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Abstract

China is now playing a larger and larger role in the global economy and technology. With the 
support from the chinese government since the early 2000s, Open-Source-Software in China 
has become a field of interest to study about the current and future development of chinese IT 
industry. This thesis reveals the statistics about the Open-Source-Software growth in China 
using data gathered from a Chinese code management platform using exploratory data analy-
sis. The result indicates that there is a growing amount of commitment and participation being
devoted in this field. It also shows that around 46% of the work is done in the normal working
hours, which reveals some characteristics of the working pattern of chinese software develop-
ers. Furthermore, several approaches have been made to classify the developers into different 
groups by their working patterns, in order to draw a picture of the difference between volun-
teer work and one being paid or supported.
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1  Introduction

It may sound like a contradictory at the beginning when terms “commercial activity” and 
“open source” are mentioned at the same moment. However, research from Dirk et al. on the 
ratio of paid work to volunteer job in open source development showed that around 50% of all
contributions to the target population had been paid work. Furthermore, this number varies 
less than 10% within several other projects (Riehle, Riemer, Kolassa & Schmidt, 2014). On 
the other side, it is well known that big companies like Google, Facebook and Microsoft are 
open-sourcing many of their projects in quite many fields including cutting edges such as big 
data and machine learning. That suggests that volunteer work and commercial support are 
more and more integrated into each other in open source development.

Since the existing researches are mainly focused on software development in western coun-
tries (Europe & North America), a similar analysis is conducted in this thesis with a popula-
tion of chinese open source development, and several new approaches are proposed to classify
different working conditions.  

Goals of this thesis are:

1. To survey the status of open-source software industry in China in the past decade and 
gain knowledge about the growth in both general and individual statistics.

2. To reveal the distribution of different working patterns (paid or volunteer) of chinese 
software developers who use Gitee.com for their code management by analyzing their 
commit information, such as commit time and commit numbers. 

3. To compare the situation in China with those in western countries by comparison with 
statistics from Linux Kernel and Ohloh Projects

4. After comparison and analysis of those different working patterns, a better understand-
ing of their working condition can be gained as a result, which includes how likely a 
developer is to perform developments in different projects as a career or just out of in-
terest. 

In Section 2, a background survey is performed with statistic and literature. Section 3 de-
scribes our data for research along with term definitions. The results of data analysis are listed
in Section 4. Section 5 contains our discussion of the findings we gained. The related works 
that can be referenced are reviewed in Section 6. Section 7 is our final conclusion to this the-
sis.

Furthermore, several new approaches are made and evaluated as a supplement to the thesis in 
elaboration chapter.
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2  Current Status of Chinese Open-source Industry

In spite of the prevailing opinion that Chinese software developers take significant fewer ac-
tivities in the Open-Source community,  the spark of Open-Source was lighted in China 2 
decades ago. According to a research paper published in 2007, the Open-Source Software De-
velopment in China took its first step in 1999, where Red Flag Software Co., Ltd released red 
Flag Linux 1.0. Along with Red Flag Linux, several open-source software like Linux Virtual 
Server, Smart Boot Manager and MiniGUI were also developed and recognized by the com-
munity. (Pan & Bonk, 2007)

However, term as Open-Source remained out of the horizon of most people till the middle of 
the first decade of 21st  Century. Since 2006, large Chinese enterprises like Huawei, Alibaba 
and Baidu started to take part in the Open-Source community: Sina Corporation open-sourced 
storing system Memcachedb, cache system Ncache, Xweibo etc. Huawei Technologies Co., 
Ltd participated in the Hadoop project. Alibaba Group held the open-sourced projects such as 
TFS, TAIR and OceanBase, etc.(Liu, 2013) In the meantime, the number of open-source com-
munities had reached over 200. Many of them have a specific user group, like the Leadership 
of Open Source University Promotion Alliance (LUPA), CSDN.NET, PHP China. (Pan & 
Bonk, 2007)

According to the statistics collected from Gitee (a Github-like platform for Chinese users), 
commit numbers produced by developers started to bloom after 2006. Which is illustrated in 
the Figure 1.

Figure 1. Numbers of commits produced on Gitee by year

Following figure shows the year-to-year growth of the commit number produced on Gitee, 
which increased significantly from 12,559 to 98,221 since the year 2006. Which indicates, the
amounts of both time and manpower devoted to the open-source development in China rock-
eted since 2006, and accordingly, Chinese software developers are making more and more 
progress in this field.
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Figure 2. Year-to-year growth of commits produced on Gitee by year

After reviewing a discussion thread with the title “How is the current situation of Open-
Source-Software in China?” on Zhihu.com . Till the time of writing this paper, 84 answers 
were posted in total. Among which 29 answers have clearly stated their opinions. There are 14
answers approving of the progress made by Chinese companies, 12 answers assessing nega-
tively about the contribution from Chinese companies, while 3 answers stand neutral ("How is
the current situation of Open-Source-Software in China?", 2018). 

Although the comments of ordinary developers conveyed both positive and negative opinions 
about the contribution and purposes of those enterprises, these actions of reaching out to 
Open-Source marked the turning point of how Open-Source being accepted and recognized in 
China. Thus, the year 2006 has been selected as the starting point for the data of study in this 
thesis.

