

Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

GREGOR FENDT

BACHELOR THESIS

Bill of Materials

Generation and Tracking

Submitted on 5 November 2018

Supervisors: Andreas Bauer, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander-Universität Erlangen-Nürnberg

i

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich

oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 5 November 2018

License

This work is licensed under the Creative Commons Attribution 4.0 International

license

(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 5 November 2018

https://creativecommons.org/licenses/by/4.0/

ii

Abstract

Software projects are growing and are reusing open source components more often.

Reusing components saves development costs and grants other general benefits by

using open source software. In order to get an overview of the code component

architecture of software projects, the Professorship for Open Source Software

created a tool. The tool extracts component and license information from build

artifacts. The tool generates a model, which can be used to get an overview of all

used components. Additionally, different processes can be applied to it, for example

to check for license compliance or security vulnerabilities. Another important use

case is the creation of Software Bill of Materials (BoM) artifacts. The BoM

describes the components and licenses in a product. It is used to communicate

component information throughout the software supply chain. Therefore this thesis

focuses on developing a solution to automate the generation and tracking of such

BoM artifacts.

iii

Contents

 ... 1

1.1 Motivation ... 1

1.2 Bill of Materials (BoM) .. 4

1.3 Thesis Structure .. 5

2 The Product Model ... 6

2.1 Introduction ... 6

2.2 Structure of the product model .. 7

3 Introduction to Software Package Data Exchange (SPDX) .. 9

3.1 Introduction ... 9

3.2 Types of Usage .. 10

3.2.1 License Identifier .. 10

3.2.2 License List ... 10

3.2.3 Documents ... 11

3.3 Structure of SPDX Documents .. 11

3.3.1 Formats .. 11

3.3.2 Contents .. 12

3.4 SPDX Tools... 13

4 Requirements .. 14

4.1 RQ1: SPDX representation ... 14

4.2 RQ2: Human readable report .. 14

4.3 RQ3: Comparison of BoM artifacts .. 15

4.4 RQ4: Can be used in a continuous integration / continuous deployment pipeline 15

5 Implementation ... 16

5.1 Architecture and Design.. 16

5.2 BoM Creator ... 17

5.3 SPDX Creator ... 18

5.4 Product Converter ... 18

5.4.1 Document Creation Information ... 19

5.4.2 Package Information ... 21

5.4.3 License Information .. 23

iv

5.4.4 Relationships ... 23

6 Evaluation ... 24

6.1 Check RQ1: SPDX representation .. 24

6.2 Check RQ2: Human readable report ... 24

6.3 Check RQ3: Comparison of BoM artifacts ... 25

6.4 Check RQ4: Can be used in a continuous integration / continuous deployment pipeline

 25

7 Conclusion ... 26

7.1 Results ... 26

7.2 Improvements ... 26

Appendix A:... 27

References .. 28

1

1 Introduction

1.1 Motivation

Free/Libre and Open Source Software (FLOSS) has risen in importance over the

years. The general image of FLOSS shifted from being a hindrance to the software

industry, by destroying existing revenue models, to being a way of saving

development costs and creating new business models. In 1998, the Open Source

Initiative (OSI) was founded by Eric Raymond and Bruce Perens. As a non-profit

organization it advocates for the benefits of FLOSS ("History of the OSI | Open

Source Initiative," October 18). Due to the rise of importance and the significant

difference in marketing strategies, open source was at first regarded as a threat to the

classic commercial software vendors. In 2001, a Microsoft executive stated: „Open

Source is an intellectual property destroyer. I can’t imagine something that could be

worse than this for the software business and the intellectual-property business.”.

Eventually, Microsoft changed its mind. In 2018 they even acquired GitHub, the

biggest platform to publish open source code, for US$7.5 billion. Microsoft is not the

only major software company involved with FLOSS. Others like Google, IBM and

Oracle are also heavily invested in open source. For instance, all of them pay US$500

thousand annually for a platinum membership to the Linux Foundation, earning them

a seat at the board of directors.

 The rising value of FLOSS is not only seen in big corporate entities. In general the

additions to open source projects, the total project size of open and the total amount

of open source projects are all growing at an exponential rate (Deshpande & Riehle,

2008). Open source software isn’t only growing steadily, but it is also used in a wide

range of diverse applications. Some examples are Linux and most of its Distributions,

which offer an alternative to proprietary operating systems, the Apache HTTP Server,

which is estimated to be the most used web server over the whole internet, user

applications like Mozilla Firefox and OpenOffice and interpreters/compilers like

Python and the GNU Compiler Collection. All of them are successful open source

applications that are used by millions of users including businesses. Established

revenue models got shaken up by the success of the open source business model.

2

The rise of open source can be contributed to multiple advantages it offers. Enterprises

extend the range of their product by giving the public access, which consequently

leads to gaining access to a broader pool of users. Coupled with the open availability

of the source code, they can function as co-developers. Eric S. Raymond outlines his

opinion about FLOSS in the essay “The Cathedral & the Bazaar”. He uses the

metaphor of a bazaar to describe the development model of open source. In his

opinion, the open availability of source code can help to create “co-developers” out

of the user base. This “bazaar style” can lead to a more community-driven dynamic

software development, which is distinguished by faster diagnosis of bugs and

vulnerabilities, creating new features, suggesting fixes and improving the code

(Raymond, 1999). A EU commissioned report supports his opinions by declaring that

open source helps to reduce project failure and lower the cost of code maintenance

(European Commission, 2017).

