
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

AWAD KARIM

BACHELOR THESIS

AN ACCOUNTING TOOL FOR

INNER SOURCE CONTRIBUTIONS

Submitted on 18 December 2018

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.; Maximilian Capraro M.Sc.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 18 December 2018

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 18 December 2018

i

https://creativecommons.org/licenses/by/4.0/

Abstract

“Inner source (IS) is the use of open source software development (SD) practices
and the establishment of an open source-like culture within an organization.”
(Capraro & Riehle, 2016)

However, it is currently impossible for an individual manager of an organization
to account for the IS contributions of his or her subordinates, as IS collaboration
has never been modeled from an economic perspective before.

To support organizations in utilizing IS, prior work has developed a Collaboration
Management Suite (CMSuite). One component of CMSuite is the accountancy
tool, which allows the user to view IS contributions and to apply filters on the
data to facilitate proper accounting.

Within this thesis, various shortcomings of the current accountancy tool are iden-
tified and sensible requirements are elicited. Furthermore, the resulting design
and implementation decisions are being discussed. Finally, the fulfillment of the
requirements is evaluated and possible further improvements are suggested.

As a result of this thesis, managers in an IS context can use CMSuite to under-
stand how their resources are spend on IS collaboration.

ii

Contents

1 Introduction 1

2 Conceptual Basics 3
2.1 Collaboration Management Suite 3
2.2 Accountancy Tool . 4

2.2.1 Resource Events Agents Model 4
2.2.2 Domain Model . 5
2.2.3 Pre-Existing Features . 7

3 Requirements 11
3.1 Purpose of the Artifact . 11
3.2 Development Approach . 11
3.3 Identified Problems . 12
3.4 Requirements for Artifact . 18

3.4.1 Stakeholders . 19
3.4.2 Functional Requirements 19
3.4.3 Nonfunctional requirements 21

3.5 Evaluation Scheme for Requirements 22

4 Architecture and Design 23
4.1 Server Side . 23

4.1.1 Frameworks and Systems 23
4.1.2 The REST API . 24
4.1.3 Services . 24
4.1.4 The Filter Chain Factory 26
4.1.5 Organizational Element Finders 27

4.2 Client side . 29

5 Implementation 32
5.1 Analysis Specification . 32
5.2 Event Loader . 34
5.3 Sorting Filter . 35

iii

5.4 Finders . 36
5.4.1 By-Type-Finder . 37
5.4.2 By-Level-Finder . 39
5.4.3 Fisheye Finder . 40
5.4.4 Finder Factory . 42

5.5 Filter by Date . 45

6 Evaluation 49
6.1 Functional Requirements . 49
6.2 Nonfunctional Requirements . 55
6.3 Conclusion . 58

7 Future Work 60

References 61

iv

1 Introduction

“Inner Source (IS) is the use of open source software development practices and
the establishment of an open source-like culture within organizations.” (Capraro
& Riehle, 2016)

The open source approach is a programming concept that became famous due
to the success of showcase projects like the Linux Operating System, the Apache
web server or the Emacs Text Editor (Dinkelacker, Garg, Miller & Nelson, 2002).
As the name indicates, the central part of the open source approach is universal
access to all development artifacts. Developers can consequently inspect the arti-
fact and submit contributions (Stol, Avgeriou, Bahar, Lucas & Fitzgerald, 2014).
Discussions about the code are held in public forums like newsgroups or mail-
ing lists and are thus thoroughly documented and transparent to all participants
(Dinkelacker et al., 2002).

In contrast to the traditional software development process, which can be com-
pared to building a cathedral, where individuals or a small group of people work
on a project in isolation and eventually publish a finished product, the open
source approach is more like a bazaar, less structured, more transparent and
with shorter release cycles. (Raymond, 2000)

The inner source approach can be described as open source, behind the firewall of
a company (Dinkelacker et al., 2002). Moreover, to stick with the analogy from
before, it can be expressed as a bazaar within a corporate cathedral (Wesselius,
2008). Using inner source projects enables corporations to embrace multiple
benefits of the open source approach, while still maintaining the code proprietary.

Inner source is expected to bring a variety of benefits to companies using it: First,
due to the openly accessible code base, inner source encourages the reuse of ex-
isting components, hence advancing the modularity of the project (Dinkelacker
et al., 2002). Also, the overall quality is being raised, because “[g]iven a large
enough beta-tester and co-developer base, almost every problem will be char-
acterized quickly and the fix obvious to someone” (Raymond, 2000) or simpler:
“Given enough eyeballs, all bugs are shallow” (Raymond, 2000). Extending the
programmer base also means profiting from the accumulated know-how, because

1

the whole organization can then contribute their expertise instead of merely re-
lying on one team or department (Riehle et al., 2009). The bigger community
also leads to quicker development, considering the increased amount of active
developers (Wesselius, 2008). Last but not least developers can familiarize them-
selves with various projects and tools used in the company, therefore the mobility
of the employees increases, as they do not have to face learning curves as steep
as before when being reallocated (Dinkelacker et al., 2002).

The advantages of inner source are diverse, however, having a bazaar within a
corporate cathedral, leads to new difficulties. Many structures of classical cor-
porations are not adapted to the new concept. Currently, individual managers
cannot account for IS contributions of their subordinates, as IS has never been
modeled from an economical point of view before. Therefore, managers often fear
a loss of resources and also of their influence over subordinates (Capraro & Riehle,
2016). One tool that supports organizations to overcome these difficulties is the
Accountancy Tool contained in the Collaboration Management Suite, currently
being developed at the Open Source Research Group of the Friedrich-Alexander-
University Erlangen-Nuremberg. This thesis’ purpose is to improve said account-
ancy tool, in order to grant prospective users a more intuitive experience with
new features to facilitate their work.

In detail, this thesis contributes the following:

1. A detailed discussion of the shortcomings and requirements in the prior
implementation of CMSuite’s accountancy tool.

2. A report and discussion of the design and implementation details of our
elicited improvements.

3. An evaluation of the performed implementations and a suggestion for future
work.

Chapter 2 introduces the conceptual basics of the tool. In chapter 3 we will
describe what we planned to achieve with this work, how we approached the re-
quirement elicitation process and what requirements we eventually worked out.
We will also determine a suitable evaluation scheme for said requirements. In
chapter 4, we describe the architecture and design decisions we made when mod-
eling our work. Afterward, in chapter 5, we will discuss selected implementation
details, before we go on to evaluate our work regarding our elicited requirements,
using our defined evaluation scheme in chapter 6. Finally, we conclude the thesis
with a prospect on ideas of further improvements of the accountancy tool in
chapter 7.

2

2 Conceptual Basics

2.1 Collaboration Management Suite

The Collaboration Management Suite (CMSuite) is a set of software tools and
components, that is currently under development by the Open Source Research
Group of the Friedrich-Alexander-University Erlangen-Nuremberg. CMSuite aims
at supporting organizations in successfully utilizing IS. On that account it fea-
tures the following components:

• Patch Flow Crawler:

A tool that crawls through inner source repositories to measure the patch
flow and to create a data set of the repository that can then be used by other
components of CMSuite. The Patch Flow Crawler can be extended with
plugins to make it compatible with multiple repository hosting services.

• Dashboard:

The Dashboard uses the data collected by the Patch Flow Crawler to display
custom metrics. Users can define transformations that are persisted in
CMSuite’s database, and that can subsequently be applied to the collected
data.

• Taxation Tool:

The Taxation Tool is still in an early state of development and is planned
to enable users to account for transfer pricing.

• Accountancy Tool:

The Accountancy Tool accounts for and visualizes IS contributions. It
permits managers to gain an overview over the patch flow within their
organization. The Accountancy Tool will be explained in more detail in
the following section.