A recent report pointed out, “in September 2016 Baidu announced that it would license ma-
chine learning platform PaddlePaddle under Apache, an open source license (Moore, 2018).  
In December 2014 China’s Ministry of Industry and Information Technology declared its sup-
port for OpenStack for state-owned enterprises. Not long after, Tencent embraced the Open 
Daylight open source software project’s software-defined network, instead of developing its 
own proprietary solution. Today, Alibaba, Baidu, China Mobile and Tencent are all silver 
members of the Open Daylight Foundation. Taken together, these developments suggest an 
ongoing shift in how China thinks about software and how its companies position themselves 
with regard to global trends” (Keith Bergelt, 2018).

In summary, there are reasons to believe that Chinese software developers, both working in 
companies and programming in their free time, are playing more and more critical role in the 
global open-source community.
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3  Researched Data

3.1  Term Definitions

Gitee is a Github-like code management platform mainly serving the Chinese software devel-
opers. A large number of Chinese software developers manage their projects on Gitee for rea-
sons such as language, network speed, stability and usage habit ("Feature comparison between
Gitee and GitHub", 2018).

Following definitions are used throughout this thesis:

• A developer is a person who devotes himself to open-source software development.

• A user is a developer who uses Gitee as his code management platform.

• A committer is a user who uploads his change of code to Gitee.

• An author is the original creator of a certain piece of code.

• An active project is a repository that has more than one commit (initial commit) till the
time when data is collected.

• An active committer is a committer who has committed more than one commit till the 
time when data is collected.

We introduce the following relations between a developer, a use and a committer to make 
these terms intuitive and simplified:

• Different different developers are represented by different users according to the regis-
tration rules of Gitee, however different users can be one developer.

• Correspondingly, different users will not be identified as the same committer. One 
user can show several identities of committers depends on his working environment, in
detail, where and on which computer he works.

The standard working hour is defined using the same term in the western case study:

• Normal working hour for a specific developer is the time from 9 am to 5 pm in his lo-
cal time zone, from Monday to Friday

• Ordinary spare time is the rest time out of one’s normal working time span

Although there is no regulation from Chinese Government about the exact working hour for 
software developers and it varies from company to company (Zhang, 2018), which somehow 
leads to a further problem in this research later, most of the Chinese enterprises share the simi-
lar working hour system with western enterprises due to the international cooperation and or-
ganization. 

Furthermore, legislation in China also agrees with westerns, according to the Article 36 of 
Labour Law of the PRC, “ The State shall practice a working hour system wherein laborers 
shall work for no more than eight hours a day and no more than 44 hours a week on the aver-
age” (Labour Law of the People’s Republic of China, 1995).  
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3.2  Data Sources

Different from the original study about the western countries conducted by Riehle et al., data 
sources such as public configuration management data found at Kernel.org and a 2008 snap-
shot of the Ohloh open source project database are not introduced in this thesis. The reason 
that altered data sources are needed is that the result in the original study shows that software 
developers which located in time zone from UTC +2:00 to UTC +10:00 (Chinese software de-
velopers are mainly located in UTC +8:00 time zone) showed significantly less participation 
in these two open-source projects (Riehle, Riemer, Kolassa & Schmidt, 2014). Furthermore, 
most developers are working in North America, Western and Northern Europe according to a 
research on the Geography of Open Source Software through Github (Takhteyev & 
Hilts,2010).

Factors such as language gap, culture difference along with the Internet censorship in China 
lead to this situation (Protalinski, 2018).  There is a variety of software developments systems 
being created and used in China including coding.net, csdn.net, Gitee.com, etc. Many large 
software companies also have their git-based platform. To focus on the behavior of Chinese 
software developers and learn some facts about the working patterns specific to China, all the 
data used in this thesis are collected from Gitee.

Gitee is a product of OS-China forum, which can be considered the first group of pioneers of 
open-source community in China (Liu,2013), it currently holds around 2,000,000 projects ac-
cording to the introduction of the website, which is a quite large base number for data collec-
tion ("Feature comparison between Gitee and GitHub", 2018). As a Git-based platform, it also
provides us with a similar API system compare to Github, through which we can quickly 
gather the information by a crawler. Therefore Gitee is considered as an available data source 
for this thesis.

3.3  Data Quality and Quantity

3.3.1  Active and Inactive Projects

At the end of the data collection phase, we managed to identify 622,186 repositories with their
project names and owner information out of 2,000,000 repositories that are claimed to be 
stored on Gitee. The Web API Crawler managed to retrieve data from 210,000 repositories. 
The unreachable (private) projects, inactive projects caused the reduction of repository num-
bers. Even though the repository numbers have been cut to one-tenth of the original, there are 
still some inactive projects left in the final data set, which will be ignored in the following 
processing. Together with the ranking function of the Gitee search engine, it is safe to con-
sider our dataset containing all the active projects and is representative.139,197 projects are fi-
nally left for analysis after cleaning of the inactive projects.

3.3.2  Time Zones

Gitee system logs every activity including commits overseas in the form of the time zone of 
where its server is located, that is UTC +8:00. In our case, differences caused by time zones 
do not make the data more complicated in comparison to the original research, since the Chi-
nese Government legislated that all the provinces use “Peking Time” (UTC +8:00) as standard

9



time (Guo,2001). However, due to a vast territory, the working time may still vary in different
longitudes. People who live in the east part of China may start their work 1 hour earlier than 
those living in the Qinghai-Tibet Plateau or Xinjiang Desert. According to a research on the 
geographical distribution of IT industry production in China, more than 70% of IT industry 
production is generated near the east coast of the Chinese mainland (Song & Zhang,2015). It 
is evident that more than 90% of the IT industry production is generated around the longitude 
of Peking (showed with red line) from the picture. 