One of the biggest benefits of open source is the possibility of reusing entire existing

open source components to construct a new software project. Abstaining from writing

a component from scratch, enables developers to integrate functionality more quickly,

while reducing the cost by saving time (Haefliger, Krogh, & Spaeth, 2008). Besides

cost savings, reuse improves software quality and maintainability, by relying on

proven components (Frakes & Kang, 2005). The already existing components can

offer the aforementioned advantages with whom own solutions often cannot compete.

Carlo Daffara, a researcher in the field of IT economics, who contributes to research

projects by the European Commission, estimates the direct savings of the utilization

of open source software for the European economy to be around EUR114billion per

year. Furthermore, he rates that about 35 percent of the used software in the past five

years was derived from FLOSS, making open source “[…] not a marginal contribution

to the European economy” (European Commission, 2017). In today’s commercial

world the reuse of components is so prevalent that many software companies would

not exist without it.

On the other side, there are new challenges to face with the reuse of FLOSS

components. It is crucial for a developer to overview all the different code components

he uses in his software projects, whether it is for rebuilding a specific version of the

software, efficient detection of known vulnerabilities or to uncover any license

inconsistencies.

 When a new vulnerability in a software component gets reported it is important to

immediately identify and resolve the issue before hackers can abuse it. Software

products could always have exploits and projects using these products make

themselves vulnerable as well. One of many examples became known in 2014, where

a bug was found in the OpenSSL library used by many online services, applications

and even operating systems. Confidential data like passwords could be extracted from

these software products. The bug was named Heartbleed.

Most importantly open source software cannot exist without a license. Due to

copyright law, any creative work with no license only grants the exclusive rights to

the creator. As long as a software product does not have a license, nobody is allowed

to modify, use or even copy it. In turn this means that every open source product must

have a license to grant third parties certain rights. Every software publisher could

create their own specific license for their product, but this is uncommon in open

source. This would introduce legal complexities the common software developer does

3

not want to deal with, which has the consequence that this particular software would

rarely get used, diminishing the positive factors of open source. Instead, there is a

certain amount of standard open source licenses that are commonly used. The Open

Source Initiative has only approved around 90 open source licenses. OSI reviewed

these licenses and they comply with the Open Source Definition, which allows

software to be freely used, modified, and shared ("Licenses & Standards | Open

Source Initiative," n.d.b). Consequently, the effect of standardizing the licensing can

be seen in big software projects, that reuse a lot of components, as they do not have a

huge number of unique licenses. Nevertheless, not all open source licenses are

compatible with each other. For example, the MIT License grants the user the right of

commercially distributing the source code without disclosing their own project as long

as they add a license and copyright notice. Whereas the GNU General Public License

v3.0 (GNU GPLv3) requires the licensee to publish their software under GNU GPLv3

as well. This means no project licensed under the MIT License can use GNU GPLv3

software components as the GPL is more restrictive and must get propagated

upstream. When reusing any open source component, one must comply with the terms

of a license, which means that a project made up of multiple components must be

checked for their compatibility to guarantee license compliance.

The Product Model is a tool developed at the professorship for open source software

at the Friedrich-Alexander University Erlangen-Nürnberg. The eponymous data

model, which the tool creates, displays the license and component information of an

analyzed software product. At the moment it obtains the component architecture of a

software project from build scripts and source files. By creating a generic model, it

enables developers to get a greater understanding of the component architecture and

it is possible to apply algorithms and other processes to the model or parts of its data.

Common tools would be ones that check for license compliance, detect any non-

compatible licenses or check for known vulnerabilities under the components.

However, this thesis focuses on another use case the creation of an artifact that is

called the Software Bill of Materials.

4

1.2 Bill of Materials (BoM)

Traditionally the BoM is used in manufacturing, it specifies how a main product is

built up from subcomponents. These components can be any kind of parts, materials

or assemblies that again can have their own BoM. Out of these relationships a tree

data structure can be formed down to the leaves, which are components that don’t

have a BoM and thus have no relevant subcomponents. When the BoM is well-kept,

it helps companies establish accurate records of the used components. It is helping to

rebuild products, because it is easier to estimate material costs, manage the inventory

and purchase the essential parts. They can be found in different parts of a business,

throughout the supply chain in design, engineering and production departments.

Different kinds of BoMs exist that are partly unique to specific business sectors and

they are all differently designed, depending on the topic. As the Manufacturing BoM

focuses on which assemblies, parts and materials are needed, the Engineering BoM

specifies technical details of the design and the Sales BoM interprets all components

as sale items.

 Analogous a Software BoM can be designed to keep track of all the software

components used in a software project. The Software BoM is structured similarly to a

regular BoM, inasmuch a software product has root components which itself can have

subcomponents and so on. As the amount and size of open source projects are

continuously growing (Deshpande & Riehle, 2008) and on average around 30% of

added functionality in FLOSS projects is reused code (Sojer & Henkel, 2010), it is

important to have an overview of all these components. It is not solely interesting for

parties directly involved with the project but the board of directors, the legal team and

potential acquirers or investors want precise information about the product structure

as well. The Software BoM can not only be used to battle the above-named problems

of license compliance and component security vulnerabilities but also to ease the

communication between parties in the software supply chain. For example, as

Commercial software products are reusing FLOSS components too, the purchasers

are also interested in shedding light on potential licensing deficiencies. Though buyers

may have potential preferences to how the BoM is structured and which information

is included, this would force suppliers to create specific BoMs for each request.

To facilitate the communication process and get rid of redundant work a standard for

BoMs is necessary. A standard not only communicates information in a precise and

uniform manner, but it also allows another processes and tool to be built upon. Which

is helpful to reduce the initial workload for developers to create a BoM as they don’t

need to create their own model and can utilize existing supporting software. This

thesis will take a closer look at the Software Package Data Exchange (SPDX)

standard. SPDX may be the most known standard to communicate Software BoM

information.

