
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

ARTUR WASINGER

BACHELOR THESIS

IMPLEMENTATION OF A WEB-UI FOR
A GUIDED CONFIGURATION WORK-
FLOW

Submitted on 5 November 2018

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 5 November 2018

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 5 November 2018

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Open Data has a huge potential, but due to its often poor quality and inconsist-
ency most of this data can’t be used, atleast not without a lot of effort. Here the
Open Data Service is bringing remedy, because this tool can homogenize such
data structures. Still, because the data has such great variety, the complexity of
the structure is shifted onto the configuration possibilities, which makes the ODS
unwieldy to use. Therefore this thesis presents the requirements of an configur-
ation applications and provides an implementation in form of an Angular based
web application, that is used to make the ODS more approachable by giving
it the functionality of creating configurations in a better and more comfortable
way.

ii

Contents

1 Introduction 1

2 Fundamentals 3
2.1 HTTP and REST . 3
2.2 Open Data Service . 4

2.2.1 Architecture of the ODS system 4
2.2.2 API & its Models . 7

2.3 Angular . 8
2.3.1 Architecture of Angular 11
2.3.2 Observables . 12
2.3.3 Material Angular . 12
2.3.4 Alternatives to Angular 12

3 Requirements 14
3.1 Functional Requirements . 14
3.2 Nonfunctional Requirements . 14

3.2.1 Guided Workflow . 14
3.2.2 Usefulness . 15

4 Design and Implementation 16
4.1 Design . 16

4.1.1 Conception . 16
4.1.2 Main View components . 17
4.1.3 Services . 18
4.1.4 ODS-Configuration component 18

4.2 Implementation Details . 19
4.2.1 Requesting Data from the ODS API 19
4.2.2 Sending Data to the ODS API with Reactive Forms 19

5 Evaluation 24
5.1 Configuration . 24
5.2 Guided workflow . 24

iii

5.3 Usefulness . 25

6 Summary & Conclusion 26

7 Abbreviations 27

Appendices 28

References 28

iv

1 Introduction

Data and data usage are now one of the most valuable resources, easily shown
in the fact that the most valuable companies in the world all deal with data
(Forbes, 2018). In particular a potential value to the economy has Open Data,
where it was measured at 140 billion euros by the Konrad Adenauer StifungCh.H.,
2016. Today, one of the main corporations to Open Data is the Open Knowlege
Foundation1. It leads many other projects regarding Open Data, for example the
Open Data Handbook, where they define Open data as follows:

”Open data is data that can be freely used, re-used and redistributed by anyone
- subject only, at most, to the requirement to attribute and share alike” (Open
Knowledge International, 2018, Chapter: What is Open Data?).

Public administrations also generate a lot of data, where it has not only enormous
potential for the economy but also for civilians, politics and the administration.
As this kind of data is already provided by many organization like 2government
organizations, or scientific groups, it is understandable that this data is provided
in many forms and has no uniform structures. This makes the use very prob-
lematic as there is a lot of effort needed to process this data. This problem is
one of the main difficulties to the use of Open Data, because it hinders to draw
the potential economic value for it. To promote this potential there is a need
to support the access and procession of this data. Remedy is given here by an
open source project called Open Data Service (ODS). This tool was built to help
with the procession of heterogeneous data, in particular Open Data. Here ODS
provides a unified interface and can even further enhance data through filters, so
that applications can receive already unified data in an easier way. But because
data comes in many different forms, the ODS needs to have a big adaptability.
This causes the ODS to not be intuitive to configure for an untrained mind.

This thesis presents an implementation of a user interface, that focuses on the con-
figuration part of the ODS and should help to make the ODS more approachable.
An implemented web user interface (web-UI) should help to make configuration

1https://okfn.de/ Official Open Knowledge Foundation page
2https://www.govdata.de/ data portal for german administrative data

1

process faster and more easy. It could also show people how to use the ODS
Application Programming Interface (API) as an example platform. Up to date
the configuration of the ODS is very strenuous, as one has many freedoms to how
data is handled. one can perform direct requests to the ODS API or one can use
the tool Postman3, which can send predefined API requests. Where it is a great
tool to send requests and test these, it is not so great in giving possible option
choices to how the data is configured. Another disadvantage of Postman is the
missing input validation. Together these points shows, that one needs in-depth
knowledge of ODS either to use the direct API or Postman. This is where the
acweb-UI gives the user choices and also provides him with the necessary options
to create a working configuration set. As a quick overview, chapter 2 is delivering
fundamental information, the used framework Angular and the ODS. Chapter 3
covers the requirements and Chapter 4 shows design and implementation choices.
In return to chapter 3 the work will be evaluated in chapter 5. And chapter 6
leaves the reader with a summary and conclusion.

