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Abstract

”
A world in which consuming open data is easy and safe.“

This is the vision of the JValue Open Data Service (ODS) that aims to bundle
finding the right open data, using and combining it into an easy and intuitive
process. The daily life of developers should be free from hardships, like writing
data crawlers for different data formats in combination with different protocols,
and instead, let them focus on their real problems.

As in every crowd-sourced application, the more users contributing and adding
new data sources, the better. With these requirements, the need for a scalable
software emerges. The microservice-based approach promises to achieve this, as
well as making the project easier to understand and maintain for developers.

This thesis presents a microservice-based architecture draft for the ODS and a
migration strategy from the current monolithic architecture towards it. The ex-
emplary implementation of a selected microservice proofs the feasibility of such
an architectural style. Furthermore, a discussion about the challenges and be-
nefits of a distributed system and the experiences written down in this thesis
shall reduce the risks and enable a complete migration to a microservices-based
architecture in the future.
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1 Introduction

Nowadays we live in an age of data and information - the digital age. In the
last few decades, many inventions like the internet led to the omnipresence of
technology in our daily lives. Nearly everyone possesses a smartphone and almost
every device we use incorporates sensors. With this digital revolution we were
experiencing and are still taking part in, the amount of data collected per person
is increasing rapidly. [RGR17]

Without processing this data barely provides value in most cases. The steps
to derive benefit from the data involve automated routines because of its huge
extent. This leads to one of the bigger challenges right now: how to deal with
these amounts of data.

A significant share of this data is accessible by everyone. If anyone can use this
data without restrictions, it is called Open Data. [Ope14]

One of the big challenges in the Open Data domain is the variety of data rep-
resentations which different data sources use. If an application requires data
of different sources, usually the developers need to spend additional effort for
extracting and transforming data.

The JValue Open Data Service (ODS)1 promises to provide the solution to this
problem. Users can configure the system to extract data of an Open Data source
and transform it into suitable representations. The transformed data is accessible
for the user in a uniformed RESTful API. This implies for application developers,
they don’t have to deal with different data sources anymore after configuring the
ODS and can access the data in a standardized format. The vision of the ODS
also includes that the amount of connected data sources increases over time by
crowd-sourcing. Rephrasing, users can benefit from already accessed data sources.

Over time, some complexity found its way into the ODS project. The main
sources of complexity are on the one hand the ability to handle various data
formats to support as many types of data sources as possible. On the other hand,

1GitHub project: https://github.com/jvalue/open-data-service
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very individual data transformations have to be possible to provide various uses
for the extracted data.

An adaption of the architecture promises to reduce this complexity and make the
system easier to understand. Lower coupling and higher cohesion are the goals
that promise better maintainability in this context. [HM95, p. 1]

The future use of the ODS as a crowd-sourced application influences this matter,
so the architecture should enable suitable scaling capabilities in the long term.
One solution for this is the introduction of a microservice-based architecture as
section 2.5 shows.

This thesis defines a suitable microservice-based architecture with the primary
goal to make the whole system easier to understand. Therefore, components
in the ODS are identified that can be extracted into microservices. A process
is defined on how to migrate a monolithic application to a microservice-based
application. Risks are evaluated and additionally required technologies are dis-
cussed. The migration is exemplarily conducted in order to show such an ap-
proach is feasible for the ODS. Finally, there is an evaluation that examines if
the described goals were met.

The thesis is structured in the following way:

Chapter 2 (Fundamentals: Microservices) introduces all fundamentals regarding
microservices required for the understanding of this thesis.

Chapter 3 (Thesis Requirements) explains the detailed requirements for this
thesis.

Chapter 4 (JValue Open Data Service) presents the vision of the ODS, analyzes
the current state of the project and proposes a microservice-based architecture
draft.

Chapter 5 (Migration of the Open Data Service) defines a process on how to
migrate a monolithic application to a microservice-based architecture. Com-
monly in such architectures found technologies are presented in order to enable
a seamless migration.

Chapter 6 (Implementation) shows that the proposed architecture and the mi-
gration process are both feasible by an example implementation. Some addi-
tional pitfalls regarding the consistency of the system are discussed.

Chapter 7 (Evaluation) recaps the accomplishments of the thesis and discusses
whether the requirements were met.
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2 Fundamentals: Microservices

2.1 Definition

Microservice-based architectures have no standardized definition, but there is
some common sense about this architectural style. Martin Fowler defines it like
this:

”
In short, the microservice architectural style is an approach to devel-

oping a single application as a suite of small services, each running in
its own process and communicating with lightweight mechanisms, of-
ten an HTTP resource API. These services are built around business
capabilities and independently deployable by fully automated deploy-
ment machinery. There is a bare minimum of centralized management
of these services, which may be written in different programming lan-
guages and use different data storage technologies.“ [LF14]

This definition gives a good impression on what microservices might be. The
first important point is the modularization of a large software system into smaller
services that communicate with each other. Those are independent of each other
in the aspects of functionality, deployment and used technology. Typically, the
communication happens over a network, hence this style of architecture describes
a distributed system.

Eberhard Wolff explicitly emphasizes that these self-contained microservices each
have their own data storage. This implies that it is a bad practice to share data
between services on the database level. [Wol16, chap. 1.1]

Summarizing, these definitions cover the most important aspects regarding mi-
croservices. In order to emphasize some of these points, a comparison to a mono-
lithic and a service-oriented architecture is drawn in the following two sections.
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Figure 2.1: Layers in a Monolith according to [Sha17]

2.1.1 Comparison to the Monolith

A monolithic application typically contains all the functionality required by the
system. A popular pattern is a layered approach which divides the system hori-
zontally into multiple tiers - for example, one layer as an interface to the outside
world, another one that contains the business logic and the third one interfaces
with the data store. Often the implementation is also divided vertically into dif-
ferent domains in order to keep the coupling of components to a minimum. If
domains are connected, method calls are used to interact with other tiers of the
same level or of the ones below. All data may be stored in the end in the same
database, using mechanisms like foreign keys if a connection between domains
exists. Figure 2.1 shows this kind of architectural approach.

Figure 2.2 shows a typical application of the microservice-based architectural
style. The service boundaries are aligned with the domains, each service may be
implemented in layers again. Every service has its own data store as the definition
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of section 2.1 states.

Compared to the monolith, pure method calls between domains are not possible.
The communication has to be implemented over the interface of the services to
the outside world. Technologies like HTTP calls are often used for synchronous
communication that requires a response, asynchronous communication can be
implemented by a message queue or also by HTTP calls for example. [LF14]

Figure 2.2: Layers in a microservice-based Architecture according to [Sha17]

These two different ways of structuring a system lead to different ways of scaling
it. Therefore, a monolithic application is replicated on multiple servers as figure
2.3 suggests. The reason for scaling an application may be a rise of the load on
the system. But is it necessary to scale the whole system? In scenarios where a
small bottleneck limits capabilities of the system, scaling everything seems not
to be a sophisticated way of solving this problem. The microservice-based style
makes scaling in such scenarios very effective because specific parts can be scaled
without replicating other unnecessary services. [LF14]

This is only one benefit of microservices. Section 2.5 describes more possible gains
of a microservice-based architecture. But as already mentioned, communication
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Figure 2.3: Monolith vs. Microservices [LF14]

is not as easy as just invoking local methods. Section 2.6 covers additional chal-
lenges introduced by microservices.

2.1.2 Comparison to SOA

There is some discussion on whether microservice-based architecture is not just
the same as Service-Oriented Architecture (SOA) - both names already suggest
that services are in the focus. Sam Newman defines SOA like this:

”
Service-oriented architecture (SOA) is a design approach where mul-

tiple services collaborate to provide some end set of capabilities. A
service here typically means a completely separate operating sys-
tem process. Communication between these services occurs via calls
across a network rather than method calls within a process boundary.“
[New15, chap. 1]

This definition sounds familiar regarding the already discussed aspects of mi-
croservices. Furthermore, the idea of SOA rose in order to tackle the issues with
large monolithic applications, but there was a missing consensus on how to do
this in a good way. [New15, chap. 1]

Fowler explains that SOA can mean too many different things, there is no common
understanding of this architecture type in detail. [Fow05]
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Newman summarizes his comparison by claiming the microservice-based archi-
tecture style emerged from

”
real-world use, taking our better understanding of

systems and architecture to do SOA well.“ [New15, chap. 1]

On the contrary, there are opinions that both concepts have major differences. For
example, there are differences in the scope. SOA focuses on the entire enterprise
IT in terms of the structure while microservices can be applied to only one smaller
project. [Wol16, chap. 6.2]

In summary, making a significant comparison between both architecture styles is
difficult because neither of them is defined in a standardized way. Many concepts
in microservice-based architectures are not novel and can be found in SOA and
other architecture styles that existed beforehand.

2.2 Service Boundaries

Designing a microservice-based architecture is not trivial. Especially deciding
which parts of the system belong into which service is challenging. Those de-
cisions can have an impact on how the system performs. Especially moving
functionality from one microservice to another is expensive due to the strong
modularization. [Wol16, chap. 5.2]

Thus, considerations where to put which functionality should be made very care-
fully. Domain-Driven Design (DDD) can be utilized as a tool to address the
mentioned challenges. Furthermore, some data-driven approach is discussed and
the connection to Representational State Transfer (REST)ful design is established
in the next sections.

2.2.1 Domain-Driven Design

”
Exactly such a model is necessary for the division of a system into

microservices. Each microservice is meant to constitute a domain,
which is designed in such a way that only one microservice has to be
changed in order to implement changes or to introduce new features.
Only then is the maximal benefit to be derived from independent de-
velopment in different teams, as several features can be implemented
in parallel without the need for extended coordination.“ [Wol16, chap.
3.3]

The mentioned model is called a domain model. It results from the Domain-
Driven Design (DDD) that models an

”
Ubiquitous Language in an explicitly

Bounded Context“. [Ver16, chap. 2]
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It embodies a language that is well defined and understandable by the developers
and business experts within a context. The domain consists of multiple Bounded
Contexts that each have an interface to the outside world. [New15, chap. 3]

Figure 2.4: Example of a Context Map [Wol16, chap. 7.2]

Figure 2.4 shows an example of connected Bounded Contexts. Each context has
its view on the model of a customer. For example, the basic customer data
could consist of name and birthday in the registration context. The customer
order data extends the customer data with the additional address information
for shipping. The billing context uses an anti-corruption layer to decouple the
internal legacy model from the interface. More on how to map contexts can be
read up in [Ver16].

Like the introducing citation already claims, one microservice is supposed to cover
one bounded context. This makes it easier to locate changes for a new feature to
exactly one service.
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2.2.2 Data-Driven Approach

The JValue Open Data Service (ODS) contains pipelines which process data.
Using DDD in this use-case may be challenging if no real domain objects can be
identified regarding such a pipeline. But even if this is the case, it may be worth
to take a look at this topic from a data-driven point of view.

Data processing pipelines can be split up into steps that are performed sequen-
tially. Depending on the context of the application, each of these steps may be
a candidate for a microservice. Such a processing step gets some data as input,
does the intended work and provides an output which may serve as the result of
the whole pipeline or some kind of interim result that is used as input for the
following processing step in the pipeline.