Figure 3.  Geographical distribution of IT industry production (Song & Zhang,2015)

Meanwhile, Gitee is designed to serve Chinese software developers mainly, thus we consider 
all commits produced by overseas users or working when traveling as noises to our data, those
noise data are presented in the form of a time zone shift compare to the representative data. To
recognize and suppress the influence of these abnormal data, we sorted every committer by 
the percentage of his work which is made during a particular time window. Here we choose 
from 0:00 to 6:00 UTC +8:00, because not only it is over midnight in China, but also the cor-
responding local times are around from 18:00 to 0:00 in Europe and about from 12:00 to 
18:00 in the United States. Those time periods are peak hours of committing in western coun-
tries (Riehle, Riemer, Kolassa & Schmidt, 2014). Therefore, if the commit numbers of a com-
mitter in this period exceeds 50% of his total commits, his data will not be counted in the later
analysis. 

In the meantime, several other nearby time windows are also used to classify the abnormal 
data, and it does not show an enormous difference. Finally, 89,887 committers are erased 
from the data set, which is about 22.4% of the original data set.
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3.3.3  Unlinked Identities

During calculation of the total user number, another problem has been raised when the data is 
initially processed and sorted:

Gitee system logs the committer information not based on their user account information, but 
the Single Sign-On token along with the name or email address they passed to the server.

That leads to a large number of committer identities which not sufficiently linked with a spe-
cific user account. In another word, one user may show as different committers depending on 
where, which computer or even which computer account he used to make a specific commit. 
All these committer identities will be linked to his user account only when he always used the 
same name or email address by generating SSO tokens. The following picture shows how it 
appears in the data when a committer identity is linked or unlinked to a user account.

Figure 4. Difference between linked and unlinked identities

The solution to this problem is either finding the connection between unlinked identities and 
possible user accounts or considering these unlinked identities as independent samples. We do
not know which committers are actually which user in reality, yet the commit data of single 
one committer can be considered as a subset of the whole data. Besides, these subsets are also 
disjoint and complement sets because every commit can only have one committer. In the first 
stage of the data analysis in this thesis, the commit data are counted as a whole. Therefore it 
does not hurt the analysis when those unlinked committers are treated as independent samples.
Later in the elaboration chapter, some inference will be made to ensure that the feasibility still
stands. 

As a result, 73,722 committers are recorded in the final data set. It is already a sufficiently 
large number comparing to the western case study.
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4  Data Analysis

4.1  Classification Boundaries

Before we start analyzing data, a boundary to classify different working conditions (paid or 
volunteer) needs to be defined. Intuitively, we can use regular working hours from 9:00  to 
17:00 during weekdays. That means any commit generated within this time window is consid-
ered paid work. Otherwise, it is treated as a volunteer job. Someone may argue that develop-
ers like students also work in this time window. However, they are not being paid by universi-
ties or companies.  Or in another case, employed software developers can work overtime or 
have flexible working hour regulations by the company to participate in the work out of this 
time window. Which then leads to an interesting question that does someone needs to be 
physically paid to do a paid job? 

In this part of the thesis, we initially focus more on the working time adapted by individual 
software developers instead of the question if they receive a salary from specific companies or
organizations. In fact, those who don’t get any physical reward for their work in the standard 
working hours such as students, are to be considered sponsored by themselves to compensate 
the opportunity cost due to the time and effort they spend. Similarly, when employees work at
night or on the weekends, they choose to trade their free time for working progress, which is a
voluntary activity.

Therefore we use the similar classification boundary of the working time to the western case 
study (Riehle, Riemer, Kolassa & Schmidt, 2014):

• Paid work time window: from 9:00 to 18:00 local time, weekdays. Here one hour is 
added for lunch break comparing to the western case.

• Volunteer work time window: the rest time.

4.2  Overall Statistics of Paid and Volunteer Work in Open-source

In this part, every single commit is counted alone and considered independent from each 
other. Figure 5 shows several facts about the general working patterns of Chinese software de-
velopers:

• A significant percentage of commits are produced in the daytime, i.e. from 8:00 to 
19:00. No matter which day in the week.

• Notable more commits are produced on the weekdays than in the weekends.

• There is a production gap between 12:00 and 13:00 on weekdays, which is most likely 
a result of lunch breaks. However, dinner times do not have such a significant impact 
on the production.
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Figure 5. Numbers of commits produced on Gitee by hour, sampled in every 20 minutes

Figure 6. Number of commits by authors (Riehle, Riemer, Kolassa & Schmidt, 2014)

If we take a close a look at both chinese and western cases, some interesting differences also 
indicate different working habits between different cultures (figure 6). The most obvious is 
lunchtime: the impact of the lunch break on production in China is far intenser than in western
countries. It is not a secret that food and meals play an essential role in chinese culture, having
lunch together with friends or colleagues is often a way to establish and maintain one’s social 
relations (Ma,2015). As a result, it is no wonder that the curve forms a deep valley in the fig-
ure above, while it just reduces production in western countries to a limited extent.