Since the focus of this paper lies on the Software BoM, from now on it will be solely

referred to as BoM.

5

1.3 Thesis Structure

This Thesis focuses on the automatic generation and tracking of BoM artifacts. The

goal is to create BoM out of the data extracted by the Product Model tool

At first, the basic structure of the Product model tool will get explained in the 2nd

chapter.

Because the BoM artifacts are created as SPDX files, the 3rd chapter is an introduction

to the SPDX standard.

The 4th chapter lists all necessary requirements the thesis needs to fulfill.

In the 5th chapter implementation details are discussed to clarify how the product

model helps in generating SPDX files.

If the requirements of this thesis got fulfilled will be handled in the 6th chapter.

At the end, the 7th chapter gives a conclusion of the whole thesis and suggests some

improvements.

6

2 The Product Model

The generation of the BoM is based on the Product Model tool. It was created at the

Professorship for Open Source Software at the Friedrich-Alexander University

Erlangen-Nürnberg, to present the component architecture of software projects. Thus,

it is a collective project of the research group. Another thesis was already based on

this tool. Dennis Scheffer developed the maven crawler that fills the data model with

information. In his master thesis can be found more detailed information, especially

about the design and functioning of the maven-based crawler (2018). In this chapter I

will give a brief introduction to the tool and its data model structure. The exact crawler

implementation is not relevant to handle the model, because it does not matter which

kind of crawler is used to fill it with information.

2.1 Introduction

The Product Model received its name from its goal, which is creating a generic

serializable component model out of a software product. The definitions of software

component and component model which are used in this thesis got specified from

Councill and Heineman (2001) and shall be as follows:

“A software component is a software element that conforms to a

component model and can be independently deployed and

composed without modification according to a composition

standard.”

“A component model defines specific interaction and composition

standard. A component model implementation is the dedicated set

of executable software elements required to support the execution

of components that conform to the model.”

Not only the tool is called the Product model, but the created component model also

bears the same name. The project contains all other supportive processes that fill or

7

process the data model. Whereas, the component model is a representation of the

extracted data, resulting from analyzing software artifacts. This generic and

serializable model can be used to build other tools or processes upon it (e.g. license

compliance tools, vulnerability checks).The Product model is intended to be

expandable to analyze all kinds of software projects. Yet the current version is only

able to analyze projects created with the build tool Maven, therefore it is also limited

to Java. The model can be exported as a JSON, XML or YAML file.

2.2 Structure of the product model

The parent class of the model is the Product representing the main software project.

It is holding information like which build tool got used and the version control system

but most importantly information about all the declared licenses and the root

components of the project. A Product can have none to multiple root components,

these Components and their subcomponents make up the tree-like structure of a

component model.

A Component can have multiple dependencies, relating them to other Components, a

List of MetaData and only one Artifact.

Dependencies are Relationships, they declare how Components are interconnected

with each other. For this reason, they have a source and target Component and a

RelationshipType. Right now, the only RelationshipTypes are how the Components

got linked together, either dynamically or statically. However, as the only applicable

programming language is Java and Java doesn’t link any library references while

compiling, Components can never get statically linked together.

An Artifact is the actual file associated with a Component, so there can only be one

per Component.

8

Each Component has an arbitrary amount of MetaData. At the Moment, only the

InterfaceData and LicenseData classes implement the MetaData interface.

LicenseData’s only information is a String declaring a found license and

InterfaceData holds information about an interface, the component offers to another

component, in the InterfaceInfo class. An UML diagram displaying the associations

between the classes of the product model classes can be seen in Figure 1.

 Figure 1: Structure of the product model

9

3 Introduction to Software Package

Data Exchange (SPDX)

Since I create a SPDX artifact to communicate the BoM information, this chapter

gives an overview about the SPDX standard. Firstly, a definition of SPDX is given

then I explain what kind of different ways there are to use SPDX. The 3rd subsection

focuses on the structure of SPDX documents, since this is the type of SPDX artifact

which gets created. Lastly an overview over the tools that can be used on SPDX

artifacts is given.

3.1 Introduction

SPDX1 is one of the key pillars of the Open Compliance Program of the Linux

Foundation, it might be the most used standard to communicate software BoM

information (components, licenses and copyrights of software packages). The firsts

draft of the specification began in 2010 by the SPDX workgroup under the Linux

Foundation and in 2016 the latest iteration, version 2.1, got released. The workgroup

consists of individuals, different groups and companies which are interested in

advancing a standard that is aimed at creating complete re-usable license

information of software components. There are 3 SPDX teams, each one associated

either with the technical, business or legal responsibilities that exist. By

standardizing the way how to communicate BoM information throughout the supply

chain, they try to facilitate the exchange of license and other policy compliance.

Their vision is, for every party in the chain to declare their package information

reliably, so no information must get analyzed or documented twice. Additionally,

having a uniform format helps to communicate precisely from the software

developer to the end-user, while not forcing every party to create their own tools and

processes to deal with BoM information. These factors contribute to big companies

engaging with SPDX, including Siemens, Wind River, ARM or Intel ("About |

Software Package Data Exchange (SPDX)," n.d.a).

1 https://spdx.org/

https://spdx.org/

10

3.2 Types of Usage

There are three different mutually exclusive ways of utilizing SPDX, all of them are

made to capture license information about the software and present them in a human-

and machine-readable format ("Using SPDX | Software Package Data Exchange

(SPDX)," n.d.e).

3.2.1 License Identifier

The simplest way to use SPDX, is to add License Identifiers to the source code (e.g.