Moving some or all steps into dedicated microservices can provide some advant-
ages in comparison to deploying the whole pipeline as one microservice. If dif-
ferent processing steps benefit from different technologies or programming lan-
guages, the microservice-based approach suites perfectly to benefit from that.
For example, JSON data can be processed much easier by using JavaScript on a
NodsJS server than using a Java library.

Dividing functionalities across multiple microservices as mentioned above comes
with its overhead. Network calls can introduce communication overhead and
influence the performance in a negative way, especially if huge amounts of data
are moved from one microservice to another.

2.2.3 Correlation to RESTful Design

”
One of the first steps in developing a RESTful web service is design-

ing the resource model. The resource model identifies and classifies
all the resources the client uses to interact with the server.“ [All10,
chap. 2]

A domain analysis based on use-cases can be utilized in order to find those re-
sources from the point of view of a client. There may be considerations on how
fine-grained those resources are. For example, the resource of a user could in-
clude his addresses, but modeling both concepts as separate resources is also
valid. Some design decisions regarding those resources may originate from other
considerations. [All10, chap. 2]

If the service boundaries of an existing monolithic system are to be identified,
it might be worth having a look at the design of the RESTful Application Pro-
gramming Interface (API) of the application. Some domain concepts may be dir-
ectly visible in the resource design which represents each concept with a Uniform
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Resource Identifier (URI). Additionally, the dependencies of resources may be
visible as well. For example, the URI users/{userId}/adresses/{id} shows that
addresses depend on users. This information gives a hint that splitting these
concepts into different microservices may lead to the necessity to deal with this
dependency by API calls or data replication.

A good existing RESTful design seems to be a good starting point to determine
the service boundaries. In most cases, it is probably not enough to rely just on
that because only the domain concepts visible to the client are included and some
resources may exist due to other design choices.

2.2.4 Size of a Microservice

The size of a microservice is affected by the chosen service boundaries. Determ-
ining the right size is not trivial because there are many factors that define which
size is too big and which is too small. The following list gives an impression
about influences on the service size:

• Team size: One team should be able to cope with the whole service. This is
an upper boundary for the size of a microservice. A team may be responsible
for more services but there should never be a shared responsibility regarding
one service between teams. [Wol16, chap. 3.1]

• Modularization: A developer should be able to understand the whole
service and thus be able to develop it further. [Wol16, chap. 3.1]

• Replaceability: A service should have a size which makes it not too ex-
pensive to replace it. [Wol16, chap. 3.1]

• Infrastructure: It should still be possible to provide the infrastructure
with an appropriate effort. If this is not the case, it may be a hint that the
microservices are sliced into too small components. [Wol16, chap. 3.1]

• Distributed communication: There is a notable cost that comes with
using distributed communication. This overhead has to be appropriate for
the system. Thus, there should be as less interaction over the network
between services as possible. [Wol16, chap. 3.1]

• Consistency: Strong data consistency can only be guaranteed inside a
microservice which influences the minimum size of the individual service.
[Wol16, chap. 3.1]

Summarizing, a good size for a microservice leads to the following two character-
istics: loose coupling and high cohesion. Loose coupling means practically
that changes in one service should not lead to changes in other services. High co-
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hesion groups related behavior together into one service while unrelated behavior
is separated by service boundaries. [New15, chap. 3]

2.3 Communication between Microservices

The last section mentioned that communication over the network is expensive and
thus should be avoided if possible. But there are scenarios where it is unavoidable
that microservices interact with each other. Generally, there are two types of
communication:

• Synchronous Orchestration: Synchronicity causes the caller to be
blocked until the operation is finished and the request is typically answered
by a response. The orchestration aspect requires a component that triggers
all required actions in the system actively, like calling other microservices.
[New15, chap. 4]

• Asynchronous Choreography: Asynchronous means the caller does not
wait for the request to be completed. This enables an event-based style of
communication where subscribers can act on published events. The cho-
reography aspect implies that a part of the system is informed of its job.
It reacts by itself with the detailed action. [New15, chap. 4]

Especially when data is required in a microservice that is not within the core
responsibility of the service, these ways of communication can be used in order
to achieve different results. There are three major ways of dealing with shared
data, each one has its strengths and weaknesses. It depends on the specific use
case which one suits better.

• Fetching on demand: Whenever a microservice requires data from an-
other service, it dispatches the corresponding request and fetches the data.
This is a straight forward way of getting the data but slows down the sys-
tem if multiple services are interacting with each other or a whole chain of
calls is triggered.

• Replication: Another way is to replicate the required data to your service
in the format that is required according to the Bounded Context (see 2.2.1).
The replication can happen via an optimized interface or events. [Wol16,
chap. 8]

The advantages and disadvantages strongly depend on the chosen consist-
ency model of the replication. If strong consistency is desired, the data has
to be replicated synchronously by using an interface which blocks the sys-
tem during replication. Asynchronous replication via events or scheduled

11



interaction with the defined interface leads to eventual consistency but does
not raise the latency of the system as much as synchronous approaches.

• Shared libraries: Making good use of shared libraries is not trivial, some
pitfalls are discussed in section 2.7. The quality of those libraries lies in
sharing data that does not change very often which reduces the risk to
build a deployment monolith. An example for that would be the names of
countries.

2.4 Integration of UI

In most applications, a User Interface (UI) is required in order to make it access-
ible for users. In the context of a monolithic application, the UI is delivered as a
client application that interacts with the server. In a microservice-based system,
things might get more complicated. This section specifies three basic ways of
integrating the UI into such a system.

API composition

The solution that is closest to the monolithic approach is the API composition
shown in figure 2.5. Instead of making requests to the monolith, the UI sends
requests to the corresponding services. The existence of multiple microservices
may even be concealed by using an edge server described in section 5.3.

This way of integrating the UI is well-known and can be implemented with fron-
tend technologies. However, when changes are made on microservices that break
their API, the client has to be adapted as well. This may lead to a deployment
monolith like explained in section 2.7. In order to prevent that, API versioning
should be introduced. Another disadvantage is that the responsibility for the
frontend is not obvious. Is there a frontend team that has to communicate with
all the other teams? Or is this responsibility shared, so the team responsible for
a certain microservice has to keep the UI up-to-date? These questions have to be
answered to prevent inconsistencies between the APIs of the microservices and
the use of them in the UI.

Fragment composition

In order to deal with the downsides of the API composition approach, the mi-
croservices can serve their own UI components. Figure 2.6 shows that the UI
project has only the responsibility to put the fetched components into the right

12



Figure 2.5: UI by API Composition [New15, chap. 4]

place. API changes of the services can include the required changes of the UI
components and prevent inconsistencies. The responsibility for the delivered UI
components is obviously connected to the team that implements the microservice.

With this approach, new difficulties arise that need to be overcome. How to
make the UI look and feel like as if it is from one source even though it is not?
What to do if components served by different services have to interact with each
other? Which technology does support such scenarios or do we have to write
pure self-contained JavaScript components?

Backends for frontends

Finally, the third way of integration is presented in figure 2.7. This solution is
orthogonal to the other ones and focuses on how to implement multiple different
UIs like mobile apps, web applications and so on. With each UI having its own
requirements for the API, either communication overhead would be introduced
in order to get the data required, or a coupling would be introduced in order to
fit the needs of the clients. The developers may consider implementing multiple
backends that provide the APIs that the specific clients require. This approach
can be mixed with the ones above.
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Figure 2.6: UI by Fragment Composition [New15, chap. 4]

2.5 Possible Gains

In order to evaluate if a microservice-based architecture is suitable for a certain
project, the possible gains must be clear. It depends on the individual case
if these advantages justify the use of a microservice-based architecture. The
word

”
possible“ is here emphasized because those gains are only reachable if the

implementation of this architecture style is done right.

• Scaling: Microservices can be scaled individually to their needs. This
implies there is no unnecessary scaling like in monolithic applications (see
section 2.1.1) which in the end may save money. The distribution of the
same service to multiple places in the world in the context of a globally
distributed system shortens the way between clients and the services and
thus may reduce latency. [Wol16, chap. 4.1]

• Maintainability: Like in section 2.2.4 summarized, microservices should
provide loose coupling and high cohesion. Software design that enables
these two characteristics leads to a reliable and more maintainable system.
[HM95, p. 1]

Teams are able to handle the complexity of the overall system better by the
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Figure 2.7: Backends for Frontends [New15, chap. 4]

modularization into autonomous microservices. The work on one service
does not require to understand the whole system. This implies that the
system is also easier to understand. [Wol16, chap. 9.1]

• Replaceability: A microservice should have the size so that a complete
replacement does not cause too huge effort (see section 2.2.4). Throwing
an existing service away and re-implementing it is feasible because, for
example, the used technology became outdated.

Compared to the monolithic approach, it can be prevented to maintain a
system that is not reasonable to be maintained. Replacing it instead may
save a lot of effort in the long run. [Wol16, cap. 1.2]

• Robustness: In a monolithic application programming mistakes like
memory leaks can derail the entire application. If this happens to one
microservice, only that one is affected and the rest of the system is still op-
erable. This assumes that failures are not propagated and services running
on the same hardware are isolated from each other.

Wolff further claims that design techniques exist so that
”
microservice-
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based systems can tolerate the failure of entire microservices and therefore
become more robust than a deployment monolith.“ [Wol16, chap. 4.1]

• Continuous integration: Microservices are autonomous and should have
individual continuous integration pipelines. This improves the feedback
time for developers because only the services are build and tested that were
actually changed instead of the whole system. It is recommended to use
a separate source code repository for each microservice in order to make
responsibilities between multiple teams explicit: a repository together with
the build belongs to one team. [New15, chap. 6 and 10]

• Choice of technology: Each microservice is generally independent of
the others in means of technology choice because the communication is
implemented over network protocols. Some technologies have advantages
for certain functionalities, so they may be a good choice. Sometimes the
developers are used to a programming language or a framework, so it makes
sense to go with it in order to be productive. All these choices suddenly
become viable when speaking about microservices. [Wol16, chap. 4.1]

• Organizational structure: The architecture has an influence on the or-
ganization due to Convey’s Law:

”
Any organization that designs a system

[...] will inevitably produce a design whose structure is a copy of the or-
ganization’s communication structure.“ [Con68]

In other words, teams should form around microservices and take full re-
sponsibility. Those teams should be cross-functional because a microservice
typically contains the whole stack of an autonomous component. [Fow05]

The modularization of the whole system into multiple smaller projects with
well-defined borders reduces the need for communication between teams
that are responsible for different microservices and the risks of the project.
[Wol16, chap. 4.2]

2.6 Possible Pains

A microservice-based architecture represents a form of distributed systems. For
those kinds of systems the CAP theorem applies which claims that web-services,
and thus distributed systems in general, cannot provide the following three guar-
antees at the same time:

• consistency

• availability

• partition tolerance [GL02]
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Distributed systems with no partition tolerance don’t exist in practice. So either
consistency or availability has to be restricted in any form. [New15, chap. 11]

This brings some possible pains into the project, but also in section 2.5 discussed
gains can lead to negative consequences if not implemented in the right way:

• Consistency: Usually transactions can be utilized to ensure consistency
in a monolithic architecture. Either the whole transaction is performed or
everything is rolled back to the prior state. Transactions across multiple
microservices are very hard to implement and involve a lot of coordination
effort. [Wol16, chap. 3.1]

Newman suggests designing a system to have weakened consistency guar-
antees, for example, eventual consistency. This means the data is delivered
eventually to all services and until then old versions of the data may be
readable. [New15, chap. 11]

• Availability: Communication over the network is unreliable. This has to
be compensated by the application logic. Calls over the network introduce
latency, so synchronous calls between services should be avoided as far as
possible. Especially when services are sliced into too small components, you
could call them nano-services, latency can increase significantly. [Wol16,
chap. 3.1]

• Service boundaries: Like section 2.2 discusses, determining the bound-
aries for microservices is not trivial. It is hard to move functionality from
one service to another without breaking the system. So if this step is not
done right, future refactorings may come with a lot of costs.