3

2.2 Accountancy Tool

2.2.1 Resource Events Agents Model

The Resources Events Agents Model (REA) is an approach to model accountancy
created by McCarthy in 1982. It aims to provide a more generalized model,
that can be used by accountants, as well as non-accountants. With this, it is
possible to have one central data model for a company. It eliminates the need for
maintaining multiple redundant data sets for various use cases, as conventional
methods had used. REA achieves this centrality by keeping the model granularity
fine. Traditional approaches often had an aggregation level that was set too
high, which made it impossible to use for some purposes. A lower level allows
users to aggregate by themselves, to adapt the data output to their own needs.
(McCarthy, 1982)

McCarthy used Chen’s Entity-Relationship model for databases. To model the
entities and relationships, it uses the following components:

• Economic resources

Economic resources are “objects that (1) are scarce and have utility and
(2) are under the control of an enterprise” (Ijiri, 1975).

• Economic agents

Economic agents are persons or agencies who participate in economic events
or who are responsible for their subordinates’ participation (McCarthy,
1982).

• Economic events

Economic events are “a class of phenomena which reflect changes in scarce
means [economic resources] resulting from production, exchange, consump-
tion and distribution” (Yu, 1976). Economic events follow the concept of
duality. Every resource increment event should have a corresponding re-
source decrement event (Ijiri, 1975). The two events must be from two
different event entity sets. One must be transferring out, while the other
event must be transferring in (McCarthy, 1982).

• Economic units

Economic units are a subset of economic agents. They aggregate multiple
agents while acting as an economic agent themselves. (McCarthy, 1982)

Stock-Flow relationships connect the individual components. Economic resources
are “stocks of goods, services, and claims at a particular time” (McCarthy, 1982),

4

while economic events model the flow of said items over a period of time. Mc-
Carthy also emphasizes that participating parties can be grouped into parties
that operate inside or outside the company. (McCarthy, 1982)

Figure 2.1: Entities and relationships (McCarthy, 1982)

Figure 2.2: Role declarations (McCarthy, 1982)

2.2.2 Domain Model

The domain model of the accountancy tool was created using the REA approach.

Economic resources

In our domain, economic resources are code contributions, feature requests, bug
reports, code reviews, and discussions. However, before this thesis, the ac-
countancy tool only focused on one type of code contributions, namely patches.
Capraro et al. define code contributions as “any code changes performed on a

5

software component” (Capraro, Dorner & Riehle, 2018). A code contribution
across organizational boundaries is called a patch. (Capraro et al., 2018).

Economic events

The central aim of the accountancy tool is to monitor all events, where an in-
ner source project functions as an economic agent. Since pre-existing domain
only focused on patches, economic events were the acts of providing and re-
ceiving patches. In this model, these events were called Patch Contributions
(decrement) and Patch Acceptances (increment), and they depicted the duality
of relationships, that is an essential part of the REA model.

The flow of patches across organizational boundaries within a company is called
patch-flow (Capraro et al., 2018). This patch-flow is critical information for
accountancy purposes and thus builds the foundation of the Event Journal.

Economic agents

An economic agent is an entity that participates in an economic event (McCarthy,
1982). In the context of this thesis, economic agents can be persons, organiza-
tional elements or inner source projects (ISP).

• Persons shall be defined as members of the observed organization.

• An inner source project is “a software project with the goal to develop and
maintain inner source software” (Capraro & Riehle, 2016).

• Organizational elements are economic units that contain other economic
agents. As a deduction, organizational elements implement the composite
design pattern: an organizational element can have multiple child elements.

Since persons and ISPs have to be assigned to organizational elements, a tree can
be spanned, that models the structure of the company. However, said structure
can be multidimensional, as there can be more than one way to view it. For those
instances, the model also supports organizational dimensions, that are assigned
to the links between economic agents. As a result, an inner source project can, for
example, be assigned to different organizational elements for different dimensions.
Therefore every organizational dimension can have a unique organization tree.

6

Figure 2.3: A simple patch-flow data model (Capraro, Dorner & Riehle, 2018)

2.2.3 Pre-Existing Features

At the beginning of this thesis, CMSuite’s essential Accountancy Journal showed
patch related events for an organizational element. More specifically it showed all
external patches with the involvement of current subordinate Economic Agents.

To allow a selection of the context organizational element, the accountancy tool
featured a sidebar with a tree that visualized the hierarchy of the economic agents
in one organizational dimension. Using the drop-down menu at the bottom of the
sidebar, a user could select the organizational dimension of interest. This tree
menu is a common element of CMSuite as it also appears in other components,
e.g., the dashboard.

7

Figure 2.4: The tree menu showing an example organization tree

When the user selected a context organizational element, the event journal for
that element appeared. The event journal was a table labeled as “Economic
Events” that consisted of “Date,” “Provider,” “Event Type,” and “Receiver”
columns. The rows consisted of economic events, that had been requested from
the database. The provider and receiver were formatted as hyperlinks. If the
agent was an ISP, the hyperlink led to a page that merely stated that accounting
for a project was to follow. If it was a person, the link was disabled. The links
were only useful when the economic agent was an organizational element. In
that case, the user was brought directly to the overview of that element, when
he pressed the hyperlink.

The accountancy tool sorted all entries chronologically. If two entries shared the
same commit date, their order did not follow a particular schema. Addition-
ally, the event list featured a pagination feature. All entries were automatically
assigned to pages. One page fitted ten entries.

8

Figure 2.5: The pre-existing event journal displaying demo patches

The user interface also offered a menu on the side to adapt the analysis para-
meters, particularly to define the wanted time granularity and also the desired
organizational element granularity. The drop-down menu for time granularity
contained options to filter by day, month, year and to ignore all dates. The or-
ganizational element granularity drop-down showed a list of all available organ-
izational element types. After selecting the wanted granularities and submitting
the form by pressing the refresh button, the economic events table reloaded its
events. When the user had selected a time granularity, the journal displayed the
events, aggregated by that granularity. If he selected an organizational element
granularity, the event provider and receiver were replaced by an ancestor organ-
izational element that was of the selected type. Subsequently, equal events were
grouped.

When multiple events were aggregated into one, a resource gauge was shown,
that visualized the number of aggregated events and their direction.

9

Figure 2.6: Resource gauges that visualize aggregated events

Figure 2.7: The pre-existing event journal menu

Figure 2.8: The accountancy tool showing an event journal

10

3 Requirements

3.1 Purpose of the Artifact

Prior to this thesis, CMSuite already featured an essential accountancy tool.
However, it did have significant shortcomings. It had not been adapted to some
data model changes, so features like the organizational element filter did not work
correctly in many cases. Furthermore, its functions were minimal. Apart from a
time and org element granularity filter, it did not have any options to adapt the
event journal to personal needs. The tool also needed some overall fine-tuning.

The purpose of this thesis is to improve and extend the functionality of the
accountancy tool, in order to provide a better user experience and overall user
satisfaction.

To achieve this, we started with locating problems with the pre-existing imple-
mentation. Next, we formulated fitting requirements to fix the issues we found.
Eventually, we designed and implemented changes, based on our requirements.

3.2 Development Approach

Incipiently, we needed to identify the shortcomings of the pre-existing event
journal. To do so, we started with an intuitive method: We ran CMSuite with
production data and analyzed the user experience and features from the viewpoint
of managers of an organization, the prospective user group of the accountancy
tool. The result of this analysis was a list of possible UI improvements and poten-
tially useful additional features. We also used this initial testing to locate errors,
that we also thoroughly documented afterward.

Next, we inspected the implementation of the tool. We focused on determin-
ing inconsistencies with the data model, potential refactorings, to improve code
quality and deficiencies in code, that could lead to runtime errors. Based on our
outcomes, we invented an example data set. With this data set, we could model

11

edge cases, to accurately illustrate malfunctions of the event journal and to allow
us to get a better understanding of the data model.

All previously described steps led to a list of tasks, we could perform, to improve
the code quality, features and the user experience of the accountancy tool. To
organize these tasks, we created issues for them on CMSuite’s Gitlab project
and assigned each of them to one of the following categories: “Bug,” “Feature,”
“Refactoring” or “Task.” We also utilized Gitlabs Board feature, to sort the issues
similar to a Kanban Board. The Board featured lists for “Backlog,” “Todo,”
“Work in Progress,” “Merge Request Created” and “Closed.” These lists enabled
us to keep an overview of the current project state and to track our progress.

Figure 3.1: An example of the github issue board

Throughout the whole project, we maintained the board and continuously exten-
ded the issue list based on new insights we gained.