Another interesting fact is that chinese software developers are almost equally productive in 
the morning and the afternoon. On the other hand, western software developers trend to reach 
their best in the afternoon. This is also related to the commit habits of different developers, es-
pecially when a developer is used to committing his work in a particular time of the day, like 
in afternoons. This can also be an interesting subject to study.
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Table 1 shows the overall statics about the distribution of commits produced in different time 
windows. The result reveals the fact that the production of chinese software developers is gen-
eral evenly divided into these two time windows with around 6% more in spare time window 
than paid one. 

Paid Volunteer

Commit
numbers

2,609,115 3,032,881

Percentage 46.2% 53.8%

Table 1. Numbers and percentage of work
performed during working hours

Figure 7. Percentage of work performed in 
different time windows

Meanwhile, the percentages of commits generated in working time window are:

• 45% of authors and 51.36% of committers for Linux Kernel 

• 47.3% of known committers and 55.4% of extended committers for Ohloh Projects

(Riehle, Riemer, Kolassa & Schmidt, 2014).

Here we notice that our result aligns with the statistic of authors from Linux Kernel for the 
first time.

4.3  Trends of the Distribution over Years

In the previous chapter, we have gained an overview of how many commits are generated in 
different time windows. Now we try to find out how this distribution changed over the years 
in the past decade. 

Firstly, we approached from the perspective of the total numbers. The statistic contains quite 
many fluctuations, and it is hard to find any regular patterns such as seasonal upsurge or 
downturn year by year. However, we managed to distinguish several patterns which do follow
a certain consistency. The figure below reveals the total number of commit made over 
months, where we marked the date of Chinese New Year and Chinese National Day:
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1. October 1st  is Chinese National Day and always followed with a statutory holiday of 7
days. Blue dotted line highlight the sharp decrease in total numbers during Octobers 
from 2010 to 2017. It needs to be noticed that the number not only collapse in October
but also rocket to peaks shortly before October. This phenomenon did not appear just 
in the year 2015 and 2017, yet the numbers in end of the September and October still 
make a significant contrast, which suggests that many software developers were trying
to work more or even work overtime before the holiday and make up for the shutdown
in holidays.

2. Another festival with such importance or even more in China is the Spring Festival, 
i.e., Chinese New Year. In contrast to the western celebrations, traditional Chinese fes-
tivals are all counted in the lunar month, which causes the date of the festivals shifts 
back and forth when using Gregorian Date. After looking up the exact date of the Chi-
nese Spring Festival (Appendix B), several patterns similar to 1. can be found in the 
curve. Red dotted line mark these patterns.

Figure 8. Growth of commits on Gitee monthly (sampled with double week time span)

Figure 9. Regression results of growth of commits on Gitee monthly
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To make a better presentation and visualization, we used support vector regression(SVR) with
a kernel function of radial bias function together with linear regression with a polynomial 
model to fit a curve to the data, which is shown in the following figure. The results from two 
regression methods presented high similarity with each other. Following formula expresses 
the fitting result of linear regression:

Y=−3.7∗X5
+90.9∗X4

−760.5∗X3
+2991.8∗X2

−3287.2∗X−1762.1

Where Y is the percentage of commits generated in working hours, X is half month number 
since from Jan. 1st   2016. This result aligns with another research conducted by M. Godfrey et
al., which revealed that Linux kernel grew at a polynomial rate (Godfrey & Tu,2000).

Figure 10. Percentage of commits produced in working hours monthly (sampled with
double week time span)

Similar to the curve of total commit numbers, fluctuations make it hard to find any regular 
patterns at first glance. But we found some consistency when we focus on the term of tradi-
tional or statutory holidays. As can be read from the figure, in the 12-year period we surveyed,
the percentage of commits made in working hours endured a sharp drop during 

• 9 National Day holidays, which are from the year 2010 to 2017 and 2006. 

• 8 Spring Festival holidays, which are from the year 2011 to 2016, 2006 and 2009. 

Furthermore, there are no decreases detected near 3 out of 24 national holidays. 

Using the same procedure as before, an analysis of the percentage of commits produced in 
working hours, which represents the amount of the paid work among the entire contribution 
made over the years.  Figure 11 reveals a long-term increase in the percentage of commits 
produced during the working hours from 2006 to 2017. Similarly, support vector regression 
and linear regression are used here for better representation. Here we use the result of linear 
regression because of its simplicity.
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Y=0.00028∗X3
−0.0017∗X2

+0.0064∗X+0.31

Where Y is the percentage of commits produced in the working hours and X is half month 
number since Jan. 1st  2016. The original research of western countries, however, revealed 
two different development patterns of Linux Kernel and the Ohloh Projects. Statistics OF 
Linux Kernel shows an increasing proportion of effort devoted in the working hours while 
those of the Ohloh Projects remained constant between the year 2006 and 2012 (Riehle, 
Riemer, Kolassa & Schmidt, 2014). 

Figure 11. Regression results of percentage of commits produced in working hours

After comparison, we can find many shared characteristics between our statistics gathered 
from Gitee and the statistics of Linux Kernel. The percentage of both datasets rose from about
40% to 60% during the middle of the researched period. The difference between lies on both 
time and amplitude axis, the number of chinese software developers swung in a broader range.
This process also took more extended time, 12 years in China and 6 years for Linux Kernel. 
From the trend we predict that the growth of commits generated in working hours will keep 
rising before converge after several years. 
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Figure 12.Data and trend line for percentage of commits made by authors to the Linux
Kernel during working time for a given week (Riehle, Riemer, Kolassa & Schmidt, 2014)

The analysis on total commit numbers and percentage of commits produced in working hours 
deliverers us several insights and facts about chinese open-source software industry:

1. Exact time interval intensively influences both the amount and condition (paid or vol-
unteer) of production in the year, such as holidays. Which helps to prove that the 
dataset used for the study are mainly composed of chinese software developers after 
purge out the abnormal data from other time zones or working while traveling.  