• Heterogeneity of technology: The technology choice for a microservice
is generally independent of other services like covered in section 2.5. But
there still is the tendency towards standardization in a certain way:

”
shar-

ing useful and, above all, battle-tested code as libraries encourages other
developers to solve similar problems in similar ways yet leaves the door
open to picking a different approach if required.“ [LF14]

Summarizing, reinventing the wheel in every microservice is too much effort,
so using similar technologies is reasonable in many scenarios.

• Monitoring: In monolithic applications logging, debugging and monitor-
ing is straight forward and very common. Introducing a distributed system
makes these jobs less trivial. Logs and metrics have to be aggregated in a
central place in order to be valuable and therefore should have a common
format. Fortunately, there already exist technical solutions for this. Tra-
cing actions in the system becomes harder, because one request to a service
may lead to actions on other microservices. This can be approached by
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using correlation ids that are passed through the system so everything can
be traced in the central logging system. [New15, chap. 8]

• Versioning: The independent deployment of microservices is one of the
gains that this architectural style can provide. However, sometimes there
are breaking changes in the interface of a service that cannot be avoided.
In order to not break the consumers, there are techniques like semantic ver-
sioning allowing the coexistence of multiple endpoints of different versions
within a service or even different deployed service versions. Even though,
maintaining this even for a transition phase between versions increases com-
plexity and requires effort. [New15, chap. 4]

Most of the presented pains contain a few points on how to tackle these issues, so
they are not unsolvable. Nevertheless, there are some possible pain makers that
have to be dealt with when introducing a microservice-based system. The next
section discusses a few smells that may increase the pains and reduce the gains
of microservice-based architectures.

2.7 The hidden Monolith

During the evolution of a microservice-based system, some pitfalls have to be
avoided in order to not build a hidden monolith. This term expresses that in-
dependent releases and deployments of microservices are not possible anymore,
so you end up with a solution that combines the disadvantages of a monolith
and of microservices. There are smells that are commonly found in projects with
a microservice-based architecture style. The ones that may lead to deployment
monoliths are discussed in this section:

• Shared persistence: Sharing a database between multiple microservices
is risky because there is no clear data ownership defined. Moreover, even
if there would be responsibilities defined, if one service changes the format
of the stored data, the other services may crash if they access the changed
data. All affected services have to be adapted and deployed together -
as a monolithic deployment process. This can be solved by using different
databases or at least using tables and schemas that are private to the specific
services. [TL18]

• Shared libraries: Sharing behavior between services as libraries (or even
frameworks) may seem to be an easy approach to prevent code redundancy
at first glance, but it couples the microservices tightly together. Adding
functionality to those shared resources requires coordination with other
teams and if the behavior has to be the same on all services, this leads
to a deployment monolith. Keeping the code redundant in each service is
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one thinkable solution which leads to unintended maintenance effort if it is
carried too far. A shared service that encapsulates this behavior may then
be a better solution. Making this decision is always a trade-off and depends
on the context of the application. [TL18]

• API versioning: Breaking the API in any way leads to failures within
dependent services. This can be prevented by introducing versioning of the
API, may it be HTTP calls or events or any other interface of the service.
The old version has to be maintained until all services moved to the new
version and then the old can be removed. [TL18]

• Processes: Section 2.5 states that teams should form around microservices
and manage their whole lifecycle. If an organization does not adapt to this,
the software product may end up as deployment monolith. There is an
increased risk of introducing dependencies between microservices if there
is, for example, a database team that can modify every service. Those
dependencies lead to deployment monoliths. [Wol16, chap. 12.9]
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3 Thesis Requirements

3.1 Architecture Concept

The overall goal of this thesis is to evaluate a new architecture approach for the
JValue Open-Data Service in order to make the system easier to understand and
enable better maintainability. Based on the vision and the requirements of the
ODS, some new architecture concept based on the microservice-approach shall
be developed.

3.2 Migration Process

A further requirement is to define a migration process that leads the old architec-
ture to the new one. This process should be abstract enough to be also applicable
to other contexts. Additional technologies that are required in a microservice-
based architecture should be evaluated as well.

3.3 Implementation

The constructed migration process shall be implemented by example. Therefore,
a suiting microservice has to be chosen. After the application of the migra-
tion, some evaluations should be done regarding the benefits and downsides of
a microservice-based architecture. Understandability, maintainability and per-
formance of the system shall be the major considered points.
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4 JValue Open Data Service

4.1 Vision

”
A world in which consuming open data is easy and safe.“

This is the vision of the JValue Open Data Service (ODS). One challenge to-
wards this goal is that finding the right open data for the special use-case is
hard. Often using and combining open data is sophisticated. It produces too
much effort because there are so many protocols and data formats due to lacking
standardization on open data. Additionally, the quality of the data is unclear, as
well as how reliable the data source really is. Orthogonal to these problems there
is still a potentially unclear legal situation, especially concerning the combination
of data from various sources.

Overcoming these problems is surely not easy. Therefore, the ODS has to make
finding the right data easier by accumulating many data sources, provide import-
ant meta-data about them and curating the data if necessary. Crowd-sourcing is
the approach of choice for this issue. This implies that adding new data sources
has to be easy for users, for example by an easy-to-use user interface. The us-
age of open data is affected by the crowd-sourcing approach as well. It becomes
easier because data sources that other users already configured can be reused.
Moreover, there must be a standardized way to interact with the system like an
API and/or query language for all data sources. Additionally, meta-data about
the quality of the data should be aggregated. The lack of reliability of a data
source can be compensated by storing the data in a more reliable and available
system. The combination of open data must be supported by helping the user
to assess the risk of potential license violations.
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4.2 Current Context

Currently, the JValue ODS covers a subset of the capabilities that are listed in
section 4.1. It supports the import of data from some pre-configured data formats
like CSV or JSON. Data transformation pipelines can be configured so that they
store the transformed data and send notifications in the end. There is a query
mechanism regarding the stored data, but it is very restricted. The monolithic
architecture makes the application not suited for a huge user base that is required
for crowd-sourcing.

There exist two applications that use the ODS in its current state. The first
one is Pegelalarm, a mobile app for Android phones. Users are notified about
the water levels of waters of interest. The second one is a project with industry
partners called Netzdatenstrom. The ODS serves as an integration platform
for different data sources and makes the data accessible via a message broker.

4.3 Current Architecture

The ODS is currently a monolithic application. This means the application is
developed, built and deployed as one whole project with one underlying database.
Like in section 2.1.1 described, this style of architecture has some downsides. The
following architecture descriptions are related to the state of the master branch
on the 12.11.2018.

The scope of the following section 4.3.1 does not cover every detail of the project,
but the core concepts it is built on. Section 4.3.2 covers the RESTful API and
section 4.3.3 outlines the project structure of the current version of the ODS.

4.3.1 Core Concepts

Figure 4.1 shows an abstraction of the current model of the ODS. The goal of
the system is to retrieve data from a data source and present it in a processed
form to the user.

The typical workflow starts with a DataSource. It describes the real-world data
source with some additional meta-data. In order to use it, a DataSourceAdapter
is required. Depending on the type of the data source (e.g. REST interface, FTP
server, etc.), the suiting adapter has to be configured by the user. This is usually
the first step that is performed by the so-called ProcessorChain to import data
from a configured outside source into the system.
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Figure 4.1: Current Model ODS

The orchestrating ProcessorChain can chain multiple Filters. They take some
data as input, transform or process it in any form and return the result. For
example, there is an AddTimestampFilter that simply adds the time-stamp to
the data. There are two more filters that stand out quite a bit. One is the
NotificationFilter that does not manipulate data but sends Notifications instead.
The other one is the DbInsertionFilter which inserts the retrieved data as Data
into the database. Note, that there is currently a filter in development that allows
the execution of JavaScript code at run-time. In other words, users will be able
to define their custom filters that are executed on the data.

The user can then retrieve this stored data. Additionally, some DataView can
be set up, a concept that comes with the use of CouchDB as the database layer.
Using this database specific feature enables decent performance for combining,
sorting and filtering the stored data based on map-reduce-like functions. The
DataView can be configured and accessed by the user.

The concept of a User exists but is not directly connected to the other concepts
in the application. Yet, it is one of the important core concepts because it is
required for authentication.

In this section, the important concepts were identified and a typical use-case ODS
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was constructed based on them. In the next section, the interface to the outside
world is discussed in order to make it clear what users can configure and which
functionalities can be added at run-time.

4.3.2 REST Interface

The REST interface represents the way of interacting with the ODS. For the
means of understanding the system, an abstract description of the current REST
API is presented in this section. A full description can be read up in [Zin].
Especially interesting are the resources (which result in REST-endpoints) that
were identified because they correspond to the core concepts that are identified
in section 4.3.1. The following resources exist currently:

• /users

• /datasources

• /datasources/{sourceId}/filterChains

• /datasources/{sourceId}/plugins

• /datasources/{sourceId}/notification

• /datasources/{sourceId}/data

• /datasources/{sourceId}/views

• /filterTypes

• /version

Typically, each resource has up to four operations: PUT, DELETE, POST and
GET. Those operations may be seen as the implementation of the CRUD-pattern.
[Zin, p. 13]

Most of the resources can further be specified by id in order to get detailed
information and perform operations on the specific entities.

The plugins-endpoint is deprecated and will be removed in the future.

Due to the requirements and goals of the ODS, some API endpoints need special
remarks. The first one is the filterTypes-endpoint. In order to add filter behavior
at runtime, there has to be an endpoint that accepts new filters. This feature is
currently in development and will be implemented by providing a generic filter
that executes JavaScript code in a sandboxed environment. The second one is
the views-endpoint which enables creating new views on data via map-reduce-
like functions that enables the underlying database layer (CouchDB) to perform
queries on the data.
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4.3.3 Project Structure

This section discusses the current code-level project structure in order to get an
understanding of the structure of the ODS. The following description is on a
rather high level in order to get the bigger picture and not to get lost in the
details.

opendata-service

client-retrofit

docker

gradle

models

server

integrationtests

main

java/org/jvalue/ods

admin

auth

data

db

main

notifications

pegelalarm

processor

adapter

filter

plugin

reference

specification

pubsub

rest

transformation

utils

test

cep-service

commons

Figure 4.2: Current Project Structure ODS

Figure 4.2 shows the source tree of the ODS. There are three GitHub projects that
contribute to the ODS in its whole1. There are the opendata-service project and
the cep-service project. There is also the commons project which provides shared

1https://github.com/jvalue
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libraries between the other two projects. The cep-service, short for complex-
event-processing-service, is used by the Pegelalarm application, which is one
of the running systems that use the ODS in production. It sends events to the
subscribers depending on the data that the ODS retrieves. These events are
dispatched if, for example, the water level rises over a certain threshold. Since
this thesis concentrates on the opendata-service project, the other two projects
won’t be discussed in further detail.