3https://www.getpostman.com/ Official Postman site

2

2 Fundamentals

This chapter covers some of the fundamental knowledge that is needed to under-
stand the implemented web-UI. The first part is about some basic information
about HTTP and REST, the second explains the ODS and the third is about
some basis structures of the used framework Angular.

2.1 HTTP and REST

To clarify some of the terms in this thesis, there is a need to speak about
Hypertext Transfer Protocol (HTTP) and Representational State Transfer (REST) 1.
HTTP is a transfer protocol heavily used in the world wide web, as for example
already 30% of the current websites use the newest HTTP version HTTP/2 as
their protocol (Surveys, 2018). The basic communication of HTTP is based on
HTTP-Requests and HTTP-Responses, where the requests consist of different
types, the most relevant for this thesis are: GET, PUT and DELETE. These
types represent the action of the request. Where PUT is used to send data
with the request, GET will retrieve data from the server and DELETE sends
a delete-signal to the server. Together with a HTTP header, which contains a
short description of the requested resource and authentication, a HTTP-Request
message is send to the server. There the server sends back the HTTP-Response
messages where information about that response is send back, like the status of
the requested resource. The status code tells the client if the request was success-
ful of if there emerged an error, which is also shown in the code number. REST
is an architectural style described by Roy Fielding, to design loosely coupled ap-
plications over HTTP. It is mostly used to define a web service API and considers
several constraints to be called a REST API. One calls it RESTful if all of these
are met and RESTlike if they follow the REST constraints but don’t support
them all. Roy Fielding described the constraints of REST in his book Fielding,
2000, Chapter 5. The most important one for this thesis is the Uniform Inter-

1For an in-depth description to HTTP and REST look at
https://www.crummy.com/writing/RESTful-Web-Services/html/

3

face constraint. Uniform Interface means that the sever provides an interface
that logical to the representation of its resources to URLs. Fielding described
this constraint in Fielding, 2000, Chapter 5.1.5. Other constraints are already
universally applied, such as Client-Server constraint, that requires the division
of of the client layer to the server layer, that are a standard in web applications.

2.2 Open Data Service

The ODS2 is a software that is used to process Open Data. This data is often in
heterogeneous forms and needs a lot of effort to change it to more usable data
forms. Here ODS extracts such data from external sources, filters it and provides
this then filtered and uniform data in its API. This helps to make this data more
usable and accessible by external applications. ODS is based on the master thesis
of Konstantin Tysin (Tysin, 2014), who implemented and prototyped the basic
functionality of the system. Also there will be references to Mathias Zinnen’s
bachelor thesis (Zinnen, 2018), who described the current version of ODS on his
way to implement his thesis work. In the following chapters I will describe ODS.

2.2.1 Architecture of the ODS system

To understand how to configure data for procession, one first has to look at the
different parts of the ODS system. Here figure 2.1 from Tysin’s master thesis
shows clearly what main components ODS is based on. It can be divided into
three parts:

• An import component, which extracts data from external sources.

• A database component, that persists data and other metadata for the im-
port component.

• A server component, that enables communication over a REST API.

As figure 2.1 shows just a rough architecture, Zinnen showed a more detailed and
more current version in figure 2.2. Here one can see that the ODS architecture
is based on the structure of Tysin, but has evolved. It is not strictly divided and
became more complex. For example is the API, here the so called REST-API,
necessary to configure filter processors and the external datasources. For the next
sections follows a more detailed explanation on how they work together.

2https://github.com/jvalue/open-data-service Official Github repository

4

Figure 2.1: Basic ODS architecture Tysin, 2014

Figure 2.2: Detailed ODS architecture Zinnen, 2018

5

Name Arguments
PegelBrandenburg sourceUrl:java.lang.String
CsvSourceAdapter sourceUrl:java.lang.String, csvFormat:java.lang.String
TransformationFilter transformationFunction:java.lang.String
PegelBrandenburgMerger
APIXUSourceAdapter apiKey:java.lang.String, locations:java.util.ArrayList
JsonSourceAdapter sourceUrl:java.lang.String
IntToStringKeyFilter
InvalidDocumentFilter
AddTimestampFilter
XmlSourceAdapter sourceUrl:java.lang.String
PegelOnlineMerger
PegelPortalMvSourceAdapter sourceUrl:java.lang.String
OsmSourceAdapter sourceUrl:lava.lang.String
OpenWeatherMapSourceAdapter apiKey:java.lang.String, locations:java.util.ArrayList
DbInsertionFilter updateData:boolean
NotificationFilter