Very quickly it became adamant, that the number of issues, we created exceeded
the scope of a bachelors thesis, so we prioritized them and decided to tackle the
most important ones first.

3.3 Identified Problems

In this section, we will describe the problems we found with the pre-existing
accountancy tool. This does not only include bugs or errors but also missing
features or inconsistencies in the used domain model.

12

Limitations of the event journal

The event journal reliably showed all patches where a subordinate economic agent
of the context organizational element participated. However, a detailed analysis
of its functionality revealed some shortcomings.

1. Only context organizational elements were supported. An event journal for
ISPs was foreseen, but not implemented. Analyzing the patch-flow towards
an ISP can be of great interest for accountancy use cases.

2. The pre-existing journal only listed patches. The possibility to also include
internal code contributions was missing entirely, even though they are also
a crucial aspect of inner source collaboration.

3. The journal displayed all events for a context organizational element, in-
dependent of the event date. This means that if we have, e.g., five years
of inner source data saved, the journal always displays all events that had
happened in that time, even though most of these events are not of interest
anymore.

4. Displayed events had no defined sorting order. Coincidentally, the events
were automatically sorted by their date, but this order was nowhere expli-
citly defined. This became a problem when we set the time granularity to
“Ignore all dates,” the sorting appeared to be completely arbitrary.

Errors of the organizational element granularity filter

When we tested the accountancy tool with production data, we quickly realized
that the organizational element granularity filter did not work as wanted. This
was exposed the following way:

1. The drop-down menu showed too many organizational element types. It
even showed types that were not available in the currently selected or-
ganizational dimension. When we picked those wrongly added types, the
accountancy tool showed an error message that merely stated: “Could not
load data.”

2. This error message was even shown when we had selected an available or-
ganizational element type. This happened with both the production dataset
and the demo dataset.

13

Figure 3.2: The error message, the event journal showed, when the organiza-
tional element type filter was used

The code analysis quickly revealed the problem: The organizational element gran-
ularity filter did not take organizational dimensions into account. The filter
showed all types because it did not differentiate between dimensions and it did
thus not sort out unavailable types. The error message we received, when we
applied the filter was also related to the missing support of multiple dimensions.

Limitations of the organizational element granularity filter

Users of the accountancy tool profit from filtering by the organizational element
type. However, sometimes the current filter seems insufficient. We found the
following demands, a user could make on the filter, that it did not meet:

1. Filter by organizational level

Generally, organizational trees for dimensions are not always normalized.
Subtrees vary in size and persons, or inner source projects are not necessar-
ily assigned to leaf organizational elements. Therefore it is of interest for a
user to show the agents based on their level in the hierarchy tree.

Figure 3.3: An example of an organization tree with indicated levels

2. Only filter Contributors/Receivers

The filter used only to filter all economic agents. This all-or-nothing ap-
proach restricts users in some cases. Sometimes, the user might want to
apply different filters to contributor agents than to receiver agents.

14

3. Only filter Inside/Outside agents

Similarly to (2), the user might need to filter inside and outside agents
differently. Usually, managers are interested in fine granular inside agents,
while they mostly do not care about the details of the outside agents, as
they are not their subordinates. Whether an agent is an inside or outside
agent is defined in relation to the selected context.

4. Fisheye view

The fisheye view is a natural way to look at the company structure from the
viewpoint of a manager. It hides information the manager does not care
about, to reduce the information overload. The view shows all close agents
detailed, while far away agents are shown more coarse-grained. A fisheye
filter replaces the participating agents of an event by ancestor elements
of these agents that are in one of the following relations with the context
element:

• child

• sibling

• uncle

• grand-uncle

• (...)

• (n*grand)-uncles

5. Replace unknown agents

It can happen, that an organizational element of the searched type or level
does not exist. The event journal used to display those irreplaceable agents
as “Unknown Agents.” This is correct behavior, though in some cases
more information about these agents could be helpful. The accountancy
tool lacks an option to replace unknown agents with practical information
about them, to grant users insight on what exactly hides behind them.

15

Figure 3.4: An example of an unknown agent

Domain model inconsistencies

From the current model, we observed the following limitations:

• Internal and external vs. inside and outside agent

Currently, we sometimes label agents as internal or external agents (e.g.,
in the organization element filter) REA, however, uses the terms “Inside
Agent” and “Outside Agent.”

• Receiver and provider terminology

The terminology “receiver” and “provider” of an economic event tends to
be confusing. For a patch acceptance event, the receiver of the event is not
the receiver of the contribution.

• Patch vs. code contribution

In the pre-existing domain model, everything was modeled as a patch, even
internal code contributions. In chapter 2 we defined patches as code con-
tributions, that are made by a developer, who is external to a project. So,
technically internal code contributions cannot be called patches.

• Inner source projects are not agents

Currently, the inner source projects are modeled as economic agents. Tech-
nically they, (or better: the inner source components) are economic re-
sources, as they are in the control of the organization and usually also
scarce and with utility. Thus they fit the REA definition of economic re-
sources. One could, however, argue that inner source project communities
are in the position to accept patches and act as an agent. Ideally, the
components (resources) and project communities (agents) are modeled as
separate elements.

• No consequently modeled concept of duality

16

REA typically models economic events as exchanges (give and take) We
currently do not have such a thing (contributions are just done) We used
acceptance events to partly model this duality. However, this is a simpli-
fication. In the future, the model might be used for more complex duality
relationships.

Visual deficiencies

While using the Accountancy Tool, we also located some unpleasant details of
its visuals:

1. The journal showed dates in a yy-MM-dd hh-mm format. If we show all
events unfiltered, this format provides all the information we need. How-
ever, if we apply a time granularity filter, the format does not adapt to the
chosen granularities and thus shows unnecessary information.

Figure 3.5: The event journal, when events were sorted by year

2. The resource gauges that visualized aggregated code contributions looked
unpleasant and were also hardly readable at times.

17

Figure 3.6: The old resource gauge, that visualizes patch contributions/accept-
ances

3. The content of the event journal table overflowed the table borders when
the name of an economic agent was too long or when the browser window
was too small.

Figure 3.7: The table content overflowing the table bounds

3.4 Requirements for Artifact

The primary goal of this thesis is to extend the existing software tool to ac-
count for and to visualize contributions within an organization. After we have
thoroughly analyzed the weaknesses of the existing tool, we will now specify our
requirements for this thesis.

18

3.4.1 Stakeholders

We will define our requirements from the view of the following stakeholders:

• Users of the accountancy tool

– Managers of an organization unit

– Managers of an inner source project

• Developers

Developers who service the accountancy tool or who extend its functionality

3.4.2 Functional Requirements

Event journal for inner source projects

Functional Requirement 1. As the manager of an inner source project, I
want the accountancy tool to include an event journal for inner source projects
so that I can keep an overview over who contributes to my project.

Include internal events

Functional Requirement 2. As the manager of an organizational unit, I
want the accountancy tool’s event journal to have an option to also include
internal events so that I have an insight into the flow of code contributions
within my unit.

Filter events by date

Functional Requirement 3. As a user of the accountancy tool, I want the
event journal to have the option to filter its events by their date so that I can
hide useless information.

Filter by business year by default

Functional Requirement 4. As a manager of an organizational unit, I want
the event journal to show only the events of one business year by default so
that I save time when using the accountancy tool.

19

Define an explicit sorting order

Functional Requirement 5. As a user of the accountancy tool, I want the
event journal to sort the output by an explicitly defined order so that I have a
better overview of the data.

Fully support multiple organizational dimensions

Functional Requirement 6. As a user of the accountancy tool, I want the
organization element filters to fully support multiple organizational dimensions
so that they are better adapted to my organization’s structures.

Organizational level filter

Functional Requirement 7. As a user of the accountancy tool, I want the
event journal to have an option to show the economic agents, based on their
organizational level so I can adapt the event journal’s information to my needs.

Apply filters to internal/external parties

Functional Requirement 8. As a user of the accountancy tool, I want the
event journal to have an option to apply filters to internal and external parties
independently so that I can adapt the event journal’s information to my needs.