Within the ODS project, there is a models project. The resulting library contains
common model classes for the integration tests and the main project.

In order to deploy the application, Docker is used for containerization. The
configurations, including the ones for Docker Compose, can be found in the docker
directory. The

”
real“ ODS application is located in the server directory, covered

with unit tests and some integration tests. The Java classes for the project can
be found in the path opendata-service/server/main/java/org/jvalue/ods. Most
of the identified core classes are also mirrored in the folder structure. But there
are also directories that contain code that is shared across these domains, like
database access, REST interface, and authentication.

4.4 Possible future Architecture

Before constructing the architecture, the core concepts of the future ODS have
to be identified. These concepts implement the vision of section 4.1 and are
discussed in section 4.4.1. They lead to the architecture draft that section 4.4.2
presents with all the identified services. Section 4.4.3 covers the design of clients
that will be the interaction point for most users of the ODS. Each microservice
should implement the requirements that section 4.4.4 suggests. Section 4.4.5
discusses the communication between services. Finally, a workflow of how the
services work together to complete a basic use-case is presented in section 4.4.6.

4.4.1 Future Core Concepts

Figure 4.3 shows the core concepts of the future ODS. It is quite similar to the
current model described in section 4.3.1 but some generalizations were introduced.

DataSources are now divided into internal and external ones. By supporting the
usage of existing Data as an internal source for pipelines, the original concept
of DataViews that aggregates data as a view becomes unnecessary. Instead of a
view on the data, a new pipeline can be created that takes Data as input and
produces Data that fulfills the data aggregation feature as output. This implies
that there must be an adapter available that supports access to internal Data.
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Figure 4.3: Future Model ODS

The concept Filter was renamed to Task because a filter suggests that something
is removed or rejected based on some criteria. On the one hand, there are some
filters that do a data transformation in the original concepts. But these filters
are hard coded and can only be parameterized at runtime. On the other hand,
there is the DataTransformationFilter in development which allows the execution
of JavaScript code on the data in a sandboxed environment. As an abstraction,
all TransformationTasks are defined as JavaScript code snippets in the future
ODS and specify the data transformation in a consistent way. Replacing the
hardcoded and parameterized transformations by a template system that provides
code snippets for common tasks may be an optimization to this approach. It is
also thinkable to support additional languages as data transformation languages.

In the original concepts, there are two special filters called DbInsertionFilter
and NotificationFilter. These concepts are still present in the future as Data-
PersistationTask and NotificationTask. They are logically separated from the
TransformationTasks as so-called SystemTasks. This conceptual distinction is
reasonable because there is no data transformation and they can be executed
asynchronously. The further processing of the pipeline does not require a result
of these two operations.
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4.4.2 Architecture Overview

Resulting from the concept analysis in section 4.4.1, the service boundaries are
drawn with the responsibilities. Figure 4.4 shows the identified services.

Figure 4.4: Future microservice-based Architecture

• UserService: is responsible for managing users and their authentication.

• DataSourceService: manages data sources, their configuration, and the
pipelines that operate on them.

• PipelineScheduler: triggers the execution of pipelines to the defined
times.

• AdapterService: fetches data according to the adapter configuration of
the pipeline. Adapters are implemented at compile-time and are configur-
able for each pipeline. Creating adapters at runtime is not supported.

• PipelineExecutionService: executes tasks according to the configuration
of the pipeline.

• DataService: responsible for storing the resulting data of pipelines and
makes it available to the users.

• NotificationService: sends notifications to users in the configured way.

• PipelineTaskTemplateService: holds templates for pipeline tasks in
JavaScript that can be used as is or modified by the users to define a
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pipeline task.

A more detailed description of each service can be found in the documents of
Appendix B. Section 4.4.6 shows the typical workflow of all services and their
interaction, enabling users to define a pipeline and retrieve data from the ODS.

Figure 4.4 does not show the interaction with clients and how the User Interface
(UI) is integrated into the overall architecture. This is a very important topic for
its own and is covered in the upcoming section.

4.4.3 Clients Design

The prior section lists all microservices of the future ODS, some more may be
added in the progress of the project. This section covers the aspects of the clients
that interact with the application. Section 2.4 discusses the basic strategies on
how to integrate UI into microservice-based architectures.

Figure 4.5: UI Integration

Currently, only one UI is planned that serves the users as the interaction point
with the ODS. Therefore, the backends for frontends approach is not yet neces-
sary but may be added in the future if needs emerge. The fragment composition
technique promises many benefits, but developing a concept benefit from this ap-
proach seems inappropriate in these early stages of the project. For the current
prototyping-like phase getting results is much more important than introducing
a complex, but maybe in the long run better suiting solution that requires a lot
of effort to set up. Because of that, implementing the UI according to the API
composition is prefered.

However, there are a few recommendations that may help with the issues de-
scribed in section 2.4. The interaction with services should be encapsulated into
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modules that are independent of each other like figure 4.5 suggests. Trying to as-
sign every UI component to exactly one microservice may also lead to a decoupled
design and an easy determination of the responsibilities. The communication en-
dpoints of the microservices should be versioned in order to ensure that breaking
API changes don’t affect the client. The technology used should be as lightweight
as possible, support modularization of the UI application and if possible allow
the later migration to the fragment composition approach.

4.4.4 Microservice Design

For all the microservices there are a few requirements that have to be fulfilled in
order to build a stable system.

• Multiple instances of the services have to be able to run in parallel for
scalability of the system. This implies that either the services are stateless,
so no state can be lost if the service crashes at any time, or the state can
be recovered.

• Consistency across the services is very important. The future architecture
targets eventual consistency, so if one service writes data, the other services
will eventually know this. Section 4.4.5 states that an event-driven approach
is chosen to achieve this.

• The delivery of events follows the at-least-once semantic. This means sent
events are delivered eventually for sure, but situations can arise where some
events are delivered more often than once. This means that either the ser-
vices have to filter those duplicates out or always only trigger idempotent
actions whenever an event is consumed. Further reading on message deliv-
ery semantics can be found in [Pap08, p. 68].

• REST calls to services should not result in multiple synchronous calls to
other services in order to achieve low latency. Generally, this means data
replication using the events is chosen over fetching data on demand. Of
course, this principle is not applied if other approaches are more beneficial
in individual cases.

• Semantic versioning of services, their REST APIs and of the sent events
should be applied in order to prevent a future running instance of the ODS
from crashing due to breaking changes on a single service.

• The deployment of each service must be independent of the other services.

• Accessing data directly from the database, that is under the responsibility
of another service, is strictly forbidden. In practice, this means there are
no shared database instances between services.
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• Each service has to be tested as a black box via integration tests. Especially
changes that break the API should be discovered by that in order to prevent
the whole ODS to crash.

4.4.5 Communication

Before going into the details of the specific services it is important to know how
the communication with the clients or users and between the services will be
implemented.

Communication with clients

The communication with the clients is specified as a REST API like in the already
implemented version of the ODS. In the future, GraphQL may be considered as
an additional interface to the outside world, but this is out of scope of this thesis.

Communication between services

Section 4.4.4 states that the microservices should use asynchronous events for
communication between themselves. The idea is to replicate the data a service
needs from other services by listening to those published events and constructing
the required representation of the data.

There are similarities to the CQRS pattern where multiple read models can be
defined that are specialized to the given task in the services for querying. The
write-commands are only executed by the service responsible for the specific data.
[Fow11]

For example, the PipelineScheduler listens to the events of the DataSourceService
and builds up a data structure that fits the purposes of scheduling best. The
pipelines could be organized in the service as a priority queue. The next upcoming
pipeline that shall be executed is always at the head of the queue. This is much
easier to implement than supervising every pipeline on its own. Only the intended
execution time of the first element of the queue has to be checked against the
current time. If this check is positive, the pipeline can be triggered and the
next element of the queue is under observation. The state of the scheduler is
represented by the queue, persisting and restoring it is very easy compared to
the current approach.
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4.4.6 Services Workflow

Section 4.4.2 summarizes the identified microservices of the future ODS. A more
detailed description is attached in Appendix B, especially specifications of the
REST APIs of the services and which events they produce and consume. The
specific data models are left out in order to focus on the understandability of the
services and how they interact with each other. This section gives an example of
a typical workflow and illustrates the interaction of the microservices.

Figure 4.6: Future Workflow

Figure 4.6 shows a typical workflow of a user interaction with the future ODS.
First, the user configures the data source and the pipeline via REST calls. This
configuration also includes, how and when the pipeline is triggered. The Pipelin-
eSchedulingService builds up a data structure that is optimal for determining
which pipeline should be worked on next by listening on events regarding the
pipelines. Whenever a pipeline shall be executed, it just puts an event on the
event distribution mechanism that will deliver it to the right place depending on
the pipeline configuration. In this scenario, the pipeline begins with the work of
an adapter that fetches data from the defined data source. The resulting data
is also published as an event. The following steps are tasks that work on the
data. These steps are executed by the PipelineExecutionService. The last part
of a pipeline defines the storage of data and a notification to the interested users.
The DataService and the NotificationService get the instructions to do their work
by events. When the user receives the notification, he can fetch the data via a
REST call from the DataService.
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5 Migration of the Open Data
Service

5.1 Migration Process

Many projects don’t have a fixed scope, especially it is common practice in agile
projects that requirements change frequently. Thus, architecture evolves over
time and has to be adapted to new requirements that come alongside with new
features. This means, architecture also changes over time and has to be inspected
and rearranged if necessary on a regular basis. For microservices, this includes
discussing the service boundaries and their responsibilities repeatedly. In order
to do this in a standardized way, there should be a defined process. This process
should not be static, but be adapted to the needs of the project and include
lessons learned during the process so mistakes don’t happen twice. Figure 5.1
shows the process that is used in the scope of this thesis.

First of all, the requirements of a system have to be identified. Particularly, this
includes the required consistency of the system. Section 2.6 discusses the trade-
off between availability and consistency. This is not a decision that someone
should make on the fly, it is actually a decision that has to be made regarding
the requirements. This implies that the use-cases of the system should be clear.
How many users are supposed to use the system in parallel? Where will the
system be hosted and are there any limits for the operational costs?

After these questions are answered, the service boundaries have to be identified.
This step is crucial for the success of the project. Rearranging these boundaries
in a later stage will be very expensive on the one hand, but on the other hand,
it may be unavoidable in a growing project.