“// SPDX-License-Identifier: MIT”). Near or at the top of a file this one liner is placed,

making it easy for machines to process and parse. It is a precise and simple way to

represent FOSS license information. It is recommended to use them not as a

replacement of present copyright or license notices, but as a supplement (Linux

Foundation, 2016, pp. 100–101).

License IDs can simply just be one identifier, but if multiple licenses apply to a file

the standard offers operators to form SPDX License Expressions. The “AND”- and

“OR”-operator declare if multiple licenses must be complied with or one can decide

which license is to be used. The “WITH” operator signals that the license is associated

with an exception, declaring it differs from the standard definition, for example

granting additional permissions. Finally, the ”+”-Operator can declare that also later

versions of a license can be used ("SPDX IDs: How to use | Software Package Data

Exchange (SPDX)," n.d.c).

The REUSE initiative2, a project by the Free Software Foundation Europe,

recommends using SPDX identifiers in each license and source file ("REUSE

practices - version 2.0," 14-Dec-17).

Just in 2017 the Linux Kernel added identifiers to their files to make it easier for

compliance tools to determine the correct license.

3.2.2 License List

Another type of using the SPDX standard is to take advantage of the SPDX License

List. SPDX offers two lists, one consisting of around 300 open source licenses 3and

the other one consisting of around 30 license exceptions4. The License List can be

used to supplement the License Identifiers instead of the plain text. an immutable link

to the list can be added. The exception list can be used for License Expressions directly

linking to license exceptions. Linking to these lists, grants access to the exact

license/exception text and the full name. The License List cannot only be used to

exchange the identity of a license.

2 https://reuse.software/about/
3 https://spdx.org/licenses/
4 https://spdx.org/licenses/exceptions-index.html

https://reuse.software/about/
https://spdx.org/licenses/
https://spdx.org/licenses/exceptions-index.html

11

 Further applications are to use the list for internal references or processes and to

match found license text, per given matching guidelines and templates, to the License

List ("Using SPDX License List | Software Package Data Exchange (SPDX)," n.d.g).

Github checks if a project’s “LICENSE” file matches a list of licenses and if it does

the name and key of the corresponding license in the SPDX License List is returned

("REST API v3 | Licenses," 26-Oct-18). In companies like Siemens, MicroFocus or

Wind River the license list got adopted for internal use. Moreover, are tool companies,

which are dealing with license compliance, utilizing the license list (e.g. Black Duck,

FOSSology, Protecode, …) ("Business Team/Adoption - SPDX Wiki," 25-Jan-2016).

3.2.3 Documents

The most detailed way is the Creation of SPDX Documents, it sums up all license

information of files and packages in a project, in addition to metadata like information

about the document creator or review comments. SPDX Documents are made to

exchange license information of software projects, they are independent from their

projects and can be exchanged isolated from the actual software product. They can

carry all the necessary information a BoM needs which enables them to be a good fit

for this thesis. Therefore, a more detailed description of the SPDX Documents is

necessary ("Using SPDX Documents | Software Package Data Exchange (SPDX),"

n.d.f).

The REUSE initiative recommends to only automatically generate BoMs,

3.3 Structure of SPDX Documents

3.3.1 Formats

SPDX Documents use 2 different main formats to describe the license information

of files and their superordinate packages. The first one is the Tag/Value format it is a

simple text-based format specifically created for the documents. Through the simple

listing of packages and no nesting of their sub-packages, it is easier for human to get

a rough overview over the used packages. Whereas the RDF/XML format got

developed by the World Wide Web Consortium and therefore once converted to this

data model there are already tools available to use. However, the graph structure

makes it harder to single out components at the same time it already resembles the

“package hierarchy” ("Using SPDX Documents | Software Package Data Exchange

(SPDX)," n.d.f).

12

3.3.2 Contents

A SPDX document based on the 2.1 version

of the specification does contain different

sections. Some of those sections or the

fields/attributes which they are made up of,

are tagged as mandatory, whereas others are

not. David Wheeler, a contributor to the

specification, proposes that developers can

focus on the information that is relevant for

them, if they are dealing with SPDX

internally. To build their document without

paying much attention to the mandatory tags.

Nevertheless, a huge part of SPDX is the

exchange of package information, sometimes

even without the described software. This is

when he heavily advises to use those

mandatory tags to form a consistent standard

(Wheeler, 19-Jul-18). In a UML diagram of

the SPDX model can be seen.

Document Creation Information

This section is needed once per SPDX file, to display valuable meta-information about

the document creation. Some of the fields are the SPDX and license list version which

provide details for the compatibility for processing tools, while fields like creator

information, creation date and the creator comments add more information about the

creation context.

Package Information

Package Information is required for every package that is described in the document.

Packages can contain one or more files. The package section contains an SPDX id

field to uniquely identify the package within the document which enables the

formation of relationships and allows packages to contain other sub-packages.

Amongst other things it contains the originator, the concluded license information of

the package and the summary of all other licenses that are used within itself.

File Information

One instance required for every specific file in an included package. These files could

be any type from license information, other documents to source code or binaries. The

section resembles the package information by containing fields to represent the

identification and license information.

Snippet Information

The use of Snippet Information is optional, it is used to declare when specific parts of

a file got added from another original source. Such as when a file includes a part that

originally got created under a different license. Besides an SPDX identifier it also has

fields to denote where in the original host file the snippet information applies to.

Figure 2: SPDX document sections

v2.1 ("Using SPDX Documents |

Software Package Data Exchange

(SPDX)," n.d.f)

13

Other Licensing Information

The Other Licensing Information lists all declared or concluded licenses of the

package that cannot be found on the SPDX License List. License Information mainly

exists out of the license identifier and the extracted license text.