Table 2.1: ODS processor list

Import Component

The Import Component’s task is the data extraction from external sources, but
to do so one first needs to follow some steps. The first one is to create the base
data source resource that represents the metadata and schema of the external
source. Then to import data, so called processors are needed, they represent the
adapter and filter that are provided by the ODS. These processors are linked in a
processor chain resource. This chain is based on the ”pipes & filters”- architecture
pattern, where the sequence of the processing steps is defined. The first step in a
chain is always an adapter. This is a special processor that enables to connect to
the target source API, for example an XMLAdapter that enables to crawl from
API’s that provide their data in XML. Table 2.1 shows the adapter and filter
of the ODS, provided by ODS API. To further process, the data is then passed
on through a chain of filters, where it will finally be persisted in the database if
one selects the filter DbInsertionFilter. Additional processor chains can be added
to target data sources via the API in run-time. But if one wants to add new
processors they need to add a template in the source code of the ODS itself.

Database Component

The database component persists data that comes from the external source and
of course the metadata of the configurations and existing model descriptions. The
component is based on a NoSQL database. This is needed because the Data the

6

ODS is going to persist is not in a fixed schema.

The benefits of persisting data from external sources are its possibility to be
able to consistently provide data, without being dependent on the targets source
availability or to even provide historical data. For heterogeneous data, there is
no good possibility to map every data schema to a relational database schema,
regarding the flexibility of the database schema. Also there is the problem with
scalability as firm data base schemes in relational database systems do not sup-
port elastic scalability 3. The database component is dependant of the server
component because through its API, it receives the information of the metadata
and can also provide its stored data.

2.2.2 API & its Models

As the server component provides a REST API, it offers the question of what the
API is used for. In this chapter there will be an overview of the current API and
its core functions, by the example of its models. Models represent the resources
that can be persisted by the database. As the current API is designed as a REST
API Tysin, 2014, cf. p. 26, there is a constant textitroot endpoint in form of
the URL ”/ods/v1/”. One can see in Figures 2.3 and 2.4 what URL endpoints
exist in the current API version. For example to receive a list of all users one has
to send a HTTP request in form of ”GET /ods/v1/users”. This list is received
in form of a JSON object as seen in Figure 2.5. The API represents the ODS
models so for reference on can look at the different API endpoints. The models
needed for a configuration are as follows:

• Data Source: For one metadata that a user can define is saved in this model.
For the other there is the source schema, which defines the extracted data in
form of a JSON schema4. This model is the key model in the ODS. As one
can see in the API reference all models that are required to extract data
are referenced from this model, for example the Processor Chain model,
where its Base-URL is ”/datasources/sourceId/filterChains”. Here one can
see that a Data Source is needed to create Processor Chains from the API.

• Processor Chain: A processor is either an adapter or a filter, where the
Processor Chain is described as a chain, where the extracted data is followed
through each processor-link. Adapters are needed to extract the data from
the target source, in its arguments is defined where the target data is found.
Filters are mainly there to manipulate the data, for example one can add

3https://www.mongodb.com/scale/nosql-databases-pros-and-cons Pro’s and Con’s of NoSql
databases

4https://json-schema.org/ JSON schema is a standard to describe data formats

7

a timpestamp with the AddTimestampFilter or one can insert the filtered
data into the database with the DbInsertionFilter

• Notification Client: This is where one can set up notification clients for a
Data Source. Notification clients can currently notificate via Google Cloud
Messaging (GCM)5, Advanced Message Queuing Protocol (AMQP)6 and
HTTP. Note that one needs to insert a NotificationFilter in a Processor
Chain that the clients are able to notificate.

• Data View: In relational databases it’s possible to define views via queries.
To be able to work with the extracted data in NoSQL databases, that are
used with the ODS, on can also define views. Here these views are written in
JavaScript in a style called MapReduce7, where map- and reduce-functions
are used to generate these views as they are very great with flexible data
(“CouchDB The Definitive Guide”, n.d.).

• Processor Specification: This is where the specifications and descriptions of
the different processors are laying. In Table 2.1 one can see the data that is
received from this API endpoint. Regardless if this model is not important
in the data extraction workflow it is important to get a basic understanding
of the possibilities that a configuration gives.