Especially at the beginning of the implementation or migration towards a
microservice-based system, additional technologies have to be introduced in order
to avoid the possible pains described in section 2.5. Additionally, it is very crucial
to decide on how the communication between the services will work in the future
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Figure 5.1: Migration Process

based on the analyzed requirements. Additional components and technologies
that may be beneficial in such an architecture are covered in section 5.3. If the
decision to introduce such a technology is made, it has to be integrated into the
existing system. If there already exist multiple independent services, they all
may have to be revisited and adapted if required. Another aspect is that existing
templates for new services that enable fast productivity have to be adjusted as
well.

The next step is to identify which parts of the application have to be refactored
in order to get one step closer to the target architecture. Imaginable scenarios
are to split one large service into two or multiple smaller ones, merge too small
services into one, move functionality from one service to another, and rewrite a
whole service. When migrating from a monolith, the splitting process is especially
interesting because it defines the step that has to be done naturally most often.
Section 5.2 covers instructions on how this can be done. In general, the interfaces
should be defined first. Then the refactoring can be performed considering the
defined interfaces. The process starts over again after this step.
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5.2 Splitting the Monolith

Splitting one large service into two or more smaller services is one of the refact-
orings that are naturally done very often when migrating from a monolithic to
a microservice-based architecture. This slicing should be recorded into a process
that is adapted to the project context. The process should be adapted over time
by the experiences made during the application of it. In the context of the ODS
migration, the process in figure 5.2 is used.

Figure 5.2: Splitting Process inspired by [New15, chap. 5]
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The goal is to move a part of the behavior from one service that is to be split
into another new service. This does not necessarily mean copy and pasting code
from one project into another. Also throwing the old code away and rewriting it,
for example in a better suiting technology, is a valid approach.

First of all, the original service has to be analyzed in its implementation structure.
Most programming languages offer a logical separation for modularization, so
does Java with packages (or Java modules in newer versions). All the code for
behavior that is moved into the new service should be grouped in such a module.
Most modern IDEs support moving source code between modules and make this
refactoring very convenient.

The next steps focus on resolving the dependencies of this module. The other
packages have to remove all direct method invocations that target code of the
module, except the initialization. Instead, the interfaces to the outside world
are utilized to trigger the intended behavior. This may be a RESTful API, some
message distribution mechanism or something else. At this point in time, the new
interface structure has to be defined and it should match the intended interfaces
of the new service as good as possible. In this step, relations between affected
tables in the database have to be cut. Some techniques how to compensate that
and how to deal with shared data can be read up in section 2.3. Tools which
analyze the module dependencies and visualize them can support this process
towards low coupling.

Once these dependencies are resolved, the database can be split into two in-
stances. The added database is used to store the data that was decoupled in the
former steps. If managing multiple databases in the same project can only be
implemented with major additional effort, the separation can be delayed until
the new service is created.

Next, the new project can be set up. It is recommended to use a template for
this in order to prevent too many different technologies in the scope of the whole
projects like section 2.6 warns of. Then the behavior can be extracted from the
original service to the new one. If the prior steps were done correctly, the only
thing left to do in the original service is to direct the interface calls to the newly
extracted service instead of to itself.

As for the last step, the developers have to gain trust in the work they did by
showing that the system behavior did not change. Therefore, it is recommended
to write integration tests beforehand, so they just have to be run with the new
configuration.

This simple sounding process has many pitfalls that should be avoided while
migrating to a distributed system. These can be read up in sections 2.6 and 2.7.
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5.3 Additional Technologies

There are different migration patterns towards microservice-based architectures.
Some of them identify additional technologies that are often used in microservice-
based projects and can be found in various publications. They address typical
problems in distributed systems and may be considered to be introduced in cer-
tain phases of the migration towards a microservice-based architecture.

• Continuous Integration / Delivery / Deployment: Automating
things is a big part of enabling the potential of microservices. Whenever
a developer makes a change in the code, the Continuous Integration mech-
anism executes defined tasks like building artifacts, running tests etc. in
order to provide feedback regarding the changes. Taking steps further, the
deployment to a production-like or into the real production environment is
desirable if the built artifact turns out to be stable enough. [Bal+18, p.
4-14]

This automation of infrastructure is one of the key characteristics of mi-
croservices. [LF14]

• Service Registry: One of the most harmful smells in microservice-based
architectures are hard-coded endpoints that are used for service communic-
ation. If those endpoints change, the system breaks. [TL18]

Thus, introducing a component, that makes the endpoint discovery between
services dynamic, is recommended. Services register themselves on their
start-up at the service registry and can be discovered by other services.
[Bal+18, p. 8]

• Load Balancer: Service registries already enable the discovery of multiple
instances of one service. Balancing the load of the system across these
instances in a transparent way for clients is valuable because of a variety
of reasons. It

”
gives us an increased ability to handle load, and also reduce

the impact of a single host failing.“ [New15, chap. 11]

• Circuit Breaker: If the system fails, the failure should appear very fast in
order to avoid unnecessary waiting. Timeouts are one well-known approach
that assumes failure after waiting for a certain time. Taking steps further,
a circuit breaker enables failing fast without waiting for the timeout in
scenarios where multiple failures happened in the past and an upcoming
failing operation is very likely. [New15, chap. 11]

• Edge Server: It should be unnecessary for clients to know how the intern-
als of the system is built and changes in the internal structure should not
affect them. Therefore, an additional front-door layer can be introduced
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as the interface for the clients that hides the complexity of the system to
them. This component goes well with load balancers and service discovery
in order to be highly efficient. [Bal+18, p. 11-12]

• Containerization: Making the test and the production environment as
similar as possible is desirable for the Continuous Integration, so failures
can be found beforehand or if not, reproduced in the testing environment.
One lightweight technology that helps towards this goal is containerization.
The microservices should be put into containers, which represent the entities
that need to be deployed. [Bal+18, p. 12-13]

• Container Orchestration: If all services are deployed within containers
in a standardized way, some container orchestration tool can handle the
details of the deployment. This includes the number of instances per ser-
vices, some automatic scaling metrics that can start and stop instances on
demand, the handling of container failures like restarts etc. This technology
can enable scalability and high availability of the system. [Bal+18, p. 13]

• Logging and Monitoring: Monitoring the system and its behavior is
important. The health of services may lead to actions in the container
orchestration, but there also may be other metrics worth monitoring which
are able to help developers for future design decisions. Logging is not as
easy as in a monolithic application as well. For both aspects, it is desirable
to have all the information accessible in one place instead of looking at each
microservice individually. Introducing tools that aggregate these pieces of
information and process them into a usable format is a common technique.
[Wol16, chap. 11.2 - 11.3]

38



6 Implementation

Migrating the current version of the ODS described in section 4.3 to the future
one is an incremental process. Therefore, the migration techniques described in
section 5 are utilized. This chapter covers the application of the process in an
exemplary manner.

As figure 5.1 shows, the first step of the migration process is the requirements
analysis. The results can be found in section 4.4.4. The

”
optimal“ service bound-

aries that represent the deliverables of the second step are shown in section 4.4.2
in conjunction with the core concepts in section 4.4.1.

Section 5.3 lists additional technologies. Continuous Integration with tests and
Containerization is already present in the ODS project. The Docker containers
are managed by Docker Compose, which serves as simple service registry via
DNS. For the time being, there are no additional components that have to be
introduced. Later on, it turned out that an edge server is required in order
to make sure that the behavior of the system did not change. The details are
described in section 6.1.4.

Following the defined migration process, a suiting microservice candidate has to
be identified for the refactoring. There are various candidates that fit as the
first example for this process. The chosen one should be as independent of other
functionality as possible in order to guarantee an easy extraction. For example,
extracting a part in the middle of the system that has many internal dependencies
towards other functionality is not the best option. Those parts are better targeted
later on when some dependencies will already be removed due to the extraction
of other parts of the system.

The UserService seems to be a suiting choice in this scenario. On the one hand,
there are only a few direct calls to this functionality, on the other hand, it will
affect all future services due to authentication and authorization. If any other
service was extracted beforehand it would have to deal with the distributed au-
thentication anyway that would stick to the monolithic part, so doing this espe-
cially deliberately makes sense during this extraction in order to prevent future
restructuring of the authentication.
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The description of the performed implementation steps in this chapter is written
without going into deep technical implementation details in order to keep the
focus on decisions regarding architecture and processes. Section 6.1 covers the
final step of the migration process, the refactoring.

6.1 Extracting the UserService

Currently, the ODS is a monolithic application. Thus, the splitting process de-
scribed in section 5.2 is applied. Summarized, this means resolving the depend-
encies between packages that are targeted to be extracted by refactoring and
making API calls instead of local method invocations. Then the databases are
separated and the functionality is shifted into the new project for the extracted
service. Next, the destinations of API calls are changed to the new service loca-
tion. In the end, it is important to make sure the behavior of the system has not
changed or has only changed in the intended ways. The implementation of these
steps is described in the following sections.

6.1.1 Dealing with the Commons Project

Before the actual migration can start, some thoughts must be made about the
Commons project of the ODS. Within, there are libraries that typically have a
common character across projects of the ODS, which are at the moment the ODS
itself and the CEP-Service.

For example, the database access abstraction is located in the Commons project,
which may be useful also to other services which are using the same technology.
The authentication is outsourced to the Commons project, but unfortunately in
a way that it is not very suitable for future use. Probably the authentication
mechanism will have to be changed due to its distributed form. But changing
it in the Commons project also means that the CEP-service is affected. This is
somewhat not desirable.

For the extraction of the UserService, this matter is solved by copying the code
regarding the authentication into the project and removing the dependency to
those parts of the Commons project. After the extraction, it has to be decided
which parts of the distributed authentication may be shared between services and
if some shared code across these services is desired or not. Section 2.7 already
shows that shared libraries can introduce some downsides, so it is at least ques-
tionable if such an approach should be taken in the future. Additionally, with the
technology heterogeneity that microservices can introduce, the benefits of librar-
ies are reduced because they usually cannot be used by multiple programming
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languages.

6.1.2 Resolving Dependencies between Packages

The ODS project is written in Java. With version 9 of Java SE the Jigsaw
project was introduced, which enabled a better modularization of Java projects
by defining clear boundaries for modules and their exposed interfaces. To the
time this thesis was written, the used build tool Gradle1 did not support this at
a sufficient level, so Java packages were the go-to technique of modularization in
the application. After the authentication sources of the Commons project were
copied to the project like explained in the previous section, all classes that were
supposed to be moved to the new extracted UserService were refactored in order
to be located in a new package named userservice .

Due to the find-usages functionality most modern IDEs offer, it was quite easy
to see all dependencies that use the classes within the userservice package. The
usages of model classes were substituted by copying the used classes and using
these copies within all the other packages. The direct method invocations of
classes of the userservice package were replaced by API calls on the UserApi.
This also includes serialization and deserialization of model classes which made
the usage of the copied model classes possible.

During this refactoring, the authentication mechanism was divided into two parts.
Only the UserApi makes use of the look-up mechanism operating on the database
that checks if the pair of username and password is present or not. All other REST
endpoints check the existence of the user by calling the User-API.

After these steps, all direct dependencies towards the functionality of the future
UserService were removed. This was also verified by utilizing the find-usages
functionality of the IDE.