Relationships

The relationship between two SPDX elements get described in this section. SPDX

elements can be SPDX documents, packages or files. A relationship id is assembled

by the source and target SPDX identifier of the two elements and a relationship type

that describes how those elements are connected to each other.

Annotations

Annotations contains review information and other notable remarks about SPDX

elements. They are used to convey specific information to improve reviews of SPDX

documents and to make the communication of SPDX documents even more precise.

(Linux Foundation, 2016)

3.4 SPDX Tools

Owing to the SPDX standard, the development of share- and re-usable tools has been

facilitated. On their website they refer to community and commercial tools, which

claim to meet the SPDX specification. However, in this thesis the focus is on the tools

directly built by the workgroup. The tools offer the conversion from the Tag/Value

format to the RDF/XML format and vice-versa. Furthermore, they are offering other

formats an RDF file can be converted to, such as a spreadsheet format where

additional information can easily be added or a conversion to an html file. Other tools

allow the verification of an SPDX file, which checks if all mandatory tags are filled,

the comparison with one ore multiple other SPDX files or the merging of SPDX

documents. The source code to these tools including a java representation of model

are all available for download on github5 ("Tools | Software Package Data Exchange

(SPDX)," n.d.d).

5 https://github.com/spdx/tools

https://github.com/spdx/tools

14

4 Requirements

This chapter covers all the conditions that should be met by the implementation of

this thesis. In chapter 0, the results will be assessed using different evaluation

schemes.

4.1 RQ1: SPDX representation

The SPDX specification is a precise and standardized way to represent BoM

information. The implementation should be able to create SPDX files out of the

product model, which gets generated by a crawler.

Evaluation: When a SPDX file gets created by the SPDX tools, the file always gets

verified at the end. The requirement is fulfilled when the creation process of the SPDX

file does not return any verification errors.

4.2 RQ2: Human readable report

The files created with formats supported by the SPDX tools have a fixed design.

Additionally, they always expect certain information and will display the information

given to them. Even though the SPDX formats are called human readable, they can

get quite unwieldy with bigger projects. With a self-made file, one can decide how

and which attributes of the project are displayed.

Evaluation: Test if the implementation can generate a simple human-readable BoM

artifact.

15

4.3 RQ3: Comparison of BoM artifacts

The intention of BoM artifacts is to represent the information of a software project. If

one wanted to compare software projects, one would just need to compare their BoM.

The implementation should be able to compare two BoM artifacts, displaying the

differences between them. This way changes in changes when developing software

can be tracked.

Evaluation: Test if the implementation creates a comparison file and validate if the

created file shows component and license differences.

4.4 RQ4: Can be used in a continuous integration /

continuous deployment pipeline

Agile software development is widely used to create software these days. Therefore,

the implementation should be able to create BoM artifacts after every iterative step.

Every change relevant to the BoM artifact should be distinguished.

Evaluation: This requirement is just depending on RQ1 and RQ3. When they are

fulfilled and the implementation gets product model data, it can produce and

distinguish BoM Artifacts after every iteration.

16

5 Implementation

The next subchapters are covering the implementation details, using the class names

of the Product Model tool and the RDF model6, which is provided by the SPDX tools.

Starting with the general design and structure of the implementation then going over

to the BoMCreator. The interface which the main project interacts with to create BoM

artifacts. Afterwards we discuss BomCreator’s realization, the SpdxCreator. Lastly the

4th subchapter is about the ProductConverter and how it is transforming the product

model into the RDF model.

Two additional maven dependencies7 got added to the tool, both licensed under the

Apache License 2.0. It requires the licensee to provide attribution, but as the Product

Model tool is still only used internally, there is no need yet to include them in the

licensing ("Apache License, Version 2.0," 19-Oct-18).

5.1 Architecture and Design

The Architecture and Design chapter is not a big portion of the thesis. At the start I

thought about designing my own BoM artifact and the corresponding model.

However, the added value the SPDX standard offers, can probably not get outdone by

some self-designed solution. The SPDX tools not only offer utility functions but an

RDF model as well.

The BoMCreator is the actual interface between the main tool and the BoM

generation. A crawling process creates a Product and transmits it to the BoMCreator.

To realize the functions of the BoMCreator, the SpdxCreator uses the

ProductConverter and the SpdxUtils. The ProductConverter creates the

SpdxDocument with the help of the RDF model and SpdxUtils.

All the named classes are interacting with the SPDX tools, either by using the verify

or compare functionalities, converting an RDF file or just filling the RDF model.

6 See: Appendix A for a UML diagram of the RDF model
7 See: https://mvnrepository.com/artifact/org.spdx/spdx-tools/2.1.12 and

https://mvnrepository.com/artifact/com.fasterxml.uuid/java-uuid-generator/3.1.5

https://mvnrepository.com/artifact/org.spdx/spdx-tools/2.1.12
https://mvnrepository.com/artifact/com.fasterxml.uuid/java-uuid-generator/3.1.5

17

The standard interaction between the classes can be seen in Figure 3.

Figure 3: Interaction between the implemented classes

5.2 BoM Creator

The Product Model tool interacts with the implementation, using the BoMCreator

interface depicted in Figure 4. When starting the Product Model tool, command line

arguments are used to start the correct processes. Three of them are important for the

BoM generation. The first one, chooses between three different formats (RDF/XML,

Tag/Value, Spreadsheet) a BoM artifact can get created in. The other two are for using

the compare and verify utilities of the BoMCreator. The component model is extracted

from a software product by a crawler, it is called Product. Only with the data included

in the Product the BoMCreator can create a BoM artifact. The comparison of BoM

artifacts can be between two files or a file and a SpdxDocument. Verification can only

be used on external files, as the internally files get verified anyways after their creation

process. Depending on the command line arguments and whether a crawl process

finished, different methods of the BoMCreator get called. The BoMCreator can create

a simple and a complex BoM artifact and can create a verification and/or comparison

file.