Apply filters to contributors/receivers

Functional Requirement 9. As a user of the accountancy tool, I want the
event journal to have an option to apply filters to contributing and receiving
parties independently so that I can adapt the event journal’s information to
my needs.

Fisheye filter

Functional Requirement 10. As a user of the accountancy tool, I want the
event journal to have an option to give me a fisheye view on the events so that
I can have a natural overview of economic events.

20

Replace unknown agents

Functional Requirement 11. As a user of the accountancy tool, I want the
event journal to have an option to replace unknown agents so that I can see
who contributed to projects or what ISP received contributions.

3.4.3 Nonfunctional requirements

Functionality independent from client implementation

Nonfunctional Requirement 1. As a developer of the accountancy tool,
I want the functionality of the tool to be as independent as possible from the
client implementation, so that I can add other clients more easily in the future.

Consistent coding style

Nonfunctional Requirement 2. As a developer of the accountancy tool, I
want new code to follow the given style guidelines so that all code has a uniform
style.

Appropriate loading times

Nonfunctional Requirement 3. As a user of the accountancy tool, I want
the tool to have fast loading times so that I can finish my work quicker.

Good visuals

Nonfunctional Requirement 4. As a user I want the accountancy tool to
be visually appealing so that I can have a high-quality user experience.

Thorough testing

Nonfunctional Requirement 5. As a developer, I want all the features of
the accountancy tool to be extensively tested so that I can find bugs before
deploying the code.

21

Consistent domain model and terminology

Nonfunctional Requirement 6. As a stakeholder, I want the accountancy
tool to use a consistent domain model and terminology.

3.5 Evaluation Scheme for Requirements

In order to evaluate our requirements, we will use a scale from one to three. The
three levels are color coded and follow the principle of traffic lights. We define
the levels as follows:

Level 1) Not satisfied
No requirements are met.
Level 2) Partly satisfied
Only parts of the requirements are met.
Level 3) Completely satisfied
All requirements of the group are met.

Figure 3.8: The three levels, we use for requirement evaluation

We will explain how every requirement was met or discuss why it was only met
partly or not at all. Eventually, we will present a conclusion for this thesis,
considering all requirements we evaluated.

22

4 Architecture and Design

In this chapter, we will discuss our overall architecture and design, as well as
some design decisions, that we deem interesting to the reader.

We decided to keep the architecture of the accountancy tool consistent with the
architecture of the other components of CMSuite. As a result, the accountancy
tool is based on a client-server architecture. The client is a web app that is
developed with angular 6. In the future, more clients can be added to keep up
with current developments or to extend the reach of the tool. The server is
developed in Java 8 and communicates with the clients over a REST API.

4.1 Server Side

4.1.1 Frameworks and Systems

Jersey

The server utilizes the Jersey Framework to provide the REST interface, that
is used for communication with the clients. Jersey is an open source framework
for creating RESTful web services in Java that support common JAX-RS APIs.
It also extends those APIs with additional features and utilities to simplify the
creation of RESTful web services. (“Jersey”, 2018)

PostgreSQL

The server uses PostgreSQL, an open source object-relational database system.
PostgreSQL uses and also extends the SQL language. (“PostgreSQL”, n.d)

23

Hibernate

The Object/Relational Mapping (ORM) framework Hibernate is used to persist
data with the database. Hibernate implements the Java Persistence API (JPA)
and also extends it with its own “native” API. Therefore it can be combined with
any environment that supports JPA. (“Hibernate ORM”, n.d)

4.1.2 The REST API

The server of the accountancy tool offers the following REST resources to the
clients:

Analysis specifications baseurl: accountancy/analysisspecifications
Verb URL Description
POST / Save an analysisspecifica-

tion
Organizational elements baseurl: accountancy/orgelements
Verb URL Description
GET /id/events Get all events for an organ-

izational element
Inner source projects baseurl: accountancy/innersourceprojects
Verb URL Description
GET /id/events Get all events for an inner

source project
Persons baseurl: accountancy/persons
Verb URL Description
GET /id/events Get all events for a person

Figure 4.1: The accountancy tool’s REST resources

4.1.3 Services

When a client communicates with the server, the Rest Service Application for-
wards the request to service classes. The accountancy tool has the following
Service classes:

• AnalysisSpecificationService

• OrgElementService

• InnerSourceProjectService

• PersonService

24

Economic event services

The OrgElementService, InnerSourceProjectService, and PersonService classes
are used to retrieve economic events, and they implement the Economic Event
Service Interface, that consists of the following methods:

public List<? extends EconomicEvent> getEvents (In t eg e r id ,
I n t eg e r orgDimensionId ,
In t eg e r a n a l y s i s S p e c i f i c a t i o n I d) ;

public List<? extends EconomicEvent> getEvents (In t eg e r id ,
I n t eg e r orgDimensionId) ;

Figure 4.2: The economic event service interface

Since the only difference between those services is the type of the context agent,
their overall structure is very similar. So similar that they all share a common
abstract base class, the AbstractEconomicEventService class.

The job of the economic event services is to analyze the requests, retrieve the
economic events from the database, apply filters and then return the events. All
this functionality is implemented in the abstract base class. The extending classes
only implement hook methods for the event loader and context agent retrieval.

Analysis specification service

The Analysis Specification Service is used to store Analysis Specification objects
on the database. At this point, we will explain first what Analysis Specification
objects are and why they are needed.

Initially, the interface of the economic event service classes looked like this:

public List<? extends EconomicEvent> getExterna lEvents (In t eg e r id ,
TimeInterval g r anu l a r i t y , I n t eg e r oeTypeId) ;

public List<? extends EconomicEvent> getExterna lEvents (In t eg e r i d) ;

Figure 4.3: The economic event service interface prior to this thesis

Since we only had time granularity and organizational element filters, this was
an easy to use signature. However, throughout this work, the number of para-
meters the user could adapt grew and quickly exceeded the maximum number of
method parameters the style guidelines allowed. A parameter object was needed.

25

Ideally, this parameter object would also be used in the client and could then be
transmitted over the REST API.

Hence, the analysis specification object was created. We decided to persist ana-
lysis specification objects in the database. This offers the advantage that we
could develop a “saved views” feature in the future, that would only have to
store the id of an analysis specification object to save view preferences. The ana-
lysis specification service is needed to allow clients to save analysis specification
objects. It persists the objects and then returns the id of the saved objects.

4.1.4 The Filter Chain Factory

All filters that can be applied in the accountancy tool implement the following
interface:

public interface EconomicEventFi lter {

public List<? extends EconomicEvent> f i l t e r (
L i s t<? extends EconomicEvent> even t s) ;

}

Figure 4.4: The economic event filter interface

Prior to this thesis, only three filter classes existed:

• The date truncation filter that exchanged the dates of economic events with
truncated dates

• The organizational element type filter, that swapped the participating agents
of an event by an ancestor element of a selected type

• The group filter that grouped equal economic events

These filters were all instantiated in the economic event service class. However,
as the functionality of the accountancy tool grew, the filter instantiation became
more complex, and we then decided to move it into a separate factory class. The
Filter Chain Factory has one public method, shown in Figure 4.5.

26

public List<EconomicEventFilter> ge tF i l t e rCha in (
Ana l y s i s S p e c i f i c a t i o n spec ,
OrgElement contextOrgElement ,
OrgDimension orgDimension) {

List<EconomicEventFilter> f i l t e r s = new ArrayList <>();

addDateTruncFilter (f i l t e r s , spec) ;
addOrgElementFilter (f i l t e r s ,

contextOrgElement , orgDimension , spec) ;
addGroupFilter (f i l t e r s) ;
addSo r t i ngF i l t e r (f i l t e r s) ;

return f i l t e r s ;
}

Figure 4.5: The implementation of the getFilterChain getFilterChain(

AnalysisSpecification spec, OrgElement contextOrgElement,

OrgDimension orgDimension) method

This method instantiates all filter objects based on the analysis specification
object it receives and inserts them into a list, that we named filter chain. It
then returns this filter chain. The services that use this factory can then traverse
the list and apply the filters. This way, the code stays overseeable, even when
multiple filters are used.