2. Both the amount and condition show more similarity to Linux Kernel than the Ohloh 
Projects. With more and more participation and commercial support of IT companies 
and government in China, it is not surprising for chinese open-source software indus-
try to find itself on the path parallel to the development of Linux Kernel. It is also im-
portant to notice that, this process took far longer in chinese open-source communities.

3. Despite the longer researched period than that of Linux Kernel, the percentage of com-
mits produced in working hours has not converge yet till year 2018, showing a ongo-
ing commercialization of chinese open-source software industry.  
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4.4  Developer Classification

After analyzing how the statistics of the whole industry changed over time, we focus on the 
individual developers in this chapter to find out some detailed facts. In the beginning, we cal-
culated the percentage of commits produced in working hours for each developer and stacked 
the numbers together. The result is showed in Figure below, and it needs to be noticed that the
Y-axis is displayed in log-scale. Here we also cite the result of research on western countries 
for better comparison.

Figure 13. Numbers of committers with a given percentage of paid work on Gitee during
years 2006-2017
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Figure 14. Numbers of committers with a given average percentage of paid work for the
years 2006-2017 for the Linux Kernel  (Riehle, Riemer, Kolassa & Schmidt, 2014)

If we pay more attention to both ends of the curve, we can see that the number of developers 
which work in extreme patterns dominates the distribution with 8.5% only commit in the 
working hours and 5.6% never do so. Detailed statistics are listed in Table 2. As following the
classification boundaries in the western case research, we categorize developers who made 
their 95% of commits in the working hours as paid or employed developers and those with 5%
or less commits as the volunteer or amateur developers.

Table 2. Distribution of volunteer to paid developers over years 2006-2017

Developer Types Volunteer Mixed Paid 

Perc. of Commits in 
Working Hours

0% 0.01%-5% 5.01%-94.99% 95%-99.99% 100%

Perc. of Developers 5.6% 1.0% 82.2% 1.7% 8.5%

The result shows 10.2% of developers are most likely to be paid for their job, while 6.6% just 
make open-source development in their spare time. When we compare the statistics to those of
western countries, the curve matches to the data from authors of Linux Kernel and comitters 
of Ohloh Projects. Yet, the exact numbers are not likely to categorized into any of the four 
group in the research of Riehle et al.. Since we revealed in last chapter that the distribution of 
paid and volunteer work in chinese open-source development is still changing with the time, a
more precise conclusion needs to be made in the future.

Table 3. Distribution of volunteer (spare time) to paid (working time) developers, 
binned, over years (Riehle, Riemer, Kolassa & Schmidt, 2014)

Developer Types Volunteer Mixed Paid 

Perc. of Commits in Working Hours 0% 0.01%-5% 5.01%-94.99% 95%-99.99% 100%

Perc. of 
Developer
s

Linux Kernel Author 33.06% 0.35% 43.45% 0.17% 22.98%

Ohloh Projects Extended 
Committers

7.04% 0.4% 74.58% 0.41% 17.56%

But there still exists several differences between individual developers like the total commit 
number of developers. Figure 15 shows how this affects the distribution we calculated before: 
the two extreme cases no longer dominate the distribution when a population of committers 
with more than 100 commits is selected, which is also intuitive that the more one developer 
works, the more likely he is to not only commit in the working hours but also outside them. 
The more and longer a developer works the more his working are affected by random inci-
dents, causing his data to show more diversity. In the later elaboration chapter, several new 
methods to classify those developers in mixed patterns will be introduced.
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Figure 15. Comparison of committers with different commit amounts

4.5  Project Classification

Now we have analyzed about the confrontation between paid and volunteer development pat-
terns with the overall distribution over time and statistics of the individual developer. There is 
another dimension left where a single project is considered as one sample. Through analysis 
of how each project was developed and maintained, we can not only gain a more precise an-
swer of our research question but also use the statics as a tool to assess the health state of 
open-source projects (Riehle, Riemer, Kolassa & Schmidt, 2014).

We analyzed data from  127,365 repositories which is the same magnitude as the data quality 
researched in the western countries cases (more than 9,192 repositories). We counted the 
numbers of three different categories of developers in each project using previously defined 
boundaries that developers who make 95% of their commits or more in the working hours are 
paid developers and those making the same amount of commits in their spare time are volun-
teer developers. We finally get two almost mirrored curves with a similar distribution to previ-
ously researched distribution of individual developers showed in the figure below. Notice that 
to better display huge numbers, Y-axises are again showed in log-scale. That reveals the fact 
that both individual developers and individual projects are dominated by two extreme pat-
terns, fully worked by paid developers or completely composed of volunteer ones, while 
handful rest of the projects scattered between. 
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Figure 16. Numbers of projects with a given percentage of paid or volunteer developers 

We already know that the distribution of two development patterns changes when a popula-
tion of developers with more commits is selected, likewise it varies with the different sizes of 
projects.  Developer numbers of both extreme patterns decrease significantly and do not domi-
nate anymore when only repositories with more than 1,000 commits are inspected, which is 
the result of more developers working in mixed pattern.  