Figure 4: Interface BoM Creator

18

5.3 SPDX Creator

The realization of the BoMCreator is the SpdxCreator, which means all the options

and information gets passed onto it. It can be instantiated with different arguments.

After a crawl run the constructor is called with a Product as an argument, which

automatically creates a SpdxDocument using the ProductConverter. Another

possibility is to call the constructor without any arguments at all. Though, then only

the tools which use external files can be used, if a SpdxDocument isn’t set

subsequently.

The SpdxCreator implements the four methods of the BoMCreator. The first one

creates a simple BoM file, this is implemented using SpdxUtils. SpdxUtils creates a

List of Strings out of a given SpdxDocument. The list then gets written into a text file.

Furthermore, SpdxCreator creates SPDX files in different formats depending on the

given format value. It always generates an RDF file as the SPDX tools are using an

RDF model internally and only transform RDF files into another format.The

comparison of two BoM aritfacts is also implemented using the help of the SPDX

tools, but the CompareSpdxDocs class had to get modified because it called

System.exit. The produced file lists the differences between the files, mainly focusing

on the packages and licenses. When verifying a SPDX file, all errors or missing

mandatory fields get written into a text file.

5.4 Product Converter

As the name implies, the ProductConverter converts a Product into a SpdxDocument.

It tries to use all the available information of the Product, but some attributes like the

InterfaceData do not have a representation in a SpdxDocument. Furthermore, its goal

is to fill all the attributes, that are tagged “mandatory” by the SPDX specification.

Even if filling those fields just means assigning values, which declare that the

necessary information could not be determined. Because this is done correctly no

verification errors occur when creating a SPDX file out of the SpdxDocument.

19

In the upcoming subchapters, all used and mandatory fields as well as all mandatory

sections of a SpdxDocument get discussed. Namely, the Document Creation

Information, the Package Information, the Relationships and Other Licensing

Information. Missing sections are the File Information, the Snippet Information and

the Annotations. The product model right now has no information about the included

files of a package, so no File Information can be added to the document. In this

context, the word snippet refers to parts of a file that are included from another source

maybe indicating different licensing as the file. Such information is not detected by

the maven crawler either. Lastly, annotations are mostly used for reviewing other

SpdxElements, but right now there is not any useful information that can be added this

way.

5.4.1 Document Creation Information

The Document Creation Information is a

fundamental section of the SpdxDocument,

it holds important metadata about the

project itself. All fields of the section, in

which version of the specification they got

added and if they are mandatory can be

seen in Figure 5.

SPDX Version: The version of the SPDX

specification the Implementation uses,

which is the latest one, version 2.1. It is

provided so tools know how to interpret the

information and to enable possible

compatibility with tools based on future

versions.

Data License: The Creative Commons CC0 1.0 license8 gets used as Data License, so

the fields in the SpdxDocument where the creator can write down any meta

information, like comments or annotations, don’t get restricted by intellectual

property. Making the reuse and sharing of documents possible.

SPDX Identifier: “SPDXRef-Document” is used to refer to the SpdxDocument as a

SpdxElement internally. For external references the SPDX Document Namespace and

a Checksum are added.

Document Name: Is just the name given by the creator. In our case it is the name of

the Product.

8 https://creativecommons.org/publicdomain/zero/1.0/legalcode

Figure 5: Document Creation

Information (Linux Foundation, n.d.)

https://creativecommons.org/publicdomain/zero/1.0/legalcode

20

SPDX Document Namespace: The Namespace is a unique identifier to refer to

SpdxElements in the document. It is composed of the Products homepage URL, the

Products name and a version 5 UUID. Ideally it would be the creator’s homepage plus

the direct path to the SPDX documents on the website, plus the UUID. The UUID is

generated out of the homepage and the name, using the Java UUID Generator9. This

is not perfect either, because software products with different versions get assigned

the same ID, but the Product does not have any kind of version information. The

Namespace is also used to initialize the SpdxDocument container class.

License List Version: Refers to the Version of the SPDX License List. The field is

filled with the latest version, version 3.2. This indicates, that when the list gets updated

it is possible for licenses in the document to be outdated. Right now, it is a bit of

unnecessary information as the found license information does not get transformed

into listed licenses yet.

Creator: Identifies the creator or creators of the document to assess the reliability of

the document’s information. In our case it is the Product Model tool and the

Professorship for Open Source.

Created: Time and date of the creation, in the Coordinated Universal Time (UTC)

format, to realize if the SPDX document is outdated.

(Linux Foundation, 2016, pp. 9–17)

9 https://mvnrepository.com/artifact/com.fasterxml.uuid/java-uuid-generator

https://mvnrepository.com/artifact/com.fasterxml.uuid/java-uuid-generator

21

5.4.2 Package Information

Every package of the analyzed

software project has a Package

Information section. Figure 6 is a

table of all the included fields of the

section. The SpdxDocument not

only includes all root packages and

their sub packages but also the

software project itself as a package.

Though the project is described by

the Product class, which describes

different information as the

Component class. This is the reason

why some fields are filled with

different information for the main

package, representing the project

than for all the other packages,

created out of the Components. The

ProductConverter ensures that no

duplicate Packages get created.

Components are considered equal if

their name and version are the same.

