one
observed for the Linux kernel data. Nevertheless, it still seems to be of a size
that allows to see several differences in the contributor’s behavior:

• Firstly, the number of commits on Monday evenings is higher compared
to the other days of the working week, while the commit size changes are
on the same level for that days.

• In addition, there is an obvious peak of code changes in Figure 4.9 on
Thursdays between 15:00 and 16:00 that cannot be seen when looking at
the number of commits. Interestingly, this is exactly that time where the
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Figure 4.8: Commit Size Changes by All Contributors per Hour
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Figure 4.9: Commit Size Changes by Contributors with Time Zone Data per Hour
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peak was missing for committers when inspecting the Linux kernel data
in Section 3.2.3.

• Thirdly, there are more lines of code changed per commit on Wednesdays
between 22:00 and 23:00 than on average on that days.
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• Furthermore, the drops on Sunday evenings between 18:00 and 19:00 as
well as between 20:00 and 21:00, that are present in Figure 4.7, are barely
identifiable when inspecting the changes of lines of code.

• The amount of code changes per commit is also higher during weekend’s
evening hours than through the days.

• Finally, the daily drops between 19:00 and 21:00 are better visible, in
general, in Figure 4.9, and the weekend curves are not as smooth as the
ones for submitted commits, as depicted in Figure 4.7.

4.3 weekly work pattern trends

After analyzing commit patterns with all activities condensed into a single
week, the trend over the whole inspected period will be analyzed on the next
pages. Therefore, the plots contain a single value per week that represents the
ratio of commits during working hours in that specific week. For simplicity, a
year consists of 52 data points and values of overlapping weeks due to leap
years are incorporated into the corresponding last weeks of those particular
years. To visualize the overall trend of the time series, a Locally Weighted
Scatterplot Smoothing (LOESS) curve is plotted on top of each as a moving
average that is robust against fluctuations.

Due to the fact that Section 4.2 showed more fine-granular pattern when
inspecting a smaller amount of data, the group of committers with known time
zone information is discussed first in the following.

4.3.1 Trends for Contributors with a Known Time Zone

At a first glance, the overall trend of the time series depicted in Figure 4.10 can
be summarized with that each year seems to start with a quite low percentage of
commits during working hours before more and more professionals contribute.
Interestingly, the LOESS curve is inverted compared to the ones shown in
Figures 3.7 and 3.9 for the Linux kernel.

At the beginning, during the time span from 2000 until 2003, the observed
working time percentage fluctuates between 30 % and nearly 65 %. Here, the
overall yearly pattern can be described in its shape of being close to linear with
large differences between the values of consecutive weeks. Due to the linear
growth that has its peak in the third quarter of 2001, the LOESS curve also rises
until that time before it again descends (until 2005). The values during the first
half of 2002 oscillate uniformly between 38 % and 48 %. In contrast to that the
values during the second half of that year do the same but at a higher level
(47 %–55 %).

After 2003 the overall pattern changes and stabilizes by only differing between
37 % and 55 %. In addition, the shape converts more to a parabolic arc with its
center slightly shifted to the mid of the third quarter of each year. Consequently,
the values at the beginning and the end of each year are the lowest ones. A
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Figure 4.10: Percentage of Commits during Working Time for Committers with Known
Time Zone on a Weekly Basis
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potential explanation for this is the bias towards projects from western countries
of the Ohloh platform where Christmas and New Year are important holidays.
Furthermore, a reason for the stabilization might be the attainment of a critical
number of weekly contributors, which tops 100 committers per week at the
end of 2003, as depicted in Figure 4.11a.

Figure 4.11: Additional Time Series Plots for Committers with Known Time Zone
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(b) Number of Commits per Week
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Taking the two plots of Figure 4.11 as well into account for the analysis, one can
observe that the number of involved developers, as depicted in Figure 4.11a,
grew close to linear from approximately 25 per week up to over 300 per week
during the inspected time span of eight years. Here, drops of approximately
a fifth of all developers at the end of each year at Christmas time are visible
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as well, supporting the assumption above of having mainly western projects
under inspection.

However, the commits submitted by those developers, as depicted in Fig-
ure 4.11b, did not grow with the same factor but show a shallow angle. The
time series shows the same parabolic shape, and thus, Figure 4.10 seems to
highly correlate with Figure 4.10; much more than the Linux kernel data
discussed in Section 3.3.

4.3.2 Trends for All Contributors

When looking on the total number of committer information stored by Ohloh,
as depicted in Figure 4.12, the shape of the LOESS curve showing a moving
average is similar to the one depicted in Figure 4.10 but more flattened. The
curve is most of its time in the range between 50 % and 60 % and, thus, clearly
more professional work during working hours can be assumed for this data set
(cf. Section 4.2.2).

Figure 4.12: Percentage of Commits during Working Time for All Committers on a
Weekly Basis
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In addition, the yearly pattern of the time series has a parabolic shape, like the
data shown in Figure 4.10 in 2006 and 2007 for the committers with known time
zone information, and more pronounced rhythm with a sharp decline during
the Christmas week. Since the number of inspected commits and developers
here is, even at the beginning, more than twenty times higher, there is as
much variation as for the smaller group discussed previously. Consequently, it
remains stable from the start.

However, looking closer, also an overall drop of the peaks can be observed
after 2003 in Figure 4.12, similar the one discussed in Section 4.3.1. This is not
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visible when inspecting the number of commits in that time, as depicted in
Figure 4.13b.

Figure 4.13: Additional Time Series Plots for All Committers
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(b) Number of Commits per Week
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This regular pattern can also be seen when inspecting Figures 4.13a and 4.13b.
During the yearly Christmas week, the number of committers drops by a third,
and the number of commits drops by nearly 50 % each year.

Interestingly, the yearly pattern depicted in Figure 4.12 can be observed for
every inspected year, while the number of contributions and developers steadily
grows at an exponential rate, as discussed by Deshpande and Riehle [DR08].

4.4 overall trends

4.4.1 Distributions

The last section discussed trends over the whole inspected time frame by
considering each week separately. In the following, those trends are further
compressed and the distribution of commits during working time over the
total period of eight years (2000–2007) will be analyzed. Please note, that the
y-axes of the presented figures are logarithmically scaled to show more details
even with high variation between the shown values. As before, the group of
developers for whom the time zone information could be found in the database
are discussed in addition.

Figure 4.14 depicts which percentage of all developers made which percentage
of their total commits during working hours. Here, all committers of all projects
are shown. Like in Figure 3.12 for the Linux kernel, the values on both edges
as well as the 50 % value are significantly higher than the other ones.