6.1.3 Extracting the new Service

The next step was to move the grouped classes and their functionality to a new
project. Therefore a new project in the same Git repository was created, with
the same technology as the monolith. A Gradle project that builds a Java pro-
ject with Dropwizard2 as framework supplying everything to build RESTful web
services was set up. All important dependencies were included and an additional
database instance was created. The UserService project was configured to use the
new CouchDB instance instead of the old one. The grouped code of the monolith

1https://gradle.org/
2https://www.dropwizard.io/1.3.8/docs/
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was moved to the new UserService project. In order to make it run, some further
configurations regarding Dropwizard and authentication had to be applied. The
destination of the API calls towards the UserApi in the monolith was changed to
a new instance of the UserService. Because the API itself was not modified, no
more changes in the monolith had to be done at this point of time.

6.1.4 System-behavior Consistency Check

As the last point of the migration, the behavior of the altered overall system
had to be checked by ensuring the integration tests were still passing. Therefore,
the UserService was containerized with Docker3 like the monolithic project. The
deployment was realized by Docker Compose4. The additional CouchDB instance
was added as well as the built Docker container of the UserService.

Due to the fact that the integration tests were testing against one host, those tests
were still destined to fail. The new architecture has two different hosts, one for
the requests regarding the UserService and one for the rest. In the end, this was
solved by adding a proxy server that routes the requests regarding specified rules
to the right running web application and hiding the existence of multiple web
services to the outside world. As the technology of choice Traefik5 was selected
as a lightweight edge router. This resembles the edge server of the additional
technologies specified in section 5.3. In the future, this may be enhanced or
replaced regarding load balancing and service discovery.

After fixing a few remaining minor bugs that the integration tests revealed, the
state of passing integration tests was achieved. For the last step, the Jenkins6

Continuous Integration configuration was enhanced to also build, test and con-
tainerize the UserService.

6.1.5 Performance Optimization

How communication between services can work is described in section 2.3. For
the authentication scenario, some different approaches were evaluated.

• Direct API calls: This is the version that was implemented directly after
the extraction of the UserService. Whenever a client requests the function-
ality of a service, the given authentication header is redirected to the API
of the UserService checking if such a user exists. This means every API call

3https://www.docker.com/
4https://docs.docker.com/compose/
5https://traefik.io/
6https://jenkins.io/
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has additional latency added by the call over the network to the UserSer-
vice. This is something undesirable, so choosing another approach should
be considered if it does not introduce any other significant downsides.

• Caching Users retrieved by direct API calls: This method is just an
optimization regarding the prior version. Users are cached within services
for a configured amount of time, so repeated calls don’t add latency due to
additional authentication calls. In relation to caching, the topic invalidation
rises up. What if a user gets deleted and is stilled cached on other services
as a viable user? There are scenarios where this is acceptable behavior,
depending on the amount of time the users are cached. By listening to
events that imply that a user was updated or deleted this duration can be
reduced by invalidating the corresponding entry in the cache.

• Replicating the Users: In an event-driven architecture, it is easy to
replicate the user data to other services by listening to the event stream.
Then each service can check if the user is registered or not. This has the
advantage that no network latency is added on direct API calls. But this
means also distributing the credentials across all services. This doesn’t
seem to be a sophisticated solution due to security issues, which is its very
own topic in the world of microservices. Although the password would be
hashed, this may cause security issues in the future.

• Using internal tokens: Using internally generated tokens for authentic-
ated users that signed-in is another common approach. An example of this
is making use of tokens called JSON Web Token (JWT)7. A cryptograph-
ical mechanism secures information about the user inside a token. A service
retrieving such a token from a client can validate it without making another
API call to the UserService but by performing a cryptographical operation.
The only thing to do is to retrieve the public key once from the UserService
and use it for the decryption of the tokens. This is an established approach
with many advantages, but it introduces additional complexity in a software
system, e.g. implementing a strategy to invalidate tokens.

After evaluating all the up- and downsides of these approaches, the second one
was chosen over the others. The users are cached by the microservices after
successful authentication is performed once by the UserService. The invalidation
is implemented by listening on events published over RabbitMQ8, a lightweight
message broker. Some retry mechanism for the REST calls to the UserService
was introduced in case the network connection fails. The reason this approach
was chosen instead of the JWT tokens that offer many advantages is to keep the
changes as less invasive to the existing system as possible. However, in the future

7https://jwt.io/
8https://www.rabbitmq.com/
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it might be worth considering using tokens instead of the current approach.

A performance analysis of the first three approaches supports this decision. For
the setup Docker Compose started the required components on one host, so there
was no real network between the services.

Figure 6.1: Performance of Authentication Strategies

A JMeter9 script was created that performs the following steps for 1000 times.

• Create a DataSource.

• Fetch the created DataSource.

• Delete the created DataSource.

The elapsed time for the request was measured for three scenarios.

• Monolithic application

• Distributed application with extracted UserService, which authenticates the
user on every request

• prior scenario with a caching strategy, so only the first call authenticates
the user directly by the UserService

9https://jmeter.apache.org/
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The results are shown in figure 6.1. The analysis does not include the first half
of the measurements to make sure that the influence of JVM warmup and other
factors of the starting process of the service(s) are as small as possible.

Create (Monolith) 327.0 ms
Create (Distributed) 342.5 ms
Create (Dist+Cache) 254.0 ms

Get (Monolith) 20.0 ms
Get (Distributed) 21.0 ms
Get (Dist+Cache) 21.0 ms

Delete (Monolith) 359.0 ms
Delete (Distributed) 376.0 ms
Delete (Dist+Cache) 295.0 ms

Table 6.1: Median of Performance Analysis

The results prove the expected behavior. Comparing the creation and deletion
on the monolith to the distributed version, it can be observed that the additional
network traffic introduces a communication overhead with a latency of approxim-
ately 16 ms. This resembles the delay by the network which is rather low because
all services run on the same machine in this test. The caching implementation
provides a lower elapsed request time because after the first request the system
does not require additional network interaction. It is even faster than the mono-
lithic approach. This emerges from the fact that the monolith performs a lookup
operation fetching the user from the database for every request. In compar-
ison, the distributed caching version provides the results faster because the data
already resides in the cache. For fetching the data sources, no major differences
between the implementations can be observed because there is no authentication
required for this endpoint.

The analysis shows that the chosen approach with an extracted UserService and
caching by the other services is even faster than the monolithic implementation
without additional caching. This validates the chosen solution.

6.2 Rewriting the UserService

The defined migration process in chapter 5 shows that discarding existing services
and rewriting them from scratch is a valid way of refactoring. Rewriting usually
means reevaluating the programming language and framework to make the right
choice which one suits best for the corresponding service. But a crucial aspect
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is to keep the interfaces to the outside world as they are. In the simplest case,
this exclusively concerns the REST interface. The whole rewriting process is an
additional effort that brings no business value at first glance but potentially in
the future. Features may be implemented faster in the future by making use of
special language features or libraries, also the non-functional requirements like
performance may be improved by such a choice. The reasons in this context for
rewriting the UserService are discussed in the next section.

6.2.1 Chosen Technology

The solution using Java and Dropwizard as the framework was unsatisfying be-
cause many common problems had to be solved by implementing it by ourselves.
This includes, for example, the access to the database which was abstracted by
hand in order to make databases interchangeable. Most of the authentication was
implemented by hand. Those mechanisms were located in the Commons project
in order to share it across multiple projects and also across microservices in the
future. There was much to configure manually, which can be an advantage or a
disadvantage. The Dropwizard framework opened many possibilities for custom
implementation, but this also requires time and effort. There are frameworks
that provide such solutions out of the box and also support the accessibility of
additional technologies as they are listed in section 5.3.

The chosen technology for the UserService that should be rewritten was still
Java as the programming language. It proved to be reliable in the past and
was already well-known by the working developers. Instead of Dropwizard, the
framework Spring Boot10 was chosen due to a variety of reasons. It was even
chosen as the most popular application framework in 2018. [Sch]

One major point was that Spring has a huge community and there exist many
tutorials and documentation on the web. Due to its popularity there are many
extensions that provide common functionality out of the box. Especially interfa-
cing with some implementations of the already mentioned additional technologies
of section 5.3 is supported by plugins. Spring Boot provides auto-configuration
to the Spring framework which enables a very fast start into implementation and
reduces the complexity of configuration. But there is a downside that has to be
accepted when choosing this framework. Very specific configurations that are
far away from the default way of doing it are hard to apply. Microservices try
to reduce the complexity of the given services because they are only responsible
for a limited set of functionality. So taking this risk seemed to be acceptable,
because the default pre-configured way should work out in most cases.

This technology choice is supposed to form a template for future microservices

10https://spring.io/projects/spring-boot
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in order to prevent a too high variety of technology in the system. If in a specific
use-case the explained downside should become too painful, another technology
may be chosen for that service implementation.

6.2.2 Technology in Practice

In the context of the UserService, the framework SpringBoot turned out to be a
good choice. All dependencies to the commons project could be removed because
the required mechanisms are provided by the framework. While programming
with the framework it felt more productive due to the auto-configuration. Using
environment variables in the configuration files that SpringBoot provide out of
the box, together with using different configurations by profiles for deployment
and local uses, the whole containerization process became a lot cleaner.

As part of the rewriting, the underlying database of the UserService was ex-
changed. CouchDB was replaced by MongoDB which was already planned for a
while for a few parts of the ODS. This is well supported by SpringBoot, it only
took a few lines of code to implement the intended functionality.

But also the negative aspects that come with the auto-configuration were exper-
ienced. For authentication, cookies were enabled by default which led to some
undesired behavior during testing. Finding the cause for those unexpected inter-
actions was time-consuming.

A performance analysis unveiled that the implementation with SpringBoot and
MongoDB performs even worse than the implementation with DropWizard and
CouchDB. To make a comparison of both applications possible, the mechanism for
sending events and communication endpoints had to be adapted. The following
steps were executed repeatedly for 1000 times, the first half of the iterations were
not taken into account to reduce the implications of start-up artifacts as much
as possible.

• Create user.

• Get the created user.

• Delete the created user.

Figure 6.2 shows that in all three scenarios the SpringBoot implementation is
significantly slower. Even though, the development team decided in favor of
SpringBoot because of the improved development experience and the enhanced
development speed.
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Figure 6.2: Performance of Frameworks

6.3 Dealing with Consistency

Achieving the desired consistency level in an application is far from trivial. Con-
sistency has to be defined between services, between the instances of the same
service type and also between clients and the whole system. During the imple-
mentation phase, a scenario was discovered where inconsistencies between services
and thus, between clients and the whole system can appear.

6.3.1 The problematic Scenario

Section 4.4.4 states that eventual consistency should be achieved in the system.
In the future architecture of the ODS, this means that all writing actions on
services must evoke a resulting event that is eventually delivered by a message
broker. For the implementation, this means conducted writes on the database
have to lead to an event that reaches the message broker. The configuration
of the message broker ensures the eventual delivery of the event. Rephrasing
this, writing on the database and sending events have to be an atomic operation.
Scenarios, where only one of both actions is executed, have to be prevented in
order to keep the system consistent. The following implementation does not yet
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provide solutions to the problem but shows how easy it is to run into this pitfall.

Listing 6.1: Sequential commands

. . .
db . wr i t e ( user ) ;
broker . pub l i sh (new Event ( user ) ) ;
. . .