2.3 Angular

Today Angular is one of the most popular framework choices for designing large
enterprise and business applications. Its currently developed and maintained
by Google and even though its very complex it has a well-formed and consist-
ent documentation. To understand the implemented web-UI, it is necessary to
understand some basic fundamentals of the Angular framework. The following
descriptions are based on the “Angular Documentation”, 2018.

TypeScript

Angular uses TypeScript as its programming language. Typescript is a type
oriented language, that is based on the ECMAScript 6 (ES6) standard, which is
a javascript standard. In essence its a superset of ES6 and enables users to have
ES6 features and strongly static type checking (“Typescript Documentation”,
2018).

5https://developers.google.com/cloud-messaging/ Official GCM page
6https://www.amqp.org/ Official AMQP page
7Further information can be found at Ghemawat, 2004

8

Figure 2.3: ODS endpoint list I Zinnen, 2018

9

Figure 2.4: ODS endpoint list II Zinnen, 2018

Figure 2.5: ODS example ”GET /ods/v1/users” response

10

2.3.1 Architecture of Angular

For the start, lets look at the basic architecture of an Angular app. Every applic-
ation consists of so called NgModules, these are the basic building blocks for every
Angular app. Each NgModule represents a set of related code and thus provides
a compilation context for its components within. Some of the most common
NgModules are for example the BrowserModule or the RoutingModule8. Every
application has at least one root module, conventionally called AppModule. This
module is the bootstrapping point of the app, meaning that this is where the
app launches. Other modules are called feature modules. A class is considered
an NgModule if it’s decorated with @NgModel(). The @NgModel() decorator de-
scribes the NgModule properties with its meta data. Some of those properties
are:

• declarations: Where all Module components are listed.

• imports: That lists all other Modules that are needed.

• providers: This is where services are set, so they can be used in the whole
app. Note that it is possible and prefered to provide these in components
or services.

• bootstrap: A NgModule should just have one bootstrap component, as it
represents the root module.

Within the NgModule are two basic code sets: components and services. Compon-
ents build the viewing part of the application, where they define views as sets of
screen elements. Instead services provide functionality to components that is not
related to views, like fetching data from an API. In Angular services can be made
to injectable services with the @Injectable-decorator. Here can be declared
where the service is provided from. The code line @Injectable({providedIn:
’root’}) shows how the service is provided in the root module, like mentioned
further up. That causes the injectable services to be available for all components,
which makes them very reusable. For the constructor example constructor(private
service: HttpClient) {} one can see how the service HttpClient service
class is injected into another class. This design pattern is called Dependency
Injection (DI). DI is a common design pattern in Angular where the class asks
from external sources for their dependencies, instead of creating them itself9.
This makes the code cleaner as one doesn’t have to add dependencies.

8https://angular.io/guide/frequent-ngmodules Other common NgModules
9https://angular.io/guide/dependency-injection More information on DI

11

Figure 2.6: short Observable example from “Angular Documentation”, 2018

2.3.2 Observables

Observables are very common in Angular, as they provide support for mes-
sages between a publishers and subscribers. That makes them useful within
services, as for example Angular’s HttpClient returns Observables. These
Observables can deliver multiple values of any type. For them to deliver their
data, Observables first have to be subscribed to, where subscribing is a func-
tion that executes an Observable. One can see in Figure 2.6 how a publishing
operation is defined in an Observable and then executed via subscribe().

2.3.3 Material Angular

The User Interface (UI) component library Material Angular10 got to be men-
tioned as this is the source of the UI modules used in the configuration UI. Here
there exists a large variation of different UI components like buttons, sliders and
tables, that can be imported into the root module.

2.3.4 Alternatives to Angular

There are several alternatives to Angular as a framework to build web services
and frontend applications. The most popular of them are React11 and Vue.js12.
In comparison to Angular React is the current biggest rival. The main differ-
ence between them is that React is developed by an Open Source community
whereas Angular is developed by Google. Both have their strengths as for in-
stance React is easier to learn or has many libraries that are developed by a big

10https://material.angular.io/
11https://reactjs.org/
12https://vuejs.org/

12

open source community and Angular provides a uniform documentation or uses
TypeScript(Team, 2018).

13

3 Requirements

The concept and design of a guided configuration workflow for a web-UI is fol-
lowed by its requirements. To fully understand what is needed it’s first necessary
to clearly understand what functionality should be met.