This consistency of the distribution and how it changes throughout the analysis of individual 
developer and project indicates an intuitive casual relation: A project with larger size tends to 
be accomplished and maintained by developers with more commits. Meanwhile they trend to 
work both inside and outside the working hours when they devote more time into develop-
ment. 
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Figure 17. Numbers of projects with a given percentage of developers working in mix
pattern

We managed to identify several projects in both extreme patterns after taking an in-depth look
at the data. The top 4 projects developed only by paid developers are Buession, Hetao, 
VideO_transmission and iLOG3. Some of the statistics are listed in Table 4. Easy to notice 
that most of these projects are developed and maintained by one or two developers. Two out 
of four projects are even created by the same developer.

Table 4. Statistics about several fully paid projects

Projects Name Contributors Commit Numbers Total Commit Numbers

Buession Yong.teng 213 213

Hetao calvinwilliams 173 173

VideO_transmission
SWFighter 84

130Altium 46

iLOG3 calvinwilliams 96 96

As an echo of the western countries case research, here we also manually inspected the de-
tailed commit information from these four projects. We found that:

• The developer with name calvinwilliams often used commit name like “Update to V 
1.0” and put a large chunk of code in it. In the project Hetao, he made all the commits 
in this way. 

24

mailto:calvinwilliams.c@gmail.com
https://gitee.com/sdfsd65465566545
https://gitee.com/SWFighter
mailto:calvinwilliams.c@gmail.com


• In the project named VideO_transmission, two contributors used no consistent naming
rules for commit name. However, chunks of code are still frequently found in both 
their commits.

• By project named Buession, its contributor used to commit quite many times in one 
day using precisely same commit name such as “fix bug”. The code segments in these 
commits were usually several lines of code and dedicated to the single objective.

On the other hand, there are not many world-wide popular open-source projects held by chi-
nese developers, most of which are run on the Github for global collaboration. But Gitee.com 
has its ranking and recommendation system which evaluates the project according to the num-
ber of the followers, the number of the stars it gets from the developers, etc. Here we use the 
most starred project recommendation to pick the projects with most influence and popularity 
(Each star means that the project has been added to a users favorites).

Table 5. Statistics of 6 top ranking projects according to Gitee

Project Name Contributor 
Number

Watcher 
Number

Star Number Fork Number Total 
Commits

Perc. of Paid 
Developers

Zheng 13 5,900 12,300 5,700 1228 16.7%

SpringBoot 3 3,500 9,500 3,800 254 0%

iBase4J 10 2,800 6,500 3,300 1223 33%

JFinal 5 3,000 6,300 3,200 242 0%

MCMS 22 2,200 4,300 2,200 476 40%

OSChina 
Andorid

9 1,500 4,700 3,600 1006 16.7%

These projects are all watched and forked by quite many developers, all of them have been 
donated from 20 to 123 times. Although the exact donation number is private data, differences
can still be identified when the four previously surveyed projects worked by paid developers 
had received no donate at all and were significantly out-numbered in every aspect. Thus, there
are reasons to believe that those two kinds of projects are developed in two different ways:

• Fully paid projects usually worked by a small group of developers who only commit in
the working hours. They use simple or sometimes same commit information to de-
scribe their work and commit mostly with chunks of code.

• Projects with grander scale or popularity show more diversity on the distribution of 
different kinds of developers. However, in this region, it is unusual to find a fully paid 
project or project with more than half of its developers being paid.  

Compare to the situation in western countries. We again found many common characteristics, 
which is not a surprise after the consistency between revealed in previous chapters.
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5  Discussion of Findings

In this thesis, we mainly used data gathered from Gitee.com which is a popular code manage-
ment platform in China. Since Gitee is developed by one of the earliest open-source commu-
nities in China (Liu,2013) and provides us with a significant amount of data (around 139,197 
projects developed and maintained by approximately 73,722 developers), any bias that exits in
this dataset will also occur in other data sources. It is reasonable to believe that our data are 
sufficient for this research. 

The data we collected from Gitee contained both author and committer information, however, 
during the initial part of the data analysis we found that in our case, these two parts of data are
always identical, which may be a result of Gitee’s log mechanism. Thus, we only analyzed 
committer data in this thesis.

In the next phase, we worked on the possible bias caused by different time zones. There is 
only one standard time (Peking Time) is used in China since 1949 (Guo,2001). We surveyed 
the provinces where software industry cluster, and the results indicate more than 90% of chi-
nese software industry located around the UTC +8:00 time zone (Peking Time). Therefore, bi-
ases caused by people living in different longitude are not to be expected in this thesis. In ad-
dition, all the committers who made 50% or more of their commits from 0:00 to 6:00 in chi-
nese local time are treated as noise and not counted in later analysis anymore. Since this time 
window is usual sleep time in China but highly productive hours in western countries (Riehle, 
Riemer, Kolassa & Schmidt, 2014), committers with dominating the number of commits in 
this time window are suggested to be overseas or traveling developers. The effect of this step 
is confirmed through later analysis where we found a sharp decrease of both total numbers of 
commits and commits during working hours near every national holiday in China.