The problematic scenario causing inconsistencies can arise if the connection to
the message broker cannot be established. In distributed systems, the network
cannot be assumed to be reliable, so this is a realistic scenario. It would lead to
a database write, but the event gets never published.

Trying it the other way around by sending the event first and writing to the
database afterwards leads another undesired inconsistency in certain cases. The
event gets published, but the write to the database is not successful, for example
also due to network issues. The sent event cannot be revoked any more and leads
to an inconsistency in other services.

Listing 6.2: Database transactions

. . .
Transact ion t r a n s a c t i o n = db . getTransact ion ( ) ;
t r a n s a c t i o n . s t a r t ( ) ;
db . wr i t e ( user ) ;
boolean pub l i shSucce s s = broker . pub l i sh (new Event ( user ) ) ;
i f ( pub l i shSucce s s ) {

t r a n s a c t i o n . f i n i s h ( ) ;
} else {

t r a n s a c t i o n . r o l l b a c k ( ) ;
}
. . .

In this scenario, the database writes get reversed if the publishing to the message
broker fails. The inconsistency described above cannot happen in this way. But
there is another problematic scenario. This time, the message broker is reached by
the publish request, publishes the message, but the acknowledging response gets
lost in the network. This means the event got published, but due to the lacking
response from the message broker, the database transaction is rolled back. Again
an inconsistency found a way into the system. Sending the event first leads to
an equal effect as using sequential commands.

Two-phase commits for publishing the event only shifts the problem to the next
layer. The atomic way of combining these actions seems very hard to achieve
or even not possible. Section 4.4.4 emphasizes that the delivery of events has
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to happen according to the at-least-once semantic. This means also publishing
events more often than once is basically viable. Also not trying to force those
two actions into an atomic command is viable, as long as eventually both are
executed. By looking at the consistency requirements from this point of view,
new possible solutions arise. In the next sections, two patterns are introduced
that provide a solution to the problematic scenario by making use of that strategy.
But those solutions come with a certain cost: complexity!

6.3.2 Listen to Yourself Pattern

Figure 6.3: Listen to Yourself Pattern based on [Sho17]

The Listen to Yourself Pattern ensures that publishing an event and the corres-
ponding database write are both performed or none of them. Figure 6.3 gives an
overview of the pattern. [Sho17]

The service does publish a WRITTEN-event, in this context the UserCreate-
dEvent, on client write-requests but unlike the expectation, writing into the
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database does not happen right away. Instead, the service subscribes to its own
published events and conducts the write as soon as the event is received again.
In parallel, other services can subscribe to those events and react accordingly as
if the operation already happened successfully.

Two things can happen in this scenario. Either the event reaches the message
broker, then it is guaranteed to be delivered eventually to all subscribers, or it is
not published, so the database will never execute the write. Even if the service
crashes after the publishing, it will receive the event as soon as it is available again
or another instance of the service can take over. The message broker is configured
to only remove events from its queue if the processing of it is acknowledged. In
a scenario, where the database write is executed but the acknowledgment of
execution does not reach the message broker, it will be delivered again. This
behavior is satisfying the at-least-once delivery semantic that is aimed to be
implemented by the ODS. This means the services have to deal with events that
are delivered more than once. Idempotent actions that react to events are a way
to ensure this like described in section 4.4.4.

In cases where the write to the database fails, a so-called compensation event may
be published which all interested services react to. The design of compensation
events is also known under the Saga pattern. Especially in cases, where multiple
services react to the creation of an entity that can fail due to conflicts, this
pattern brings benefits. Whole event chains can arise, triggered by one original
event from user interaction. If one of those fails, the whole action has to be
canceled, but some writing actions already happened from events prior in the
chain. These services can undo their actions by reacting to such a compensation
event. [Sho17]

In figure 6.3, it is visible that the client triggers the action and does not get any
response with information on whether the write was successful or not. In the
context of the ODS, this is rather an undesired behavior. A client should know if
requests succeed or fail. Additionally, clients may not be able to read their writes
immediately, which is also a behavior that may be avoided if possible within the
ODS.

6.3.3 Application Publishes Events Pattern

The Listen to Yourself Pattern solves the consistency issue by publishing the event
first and afterward executing the write action on the database. There also exist
approaches that work the other way around, such as the Application Publishes
Events Pattern. [Ric]

Each service manages an additional table called Outbox which contains all events
that the service produced. Unlike the other approach, the events are not pub-
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lished by the service itself. The responsibility lies within an additional application
that crawls this additional table and publishes the event after they were inserted.
Figure 6.4 shows that this works on the database level. Approaches that enable
the fetching of events by a REST API are imaginable as well.

[Ric]

Figure 6.4: Application Publishes Events Pattern [Ric]

The pattern writes the domain object and the event into the database by using
transactions. This ensures that both database operations happen in an atomic
manner, always both or none are executed. At this point, the client could receive
feedback if the action was successful. Due to the outsourcing of the publishing
mechanism into another application, the events are published eventually. Even
if the service or the publishing application crash, their state is always persisted
and can be recovered. Scenarios, where events are published more than once, can
arise. For example, if the publishing application publishes the event but does not
get a response from the message broker or crashes before the index marking the
last published event can be persisted. After a restart, the same event may be
published a second time, which is as already mentioned acceptable.

This pattern can be condensed into one application. The separation between the
service that writes to the database and the application publishing the events is
a logical separation.

There exists a related pattern which operates not on an additional table in the
database but on the transaction logs produced by the database. The disadvantage
of this approach that reading the events from the log is database specific. [Sho17]
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6.3.4 Pattern in Practice

In order to solve the general consistency problem described in section 6.3.1 the
two patterns explained in sections 6.3.2 and 6.3.3 are qualified. They were both
implemented in order to evaluate which one fits better into the context of the
ODS.

Figure 6.5: Implementation of the Listen to Yourself Pattern

The Listen to Yourself Pattern does not provide feedback to the user as
stated in section 6.3.2. Due to the requirements in this context, the pattern
was enhanced to settle this disadvantage. Figure 6.5 shows the result of this
enhancement.

Instead of just using a UserCreatedEvent, the process was split into two steps.
First, the UserCreationRequestedEvent is published. This event is received by
the UserService which performs the database manipulation and publishes the
UserCreationFinishedEvent. Note, that the database interaction does not neces-
sarily happen on the same instance of the UserService that received the request
from the client. The published UserCreationFinishedEvent can be used by other
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services to trigger their actions, as well as by the UserService to send a response
to the requesting client.

The UserCreationRequestedEvent has to be delivered once to the group of
UserService instances in order to be performed once. The delivery of the UserCre-
ationRequestedEvent reaches all service instances in order to reach the one that
is in contact with the client in order to perform the response. The UserService
stays operable during waiting on the UserCreationFinishedEvent by performing
the waiting process in an asynchronous manner.

The application of this pattern brings a lot of complexity into the project. The
mentioned mapping across threads from received events to open client requests
that require the UserCreationFinishedEvent is error prone. Keeping track of all
the different events is quite challenging. Every database manipulating operation
can emit at least three different types of events: the request, the success and
the failure of the operation. Additionally, there may be compensation events. In
comparison to this very common scenario, creating a user, this seems to be an
overkill. Especially with the goal to make the system easier to understand, the
worth of applying this pattern is more than questionable.

The Application Publishes Events Pattern performed better in the imple-
mentation. Storing events happens alongside with executing the corresponding
write-operation in a database transaction. The id of the events is generated by
an auto-increment mechanism, which had to be implemented by hand because
the underlying MongoDB does not support it out of the box.

Apart from this, the implementation progressed straight forward. Events are
made accessible to users authenticated as admins by a read-only endpoint. The
additional publishing application can poll this data and publish the new events.
Comparing to the event-chaos of the Listen to Yourself Pattern, this implement-
ation seems rather trivial. To fellow developers, it seemed far more reasonable
to just store additional events instead of introducing a lot of complexity like
mentioned above.

The fact, that the events are only stored and never removed can make event-
sourcing possible. Newly created services that emerge into production can poll
the whole history of events of other services and react to them. They can create
their state as if they would have existed from the beginning because all state can
be reproduced by making use of the events instead of the real data. [Fow17]

Given, that all services need a similar event publishing mechanism, standardizing
the format of events may provide the benefit of reusing the publishing application
for all services.

Without further analysis, it is obvious that the Application Publishes Events
Pattern is the best choice in the context of the ODS.
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7 Evaluation

This section describes the evaluation of this thesis. It reviews the requirements
for the thesis defined in chapter 3 and discusses whether they are met. The
upcoming sections each refer to the corresponding section of chapter 3.

7.1 Architecture Concept

The first and most important requirement was to create an architecture concept
suited to the ODS.

Beginning with an analysis of the current monolithic implementation, a new ar-
chitecture concept based on microservices was presented. Section 2.1 gives an
overview of this new architecture and section 4.4.6 discusses an exemplary work-
flow. Appendix B documents a detailed description of all planned microservices
which represents the result of this thesis. It shows that the whole application can
be realized following the new architecture concept. Pitfalls that lead to a hidden
monolith were identified and avoided.

An exemplary implementation in chapter 6 confirms as a proof of concept the
feasibility of the developed architectural style. Because of that, this requirement
is satisfied.

7.2 Migration Process

The second requirement was to design a migration process that can be applied
to migrate the ODS from a monolithic architecture to microservices.

Section 5 introduces the proposed migration process on an abstract level, so
it can be adapted and applied for almost any project that shall be migrated
from a monolithic architecture to a microservice-based one. Specifically, section
5.2 presents the process of how to split a larger module into smaller services
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which is an important part of the migration process. Section 5.3 introduces a
list of important technologies. These are typically required in order to build
an effective microservice-based architecture. They supplement the introduced
migration process with valuable solutions to problems that can arise during the
migration. These three sections together provide all the tools that are required to
enable a seamless migration from a monolithic application towards microservices.
Thus, the requirement of designing a migration process is fulfilled.

The process is applied in chapter 6 which validates the applicability as a proof of
concept and fulfills the related requirement.

7.3 Implementation

The last requirement was to implement the developed architecture concept by
example and evaluate the approach based on understandability, maintainability,
and performance.

Based on the architecture description of section 4.4 the UserService was chosen
as the candidate for the first microservice to be extracted. Section 6.1 shows the
application of the extraction process.

An evaluation of different implementations of the distributed authentication re-
garding performance encourages the chosen approach to use microservices and a
caching mechanism. Another refactoring step is described in section 6.2 regarding
the technology choice. SpringBoot is a solid choice for microservices which en-
abled a fast implementation of the UserService. With other frameworks, better
performance could be achieved, but the increased development experience was
found to be more important for the project. The detailed measurements can
be read up in section 6.2.2. Introducing a distributed architecture led to the
risk of consistency issues. Section 6.3 presents two solutions and gives a clear
recommendation to use the Application Publishes Events Pattern to make sure
the consistency requirements of the ODS are met.