3.1 Functional Requirements

The definition of a configuration is given by a set of resources that are needed
to extract data from target sources. The requirement is met if it’s possible to
configure all resources that are needed for a working configuration. That means
its necessary to be able to:

• create new configurations

• read configurations

• and delete configurations

These are similar to the convention of CRUD (create, read, update, delete),
whereas the update-functionality is not implemented by design of the ODS server
component API. A reconfiguration can be achieved here by creating a new con-
figuration and removing the older version.

3.2 Nonfunctional Requirements

3.2.1 Guided Workflow

”The sequence of industrial, administrative, or other processes through which a
piece of work passes from initiation to completion.” - workflow definition (Oxford-
Dictionary, 2018)

14

As mentioned in the section title, the workflow should also be guided. That means
that the input of the user is directed to a working configuration set. This can be
achieved with different methods, like constraints or help instructions.

3.2.2 Usefulness

The term useful can be defined as the additive from the terms usability and
utility. For short usability is the attribute that assesses how easy interfaces can
be used and utility is the attribute that measures if the interface provides all
functionality that the user needs. Together they measure if a software, in this
case the configuration client, is useful. To determine the usefulness, one can
look at the quality attributes usability and utility. The utility attribute is in
general more easy to define, because it describes the functionality. This part
is already covered by the chapter 3.1. Describing usability is more subtile, like
in Jakob Nielsen’s Usability 101 (Nielsen, 2012) one can define the key quality
components as follows:

• Learnability: Which describes how easy tasks are accomplished for the first
time.

• Efficiency: Shows how quickly users can perform tasks, when they learned
the design.

• Memorability: This is a measurement on how easy one can reestablish
proficiency, when the design is not used for a period of time.

• Errors: This quality describes the misbehaviour of users in terms of how
many errors do users make, how severe can these errors be and how easily
can they recover from these.

• Satisfaction: Here, the question is asked, on how pleasant the use of the
design was.

To delimit the usability radius more, one can first look at the actual user group.
For instance, the guided configuration workflow can’t easily be operated by users
that don’t know about the ODS system. This is simply proofed by the fact that
somebody can’t deliberately target a design purpose, if he doesn’t know what
purpose the design follows. Therefore the first restriction to the user group is the
question, if the user is able to follow the design’s intentions. One can say that,
if the usability and utility quality components within the required user group is
met, then this requirement is fulfilled. It’s not fulfilled if there are drastic deficits
in the quality attributes, that make the application unusable.

15

4 Design and Implementation

4.1 Design

This chapter covers the basic design choices of the web user interface (web-UI),
moreover it should give an overview of the functionality of the workflow and what
its intentions are.

4.1.1 Conception

To design a web-UI the first question is what tools are necessary. For this we
decided to use the Angular framework for the ODS webclient1. As it is a state
of the art framework for building web applications and gives a lot of pre build
functionality. For example gives the tool Angular CLI 2 a very easy interface to
generate new components, services and provides other functionality.

Like in Angular fashion the web application is mainly build with two basic build-
ing blocks: components and services. In the ODS webclient there are addition-
ally the models classes that purpose as a bridge between component and service
classes. Here is a quick overview of the main blocks and their uses:

1. Components generate the views. These views are the reason that something
is showing in the browser. They can interact with services. For the main
part this is where data is shown and can be inserted.

2. Services provide functionality. In case of the configuration workflow, this
functionality is mainly focused on the use of the ODS API.

3. Models are the object classes in the webclient, they make sure data is type
safe and represent the different model classes from the ODS API. These
classes represent a bridge between the services and components.

1https://github.com/jvalue/ods-webclient
2https://github.com/angular/angular-cli/wiki

16

Figure 4.1: Design overview of the ODS webclient

In figure 4.1 one can see how the division between the building blocks is designed,
as it shows a clear distinction between components in the main view and services
on the other side.

4.1.2 Main View components

The first entry point of the web application is a navigation interface. This is the
main dividing structure of the app, to do so this main component leads to other
component views that are included into the main navigation:

• The Dashboard component, that acts as a welcome page, gives links, basic
and other useful information.

• The ODS-Configuration component, where one can find an overview of
existing data sources and manage them. Section 4.1.4 gives a more detailed
description.

• The Overview component, that gives an overview of model resources, that
are not bound by a Data Source URL, for example from the ODS User API,
while Processor Chains are dependant on a Data Source model.

• The Configuration component, where you can modify the webclient config-
uration.

17

Figure 4.2: Design of the service pipe chain

These components are basically the main components, they can include compon-
ents, too. These can give them other views based on the logic they need. For
instance should the new ODS-configuration component give the possibility to add
new data sources. This ADD-logic is then given in form of a new component.