Package Name: Is the given name by the creator. For the main package it is the name

of the Product, whereas all other packages use the name of the Component they are

representing.

Package SPDX Identifier: “SPDXRef-“ and an ID string is used to refer to this

SpdxElement internally. For external references the document namespace is added.

The RDF model provided by the SPDX tools just uses an integer counter, starting at

one, to create the ID string.

Package Version: Is just the same as the Component’s version.

Package File Name: For all Components the file path of their Artifact gets used as the

file name. The Product does not save the file path of the project itself, however it is

not a mandatory field and can be overlooked.

Download Location: In contrary to the main package, the other packages don’t have

a specified download location. But since the field is mandatory, the field is filled with

“NOASSERTION” to signal that the tool could not determine this field.

Figure 6: Package Information (Linux

Foundation, n.d.)

22

Package Verification Code: The code gets generated by an algorithm that uses the

Secure Hash Algorithm 1 (SHA-1) on all files to identify the content of a package.

The SPDX tools can generate the code out of SpdxFiles, but Components have no

information of included files, hence it cannot be created. This field is a special case,

when Files Analyzed is set to true or omitted then the Package Verification Code is

mandatory, otherwise it can be left out. According to the specification it is only

allowed to set Files Analyzed to false when the package does not contain any file

information, which is true in our case.

Package Checksum: The Component’s Artifact information gets used to create a

Checksum with the help of the SPDX tools.

Concluded License & Declared License: The Concluded License is the license

declared by the creator and the Declared License is the license declared by the author.

The main package has always the same license as declared and concluded license. It

is either one license or a ConjunctiveLicenseSet depending on whether the Product

had one or multiple declared licenses. When LicenseData was found in a Component

the declared and concluded licenses are the same. If a Component has no LicenseData

the Concluded License inherits the license from the nearest “parent” package while

the Declared License is a SPDXNoneLicense signaling no license was found in the

package.

All Licenses Information from Package: Contains all the found license information in

the package. To get the license information from all sub packages, the

ProductConverter has to go through all Components at the start and pass on the

LicenseData from sub packages to their “parents”.

Copyright Text: Neither the Product nor the Components contain any copyright

information. As it is a mandatory field it must get filled with “NOASSERTION” to

signal that the tool could not determine the field.

(Linux Foundation, 2016, pp. 18–38)

23

5.4.3 License Information

The subchapter explains which kind of

license information gets added to the

different SpdxElements in the

SpdxDocument. In the implementation

licenses get identified just by their

extracted name, as this is the only available

information in LicenseData. Using this

identifier, the implementation ensures that

no duplicate licenses get added. Every time

license information is created, the ProductConverter already checks if the id can be

matched to a listed license. Though the chances of this happening are low and in the

normal case ExtractedLicenseInfo gets created instead. To improve upon it, one could

transform the found license name to the most similar representation in the License

List. As mentioned before, the main package has a single license information or a

ConjunctiveLicenseSet. The ConjunctiveLicenseSet is a SPDX License Expression

adding together multiple licenses. Normal packages could have multiple LicenseData

as well, so they can get a ConjunctiveLicenseSet assigned too. Often when scanning

the POM files of maven projects, no license information can be found for

dependencies. Without extracted license information, a SpdxNoneLicense is filled in

for the declared license and the concluded license inherits the closest license

information from its nearest “parent” package. The following fields are only needed

for licenses not included in the SPDX License List.

License Identifier: Unique identifier that can be used in the package and file

information. Since version 1.2 of the SPDX specification it is allowed to use strings

as identifiers. The identifier is always composed of “License-Ref-“ plus the ID. The

found name in LicenseData is used as the identifier.

Extracted Text: This field represents the found license text of a package. The product

model does not have any information besides the license name, because of that the

license name is the only information defining the license text.

5.4.4 Relationships

The relationship section includes all the

information about the relations between

SpdxElements. The only interesting field is

the Relationship. The content of this field is,

similarly as the product model, composed of

a source and a target SpdxElement identifier and a relationship type. There always

needs to be a “Describes” relationship between the SpdxDocument and at least one

SpdxPackage to organize the document. Between parent and sub packages the

relationship “Contains” is set.

Figure 7: Other Licensing

Information (Linux Foundation,

n.d.)

Figure 8: Relationship (Linux

Foundation, n.d.)

24

6 Evaluation

In chapter 4 requirements, which the implementation must fulfill, got set up. Now it

is time to check every one of them and use them evaluate the resultant implementation.

6.1 Check RQ1: SPDX representation

The first requirement was to create a valid SPDX file. During the generation of SPDX

files no verification errors occur. This indicates that the file is properly structured and

no mandatory fields are missing. Yet, the creation process can still be improved upon.

The product model tool could add new relevant information, which in turn makes it

possible for the SPDX documents to become more detailed as well. But the resultant

artifact is a satisfactory result. The main goal of this thesis was, to create a way to

automatically generate BoM artifacts out of the product model. The created SPDX

files can communicate BoM information in a standardized and precise way.

6.2 Check RQ2: Human readable report

Requirement two, was to create a human readable file. The results of the thesis can

create a simple text file. The file right now displays all the components and their

licenses in a treelike structure like the RDF format. However, for the report to add

value it is held simpler than RDF files. This makes it easier for humans to get a rough

overview of the components and their licenses. The testcases only check if a text file

was created but do not validate the content. The content was solely checked manually,

inspecting different reports by hand. The text file gets also created by using the

SpdxDocument, it might be smarter to change it to use the product model directly. This

way a BoM artifact could be created without relying on the SPDX tools.