We chose to start our analysis from the year 2006 because statistic and literature indicate that 
chinese open-source communities and developers had been significantly more active since 
2006. After manual inspection of the data, many of the projects on Gitee which can be traced 
back before 2006 are actually not created by chinese developers. They are mostly old Github 
projects which were cloned to Gitee with their original information being kept. As a matter of 
fact, there are still many foreign projects cloned by chinese developers after 2006. Our solu-
tion to this bias are time zone examination for overall data and manual inspection when fo-
cused on a single project. On the other hand, the new data after the time we run data collection
(February 2018) is not be found in our dataset. However, we stop analyzing data with a time-
stamp that later than December 31st  2017, in order to not disturb the annual analysis. The re-
sult of monthly total commit number analysis shows an identical trend to Linux Kernel, which
indicates that the time span we chose is suitable.

    As for the classification boundaries for paid and volunteer work, we followed the same def-
inition used in the western countries case research for better result comparison, but we ex-
tended it for 1 hour to compensate the lunch break. As discussed in that paper (Riehle, 
Riemer, Kolassa & Schmidt, 2014), we also consider this boundaries conservative because 
overtime working is far more usual in China than in western countries (Wang, 2016; Zheng & 
Lu, 2006).
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6  Related Work

This thesis is inspired by research on the distribution of paid and volunteer work in open-
source by Riehle et al.. Data form Linux Kernel and Ohloh Projects are used in the research, 
the results revealed, “about 50% of all contributions to projects in our sample population have
been paid work” (p.9) , and how percentage of paid developers can be used to evaluate the 
health state of an open-source project, “larger projects have healthy mixture of paid and vol-
unteer work in the 10-20% range as well” (p.9). Due to the lack of data from UTC +8:00 time 
zone, similar research with data gathered in Asia can be used to support the results or reveal 
more findings.

There are many pieces of research on both the development and market of chinese open-
source software conducted by local and foreign researchers. Keith Bergelt (2017) did a survey
about how open-source operation systems are utilized and developed in China and Japan, 
which stated limited contributions to the global open-source community in the past and the 
current changes of the situation, especially in the telecoms industry. He also mentioned about 
one of the reasons why open-source was facing hard times in China, “ However, the so-called 
‘Great Firewall of China’  essentially, a closed Internet  has clearly had a dampening effect ‒
on global collaboration between developers within China and elsewhere in the world. ” (p.46) 
Earlier in the year 2007, Pan and Bonk had pointed out that “The open-source software move-
ment is gaining increasing momentum in China. Of the limited numbers of open-source soft-
ware in China, Red Flag Linux stands out most strikingly, commanding 30 percent share of 
the Chinese software market” (p.1). They focused on the Linux and educational purpose soft-
ware to predict an increasingly growth of chinese open-source software. In contrast, it is not 
easy to find any researches that cut in from commercialization or uses data science methods. 
We have also not found any other database or projects that monitor the statistic of chinese de-
velopers’ daily work. It is obvious that this field has not gone interested for both the scholars, 
government or companies, which suggests that chinese open-source industry is currently not 
so mature compared to Europe or North America.
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7  Conclusion

This thesis is dedicated to analyze and reveal the statics and facts about commercialization in 
chinese open-source software industry. We used data gathered from chinese local code man-
agement platform Gitee and conducted similar research referring to the research focused on 
western countries by Riehle et al.. A classification boundary that a commit uploaded during 
regular working hours (from 9:00 to 18:00 local time, weekdays) are considered as paid work 
and the rest are treated as volunteer work. After surveyed around 139,197 projects with 
around  73,722 developers, from the year 2006 to 2017, we calculated that 46.2% of total 
commits are paid work. By comparing the numbers of commit generated hourly to western 
countries, we revealed the fact that most people pause their work during lunch break in China.

When we examine the data over the years, we found out that both the statistics of total commit
number and percentage of paid work in it can be fitted with polynomial functions. They both 
experienced a long-term growth since 2006. Similar to lunch breaks, national holidays also 
have an enormous impact on both statistics.

In the next phase, a more precise analysis is made on individual committers. Statistics show 
that two extreme patterns dominate the distribution in the whole dataset. However, developers
tend to work in a more mixed pattern when he produces more commits. The results are com-
pared to both Linux Kernel and Ohloh Projects and our statistics are relatively more matched 
with Linux Kernel in each aspect, which suggested that chinese open-source software industry
may share more other common characteristics with the development of Linux Kernel.

In addition, we ran an analysis on individual projects to see how they were composed of. It 
delievered an identical result of the previous study on individual developers. Projects are 
dominated by those accomplished by fully paid or volunteer developers in general, but their 
developers show more diversity when the size of the projects increases. We also took a more 
in-depth look at some typical projects with manual inspection. It appeared that these different 
kinds of projects were developed in different ways. Fully paid projects are usually in small 
scale and held by handful developers while larger projects with more popularity contained a 
percentage of paid developers under 50%. 

Since we have a relatively large dataset which contains lots of uninterested and noise data, we 
are always looking forward to finding more information from the data and eliminating bias or 
noise in the data. In the next elaboration chapter, we tried to analyze the data using machine 
learning techniques to discover new features or validate our gained results.
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8  Elaboration

8.1  Introduction

In the previous sections, we treat every single commit as one individual sample, that means 
we assume every commit is independent of each other. Even when those samples belong to 
one committer and dedicated to one projects, we would still classify them into different 
groups according to their time-stamps. It will simplify the data analysis significantly and is 
feasible when we focus on the macroscopic distributions. However, it still left a fuzzy classifi-
cation of those developers and projects who do not follow extreme patterns, more precisely, 
those contained both commits in working hours or spare time simultaneously.  Furthermore, 
the ignorance of the consistency between each commits causes massive bias when we focus 
more on the specific developer or project. Thus in this elaboration section, we are devoted to 
finding several new approaches that calculate the distribution of paid and volunteer work re-
gard with the consistency between commits.