4.1.3 Services

Communication with server structures always includes the use of a client, that
can send and receive data. In this case Angular already gives a good solution
in form of a injectable http client service, which is an extension of the hard to
use XMLHttpRequest API. Here the design choice was to have one basic service
that sends and receives data from a http client. And to have model services,
that link between the basic service and the components. This service chain is
further illustrated in the Figure 4.2. The model classes can either be send from
component site, where the model is converted into a form that the server can use,
or received from the basic service, where the server data is converted to a model
data.

4.1.4 ODS-Configuration component

The ODS Configuration component is the heart of the ODS webclient. The reason
one wants to use the ODS webclient is to configure the ODS in an easier way.
To design a solution one first has to look at the ODS API. The API is subject
under the REST architecture, and that means it is under the subject criteria
of a Uniform Interface. This criterion is the reason, that the base resource of
a configuration is set as a Data Source. Because as all other resources relevant
for a configuration refer to its sourceId in their URL3. That means that a Data
Source is the start for a configuration. In figure 4.1 on can see how the ODS-
Configuration component uses the Data Source Form component, where new Data
Source models are sent to the ODS API. And there is also a link to the Data
Source Details component, where details of a Data Source can be viewed. Also
one can here add or delete further configuration relevant resources. The basic
idea was to first create a Data Source as a base block, where further resources

3Look at figure 2.3 and 2.4

18

like Processor Chains can be added. The creation of resources is always done by
a form component. Here the web client can receive input from the user, so that
the resource can be finally sent as a request to the ODS model services.

4.2 Implementation Details

The next parts will give more insight into noteworthy details of the source code
and the problems that were dealt with.

4.2.1 Requesting Data from the ODS API

In figure 4.2 one can see how the fundamental communication with the ODS server
to a component view is realized. The first link in this chain is the BasicRestService
class. In figure 4.4 one can see the different API methods. Here the http client
http builds the API endpoint strings and adds HTTPHeaders as requestOptions.
The client is injected into the BasicRestService and enables to work with a
XMLHTTPRequest API 4. Contradictory to the name one can receive data not de-
termined to be in XML form, as the definition of the data form is bound in the
request header. One can also see that the request is followed by a .pipe-method,
that pipes the response through a catchError-method, which handles the re-
sponse in error case. The next layer are the model services, as shown in figure
4.3 one can see that the class methods represent the API endpoint of the ODS5.
Here the Base-URL is given to the injected BasicRestService. Furthermore the
model service methods return an Observable<T> with T being the specific model
class of the service. This makes sure that the response data has the requested
model class form as they are here type-checked. Note that even though the re-
quest is in theory complete, when build from a model service, it is not executed
till the returned Observable is subscribed to. In figure 4.5 a Data Source is
subscribed to and just now the data can be extracted and processed, as no noti-
fication is send to the Observable pre subscribtion. In this case one can see how
the received data values are mapped to table elements that are then shown in a
component view.

4.2.2 Sending Data to the ODS API with Reactive Forms

Angular has a wide offer to how input data is processed. Where the most basic
one is the <input> html-tag. Here one can define input-tag-attributes like type,

4https://xhr.spec.whatwg.org/ the XMLHttpRequest Standard documentation
5compare to figure 2.3 and 2.4

19

Figure 4.3: Basic rest service HTTP methods

Figure 4.4: Data source service

Figure 4.5: Data source subscription and mapping to MatTableDataSource

20

Figure 4.6: Data source form initialization

the initial value and the required -attribute. With this simple tag one can create
a lot of input forms, but if there are more complex requirements like cross-field-
validation theses basic input forms are quickly nearing their limits. For this
Angular gives a solution in form of the Reactive Forms. One of its main benefits
are a model-driven approach to handling input that can change over time, for
instance dynamic form requirements. Figure 4.5 shows how a form is build with
a FormBuilder module. This module enables faster form creation. When the
form is complete and valid, the form input is first transformed into a model
object and then it is subscribed to. Following the model service, shown in figure
4.4, one can turn the model class to a JSON string with JSON.stringify()

in the addDataSource method. Here it shows, that the Data Source model is
separated into the sourceId and the rest, whereas the sourceId is outsourced.
This is needed because on the one hand the GET requests deliver a sourceId in
their JSON objects and on the other hand PUT requests need the JSON object
without the id. That leads to a conflict, where much conversions are needed
because of this. By having just one model class, one could convert directly to a
JSON object.