25

6.3 Check RQ3: Comparison of BoM artifacts

The third requirement was to be able to compare BoM artifacts and display their

differences. In the implementation two external BoM files can be compared and one

external BoM file can be compared with the internal model. Similarly to RQ2, only

the creation of such a file gets tested automatically and the content of the files was

only checked by hand. However, the comparison functionality is based on the SPDX

tools and they test all their classes thoroughly.

The comparison file displays every little difference between two SPDX files, even

when just the creation time differs. Also, it displays a summary over all missing or

differing licenses and components.

6.4 Check RQ4: Can be used in a continuous

integration / continuous deployment pipeline

Ultimately, RQ4 required the implementation to be able to be integrated into a

continuous integration / continuous deployment pipeline. As mentioned in the

evaluation scheme, the fulfillment of RQ1 and RQ3 imply the fulfillment of RQ4.

After every iterative step in development, a crawl run could be started and a BoM

artifact can be created. Because of RQ3 changes of components or licenses can

detected between different versions of a product.

26

7 Conclusion

7.1 Results

The goal of this thesis was to automatically generate and track BoM artifacts. In the

introduction, the motivation for BoM artifacts was made clear. This was followed by

some basics about the structure of the Product Model tool and the SPDX specification.

The definition and evaluation of the requirements could have been defined more

detailed. The architecture and design of this thesis was kept very short, as the

reasonable decision was made to use the RDF model from the SPDX tools. While

explaining the implementation details some not so relevant fields, from the SPDX

specification could have been left out, but his way it resembles as a general guidance.

In the end, the Product Model tool got extended to now generate and track BoM

artifacts and thereby fulfills the general goals and requirements of this thesis.

7.2 Improvements

The product model itself could get extended to hold more detailed information. This

may only be possible by improving the crawler or create other processes to analyze a

project.

The fields, that get set in the ProductConverter, could get revisited. Especially the

relationships. It might be better to use another one or multiple relationships to

represent the component model. The license information found could get transformed

into identifiers of the SPDX License List. This way a full license text would become

available. The implementation cannot import SPDX files yet, but it would be a

necessary feature to make human annotations possible.

27

Appendix A:

Figure 9: RDF model (Linux Foundation, 2016)

28

References

About | Software Package Data Exchange (SPDX). (n.d.a). Retrieved from

https://spdx.org/about

Apache License, Version 2.0. (19-Oct-18). Retrieved from

https://www.apache.org/licenses/LICENSE-2.0

Business Team/Adoption - SPDX Wiki. (25-Jan-2016). Retrieved from

https://wiki.spdx.org/view/Business_Team/Adoption

Councill, W. T., & Heineman, G. T. (2001). Component-based software engineering: Putting the

pieces together. Boston, Mass.: Addison-Wesley.

Deshpande, A., & Riehle, D. (2008). The Total Growth of Open Source. Russo B., Damiani E.,
Hissam S., Lundell B., Succi G. (Eds) Open Source Development, Communities and Quality.

OSS 2008. IFIP – the International Federation for Information Processing, Vol 275, 197–

209. https://doi.org/10.1007/978-0-387-09684-1_16

European Commission. (2017). The economic and social impact of software & services on

competitiveness and innovation (SMART 2015/0015), 197–198.

Frakes, W. B., & Kang, K. (2005). Software reuse research: status and future. IEEE Transactions

on Software Engineering, 31, 529–536. https://doi.org/10.1109/TSE.2005.85

Haefliger, S., Krogh, G. von, & Spaeth, S. (2008). Code Reuse in Open Source Software.

Management Science, 54, 180–193. https://doi.org/10.1287/mnsc.1070.0748

History of the OSI | Open Source Initiative. (October 18). Retrieved from

https://opensource.org/history

Licenses & Standards | Open Source Initiative. (n.d.b). Retrieved from

https://opensource.org/licenses

Linux Foundation. (n.d.). Software Package Data Exchange(SPDX) one pager v.21.

Linux Foundation. (2016). Software Package Data Exchange(SPDX) Specification Version: 2.1.

Raymond, E. S. (1999). The cathedral and the bazaar: Musings on Linux and Open Source by

an accidental revolutionary (1. ed.). Beijing: O'Reilly.

REST API v3 | Licenses. (26-Oct-18). Retrieved from https://developer.github.com/v3/licenses/

REUSE practices - version 2.0. (14-Dec-17).

Scheffer, D. (2018). An Artifact Crawler for Determining Code Component Architectures.

Friedrich-Alexander University Erlangen-Nürnberg, Professorship for Open Source

Software.

Sojer, M., & Henkel, J. (2010). Code Reuse in Open Source Software Development:

Quantitative Evidence, Drivers, and Impediments. Journal of the Association for Information

Systems, 11, 868–901. https://doi.org/10.17705/1jais.00248

SPDX IDs: How to use | Software Package Data Exchange (SPDX). (n.d.c). Retrieved from

https://spdx.org/ids-how

Tools | Software Package Data Exchange (SPDX). (n.d.d). Retrieved from https://spdx.org/tools

29

Using SPDX | Software Package Data Exchange (SPDX). (n.d.e). Retrieved from

https://spdx.org/using-spdx

Using SPDX Documents | Software Package Data Exchange (SPDX). (n.d.f). Retrieved from

https://spdx.org/using-spdx-documents

Using SPDX License List | Software Package Data Exchange (SPDX). (n.d.g). Retrieved from

https://spdx.org/using-spdx-license-list

Wheeler, D. (19-Jul-18). david-a-wheeler/spdx-tutorial. Retrieved from

https://github.com/david-a-wheeler/spdx-tutorial#spdx-tutorial