A detailed evaluation of how this architectural style affects the understandabil-
ity, maintainability, and performance of the whole system is not possible at this
point in time. Too many factors are unclear and the implementation by example
in this thesis does not provide enough information to do so. If the microservice
approach pays off in these regards can only be evaluated after further progress
of the migration, but there are some indicators on the trends. Except for these
limitations, the requirement regardings the implementation were met by point-
ing out the following trends regarding understandability, maintainability, and
performance.
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Dealing with distributed communication already introduced some complexity.
But since this thesis established a suitable concept, the level of complexity should
not rise significantly in this regard in the upcoming migration. Instead, it is
visible that the separation of concerns by the microservices limits the scope of
those and make them easier to understand and maintain. The responsibility of
each is clearly defined and the focus on limited behavior reduces the complex-
ity. By enabling to choose the suiting technologies for different use-cases, this
modularization across services is advantageous compared to a modularization on
a monolith. Summarizing, although some complexity had to be introduced to
make the ODS suitable for a microservice-based architecture, the trend towards
a system with better understandability and maintainability is presumable.

Regarding performance, there are trade-offs. The development team chose better
development speed and experience over the performance of a running system.
But this is surely also a kind of performance aspect that is important, especially
in the early phases of a project. Additionally, the aspect of scalability must be
considered to this point. The microservice approach promises to scale parts of the
system that require additional resources very easily which affects the performance
of the overall system as well.

7.4 Summary

Summarizing, the requirements regarding the architecture concept and the mi-
gration process were met. The implementation part of the thesis shows the feas-
ibility of a microservice-based architecture, but there are limitations regarding
the evaluation of understandability, maintainability, and performance.

Anyway, the implemented UserService combined with the migration process al-
lows further migration of the ODS towards a microservice-based architecture,
while being aware of the effects and pitfalls of a distributed architecture.
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Appendix A: Summary
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Appendix A ODS Vision Protocol 2018-12-19

2018-12-19 ODS Vision Discussion 
Andi, Georg, Mathias, Dirk 

Meeting minutes 
● Lean canvas / business vision 

○ Problem 
■ Finding interesting open data is hard 

● Govdata, searchability, etc. too hard 
■ Using open data is (too) hard 

● Too much effort 
○ Many different protocols 
○ Many different data formats 

● Unsure quality  
○ Unclear quality 

● Lack of reliability 
○ Existing source are not reliable 

■ Combining open data is (too) hard 
● Multiplies problem above 
● Legal situation potentially is unclear 

○ Licenses and combination of licenses 
○ Correlation and privacy 

○ Solution 
■ Makes adding easy 

● Clicky-bunti Configuration UI 
■ Makes finding easy 

● Has broad meta data, easy search, all in one place (like a forge?) 
● Crowdsource makes it possible to scale, curate meta data 

■ Makes using easy 
● Standardized way 

○ One API, one query mechanism, etc. to access 
● Provides meta data about quality 
● Runs more reliable than original source 

■ Makes combining easy 
● Help assess risk of license violation 
● Risk of privacy-violating correlation 

○ Use-cases 
■ Type of provision 

● Provision of software for open data to customers 
○ Developed (channel) by consultancy or in-house developers 
○ License sale / subscription model 

● Provision of service for open data to customers 
○ Pure subscription for access 

■ For which type customers 
● End-user through consultancy 

○ In-house software application (both software and service) 
● End-user through software vendor 

○ Variant 1: Random Android app (usually only service) 
○ Variant 2: Non-app software product 
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■ Classic on premise software 
● Software vendor 

○ Startup web service 
○ Big data company 

● Data provider 
○ For creating an ecosystem 
○ For selling data 

■ By domain (we don’t know yet) 
● Financial services 
● Automotive services 
● … 

○ Revenue sources 

 

● Technical issues 
○ Microservices breakdown 

■ Database? MongoDB, Cassandra, Hadoop in a world of microservices 
○ Configuration UI 

■ Currently Javascript in sandbox 
■ Future perhaps templates, something else 

○ Query language 
■ GraphQL? Unclear, perhaps multi-use of filter chains? Has nice existing UI ;-) 

○ API backwards compatibility? 
■ OK to break APIs and move faster, if we can adapt demo (marketing) apps later 

● Research questions 
○ Microservice related 

■ Monolith to microservices migration patterns? 
■ Group communication in microservices 
■ RESTful design and bounded contexts 
■ Independent deployment and shared libraries 
■ Javascript (code-on-demand) and microservices 

○ Open data (we still lack expertise) 



■ Current providers of open data? 
■ Who uses open data for what purpose? 
■ What about data quality? Is that true? Analyse, quantify situation? 
■ Data lineage? (Where did this data come from?) 
■ Use of rules engine for quality improvement 
■ ML for data quality improvement 
■ Cross-validation using multiple data sources? 
■ Resulting data license? 
■ Data correlation valid? 

○ Open data provision 
■ Strategies for data storage, provision, archiving 

● Further stuff 
○ https://dirkriehle.com/2018/11/01/data-structures-vs-functions-in-the-age-of-microservices/  
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Appendix B Detailed Service Descriptions

B.1 UserService

description:
”
The UserService offers basic functionality for user

management and authentication.“

endpoints:
GET /users

descr:
”
Return List of all Users“

resp: List<User>

POST /users
descr:

”
Create new User“

params:
body: User

resp: User
produces:

UserCreatedEvent
descr:

”
Event that user was created.“

routkey: user.created

GET /users/{id}
descr:

”
Return information to one specific User.“

params:
path {id}:

descr:
”
The user id.“

type: String
resp: User

DELETE /users/{id}
descr:

”
Delete one specific User.“

params:
path {id}:

descr:
”
The user id.“

type: String
produces:

UserDeletedEvent
descr:

”
Event that user was deleted.“

routkey: user.deleted
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POST /users/{id}
descr:

”
Modify one specific User.“

params:
path {id}:

descr:
”
The user id.“

type: String
body: User

resp: User
produces:

UserUpdatedEvent
descr:

”
Event that user was updated.“

routkey: user.updated

GET /users/me
descr:

”
Return information to my (the logged in) User.“

resp: User

DELETE /users/me
descr:

”
Delete my (the logged in) User.“

produces:
UserDeletedEvent

descr:
”
Event that user was deleted.“

routkey: user.deleted

POST /users/me
descr:

”
Modify my (the logged in) User.“

params:
body: User

resp: User
produces:

UserUpdatedEvent
descr:

”
Event that user was updated.“

routkey: user.updated
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Appendix B: Detailed Service Descriptions

B.2 DataSourceService

description:
”
The DataSourceService offers basic functionality for

datasource and pipeline management.“

endpoints:
GET /datasources

descr:
”
Return List of all DataSources“

resp: List<DataSource>

POST /datasources
descr:

”
Create new DataSource“

params:
body: DataSource

resp: DataSource
produces:

DataSourceCreatedEvent
descr:

”
Event that datasource was created.“

routkey: datasource.created

GET /datasources/{id}
descr:

”
Return information to one specific DataSource.“

params:
path {id}:

descr:
”
The datasource id.“

type: String
resp: DataSource

DELETE /datasources/{id}
descr:

”
Delete one specific DataSource and all pipelines

related to it.“
params:

path {id}:
descr:

”
The datasource id.“

type: String
produces:

DataSourceDeletedEvent
descr:

”
Event that datasource was deleted.“

routkey: datasource.deleted
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GET /datasources/{datasourceId}/pipelines
descr:

”
Return information all pipelines related to

one specific datasource.“
params:

path {datasourceId}:
descr:

”
The datasource id.“

type: String
resp: List<Pipeline>

POST /datasources/{datasourceId}/pipelines
descr:

”
Create new Pipeline“

params:
body: Pipeline

resp: Pipeline
produces:

PipelineCreatedEvent
descr:

”
Event that pipeline was created.“

routkey: pipeline.created

GET /datasources/{datasourceId}/pipelines/{id}
descr:

”
Return information to one specific Pipeline.“

params:
path {datasourceId}:

descr:
”
The datasource id.“

type: String
path {id}:

descr:
”
The pipeline id.“

type: String
resp: DataSource

DELETE /datasources/{datasourceId}/pipelines/{id}
descr:

”
Delete the specific pipeline.“

params:
path {datasourceId}:

descr:
”
The datasource id.“

type: String
path {id}:

descr:
”
The pieline id.“

type: String
produces:

PipelineDeletedEvent
descr:

”
Event that pipeline was deleted.“

routkey: pipeline.deleted
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Appendix B: Detailed Service Descriptions

POST /datasources/{datasourceId}/pipelines/{id}
descr:

”
Modify the specific pipeline.“

params:
path {datasourceId}:

descr:
”
The datasource id.“

type: String
path {id}:

descr:
”
The pieline id.“

type: String
body: Pipeline

resp: Pipeline
produces:

PipelineUpdatedEvent
descr:

”
Event that pipeline was updated.“

routkey: pipeline.updated
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B.3 PipelineSchedulingService

description:
”
The PipelineSchedulingService produces events that trigger

the pipeline.“

consumes:
PipelineCreatedEvent

descr:
”
Event that pipeline was created.“

routkey: pipeline.created
PipelineUpdatedEvent

descr:
”
Event that pipeline was updated.“

routkey: pipeline.updated
PipelineDeletedEvent

descr:
”
Event that pipeline was deleted.“

routkey: pipeline.deleted
produces:

PipelineAdapterReadyEvent
descr:

”
Event that pipeline is ready to be done.

First job is an adapter..“
routkey: pipeline.adapter-job.ready
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Appendix B: Detailed Service Descriptions

B.4 AdapterService

description:
”
The AdapterService offers basic functionality for adapter

documentation and execution.“

endpoints:
GET /adapters

descr:
”
Return List of all Adapters“

resp: List<Adapter>

GET /adapters/{id}
descr:

”
Return information to one specific Adapter.“

params:
path {id}:

descr:
”
The adapter id.“

type: String
resp: Adapter

consumes:
PipelineAdapterReadyEvent

descr:
”
Event that signals the next step of the pipeline is

ready to be executed. The upcoming job is an adapter.“
routkey: pipeline.adapter-job.ready
produces:

PipelineTaskReadyEvent
descr:

”
Event that pipeline is ready to be done.

Next job is a task.“
routkey: pipeline.task-job.ready
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B.5 PipelineExecutionService

description:
”
The PipelineExecutionService offers basic functionality for

executing pipeline jobs.“

consumes:
PipelineTaskReadyEvent

descr:
”
Event that the next step of a pipeline is ready to

be executed. The upcoming job is a task.“
routkey: pipeline.task-job.ready
produces:

PipelineDataReadyEvent
descr:

”
Event that pipeline produced

data.“
routkey: pipeline.data.ready

or PipelineNotificationReadyEvent
descr:

”
Event that pipeline produced

a notification.“
routkey: pipeline.notification.ready
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Detailed Service Descriptions

B.6 DataService

description:
”
The DataService offers basic functionality for data

management.“

endpoints:
GET /data

descr:
”
Return List of all Data“

resp: List<Data>

GET /data/{id}
descr:

”
Return information to one specific Data.“

params:
path {id}:

descr:
”
The data id.“

type: String
resp: Data

consumes:
PipelineDataReadyEvent

descr:
”
Event that pipeline produced data. This data has

to be inserted into the database.“
routkey: pipeline.data.ready
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