Nested Reactive Forms

As the example with the Data Source should show the basic handling, how forms
are send to the ODS server. Now comes a more complicated example of the
reactive form used in the ODS webclient. This example is about the adapter
form that is part of a Processor Chain. The Figure 4.7. shows the html-template
of the adapter selection. This adapter is shown in a drop-down list, where each
adapter is listed in the adapterArray and then shown as options. This array
contains all adapter-specifications filtered from the Processor Specification API.

21

Figure 4.7: Data source form initialization

Figure 4.8: Data source form initialization

Figure 4.9: Data source form initialization

22

On a (valueChange) in the mat-select-tab the method depicted in Figure 4.9 is
executed. Here one can see that the adapter is first searched until found and then
set as the currentAdapter. As the Processor Specification API give us not only
the name and type of the different processors, but also the arguments, we can
also dynamically show these arguments in the form fields for the Processor Chain
form. Figure 4.9 shows how the arguments are taken as Object.keys, where one
key represents the key of a JSON object key/value pair. To show these keys in the
form template one first has to flush the old keys and then insert new form groups
to the adapterConfigFormArray. Shown in Figure 4.8 is the template to show
the argument of the selected adapter. There one can see that the adapter number
can be variable as the [formGroupName] directive is declared as the current index
of the adapterConfigOptions array. A problem with this approach is that the
arguments can not be validated dynamically, as the only information the ODS
API gives is the Java class type, which in turn is not enough information to how
the required data should look like.

23

5 Evaluation

This Chapter will evaluate the requirements defined in Chapter 3. These will be
compared to the implementation described in Chapter 4.

5.1 Configuration

There exist four different kind of resources that are needed for a configuration:
Data Sources, Processor Chains, Data Views and Notification Clients. All these
resources can be added in form components, and read or deleted in the ODS-
Configuration component or in the Data Source Details component. Therefore
this requirement is met.

5.2 Guided workflow

Currently the configuration is not in a strict workflow, that means that there
is not one single workflow that leads to a ODS configuration. The workflow is
divided into many single ones, because for example one first has to create a Data
Source resource before it is possible to create a Processor Chain resource. That
means there is not one single guided workflow process that directly leads to a
configuration. The different workflows are divided onto the form components,
that enable to process user input. These workflows are in theirselves guided, as
for example the Notification Client Form enables the user to choose between the
different Client types and guides a user to choose one of them. On the whole one
can say that this requirement is partially met.

24

5.3 Usefulness

The requirement states five different quality components that are mostly subjec-
ted to individual interpretation, the evaluation will then build on the tendencies
to determine if the implemented application is useful. Here its presupposed that
a user has some in-depth knowledge of the ODS.

• Learnability: A user should be able to accomplish the tasks very easily.

• Efficieny: Tasks can be performed more quickly, than with previous meth-
ods1.

• Memorability: As the design is kept very simple, proficiency is easily rees-
tablished.

• Errors: For now this quality is not fully met. For one the user can misbehave
in the Form components, for example is it not possible to fully dynamically
validate processor arguments before sending them via the API, as there is
currently too few information from the ODS API, and to hard code this
information would lead to unwanted dependencies to newly implemented
processor templates. For the other the user can’t input resources that can
cause severe errors as the ODS API is not accepting such data. .

• Satisfaction: The web-UI is more pleasant to use, because one can create
configurations faster than with other methods.

Summa summarum the evaluation shows that most points are on the side of being
met, so the requirement is met.

1directly via the API or via Postman, mentioned in the Introduction Chapter

25

6 Summary & Conclusion

The key target of this thesis consisted of the design and implementation of a
web-UI to create configuration for the Open Data Service1. The first subject
regarded the fundamentals, where among others the basic structure of the ODS
was described (2.2) and the framework Angular was introduced (2.3). To concept
and design the web-UI, it was needed to define the requirements (3). For one
there was a definition of functional requirements (3.1) that based around the
configuration creation and also nonfunctional requirements that should explain
what a guided workflow requires (3.2.1) or what usefulness means in the con-
text of a requirement (3.2.2). Chapter 4 depicted which design was developed
and what its components were (4.1), while the following chapter cared about the
implementation details (4.2). In the last part the web-UI implementation was
compared against the requirements and evaluated (5). In conclusion the ODS
webclient has met the requirement in the most part as there can always be im-
provements for a UI that can be discussed on. Possible improvements are for
example more advanced validations of the ODS-Configurations. The goal is that
the ODS webclient could evolve into a very useful tool whithin the jvalue project
line, especially for users that are newer to the ODS.