Over the inspected eight years, nearly 25 % of all committers submitted their
code solely during working hours. At the same time, more than 5 % of all
committers performed their work exclusively outside of that time, during their
spare time. Moreover, an equally large group of contributors exists that have
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Figure 4.14: Distribution of Contributors per Percentage of Commits during Working
Time
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half of their submissions during working time and half of them during spare
time.

Looking closer, one can observe that – even if the projects registered in the
Ohloh database are purely open-source – there are interestingly more profes-
sional developers than hobbyists since the area below the curve is larger for
values on the x-axis over 50 %. However, as Figure 4.16 later shows, a lot of
these committers made only a few commits. Consequently, similar to the au-
thor’s distribution discussed for the Linux kernel, also here peaks at multiples
of 25 % and 33 % are clearly distinguishable.

The group of developers with known time zone information, as depicted in
Figure 4.15, in contrast, shows nearly an inverted pattern. Again, the edges
are higher than the values nearby, however, no clear peaks are prominent. In
addition, the edges do not represent the maxima but are outperformed by most
numbers in the range between 20 % and 60 % on the x-axis. The area below the
curve for values with less than 50 % commits during working hours is much
larger than the one above that value, indicating a higher amount of spare time
workers in that group.

Comparing both graphics, the range between 0 % and 10 % catches one’s eye due
to the fact that the total number of committers there is lower than everywhere
else.

To manifest the insights from Section 3.4.1, Table 4.4 shows the cumulative
number of contributors with respect to their commit behavior. Those authors
with exactly 50 % of their commits in working time and in spare time, are
counted to both parts.

When inspecting the left column, and hence the all committers of all projects
analyzed, barely twelve percent of all contributors submitted more than 75 %
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Figure 4.15: Distribution of Contributors with Known Time Zone per Percentage of
Commits during Working Time
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Table 4.4: Cumulative Number of Contributors

% worktime all with TZ data

Vo
lu

nt
ee

rs

0 % 2 538 5.5 % 12 2.1 %
6 5 % 2 660 5.8 % 16 2.8 %
6 10 % 2 982 6.5 % 28 4.8 %
6 25 % 5 399 11.8 % 127 21.9 %
6 50 % 17 517 38.2 % 346 59.7 %

Pr
of

es
si

on
al

s > 50 % 30 474 66.4 % 247 42.6 %
> 75 % 18 032 39.3 % 86 14.8 %
> 90 % 12 586 27.4 % 29 5.0 %
> 95 % 11 158 24.3 % 16 2.8 %

100 % 10 191 22.2 % 8 1.4 %

of their code changes per person during spare time. Starting from the bottom,
approximately the double amount of users contributed during working hours,
with at maximum five percent of their commits per person outside of this
period. Also, the number of contributors submitting at least 75 % of their code
during working hours – and hence can still be classified as highly professional
– is higher than the number of those developers performing more than 50 % of
their contributions during spare time.

Looking at the column for the subset with time zone information stored in
the database, a more gradual increasing trend can be observed on both ends.
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However, this changes radically as soon as the twenty five percent border
is reached. Starting with the spare time workers, i.e. the upper part of the
table, the percentage values for pure hobbyists are less than the half of those
when looking at the same group for all contributors. Nevertheless, the relative
number of spare time developers who work between 10 % and 50 % of their
time during working hours on open source is, relatively, significantly larger
than the one of professional workers, as already discussed above. This can also
be observed when inspecting both values in the vertical middle of the table,
where the proportion is approximately 60:40, compared to the left column
where it is roughly 40:60.

Figure 4.16: CDF of Total Number of Commits per Contributor
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(b) Contributors with Stored Time Zone
Information
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Until now, solely the percentage of commits during working hours per con-
tributor were inspected. However, also the number of commits submitted per
person are of interest to get a feeling about the relevance of this inferences.
Therefore, Figure 4.16 depicts the Cumulative Distribution Function (CDF) of
contributors by their total contribution to all projects stored in the Ohloh data
set. Intuitively, the expected two distinct shapes catch the reader’s eye.

The one for all committers, depicted in Figure 4.16a, shows a steady, close to
linear growth. Since both axes are logarithmically scaled on the same basis,
this means that the overall trend double-logarithmic with a very large group of
developers with only a few commits and a low number of developers with a
large number of contributions. As one can observe, a quarter of all contributors
submitted 6 4 commits, and the half of all committers whose activity was
stored by Ohloh submitted only 6 20 changes in total. Consequently, at least
half of all contributors in the inspected data (i.e. approximately 23 000 people
in this context) have a close to insignificant influence to FLOSS as an individual
and represents the variaty of interests and small patches provided to fix specific
issues. Only one quarter of all contributors performed more than 100 commits
over the period of eight years. The performances of the topmost five percent,
consisting of 2 294 contributors, are widely spread and range between 800 and
18 000.
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In contrast, Figure 4.16b, depicting the commits of the contributors with cer-
tainly known time zone information, has more the shape of the letter “S”. This
group is only a subset of the other, but having the ascent shifted to the right
indicates a larger (relative) number of committers with many contributions.

Only 6.5 percent, or 38 developers, performed 6 20 commits over the whole in-
spected period. Three quarters of this group submitted more than 130 commits
and, thus, more changes than three quarters of all committers in the overall
data set.

Figure 4.17: Distribution of Contributors per Percentage of Commit Size Changes
during Working Time
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Analyzing the distribution of commit size changes for all stored data, as
depicted in Figure 4.17, not only the overall influence is more evenly spread
but also a smaller variation between consecutive values can be observed. While
the distribution of commits for all contributors, as depicted in Figure 4.14,
had its extreme values at the edges, the same is not true for when inspecting
the commit size changes. Here, the influence of developers working primarily
during their spare time is in fact even smaller than the first impression of
Figure 4.17 implied. Again, most changes are introduced by the group of
developers with more than 50 % of their commits performed during working
hours.

The maximum values are located at 50 % and 100 %. While the latter shows a
high professionalization also in FLOSS development, the former might be due
to the following reasons:

On the one hand, the number of commits per developer is rather low in this
data set, as shown earlier in Figure 4.16a. Consequently, people with a small
number of changes followed by a related consecutive patch, e.g. bug fixes or
clean-ups of their code, fall in this group if the contribution times balance each
other.
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On the other hand, having such a large number of projects and developers
under inspection here, this large amount of changes at 50 % might also be
an indicator for people who contribute to a project during their paid time,
and to other projects when they are at home. Nevertheless, the group of
those developers has the highest commit size to person ratio, as 4.6 % of all
contributors who are in that bin are responsible for 4.4 % of all changed lines
of code.

Figure 4.18: Commit Size Changes per Contributor with Time Zone Information
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Again, the group of those developers whose time zone could be determined
with certainty behave a little bit different when analyzing the code changes, as
depicted in Figure 4.18. Here, the professional developers, with more than 60 %
of their work per person performed during working hours, have only a minor
influence.