4.1.5 Organizational Element Finders

Initially, the organizational element type filter traversed the list of events and
then replaced the participating agents with ancestors of the specified type. To do
so, it instantiated a so-called organizational element finder object, that offered
two public methods.

OrgElement f i nd (Person person) ;

OrgElement f i nd (InnerSourcePro j ec t i s p) ;

Figure 4.6: The organizational element finder interface

On method call, the finder object retrieved organizational elements based on
the specified type and returned them. Furthermore, it provided caches for the
replacement methods to speed up the filter process.

27

During this thesis, we generalized the filter to an organizational element filter,
since we had added multiple similar filter functions. We then designed the struc-
ture that is displayed in Figure 4.8.

The finder interface now includes the two finder methods, we mentioned earlier.

An abstract organizational element finder class now implements this interface.
Finders that extend this abstract class have to implement a resolve method, that
returns a specific replacement organizational element. With this structure, we
kept code redundancy to a minimum and simplified adding new finders in the
future.

The finder factory is initialized with a granularity specification object that is part
of the analysis specification, and that specifies how replacement elements should
be selected. The factory has the following interface:

protected OrgElementFinder getProv iderF inder (EconomicEvent event) ;

protected OrgElementFinder getRece ive rF inder (EconomicEvent event) ;

Figure 4.7: The finder factory’s interface methods

The need for two different get*Finder methods arose when we added the feature
to separately filter by contributors/receivers or inside/outside agents. The finder
factory has to analyze the granularity specification and the given event, before
instantiating and returning the correct finder. The factory also caches the created
filters.

28

Figure 4.8: An UML model of the finder classes

4.2 Client side

We implemented the client side of the accountancy tool as a module of the CM-
Suite angular web app. The accountancy module’s main components are com-
ponents for organizational element accountancy and inner source project account-
ancy. These components define the main functionality and user interface of the
accountancy tool and extend an abstract accountancy component.

29

Figure 4.9: A model of the component structure

Both components consist of the following subcomponents:

• Panel

The panel components display information about the currently selected
context economic agent.

• Event journal

The event journal components are responsible for creating the event journal.
They display all economic events in a table, together with additional in-
formation about them.

• Analysis menu

The analysis menu components create the analysis menu for the currently
selected context agent.

The implementation of all three components differs based on the currently used
context economic agent. However yet again, the implementations are related, so
again we used abstract base classes.

30

Figure 4.10: The Panel, that shows information like the name, id and token
of the current context agent. In this case the context agent is an inner source
project

31

5 Implementation

In this section, we want to outline some of our implementation details.

5.1 Analysis Specification

As explained in the design chapter, we use analysis specification objects to store
and transport parameters of an analysis request. This way, we encapsulate the
data, to make it persistable and to reduce the number of parameters we need to
define in our method signatures. The analysis specification object on the client
has the following attributes:

id : number ;

t imeGranular i ty : s t r i n g ;

eventScope : EventScope ;

replaceUnknownAgents : Boolean ;

s tar tDate : Date ;

endDate : Date ;

g r a n u l a r i t y S p e c i f i c a t i o n : G r anu l a r i t ySp e c i f i c a t i o n ;

Figure 5.1: The client’s analysis specification object

A corresponding object in java exists on the server-side. When the user spe-
cifies the analysis parameters and clicks the refresh button, the analysis menu
component analyses the input and then creates a specification object.

32

Figure 5.2: The new analysis menu

It emits an event that holds the specification. The currently active accountancy
component receives this event and then uses the analysis specification service to
load the specified economic events. Loading events consists of two steps:

1. Sending one request to the server in order to store the analysis specification
object. The server then returns the id of an object. If the specification
already exists on the server, it returns the existing id.

2. Taking the analysis specification id, that was received in step 1 to request
the events.

We chose this solution because it will allow us to introduce saved event journal
views in the future. If the client already has the id of the specification, it does
not need to send the specification to the server again.

33

5.2 Event Loader

The event loader is used in the economic event service classes of the server to
load economic events. Similar to the event service classes, three types of event
loaders exist for the different context economic agents:

• Organizational element loader

• Inner source project event loader

• Person event loader

All event loaders implement the same interface and extend the same abstract
event loader class. Therefore, event loader classes have to implement the following
two abstract hook methods:

protected abstract Set<Person> getPersons () ;

protected abstract Set<InnerSourcePro ject> g e tP ro j e c t s () ;

Figure 5.3: The two hook methods, eventloader classes have to implement

The getPersons() and getProject() methods have to return all persons or
projects that are assigned to the current agent. All three event loader classes
implement these methods differently:

• Person event loader

– getPersons():
Returns a list that only contains the context person.

– getProjects():
Returns an empty list, as there are no inner source projects assigned
to a person.

• Inner source project event loader

– getPersons():
Returns an empty list, as there are no persons assigned to inner source
projects.

– getProjects():
Returns a list that only contains the context project.

• Organizational element event loader
Traverses the subtree and recursively adds all assigned persons or inner
source projects to a list. It then returns that list.

34

In the abstract class, these hook methods are used to retrieve patches from the
database, where the persons or projects are involved.

The event scope object of the analysis specification determines which events to
load.

@Override
public List<? extends EconomicEvent> getEvents (EventScope scope ,

Date s tar tDate , Date endDate) {

List<EconomicEvent> events = new ArrayList <>();

i f (s cope . i s Inc ludeRece ivedEvent s ()) {
merge (events , getRece ivedEvents (s tar tDate , endDate)) ;

}

i f (s cope . i s Inc ludeContr ibutedEvents ()) {
merge (events ,

getContr ibutedEvents (s tar tDate , endDate)) ;
}

i f (s cope . i s I n c l ud e In t e rna lEven t s ()) {
merge (events , g e t In t e rna lEvent s (s tar tDate , endDate)) ;

}

return events ;
}

Figure 5.4: The getEvents(EventScope scope, Date startDate, Date

endDate) method retrieves events based on the given date range and event scope

The getInternalEvents() method retrieves all events where both participating
parties are assigned to the context agent. GetContributedEvents() returns all
events, where the contributor is one of the assigned persons, while the receiver
is not in the inner source project list. GetReceivedEvents() returns all events
where the receiver is an assigned, and the contributor is external.

5.3 Sorting Filter

Before implementing the sorting filter, we had to specify a sorting order. We
decided to order by date first. If two events happened on the same date, we order
alphabetically by the provider name. If this does not specify a definite order, we
order alphabetically by the receiver name. If the events are equal in all these
topics, we order by direction of the event (increment > decrement).

35

First, we planned to implement the sorting into the database requests, to guar-
antee optimal performance. However, we realized that this was impossible with
our current filter structure. For example, the date truncation filter changes the
event dates after they have been read from the database. Eventually, we resorted
to implementing the sorting as an organizational element filter. The sorting filter
is always the last element in the filter chain.

@Override
public List<? extends EconomicEvent> f i l t e r (

L i s t<? extends EconomicEvent> even t s) {

even t s . s o r t ((EconomicEvent a , EconomicEvent b) −> {
// t r y to s o r t by date
int dateCompare = compareEventDates (a , b) ;
i f (dateCompare != 0) {

return dateCompare ;
}
// i f date i s equa l s o r t by prov ide r name
int providerNameCompare = compareEventProvider (a , b) ;
i f (providerNameCompare != 0) {

return providerNameCompare ;
}
// i f p rov ide r name i s equa l s o r t by r e c e i v e r name
int receiverNameCompare = compareEventReceiver (a , b) ;
i f (receiverNameCompare != 0) {

return receiverNameCompare ;
}
// i f r e c e i v e r name i s equa l s o r t by d i r e c t i o n
int direct ionCompare = compareEventDirect ion (a , b) ;
return direct ionCompare ;
}) ;

return even t s ;

}

Figure 5.5: The implementation of the sorting filter

5.4 Finders

Organizational element finders are used by the organizational element filter, to
replace agents that are participating in economic events. As already described
in chapter 4, all finder classes have to extend the abstract finder class and thus
implement the following method, that is used to find replacement agents:

36

protected abstract OrgElement r e s o l v e (OrgElement orgElement) ;

Figure 5.6: The hook method, that all finder classes have to implement

5.4.1 By-Type-Finder

The resolve(OrgElement orgElement) method of the by-type-finder returns
an ancestor of the given organizational element, that is of a specified type.