1https://github.com/Keldami/ods-webclient GitHub Repository of the ODS webclient

26

7 Abbreviations

API Application Programming Interface

ODS Open Data Service

REST Representational State Transfer

web-UI web user interface

HTTP Hypertext Transfer Protocol

DI Dependency Injection

ES6 ECMAScript 6

UI User Interface

27

References

Angular Documentation. (2018). Retrieved from https://angular.io/docs
Ch.H. (2016). Potenzial von open data. Retrieved from https://www.kas.de/

statische-inhalte-detail/-/content/potenziale-von-open-data
CouchDB The Definitive Guide. (n.d.). Retrieved from http://guide.couchdb.

org/draft/tour.html#mapreduce
Fielding, R. T. (2000). Architectural styles and the design of network-based soft-

ware architectures. https://www.ics.uci.edu/∼fielding/pubs/dissertation/
top.htm Accessed at 3.11.2018.

Forbes. (2018). The world’s largest public companies. Retrieved from https://
www.forbes.com/global2000/list/#header:marketValue sortreverse:true

Ghemawat, J. D. S̃. (2004). Mapreduce: Simplified data processing on large
clusters. Retrieved from https://ai.google/research/pubs/pub62

Nielsen, J. (2012). Usability 101: Introduction to usability. Retrieved from https:
//www.nngroup.com/articles/usability-101-introduction-to-usability/

Open Knowledge International. (2018). The open data handbook. Retrieved from
%5Curl%7Bhttp://opendatahandbook.org/guide/en%7D

Oxford-Dictionary. (2018). Definition of workflow. Retrieved from https://en.
oxforddictionaries.com/definition/workflow

Surveys, W. T. (2018). Usage of http/2 for websites. Retrieved from https://
w3techs.com/technologies/details/ce-http2/all/all

Team, K. (2018). Angular 6 versus react 16.3. Retrieved from https://kruschecompany.
com/blog/post/angular-6versus-react-16.3

Typescript Documentation. (2018). Retrieved from https://github.com/Microsoft/
TypeScript/blob/master/doc/spec.md#1

Tysin, K. (2014). Design of a reflective rest-based query api. https://docplayer.
org/8958351-Design-of-a-reflective-rest-based-query-api.html.

Zinnen, M. (2018). Design und implementierung einer restful api für heterogene
daten. https://osr.cs.fau.de/wp-content/uploads/2018/10/zinnen-2018-
arbeit.pdf.

28

https://angular.io/docs
https://www.kas.de/statische-inhalte-detail/-/content/potenziale-von-open-data
https://www.kas.de/statische-inhalte-detail/-/content/potenziale-von-open-data
http://guide.couchdb.org/draft/tour.html#mapreduce
http://guide.couchdb.org/draft/tour.html#mapreduce
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.forbes.com/global2000/list/#header:marketValue_sortreverse:true
https://www.forbes.com/global2000/list/#header:marketValue_sortreverse:true
https://ai.google/research/pubs/pub62
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
%5Curl%7Bhttp://opendatahandbook.org/guide/en%7D
https://en.oxforddictionaries.com/definition/workflow
https://en.oxforddictionaries.com/definition/workflow
https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all
https://kruschecompany.com/blog/post/angular-6versus-react-16.3
https://kruschecompany.com/blog/post/angular-6versus-react-16.3
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#1
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#1
https://docplayer.org/8958351-Design-of-a-reflective-rest-based-query-api.html
https://docplayer.org/8958351-Design-of-a-reflective-rest-based-query-api.html
https://osr.cs.fau.de/wp-content/uploads/2018/10/zinnen-2018-arbeit.pdf
https://osr.cs.fau.de/wp-content/uploads/2018/10/zinnen-2018-arbeit.pdf

	Introduction
	Fundamentals
	HTTP and REST
	Open Data Service
	Architecture of the ODS system
	API & its Models

	Angular
	Architecture of Angular
	Observables
	Material Angular
	Alternatives to Angular

	Requirements
	Functional Requirements
	Nonfunctional Requirements
	Guided Workflow
	Usefulness

	Design and Implementation
	Design
	Conception
	Main View components
	Services
	ODS-Configuration component

	Implementation Details
	Requesting Data from the ODS API
	Sending Data to the ODS API with Reactive Forms

	Evaluation
	Configuration
	Guided workflow
	Usefulness

	Summary & Conclusion
	Abbreviations
	Appendices
	References