In addition, the quite high number of contributors working solely during paid
time, when looking at Figure 4.15, performed barely no source code changes.
However, the high values in Figure 4.18 are evenly distributed and range from
eight up to eighty seven percent without much variation. An exception is the
peak at 57 %, where a small group of developers (15, or 2.6 %) is responsible
for close to twelve percent of all change lines of code in the inspected data.

Figure 4.19 shows the Cumulative Distribution Function (CDF) of commit size
changes per percentage of work during working hours. The line representing
all committers’ work has a smooth “S” shape and passes the diagonal at exactly
fifty percent. Also the line of the subset of committers for whom the time zone
information is known with certainty shows the same shape, but is more edgily.

Moreover, the latter has a small jump at 57 % that was already discussed above.
The line shape indicates that most code changes are performed by the group
with a close to balanced proportion of commits during working time and spare
time.
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Figure 4.19: CDF of Commit Size Changes per Contributor
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Table 4.5: Total Percentage of Changes during Working Hours

all all∗ with TZ data

commits 54.0 % 54.1 % 46.4 %
code changes 52.9 % 53.4 % 45.3 %

The overall percentage of changes introduced during working hours to the data
set provided by Ohloh over the period of eight years is depicted in Table 4.5.
Also here the percentage for the total data set has a slight tendency towards
professionalization but can be seen as balanced, even after filtering out bulk
imports as well as projects and developers with just a hand-full commits, as
indicated by the asterisk in the table.

4.4.2 Project Specific Analyses

In contrast to the previous sections, now further distributions are inspected by
considering each individual developer or project, respectively, as the smallest
entity.

The two plots in Figure 4.20 depict how many developers contributed to which
number projects in the Ohloh data set. Here, Figure 4.20a shows all developers
in the database while for Figure 4.20b only those contributors were considered
who submitted at least ten commits in total in a single project over the inspected
time frame of eight years. The latter leads to a reduction of relevant developers
from 45 870 down to 27 358 (60 %). As one can observe, both figures are double-
logarithmic, with a large number of developers who only submitted changes to
a single or a few projects.
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Figure 4.20: Number of Contributed Projects per Developer
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(b) After Filtering
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Inspecting Figure 4.20a, one can observe that most developers commit to less
than 6 different projects. The preferred way is to just concentrate on a single one,
which is true for 31 857 contributors. The next top-most numbers of projects are
two (6 075), five (3 230) and three (2 170). The number of developers decreases
rapidly the higher the number of involved FLOSS programs rises. Only 453

(roughly 10 %) of all contributors registered in the database participated in
more than ten different FLOSS projects over the inspected period of eight years.
The five most-diverse developers have 59, 157, 182, 195 and the top one even
836 projects registered were they contributed. However, this insight is heavily
biased by the fact that some usernames are ambiguous and assigned to multiple
projects. As a result, the four top-performers can not be matched properly and
have to be ignored.10 The three identifiable real developers with the widest
spectrum are Stefan Kulow (KDE, 55 projects), Montel Laurent (KDE, 58) , and
Dirk Müller (KDE, 59).

After filtering out those developers who performed less than ten commits for
each project, the observed trend remains, as depicted in Figure 4.20b. The
plotted pattern, while having lower numbers on both axes, can be described
as similar to the one described before. Also, those developers who submitted
changes more actively prefer to concentrate on a single project (20792, 75 %).
However, the filtering process shows that a large group of the developers
registered at Ohloh are only providing a handful of commits (cf. Figure 4.16).
Only ten percent of the inspected contributors participated in three or more
projects. Nevertheless, even if such small contributions, e.g. bug fixes, are
not considered, the three most widely contributing real developers submitted
changes to 27 (Dirk Müller, KDE and Kohsuke Kawaguchi, Sun) and 41 (Montel
Laurent, KDE) projects. Considering their affiliations at that time, this indicates
not only a high interest in FLOSS development in general, but also that it is
possible to work professionally in this field.

10 The user accounts are definitely do not belong to a single real-world person each, as they are
httpd (Apache Webserver), tigrisc (Tigris CVS web interface), root (administrative user under
Unix and Linux), and (no author) (used in cases where no developer name could be found).
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Figure 4.21: Percentage of Professional Work per Project
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(b) Percentage of Commit Size Changes

during Working Hours per Project
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In addition to the distribution of developers per project, Figure 4.21 depicts
the level of professionalization for all projects with more than 10 commits per
year. The ratio of the total number of commits (or code changes) during spare
time and during working time is individually calculated for each project and
then all projects with the same percentage are grouped into one bin. Each of
the latter is then represented by a single dot in the plots. Here, Figure 4.21a is
based on the number of commits, while Figure 4.21b uses the number of source
code lines changed.

The former has a bell shape, indicating a Gaussian distribution as expected.
Most of the projects have between 35 % and 65 % of their commits submitted
during working hours, with a slight tendency towards voluntary work. How-
ever, one can observe a stronger slope on the spare-time part, indicating only a
few pure voluntary projects. In contrast, the curve remains high on the right
part of the plot, which shows that the number of professional projects is wider
spread.

The latter, concentrating on commit size changes, is interesting when comparing
it with the previously discussed plot. The points in it do not form a strong bell
shape but the values are more closer to each other. This indicates that different
projects have different sizes in their number of lines changed per commit (cf.
Table A.1). Projects sticking to small incremental changes, have a high number
of commits and, consequently, a higher distribution in the commit times. As
shown in previous sections, the individual hour of a day also has an impact on
the performance of the individual developers. Due to the larger values on both
edges, one can conclude, that there are projects existent that get submissions
also during spare time but are mainly developed during working hours, and
vice versa.

Finally, the total amount of commit size changes for projects and developers
are inspected in Figure 4.22. The two plots have logarithmically scaled axis but
need further explanation, as both are different from the ones presented before.
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Figure 4.22: Total Number of Commit Size Changes
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(b) Per Project (filtered)
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Since the total commit size is heavily prone to minor changes11, the aggregation
was performed as following: Each section of the x-axis is divided into 10 distinct
equidistant values12 and the total commit size of an individual developer or
project was rounded appropriately to fit into one of those bins. Then, the
number of elements in each bin are summed up and the corresponding value
is represented as a dot in each plot.

Figure 4.22a depicts the total number of changed lines of source code (commit
size) per developer. One can observe, that most developers changed between
50 and 500 000 lines of code in total over the inspected period of eight years.
However, there is also a large group of contributors who submitted less than
that – indicating ad-hoc contributions and bug fixes for individual problems.
Furthermore, there exists also a small group of developers with more than
500 000 lines of code changed. These roughly 3 % represent a group of FLOSS
contributors, with over 10 000 lines changed per day on average, on every day
in these eight years. It can be assumed that they mainly evaluate and integrate
the work of others (maintainers), as the number of changes is too large to be
pure development work of a single person.