As an example, we have an organization tree as in Figure 5.7. We instantiate
the by-type-finder with the type “business unit.” When we now call the finder’s
resolve method with team C as a parameter, the method will return the organiz-
ational element B, that is of the type business unit.

A: organization

B: business unit

C: team

Peter: person

D: team

(...)

E: business unit

(...)

Figure 5.7: An example organization tree

To collect ancestors, the filter repeatedly retrieves the parent elements from the
database.

37

protected OrgElement r e s o l v e (OrgElement orgElement) {

// I t e r a t e up the t r e e to f i nd OrgElement o f orgElementType
OrgElement cur rent = orgElement ;
for (int i = 0 ; i < MAX SEARCH LEVELS; i++) {

i f (cur r ent == null) {
return cur rent ;

}

i f (cur r ent . getType () != null &&
current . getType () . equa l s (orgElementType)) {

return cur rent ;
}

cur rent = getParentLoadingCache ()
. getUnchecked (cur rent) . orNul l () ;

}

return null ;

}

Figure 5.8: The resolve(OrgElement orgElement) method of the by-type-
finder

This algorithm already worked fine in the pre-existing tool. However, it assumed
that every agent only had one parent element, so it stopped working when agents
had multiple parent elements in multiple dimensions. Since the finder did not
take these dimensions into account when retrieving the data from the database,
it received more than one organizational element. The filter did not expect this
and hence returned the error message we had described in chapter 3. To resolve
this problem, we had to add the current dimension to the getParent() calls that
are cached in a loading cache.

38

protec ted void buildParentLoadingCache () {
i f (parentLoadingCache == nu l l) {

parentLoadingCache = CacheBuilder . newBuilder () . bu i ld (
new CacheLoader<OrgElement , Optional<OrgElement>>() {

@Override
pub l i c Optional<OrgElement> load (

OrgElement orgElement) throws Exception {

re turn Optional . f romNul lab le (
orgElementDao . getParent (orgElement ,

orgDimension)) ;

}

}) ;
}

}

Figure 5.9: The initialization of the parent loading cache with the added di-
mension

5.4.2 By-Level-Finder

The resolve(OrgElement orgElement) method of the by-level-finder should
return an ancestor element of the given organizational element. To achieve this,
it initially creates a list of all ancestors, using the getAncestorList(OrgElement
orgElement) method. This method creates a list of all ancestors by traversing

the organizational tree upwards until the root is reached.

protected List<OrgElement> ge tAnce s to rL i s t (OrgElement orgElement) {
ArrayList<OrgElement> ance s t o r s = new ArrayList <>();
OrgElement cur rent = orgElement ;

while (cur r ent != null) {
ance s t o r s . add (0 , cur rent) ;
cur r ent = getParentLoadingCache ()

. getUnchecked (cur rent) . orNul l () ;
}

return ance s t o r s ;
}

Figure 5.10: The getAncestorList(OrgElement orgElement) method cre-
ates a list, that contains all ancestor element of the parameter organizational
element

39

Since we always add all ancestors as the first element in the list, we end up with
a list, that is automatically sorted by level. Retrieving the correct element is now
as simple as taking the element from the list, that has the searched level as the
index. If no such element exists, because the list is too short, we return null.

protected OrgElement r e s o l v e (OrgElement orgElement) {

i f (orgElement == null) {
return null ;

}

List<OrgElement> path = getAnce s to rL i s t (orgElement) ;

i f (path . s i z e () <= l e v e l) {
return null ;

} else {
return path . get (l e v e l) ;

}

}

Figure 5.11: The by-level-finder’s implementation of the resolve(OrgElement

orgElement) method

5.4.3 Fisheye Finder

The Fisheye Finder’s resolve algorithm searches for a common ancestor element
of the context agent and the participating agent. It then replaces the agent by
a child of the found element that is also an ancestor of the original participating
agent.

We will use the organization tree of Figure 5.12 for a short example.

A

B

D

G

Person 1

E

H

ISP 1

C

F

ISP 2

Figure 5.12: Another example organization tree

40

We assume that the following two patch contribution events exist:

(1) Person 1→ ISP 1

(2) Person 1→ ISP 2

When we now open the event journal for the context element D, the journal shows
us the two events, because person one is assigned to G which is a subordinate
organization element of D. When we select the fisheye filter, the journal should
display both events as follows:

(1) G→ E

(2) G→ C

On creation, the fisheye finder is initialized with a context organizational ele-
ment. The resolve(OrgElement orgelement) method begins with a call to
the initialize() method, that creates a list of all ancestors of the current con-
text organizational element if it doesn’t already exist.

Next, the finder has to find the shared ancestor of the context element and the
current element that is of the lowest organizational level. To do so, it creates a
list of all ancestors of the current organizational element. Then it traverses said
list backward and checks if the elements are also included in the context element’s
ancestors. If it is, it has found the shared ancestor with the lowest level. All it
has to do now is to return the element of the current element’s ancestor list, that
comes right after the common ancestor. If there is no such element, it returns
the common ancestor.

41

protected OrgElement doResolve (OrgElement orgElement) {

i f (orgElement == null) {
return null ;

}

List<OrgElement> agentPath = getAnce s to rL i s t (orgElement) ;

L i s t I t e r a t o r l i = agentPath . l i s t I t e r a t o r (agentPath . s i z e ()) ;

// I t e r a t e in r e v e r s e .
while (l i . hasPrevious ()) {

i f (contextPath . conta in s (l i . p r ev ious ())) {
OrgElement commonAncestor =

(OrgElement) l i . next () ;
i f (l i . hasNext ()) {

return (OrgElement) l i . next () ;
} else {

return commonAncestor ;
}

}
}
return null ;

}

Figure 5.13: The doResolve(OrgElement orgElement) method, to retrieve
replacement organizational elements based on the fisheye filter definition

5.4.4 Finder Factory

The job of the finder factory is to create finder objects based on the input it
receives. On creation, the finder factory receives, among other objects, a granu-
larity specification. The granularity specification object specifies the granularity
of groups of economic agents (event provider, event receiver, intern agents, extern
agents). The granularity for each group is specified by a granularity object. This
object specifies if the granularity is defined by type or level and what value it
has.

42

Figure 5.14: A simplified class diagram of the granularity specification object

Figure 5.15: A simplified class diagram of the granularity object

When the getProviderFilter(EconomicEvent event) or getReceiverFilter
(EconomicEvent event) methods are called, they have to decide which granu-
larity object should be used for determining the correct finder. For this decision,
it takes both the granularity specification and the event direction into account.
The code looks as shown in Figure 5.16 and Figure 5.17.

The getFinder(Granularity gran) method takes a granularity object and
then returns either a by-type-finder or a by-level-finder object.

43

protected OrgElementFinder getProv iderF inder (EconomicEvent event) {

OrgElementFinder prov iderF inder = null ;

i f (g r a n u l a r i t y S p e c i f i c a t i o n . ha s In t e rna lGranu la r i t y ()) {
prov iderF inder = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n

. g e t In t e rna lGranu l a r i t y ()) ;
}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . hasContr ibutorGranular i ty ()
&& (event . g e tD i r e c t i on () == EconomicEvent

. D i r e c t i on .DECREMENT)) {

prov iderF inder = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n
. ge tContr ibutorGranu la r i ty ()) ;

}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . hasRece iverGranu lar i ty ()
&& (event . g e tD i r e c t i on () == EconomicEvent

. D i r e c t i on .INCREMENT)) {

prov iderF inder = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n
. ge tRece ive rGranu la r i ty ()) ;

}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . ge tF i sheyeGranu la r i ty ()) {
prov iderF inder = f i s h ey eF inde r ;

}

return prov iderF inder ;
}

Figure 5.16: The getProviderFinder(EconomicEvent event) method re-
turns a finder to retrieve a replacement provider for the given event

44

protec ted OrgElementFinder ge tRece ive rF inder (EconomicEvent event) {
OrgElementFinder r e c e i v e rF inde r = nu l l ;

i f (g r a n u l a r i t y S p e c i f i c a t i o n . hasExterna lGranu lar i ty ()) {
r e c e i v e rF inde r = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n