Figure 4.22b shows the total number of source code changed (commit size)
for projects. Like before, each inspected segment is divided into 10 equally-
distanced bins. However, in contrast to the previously described one, this plot
has a clear bell shape. Cutting horizontally at 50 projects per bin, approximately
2 % of all projects are in the groups below 400 and above 4 000 000 lines changed
in total over eight years, respectively. The majority of all projects lies in between
these two values, with a peak in the commit size range between 10

4 and 10
5,

representing projects with 3 and 35 lines of code changed on average each day.

11 A developer just needs to have changed a single line of code more or less than another one to
have a different value here.

12 As the x-axis is log-scaled, the ten values e.g. for the section between 10 and 100 are: 13, 16, 20,
25, 32, 40, 50, 63, 79, and 100.
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4.4.3 ARIMA

Sections 4.2 and 4.3 discussed the observable behavior of developers registered
in the Ohloh database excerpt in detail.

Until now, only a weekly pattern was taken into consideration and it was
shown, that the activity of a developer differs dependent on the day of the
week. However, e.g. Figure 4.12 also shows a clear pattern that is repeated for
each year. Consequently, it would be interesting to analyze on which factors the
weekly activity of developers and in projects is dependent. In contrast to e.g.
stock exchanges, that are highly influenced by external events [BM02; Joh+85],
the plots discussed so far in this thesis do not show such variety but more a
regular rhythm. In addition to that, Kolassa, Salim, and Riehle [KSR12] point
out that a regular development activity can be shown since contributors submit
patches often and, thus, changes are not only introduced as big imports but
piece by piece.

Inspired by the work of Herraiz, Gonzalez-Barahona, and Robles [HGR07],
the author of this thesis also started examining if the pattern shown so far do
also apply when solely inspecting data from a single project individually. A
good method for analyzing cyclic patterns is the Autoregressive Integrated
Moving Average (ARIMA) [BJ70]. The analysis might provide further insights
if the patterns that are observable when doing a general, overall inspection can
also be found on a project basis, or if there exists different types of projects,
that – when examined at the same time – balance each other.

These analyses needed some preprocessing before the calculations could be
performed for each project as well as for each author of the data set at hand.
Therefore, each time series was aggregated into weekly data points and then
split if it contained an activity break longer than one year (52 weeks). This
step was necessary since ARIMA models are based on the arithmetic average
and, thus, are prone to outliers, which would lead to wrong outcomes. In cases
where such a break appeared, the two resulting data sets were then inspected
as individual time series while keeping their name as an indicator to the related
part from where they came from.

After cleanup, code of the astsa package for R [Sto12] was adjusted to fit the
needs since the original code had side-effects that were not feasible for the
massive parallel execution (parts of the used scripts are shown in listings A.5
and A.6 in the appendix). The ARIMA calculations were performed by iterating
over all reasonable input values for each item, resulting in a group of approxi-
mately 1 000 output values per data entry. Besides the used input parameters,
the results contain the fitted values as well as the error’s sum of squares and
the error of the Autocorrelation Function (ACF) values as output.

Since these calculations need several days even when utilizing a HPC cluster, a
selection of large projects, listed in Table A.1, were examined in advance. For
those, it was possible to find parameter combinations, predicting the data quite
precisely with a ACF error below 0.1 and a sum of squared error for the ACF
residual deviations of 0 in most cases. Consequently, ARIMA models are a
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valid technique for inspecting the seasonal impact also on a project basis. With
the help of further research on the resulting parameters, it is possible to predict
the productivity of projects for the following weeks.

However, it turned out that the calculations for the full data set of approximately
9 000 projects and 45 000 distinct developers exceeded the time restrictions of
this work, as especially higher seasonal parameters (P, D, Q) lead to long
running calculations. Currently there are computations running on a HPC
cluster that are expected to be finished not earlier than after the deadline of this
thesis. Due to that, it was not possible to perform additional calculations (e.g.
clustering based on the input parameters) with the resulting groups for getting
more insights. Having the author’s code for the computations described above,
this might become a topic for a follow-up work at the university chair which
could also take signal processing techniques into considerations, as discussed
by Hindle, Godfrey, and Holt [HGH09].



5
C O N C L U S I O N S

5.1 résumé

Free/Libre/Open Source Software (FLOSS) is becoming popular and a variety
of the products are well known nowadays. While the movement started with
a small group, today thousands of projects are existent and some of them are
the market leaders since years in their business areas. However, the develop-
ment effort needed to stay competitive against proprietary software has to be
sponsored somehow.

This thesis analyzed if the influence of commercial enterprises in FLOSS can be
shown, based on the commit behavior of developers. Here, a special focus was
laid on the work performed during general (western world) working hours.
A large sample of open source projects in the time frame from 2000 until
2008 (exclusively) was inspected, covering a wide spectrum of software topics
and sizes (Chapter 4). Additionally the Linux kernel project was chosen as a
prominent example and the recent history was inspected by using its VCS data,
covering the period from 2005 until the end of 2011 (Chapter 3).

Based on this input, the commit frequency by day of the week and by hour of a
day was discussed. Interestingly, both data sets showed identical patterns. The
development activity during working hours on Mondays to Fridays per day
was threefold the amount of that on weekend days. Also the daily performance
curves were similar. Here, Ohloh’s committer data closer matched the authors’
curve of the Linux kernel. A reason for that might be the focus of the Ohloh
data set on sources providing easy access to centralistic VCS, that contains
a large amount of smaller projects which are not as strongly regulated as
e.g. the Linux kernel. Consequently, in those cases authors and committers
might be identical and the commits might be directly applied without a prior
discussion on mailing lists or the like. However, providing all calculations for
individual groups of projects in detail exceeded the focus of this thesis due
to computational requirements and, thus, the author can only guess a reason
here.

The percentage of commits during working time on a weekly basis over the
total time-frame showed two diverse patterns.

The Linux kernel data had a strong correlation between peaks and releases.
The fluctuation decreased over time and is in a 20 % range nowadays, with
nearly all values over 50 %. Consequently, the Linux kernel project can be seen
as a FLOSS project that is highly backed by companies, which is in line with
[CKM12].

71
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In contrast to that, the plots for Ohloh showed a clear constant pattern over
the inspected period of eight years, that is repeated in each year. This is
interesting, since the underlying data grew exponentially during that time.
One can deduce from that fact, that the ratio of professional, i.e. paid, work
to volunteer contributions in the development in this field can be assumed as
being close to stable. In addition, the data shows that FLOSS long has become
normal work for many developers, as also here most of the values are above
50 %, even when inspecting a large variety of projects from different domains.
Having the empirical evidence, this insight can be used to further convince
people and companies in replacing their proprietary solutions, against the
prejudgement of getting a product that is solely developed by volunteers on
their (rare) spare time and that is of lower quality – as e.g. stated by Nichols

and Twidale [NT03] or VanHilst et al. [Van+11] – which itself dates back
to times where even the World Wide Web did not yet exist [BBV86]. In this
context, Table A.1 provides an except of the top well known projects in the
Ohloh dataset based on their number of commits with detailed information,
aggregated over the period from 2000 until the end of 2007.

Due to the usage of Git, detailed information about releases and author activity
are available for the Linux kernel, which allowed inspecting additional topics.

Firstly, Section 3.4.2 provided an insight in the field of patch submissions
when using strict rules for release management. Even if ancillary repositories
for staging processes exist, an increased activity of authors and committers
could be observed during the merge window. This might help companies and
volunteers getting a better impression of the development and support the
official documentation of the project.

Secondly, having also the authors’ submission times for patches, not only
differences in the behavior could be highlighted but in Section 3.4.3 also the
relation of both types of contributors was analyzed. Here, one could observe
that while the number of authors tripled over the inspected time-frame the
support ratio decreased, so that a single committer – on average – had to review
the submissions of approximately six authors per week over the last two years.

5.2 limitations to findings

For the empirical work presented in this thesis the assumption is made, that
paid work is performed in the time from Monday to Friday, 8:00–18:00, in
the respective local time zone. This is based on a generalization of working
time used in Western countries. Consequently, a cultural bias is in the selected
working time definition, since some political regions have another work period
per week than Mondays–Fridays. However, as several sources as well as an
analysis of the data at hand clearly indicated that for a majority of FLOSS
developers it can be assumed that they are located in the Western countries.

Furthermore, the time of a commit does not precisely describe the actual time
when development was performed. Instead, it just points to the time when it
was submitted [Rob07]. As Kolassa, Riehle, and Salim [KRS10] showed, the
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mean time between two commits of the same developer averages at about 100

minutes. Consequently, knowing this fact, commits were taken as a proxy for
the work performed.

However, this thesis solely inspected the development activity using data stored
in the VCS repositories. This represents only those patches that were accepted
and integrated. In addition, the FLOSS ecosystem contains several other aspects
besides the pure development of a software product, such as bug reporting or
artwork, that were not taken into consideration here [Rob+05].

While the data used for the analyses presented in Chapter 3 are publicly
available, Chapter 4 is base on a undisclosed database provided by the Ohloh
webservice. This fact hinders reproducing the results outlined here [GR12;
Kit08]. As Rodriguez, Herraiz, and Harrison [RHH12] state one of the hardest
tasks is to preprocess the data. However, trusting the preprocessed data from others is a
poisened chalice. Since recently, Ohloh provides a possibility to access parts of
their database.1 However, the access is restricted to selected tables and limited
in the number of requests allowed per day.

The snapshot of Ohloh’s database dates back to 2008 and, thus, does not show
the evolution of the last five years. It represents a comprehensive data source
that is less biased as e.g. FLOSSmole [HCC06], due to the continuous updates
and additions from the community after the initial seeding. Consequently, it
does not have a focus on specific projects or hosting providers. One can argue,
that a bias, if it exists, is towards popular projects, which is more positive than
negative for this work. Nevertheless, a replication of the calculations on other
data sources might provide further valuable insights.

The data provided by Ohloh is solely based on the analysis of repositories
using one of the three supported VCS. This covers a majority of the popular
FLOSS projects at that time. Nowadays, the service supports two additional
VCSs, namely Mercurial and Bazaar. This shows a trend away from centralized
towards distributed solutions. However, a collection of VCSs at Wikipedia2 lists
several more proprietary and open source products for revision control, that are
all not yet supported by Ohloh. Especially the analysis of author information,
like e.g. supported by Git, would be a large benefit for further research in the
area of work rhythms.

Moreover, it became obvious during the creation of this document that a better
cleanup of the data in the Ohloh excerpt is needed. Not only does it contain
duplicated entries (cf. Section 4.1.3) but also anomalies, such as project history
from times where the project was not yet open-sourced [Hof12]. While this
would mean a high computational effort, methods like copy-paste detection or
manual author filtering could enhance the database further.

Deshpande and Riehle [DR08], who worked with a previous version of the
Ohloh data, point out that in addition to the general data quality, several
projects migrated their VCS over time. They found that many of these dropped

1 See http://meta.ohloh.net/2012/07/open-data-and-ohloh/ and http://www.heise.de/
developer/meldung/Daten-zu-500-000-Open-Source-Projekten-verfuegbar-1648857.html
(both visited on 07/20/2012)

2 http://en.wikipedia.org/wiki/List_of_revision_control_software

http://meta.ohloh.net/2012/07/open-data-and-ohloh/
http://www.heise.de/developer/meldung/Daten-zu-500-000-Open-Source-Projekten-verfuegbar-1648857.html
http://www.heise.de/developer/meldung/Daten-zu-500-000-Open-Source-Projekten-verfuegbar-1648857.html
http://en.wikipedia.org/wiki/List_of_revision_control_software
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their historical information of the former VCS when switching to the other.
Consequently, only the recent commit history is available while the old one is
lost. However, as already mentioned above, the former is considered as more
interesting here than the latter. In addition, when inspecting this large amount
of FLOSS projects over a wide time frame, as done in this thesis, the individual
significance of single project is quite low.

5.3 further research

During the work on this thesis, several options for further research were
discovered. These are discussed in the following.

In April 2005, Robles et al. [Rob+05] analyzed the evolution of the Linux kernel.
Instead of the announcement of the 2.7 release, as predicted by the authors, the
2.6 release line was continued and, instead, the Linux kernel project migrated
from the VCS BitKeeper to Git for managing the source code. Consequently,
it would be interesting to examine the influence of Git on the project and to
research if changes are observable in the workflow of the project. The repository
inspections might be combined with an evaluation of the mailing list activity
before and after the switch, to see if patches can be easier submitted nowadays
and if they are applied faster. This is in line with Bird et al. [Bir+09] who plan
to answer similar questions for projects in general that switch from centralized
to distributed VCS.

In addition to that, the annual Linux Report already discusses the involvement
of companies in the development of the Linux kernel [CKM12]. However, using
more sophisticated methods, the results can be enhanced to provide better
insights in this topic. Furthermore, the reports and this thesis discuss only
applied changes. By taking also bug tracking information and the history of the
mailing list into consideration, the analysis of how much work and refinement
is needed until a patch enters the kernel might be of interest for companies.
As a first approach in this direction, Macht [Mac12] describes what steps
are needed for the submission of a new feature and his participation with
the community as an exemplary case study for schedule and budget driven
company structures.