. ge tExte rna lGranu la r i ty ()) ;
}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . hasContr ibutorGranular i ty ()
&& (event . g e tD i r e c t i on () == EconomicEvent

. D i r e c t i on .INCREMENT)) {

r e c e i v e rF inde r = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n
. ge tContr ibutorGranu la r i ty ()) ;

}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . hasRece ive rGranu lar i ty ()
&& (event . g e tD i r e c t i on () == EconomicEvent

. D i r e c t i on .DECREMENT)) {

r e c e i v e rF inde r = getFinder (g r a n u l a r i t y S p e c i f i c a t i o n
. ge tRece ive rGranu la r i ty ()) ;

}

i f (g r a n u l a r i t y S p e c i f i c a t i o n . ge tF i sheyeGranu la r i ty ()) {
r e c e i v e rF inde r = f i s h ey eF inde r ;

}

re turn r e c e i v e rF inde r ;
}

Figure 5.17: The getReceiverFinder(EconomicEvent event) method re-
turns a finder to retrieve a replacement receiver for the given event

5.5 Filter by Date

The date filter limits the shown economic events, by events that happened during
a custom time period.

To allow the user to select a time period, we added two date pickers to the menu.
Even though the web app so far used bootstrap design and components, we used
the date picker components from Google’s material angular component collection.
We decided on the material component because there were already plans to switch
the whole CMSuite web app to Google’s material design. However, we added a

45

CSS stylesheet to make the input field blend in with the other fields for now.

Figure 5.18: The datepicker input fields, blending in with other bootstrap
inputs

The analysis menu component reads the input from the date picker forms and
adds it to the analysis specification object. To detain the user from invalid inputs,
we use the date picker component’s filter function. The component allows us to
specify a callback function for a filter that validates the date input. We defined
the callback functions that are shown in Figure 5.19.

On the server side, the start and end dates are passed through and eventually
added to the database query that retrieves the events. This way we profit from
the increased performance of optimized database queries.

46

pub l i c v a l i dS t a r tDa t eF i l t e r (date : Date) : boolean {
i f (date == nu l l) {

re turn f a l s e ;
}
l e t endDate : Date = th i s . form . get (’ endDate ’) . va lue ;
i f (endDate != nu l l) {

i f (date > endDate) {
re turn f a l s e ;

}
}
re turn true ;

}

pub l i c va l idEndDateFi l t e r (date : Date) : boolean {
i f (date == nu l l) {

re turn f a l s e ;
}
l e t s tar tDate : Date = th i s . form . get (’ startDate ’) . va lue ;
i f (s tar tDate != nu l l) {

i f (date < s tar tDate) {
re turn f a l s e ;

}
}
re turn true ;

}

Figure 5.19: The callback functions, to determine date validity

47

Figure 5.20: The date picker in expanded. The defined start date was the 18th
of January 2018, so all dates before that are disabled, as they are invalid end
dates

48

6 Evaluation

In this chapter, we will now evaluate our work with the evaluation scheme, that
we described in chapter 3.

6.1 Functional Requirements

Event journal for inner source projects

Functional Requirement 1. As the manager of an inner source project, I
want the accountancy tool to include an event journal for inner source projects
so that I can keep an overview over who contributes to my project.

To fulfill this requirement, we started with the creation of a mockup event journal
for inner source projects. Next, we implemented the needed components on the
client. The result looks as shown in Figure 6.1.

The user can now view event journals for inner source projects, that display who
contributes to them.

49

Figure 6.1: The event journal for an inner source project

Include internal events

Functional Requirement 2. As the manager of an organizational unit, I
want the accountancy tool’s event journal to have an option to also include
internal events so that I have an insight into the flow of code contributions
within my unit.

For this requirement, we added an option to the analysis menu to precisely select
the desired scope.

Figure 6.2: Checkboxes to define the desired scope

By default, the options “include contributed resources” and “include received
resources” are selected. If the user wants to, he can adapt the selection and also

50

add internal events. As a result of this feature, he can view events that take place
between subordinates.

Filter events by date

Functional Requirement 3. As a user of the accountancy tool, I want the
event journal to have the option to filter its events by their date so that I can
hide useless information.

The user can now select start and end dates to define a period in which all
displayed events should have taken place.

Figure 6.3: The input fields to select the start and end dates

When the user selects such a date range, the journal only displays events that
happened within the range.

Filter by business year by default

Functional Requirement 4. As a manager of an organizational unit, I want
the event journal to show only the events of one business year by default so
that I save time when using the accountancy tool.

By default, the date input fields select the first of January of the current year as
the start date and the first of January of the next year as the end date. Thus,
the journal shows the events of one whole business year by default.

Define an explicit sorting order

Functional Requirement 5. As a user of the accountancy tool, I want the
event journal to sort the output by an explicitly defined order so that I have a
better overview of the data.

51

We defined a default order, as we explained in chapter 5 and implemented the
sorting filter to sort the events. As a result, all events are ordered consistently.

Fully support multiple organizational dimensions

Functional Requirement 6. As a user of the accountancy tool, I want the
organization element filters to fully support multiple organizational dimensions
so that they are better adapted to my organizations structures.

To fulfill this requirement, we started with the problems we found, that were
connected to the missing support of dimensions. We added the dimension to the
organizational element granularity filter logic. Now, it does not throw an error
message anymore, when the database model uses multiple dimensions.

We also added dimension to the model of the organizational element types. We
now can retrieve element types by their dimension. After we used this new
interface, only the relevant organizational element types are shown in the organ-
izational element type filter.

Additionally, we added the dimension id to the URL of the accountancy tool,
so that the user can now directly navigate to the event journal of an agent in a
specific dimension.

All in all, the tool now fully supports multidimensional data models.

Organizational level filter

Functional Requirement 7. As a user of the accountancy tool, I want the
event journal to have an option to show the economic agents, based on their
organizational level so that I can adapt the event journal’s information to my
needs.

The user can now choose to filter by the organizational level. Then all agents
that participate in an event are replaced by their superior agents of the given
level.

52

Figure 6.4: Options to select levels for the organization element filter

Apply filters to internal/ external parties

Functional Requirement 8. As a user of the accountancy tool, I want the
event journal to have an option to apply filters to internal and external parties
independently so that I can adapt the event journals information to my needs.

The user has the possibility to define the granularity of all internal or external
parties independently.

Figure 6.5: The selection fields for separate contributor/ receiver filtering

Apply filters to contributors/ receivers

Functional Requirement 9. As a user of the accountancy tool, I want the
event journal to have an option to apply filters to contributing and receiving

53

parties independently so that I can adapt the event journals information to my
needs.

The user has the possibility to define the granularity of all contributors or receiv-
ers independently.

Figure 6.6: The selection fields for separate internal/ external filtering

Fisheye filter

Functional Requirement 10. As a user of the accountancy tool, I want the
event journal to have an option to give me a fisheye view on the events so that
I can have a natural overview of economic events.

The user can select a fisheye filter, that implements the filter function, we de-
scribed in chapter 3. Then all participating agents are replaced by superior agents
based on the filter definition.

Figure 6.7: The selection field to choose the type of the organization element
filter

54

Replace unknown agents

Functional Requirement 11. As a user of the accountancy tool, I want the
event journal to have an option to replace unknown agents so that I can see
who contributed to projects or what ISP received contributions.

The user now has an option to replace unknown agents with the original agents.
After choosing to replace unknown agents, the event journal shows the names of
the original person/ inner source project in grey font, instead of showing unknown
agents.

Figure 6.8: An unknown agent before and after selecting the replace-unknown-
agents option

6.2 Nonfunctional Requirements

Functionality independent from client implementation

Nonfunctional Requirement 1. As a developer of the accountancy tool, I
want the functionality of the tool as independent as possible from the client
implementation, so that I can add other clients more easily in the future.

Throughout this whole thesis, we focused on implementing as much as possible
on the server side. The client only implements features to navigate, adapt and
display the data. All tasks that change data happen on the server.