Looking at the Ohloh database snapshot, a manual filtering of all approximately
45 000 committers and tagging of invalid entries might be a valuable but also
work-intensive improvement. In general, a more comprehensive filtering, e.g.
based on the definition of “active projects” [Daf07], might help concentrating
on groups of developers and projects of higher relevance.

With respect to the calculations performed in this thesis, it might be also useful
to calculate the key figures on a yearly or even monthly basis, instead of the
holistic perspective taken here. In addition, research might be done to find
out if the behavior of the developers in primarily volunteer and professional
projects differs and are visible, especially when evaluating the data over time.
While Christian holidays, such as Christmas, where clearly visible in the data,
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the influence of catastrophes and other global events, e.g. war or presidential
elections, might be observable when inspecting only a part of the data at once.

When analyzing the repositories, Ohloh does not only store the number of
changed lines of code per commit but also the programming language of
each changed file. Furthermore, the tools recognize if a changed line was
program code or a comment. In combination with the here presented aspects,
it might be interesting to research, which programming language is preferred
by professionals and volunteers by analyzing the code changes per project and
individual contributor, while taking percentage of work during working hours
into consideration. Moreover, one could research which influence bulk imports
(that where filtered out in this thesis) have and at what time they are usually
made. Also, the influence of the used Version Control System might provide
further insight into the behavior of developers in FLOSS projects.

As discussed earlier, the database snapshot does not cover the recent five years.
During that time, the number of repositories observed by the web-service
increased from 20 000 (2008) up to 250 000 today. Since the tool-set was also
improved since then, a new database dump might not only be more precise
and of higher quality without the issues mentioned above, but might also help
to show the influence of recent hypes and trends in software by providing
access to a vast number of projects. In combination with the current excerpt,
this might help to understand how the work rhythms nowadays differ from
those common 5 or even 10 years ago.

In a paper published this year, Rodriguez-Bustos and Aponte [RA12] exam-
ined the influence of used VCSs to the Mozilla Firefox project before and after
switching from CVS to the distributed VCS Mercurial and found that the core
developer team nearly completely changed after that step. Consequently, not
only cultural events but also the choice of the used development and project
management tools and approaches has an impact on the behavior of the in-
volved developers. The mentioned paper seems to be the first one addressing
this topic. Also here, a software archaeology might provide new insights on
how the behavior of developers changed over time.

Conklin, Howison, and Crowston [CHC05] were the first who described
an approach of collecting and pre-processing such data also for academic
purposes in 2005. While the price for storage can be seen as largely insignificant
for this, in contrast to ten years ago, the amount of FLOSS data to analyze also
increased at an exponential rate [DR08]. Consequently, the pure computational
requirements might be unfeasible when doing such a project alone, but might
become possible when working collectively. Here, universities and researchers
need to improve the communication and bundling of resources. In some cases,
also the industry supports such steps, like e.g. GitHub, by providing its project
logs for public access.3 By combining modern approaches, such as Map-Reduce
[Sha09] or facilitation of calculations with the help of graphics cards [Nag+12],
handling the increased number of available FLOSS data might be remain
feasible in the future.

3 http://www.githubarchive.org/

http://www.githubarchive.org/
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Listing A.1 shows the SQL query used to aggregate and retrieve the raw data
of the Ohloh dataset out of the PostgreSQL database for further processing.

In a sub-query entries with invalid user provided content are preprocessed, so
that an additional cleanup of that issue after downloading becomes obsolete.
Furthermore, a regular expression extracts the state from the location column,
since e.g. the United States or Canada are spanning over multiple time zones.

Listing A.1: SQL Query To Get Ohloh Committer Data

SELECT

DISTINCT owt.cid, owt.author, owt.pid,

EXTRACT(EPOCH FROM owt.times AT TIME ZONE ’UTC’) AS times,

akn.author_name, akn.country_code, akn.state AS st, akn.location AS loc

FROM

public.osswithtime AS owt

LEFT OUTER JOIN

(

SELECT

n.id AS nID, n.name AS author_name,

NULLIF(TRIM(BOTH FROM a.country_code), ’’) AS country_code,

NULLIF(TRIM(BOTH FROM a.location), ’’) AS location,

NULLIF(TRIM(BOTH FROM

SUBSTRING(a.location FROM ’, ([A-Za-z]*)’)), ’’) AS state

FROM

public.accounts a,

public.kudos k,

public.names n

WHERE a.id = k.account_id

AND n.id = k.name_id

) AS akn ON owt.author=akn.nID

ORDER BY

owt.author, owt.pid, times �
Listing A.2 depicts the R code that is used to preprocess the data extracted from
the local Git repository of the Linux kernel. As one can see, the raw data is
cached, so that it does not have to be retrieved from Git in the next iteration.

Furthermore, a preprocessed file is used, if available, that contains already
cleaned-up entries for the code statistics (lines added, deleted) per commit. The
function wdckms is used to provide a consistent interface when working with
multiple machines, so that only a single variable pointing to the local working
directory has to be adjusted.

77
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Listing A.2: Code For Loading Linux Data

lk.file.name <- wdckms("data/caching/linux-gitlogs.Rdata")

if(!file.exists(lk.file.name)) {

source(wdckms("r-scripts/git.R"))

repo.path <- "~/repos/linux_kernel/"

message("loading Git log")

lk.log <- gitLog(repo.path)

message("loading tags")

lk.tags <- getTags(lk.log)

stats.file <- wdckms("data/linux-shortlog.csv")

if(!file.exists(stats.file)) {

message("loading stats with Git")

lk.shortStat <- gitShortStat(repo.path)

} else {

message("loading stats from CSV")

lk.shortStat <- gitParseShortStatFile(stats.file)

}

save(lk.log, lk.tags, lk.shortStat, file=lk.file.name)

message("done")

rm(repo.path, stats.file)

} else {

load(lk.file.name)

}

rm(lk.file.name)

# remove head tag

lk.tags <- lk.tags[-nrow(lk.tags),]

lk.tags$is.rc <- grepl("-rc", as.character(lk.tags$ref.name), fixed=TRUE)

lk.log$ref.name <- as.character(lk.log$ref.name)

lk.log[nrow(lk.log), "ref.name"] <- NA

lk.log[nchar(lk.log$ref.name) == 0, "ref.name"] <- NA

# convert time

lk.log$author.realtime <- localTime(data.frame(times=lk.log$author.utc,

Offset=lk.log$author.utc.offset, dst=FALSE))

lk.log$committer.realtime <- localTime(data.frame(times=lk.log$committer.

utc, Offset=lk.log$committer.utc.offset, dst=FALSE))

lk.tags$committer.realtime <- localTime(data.frame(times=lk.tags$

committer.utc, Offset=lk.tags$committer.utc.offset, dst=FALSE))

# calculate if commit was done in sparetime

now <- format(Sys.time(), ’%Y-%m-%d’)

wt.start <- as.POSIXct(paste(now, worktime.start))

wt.end <- as.POSIXct(paste(now, worktime.end))

lk.log$author.sparetime <- ((as.POSIXct(paste(now, format(lk.log$author.

realtime, ’%H:%M’))) < wt.start | as.POSIXct(paste(now, format(lk.log$

author.realtime, ’%H:%M’))) > wt.end) | format(lk.log$author.realtime,

’%a’) %in% c(’Sat’, ’Sun’))

lk.log$committer.sparetime <- ((as.POSIXct(paste(now, format(lk.log$

committer.realtime, ’%H:%M’))) < wt.start | as.POSIXct(paste(now,

format(lk.log$committer.realtime, ’%H:%M’))) > wt.end) | format(lk.log

$committer.realtime, ’%a’) %in% c(’Sat’, ’Sun’))

rm(now, wt.start, wt.end) �
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As an example for the code used for graphics generation, Listing A.3 shows
the file content needed to create the plot in Figure 4.8.

Here, one can observe, that common functions are encapsulated in additional
files for re-use. Consequently, the calculation can be reduced to a little bit over
10 lines, plus plot creation code. As described in Section 2.2.1, eventually, TikZ
is used for the creation of native LATEX output.

Listing A.3: Code Used To Create Figure 4.8

source(’additional-header.R’)

source(’additional-ohloh.R’)

library(tikzDevice)

# max lines of codes to still count as "normal" commit

max.loc.per.commit <- 175

my.stats <- merge(oh.log, getCommitSizes(), by.x="cid", by.y="commits_id"

, sort=FALSE)

# since the merge produces duplicates, clean up

my.stats <- deleteDuplicates(my.stats, .columns=c("cid", "author", "pid")

)

# aggregation

per.hour <- data.frame(

hour=round2hour(prorateTime(data.frame(times=my.stats$realtime), 4)),

wday=factor(format(my.stats$realtime, ’%A’), levels=wdays.en.long,

ordered=TRUE),

commit.size=my.stats$commitsize)

rm(my.stats)

# filter out bulk commits

per.hour <- per.hour[per.hour$commit.size < max.loc.per.commit, ]

limits <- range(per.hour$hour)

# normally it ranges only until 23:00, thus add one hour to max

limits[2] <- limits[2] + 60*60

# add on both sides so that the curve does not end in 0 at the edges

tmp1 <- tmp2 <- per.hour

tmp1$hour <- tmp1$hour + (24 * 60 * 60)

tmp2$hour <- tmp2$hour - (24 * 60 * 60)

per.hour <- rbind(tmp1, per.hour, tmp2)

rm(tmp1, tmp2)

# points per hour at XX:30 for better readability

per.hour$hour <- as.POSIXct(format(per.hour$hour, "%Y-%m-%d %H:30:00"),

tz="UTC")

# calculate sum per hour

per.hour <- ddply(per.hour, c("wday", "hour"), function(x) {

return(c(commit.size=sum(x$commit.size)))

}, .progress="text")

p.all <- base.plot(per.hour) +

geom_rect(xmin=as.numeric(limits[1]), xmax=as.numeric(as.POSIXct(paste(

format(limits[1], "%Y-%m-%d "), worktime.start, ":00"), tz="UTC")),

ymin=0, ymax=1.025*max(per.hour$commit.size), fill="#FFFFBF", alpha

=1/100) +
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geom_rect(xmin=as.numeric(as.POSIXct(paste(format(limits[1], "%Y-%m-%d

"), worktime.end, ":00"), tz="UTC")), xmax=as.numeric(limits[2] + 24

* 60 * 60), ymin=0, ymax=1.025*max(per.hour$commit.size), fill="#

FFFFBF", alpha=1/100) +

geom_line(aes(x=hour, y=commit.size, col=wday, linetype=wday)) +

opts(axis.title.x=theme_blank(), legend.position="bottom", legend.title

=theme_blank()) +

scale_x_datetime("", breaks="1 hour", minor_breaks=NULL, labels=my_date
_format("%H")) +

scale_y_continuous("commit size", minor_breaks=NULL, labels=my_num_

format()) +

coord_cartesian(xlim=limits, ylim=c(0, 1.025*max(per.hour$commit.size))

) +

scale_colour_manual(name="weekday", values=c(brewer_pal(palette="Dark2"

)(5), brewer_pal(palette="Set1")(2))) +

scale_linetype_manual(name="weekday",values=c(rep("solid", 5), rep("

dashed", 2)))

tikz(file="../graphics/ohloh-hourly-freq-commitsize-all.tex", width

=5.118, height=3.15) #15x8 cm

print(p.all)

dev.off()

rm(per.hour, limits, p.all) �
Another non-trivial graphics is the Hollerith card, depicted in Section 3.4.2.
The code, as shown below in Listing A.4, is relatively straightforward. First,
the used functions and data are loaded. Then, the tags are filtered and releases
are identified and isolated. With the latter at hand, the data is aggregated and
formatted accordingly, before it is fed into the plotting function and saved into
a TikZ file.

Listing A.4: Code Used To Create Figure 3.16

source(’additional-header.R’)

source(’additional-linux.R’)

library(tikzDevice)

# prepare raw data

my.tags <- lk.tags[, c("ref.name", "is.rc")]

my.log <- merge(lk.log, my.tags, all.x=TRUE)

rm(my.tags)

my.log$release <- (!is.na(my.log$is.rc) & !my.log$is.rc)

releases <- my.log[my.log$release, ]

releases <- as.POSIXct(format(releases$committer.realtime, "2011-08-0%u %

H:00:00"), tz="UTC")

input <- data.frame(

day=factor(format(releases, format=’%a’),

levels=wdays.en, labels=wdays.en, ordered=TRUE),

hour=factor(format(releases, format=’%H:00’),

levels=sprintf(’%02d:00’, 0:23), ordered=TRUE))

input <- melt(as.data.frame(table(input)), id=c(’day’, ’hour’))

names(input)[names(input) == ’value’] <- ’freq’
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input[input$freq == 0, ’freq’] <- NA

input$freq <- factor(input$freq, ordered=TRUE)

p <- base.plot(input) +

geom_point(aes(x=hour, y=day, size=freq), na.rm=TRUE) +

opts(axis.title.x=theme_blank(), axis.title.y=theme_blank(), legend.

position = ’none’, axis.text.x = theme_text(size=FONTSIZE * 0.8,

angle=45, hjust=1, colour=’black’))

tikz(file="../graphics/linux-releases-time.tex",

width=5.118, height=1.97) #15x5 cm

print(p)

dev.off()

rm(releases) �
Listing A.5 depicts a typical batch script that is needed to perform calculations
on the HPC cluster at the LRZ in Munich. For privacy reasons, the user data
is stripped out and replaced with pointers encapsulated in angle brackets.
A description of the different parameters set in this file can be found at the
corresponding website1.