Consistent coding style

Nonfunctional Requirement 2. As a developer of the accountancy tool, I
want new code to follow the given style guidelines so that all code has a uniform
style.

CMSuite uses a continuous integration pipeline, that automatically verifies that
all code follows the style guidelines. The current version of the accountancy tool
passes all style checks.

55

Appropriate loading times

Nonfunctional Requirement 3. As a user of the accountancy tool, I want
the tool to have fast loading times so that I can finish my work quicker.

To evaluate this requirement, we performed speed tests on the event journal with
our demo data set. Specifically, we used the event journal for the root organiza-
tional element, the “Rainbow Print SE.” To measure the loading times, we used
Google Chrome’s network conditions tool, that allows throttling the network
speeds. We used the default “fast 3G” setting, to enable consistent, reproducible
data. We defined “fast loading times” as less than 5 seconds with the “fast 3G”
setting. Next, we loaded the event journal for various analysis specifications. We
reached the maximum loading time when we added all possible filter options: In-
ternal/ external filtering with organizational element types, aggregate by commit
day, include all events and replace unknown agents. We ended up with a loading
time of 3.18 seconds, which is below our defined maximum.

Good visuals

Nonfunctional Requirement 4. As a user I want the accountancy tool to
be visually appealing so that I can have a high-quality user experience.

Within this thesis, we located some visual deficiencies (chapter 3) and fixed them.
The event journal table does not overflow the border anymore. Furthermore,
the newly designed resource gauge is better readable and overall more visually
appealing. We also remodeled the way dates were displayed. Now the date
format depends on the used time granularity and automatically hides unnecessary
information (e.g., the exact time, when the granularity is “daily”). Additionally,
we added date headers, to separate different date groups.

Figure 6.9: The newly designed resource gauge

56

Figure 6.10: The event journal with the time granularity set to daily

Thorough testing

Nonfunctional Requirement 5. As a developer, I want all the features of
the accountancy tool to be extensively tested so that I can find bugs before
deploying the code.

The continuous integration pipeline also runs all defined unit, integration and
system integration tests. We added unit tests for all new features and adapted
current unit tests to our refactorings. For functionality that works with external
systems, we added or modified integration tests.

57

Consistent domain model and terminology

Nonfunctional Requirement 6. As a stakeholder, I want the accountancy
tool to use a consistent domain model and terminology.

In chapter 3 we identified numerous inconsistencies of CMSuite’s domain model.
However, we noticed those problems close to the end of this thesis. We decided
to mention them, even though we could not remove them as part of this thesis.
Nevertheless, we devised some solutions, that we will discuss in the chapter 7.

6.3 Conclusion

As Figure 6.11 shows, we fulfilled all but one requirement fully. Therefore, we
consider our work as successful.

Functional requirements
FR1: Event journal for inner source projects
FR2: Include internal events
FR3: Filter events by date
FR4: Filter by business year by default
FR5: Define an explicit sorting order
FR6: Fully support multiple organizational dimensions
FR7: Organizational level filter
FR8: Apply filters to internal/external parties
FR9: Apply filters to contributors/receivers
FR10: Fisheye filter
FR11: Replace unknown agents

Nonfunctional requirements
NR1: Functionality independent from client implementation
NR2: Consistent coding style
NR3: Appropriate loading times
NR4: Good visuals
NR5: Thorough testing
NR6: Consistent domain model and terminology

Figure 6.11: The evaluation of the requirements, using our defined scheme

As a result of this thesis, managers of organizations that practice inner source
and use the accountancy tool, have many new options to view, select and ag-

58

gregate economic events in the event journal. We removed several existing errors
and thus improved the user experience. Some of our refactorings (e.g., the ana-
lysis specification object or the organizational element finder structure) facilitate
further development. So all defined stakeholders profit from this work.

59

7 Future Work

As we stated in chapter 6, our work in this thesis successfully improved the
functionality of the accountancy tool. However, there is room for further im-
provement. One example are the model inconsistencies, we found in chapter 3.
Unfortunately, we were not able to remove them as part of this thesis. Neverthe-
less, we devised some possible improvements for the model:

• Consistently use the terms “Inside/Outside Agent” instead of “Internal/Ex-
ternal Agent,” to stick with the REA terminology.

• Define participating agents in economic events as “contributor” and “re-
ceiver” instead of “provider” and “receiver.” This way, we remove confusion
for events, where the event receiver is not the receiver of the contribution.

• Use the term “code contribution” instead of “patch” in the model, to cor-
rectly term regular code contributions.

• Model inner source projects as economic resources, to stay true to REA
definitions.

• Introduce proper exchanges, to properly model duality in events. One ex-
ample would be to introduce transfer pricing to the model.

Furthermore, we thought of some features, that would significantly improve the
functionality of the tool:

• Expand and Collapse Agents

Allow the user to expand and collapse specific agents manually. If the user
collapses an agent, it and all its siblings get replaced by the parent agent.
When an agent is expanded, the agent should be split up into its children.

• Respect Organizational Element Changes in Time

The structure of a company changes over time. The accountancy tool has
to take the event date and the structure at that time into consideration
when retrieving events.

60

• Custom Time Granularities

Organizations often function in arbitrary rhythms. Other time granularities
than the predefined ones could be needed. Therefore, the accountancy tool
should have an option to allow the users to define custom granularities.

We believe that these suggested features will increase the usefulness of the ac-
countancy tool and thus also the value to the users. Hence, further development
of the accountancy tool should focus on these features.

61

References

Capraro, M., Dorner, M. & Riehle, D. (2018). The patch-flow method for inner
source collaboration. In 15th international conference on mining software
repositories. ACM.

Capraro, M. & Riehle, D. (2016). Inner source definition, benefits, and challenges.
ACM Computing Surveys, 49 (4), 0–36.

Dinkelacker, J., Garg, P. K., Miller, R. & Nelson, D. (2002). Progressive open
source.

Hibernate ORM. (n.d). Retrieved December 15, 2018, from http://hibernate.
org/orm/

Ijiri, Y. (1975). Theory of accounting measurement. American Accounting Asso-
ciation.

Jersey. (2018). Retrieved December 15, 2018, from https://jersey.github.io/
McCarthy, W. E. (1982). The rea accounting model: A generalized framework for

accounting systems in a shared data environment. The Accounting Review,
57 (3), 554–578.

PostgreSQL. (n.d). Retrieved December 15, 2018, from https://www.postgresql.
org/about/

Raymond, E. S. (2000). The cathedral and the bazaar. Retrieved December
3, 2018, from http : //www.catb . org/∼esr /writings/cathedral - bazaar/
cathedral-bazaar/

Riehle, D., Ellenberger, J., Menahem, T., Boris, M., Naveh, B. & Odenwald, T.
(2009). Open collaboration within corporations using software forges. IEEE
Software, 26 (2), 52–58.

Stol, K.-J., Avgeriou, P., Bahar, M. A., Lucas, Y. & Fitzgerald, B. (2014). Key
factors for adopting inner source. ACM Transactions on Software Engin-
eering and Methodology, 23 (2).

Wesselius, J. (2008). The bazaar inside the cathedral: Business models for internal
markets. IEEE Software, 25 (3), 60–66.

Yu, S. C. (1976). Structure of accounting theory. University Press of Florida.

62

http://hibernate.org/orm/
http://hibernate.org/orm/
https://jersey.github.io/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

	Introduction
	Conceptual Basics
	Collaboration Management Suite
	Accountancy Tool
	Resource Events Agents Model
	Domain Model
	Pre-Existing Features

	Requirements
	Purpose of the Artifact
	Development Approach
	Identified Problems
	Requirements for Artifact
	Stakeholders
	Functional Requirements
	Nonfunctional requirements

	Evaluation Scheme for Requirements

	Architecture and Design
	Server Side
	Frameworks and Systems
	The REST API
	Services
	The Filter Chain Factory
	Organizational Element Finders

	Client side

	Implementation
	Analysis Specification
	Event Loader
	Sorting Filter
	Finders
	By-Type-Finder
	By-Level-Finder
	Fisheye Finder
	Finder Factory

	Filter by Date

	Evaluation
	Functional Requirements
	Nonfunctional Requirements
	Conclusion

	Future Work
	References