Listing A.5: Batch Script Used On The LRZ Cluster

#!/bin/bash

#SBATCH --time=48:00:00

#SBATCH --cpus-per-task=100

#SBATCH -J ArimaAdjAu

#SBATCH -o /home/hpc/<add username here>/arima_adj/arimaAdj_log.%j.%N.out

#SBATCH -D /home/hpc/<add username here>/arima_adj

#SBATCH --clusters=uv3

#SBATCH --nodes=1-1

#SBATCH --get-user-env

#SBATCH --mail-type=all

#SBATCH --mail-user=<add email address here>

source /etc/profile.d/modules.sh

module load R/parallel/2.13

R_HOME=/lrz/sys/applications/R/2.13.1_static

R --no-save -q < sarima_authors_HPC.R �
Listing A.6 shows a simplified version of the code used to calculate the ARIMA
values for each developer. First, the libraries for parallel computing are loaded
and the number of available cores for parallel calculation is set. Afterwards
the adjusted method as well as the preprocessed input data is loaded into
memory. Finally, the latter is processed is chunks, to be able to restart the
process after the 48 hour limit without having to re-calculate existing results.
For the calculation of this file, each used core utilizes at least two Gigabyte of
memory to hold the required temporary results.

1 http://www.lrz.de/services/compute/linux-cluster/batch_parallel/

http://www.lrz.de/services/compute/linux-cluster/batch_parallel/


82 appendix

Listing A.6: ARIMA Calculation Code (simplified)

library("doMC")

library("plyr")

registerDoMC(100)

# see astsa::sarima

sarima = function(xdata,p,d,q,P=0,D=0,Q=0,S=-1,details=TRUE,tol=sqrt(.

Machine$double.eps),no.constant=FALSE)

{

# code skipped here...

# removed plotting code since this is run in parallel

return(list(fit=fitit, error.sum.of.sqares=sum((abs(ACF[which(abs(ACF)

> L)]) - L)^2), error=sum(ACF^2)))

}

# load list containing a time series for each author

load("authors.as.ts.Rdata")

offset <- 1

while(offset <= length(authors.as.ts)) {

file.name <- paste("arima-fit.authors.", offset, ".Rdata", sep="")

message("### starting with authors, offset ", offset, " ###")

if(!file.exists(file.name)) {

my.proj <- authors.as.ts[offset:min(length(authors.as.ts), (offset +

999))] # inspect max. 1000 at once

arimas <- llply(my.proj, function(x) {

years <- length(x) / frequency(x)

result <- NULL

for(p in 0:3) { for(d in 0:2) { for(q in 0:2) {

for(P in 0:ceiling(years/3)) { for(D in 0:2) { for(Q in 0:2) {

try({

a <- sarima(x, p, d, q, P, D, Q, frequency(x))

tmp <- data.frame(p=p, d=d, q=q, P=P, D=D, Q=Q, sSqL=a$error.

sum.of.sqares, error=a$error)

result <- rbind(result, tmp)

})

}}}

}}}

return(result)

}, .parallel=TRUE)

# store results

save(arimas, file=file.name)

}

# logging so that progress is also visible at run time in cluster log

message("### offset ", offset, " done ###")

offset <- offset + 1000

} �
Table A.1, shown on the next two pages, gives an impression, which kind
of projects are included in the Ohloh dataset. The table shows 42 selected,
well-known FLOSS projects that have more than 10 000 commits registered for
the period from 2000 until 2008.
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Table A.1 – continued from previous page

name commits % wt commit size % wt dev’s cs/c c/dev cs/dev project url (as of 2008)

VLC 17 494 37.3 % 2 382 725·0 30.8 % 81 136.2 216.0 29 416·4 http://www.videolan.org/vlc/

GIMP 15 994 46.3 % 5 251 817·5 39.8 % 98 328.4 163.2 53 590·0 http://www.gimp.org

Subversion 15 950 56.9 % 1 949 556·5 54.2 % 109 122.2 146.3 17 885·8 http://subversion.tigris.org

Adium 14 193 39.9 % 2 596 707·5 43.3 % 55 183.0 258.1 47 212·9 http://www.adiumx.com

Horde 13 434 51.7 % 1 065 433·5 46.9 % 27 79.3 497.6 39 460·5 http://www.horde.org

AbiWord 13 194 44.5 % 1 818 604·5 46.7 % 64 137.8 206.2 28 415·7 http://www.abisource.com

PostgreSQL 12 763 51.0 % 2 409 640·5 48.9 % 24 188.8 531.8 100 401·7 http://www.postgresql.org

MythTV 12 584 39.2 % 2 558 283·0 35.9 % 42 203.3 299.6 60 911·5 http://www.mythtv.org

X.Org 12 331 57.0 % 2 752 893·5 58.4 % 316 223.3 39.0 8 711·7 http://www.x.org

ArgoUML 12 293 32.2 % 2 769 075·5 26.1 % 51 225.3 241.0 54 295·6 http://argouml.tigris.org

GNUstep 12 249 44.5 % 3 878 168·0 51.9 % 61 316.6 200.8 63 576·5 http://www.gnustep.org

Eclipse SWT 11 966 87.5 % 2 334 961·0 87.4 % 30 195.1 398.9 77 832·0 http://www.eclipse.org/swt/

Azureus 11 213 44.8 % 1 292 757·0 45.4 % 32 115.3 350.4 40 398·7 http://azureus.sourceforge.net

Thunderbird 11 039 61.0 % 1 039 258·5 58.7 % 271 94.1 40.7 3 834·9 http://www.mozilla.org/projects/thunderbird/

Parrot 11 025 47.7 % 1 849 871·5 48.4 % 69 167.8 159.8 26 809·7 http://www.parrotcode.org

GlassFish 10 878 74.2 % 9 361 908·0 66.3 % 148 860.6 73.5 63 256·1 https://glassfish.dev.java.net

Blender 10 535 40.9 % 7 574 648·5 50.1 % 68 719.0 154.9 111 391·9 http://www.blender3d.org

xine (video player) 10 431 37.9 % 2 128 690·0 33.7 % 53 204.1 196.8 40 164·0 http://www.xinehq.de

eZ Publish 10 338 81.1 % 2 812 861·0 63.7 % 77 272.1 134.3 36 530·7 http://ez.no/ezpublish

FFmpeg 10 303 40.6 % 1 133 005·0 52.1 % 68 110.0 151.5 16 661·8 http://www.ffmpeg.org
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