8.2  Population, Samples and Features

First of all, it is intuitive to consider that, a single developer would maintain a specific work 
condition (paid or volunteer) in his one specific project. In chapter 3.3.2 we stated that our 
data contained many related but unlinked committer identities, due to the different email ad-
dresses they used as names of their Single-Sign-On keys. Following Bayesian Network illus-
trated the causal relations between each variable in our system.

Figure 18. Bayesian Network of variable in the data

As we know about the mechanism of Git-based code management platform, the SSO key is a 
unique signature of one user. Which means if two commits came with the same SSO key, they
must belong to one developer. Here we don’t consider the situation where one developer does 
the work and commit on an account and Git settings of others, because that is too complicated
for us in this thesis to identify. And from the assumption above, we can infer that those com-
mits with same SSO key must follow the same pattern, here to be precise, paid or volunteer. 
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Thus we treat commits with the same SSO key (committer identity) which dedicated to a spe-
cific project as one sample. And the numbers of commit produced in particular time spans are 
used as the features of this group of commits.

The original data set is also too hardware and time consuming for quick implementation and 
validation of our classification approaches. So we randomly chose data from 1,000 projects 
out of the whole 139,197 projects to form a new data set. From the previous chapters, we es-
tablished a way to classify committers and projects into three groups: fully paid, fully volun-
teer and mixed. Now we use fully paid and volunteer samples as the training set to find a 
model that classify the mixed samples into these two groups, but only more harsh. We cleaned
out every sample that contains commits in the time span from 2:00 am to 5:00 am. Besides, 
we only consider samples with more than 99% of commits in specific paid or volunteer time 
window as our training samples. We chose our training samples so strict to make sure that less
bias would be introduced as possible. Detailed statistics of our dataset are listed in the follow-
ing table.

Table 6.  Statistics of training set and data set

Previous classified groups Sample number Total commit number

Training set
Paid 3,576 19,340

Volunteer 3,366 13,717

Data set Mixed 5,366 124,789

After selection of the training and data sets, we need to define which statistics as features of 
these samples. We have the time-stamp of each commit in our training and data sets. Techni-
cally, the number of commits produced in each time span from year 2006 to 2017 depending 
on how long it is chosen, is a unique signature of a committer. However, it is going to not 
only introduce too many random factors which we are not interested like the mood of that 
committer, his family status or even the weather of that day, but also make the calculation too 
complicated to accomplish. Thus, we stack the data of one sample together according to the 
days in a week and we sampled the number once an hour. That means for each sample, there 
are 24*7 features. 

Figure 19 and 20 illustrated how the statistics of training set look like.
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Figure 19. Average statistics of training set of volunteer job

Figure 20. Average statistics of training set of paid job
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8.3  Logistic Regression Approach

To start simple with this binary classification problem, we use Logistic Regression as classifi-
cation algorithm and assume that the classification boundary is a straight line first. We used 
the open-sourced machine learning package Scikit-learn and trained a Logistic Model with 
our training set. Then we used this model to classify the data set. The results are shown in Fig-
ure 21.

Figure 21. Classification results of Logistic Regression

Results show that both committer and commit numbers are almost divided equally into two 
classes, with slightly more in paid category. Furthermore, Logistic Regression also deliver us 
the possibility of each sample to be paid or volunteer group. For example, Figure 22 shows 
two samples we randomly picked in the data set. The sample in left figure with a significantly 
high commit number on Monday from 10:00 to 13:00 and low activity on weekends, Logistic 
Regression returns a high possibility with 95.26% that it appears to be paid committer. In the 
meantime, the sample in right figure with more diversity has only 22.4% possibility to be paid
committer. The high amount of commits on early mornings and in late afternoons push it 
more to the volunteer side.

Figure 22. Statistics of a random samples
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8.4  Discussion of Findings

In this short part of elaboration chapter, we proposed a new perspective to classify our data 
into paid and volunteer groups. We believe that by calculate the commit from single commit-
ter to specific project as an entirety, a more microscopic distribution of data can be gained. 
We aimed to classify every single committer using a Logistic Regression Model trained with 
two pre-defined training sets. We composed the training sets with harsh conditions such as no 
commits should be in the regular sleeping hours to avoid possible bias. 

The result aligns with the previous ones, but this time we can tell how likely a committer with 
both commits in paid and volunteer time windows to be each specific group. It opens a new 
path to the original purpose of this thesis and leaves a broad wide space for improving the re-
sults with different machine learning algorithms and preprocessing methods.
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Appendix A Data Collection

After selection of the data source, the task of this phase of research is to retrieve data from the
Website. However, usage of the Gitee API requires necessary pieces of information as the pa-
rameter of the request. Since Gitee only provides us API via Web Services for data query 
while no public index files or databases that stores the metadata of the repositories, the names 
and owner information of all the repositories are not available at the very beginning of data 
collection. 

The path through this first maze is the search engine provided by Gitee. The search engine ac-
cepts several keywords of the search, such as:

1. Partial Name of the projects or users

2. Words used in the description of the projects including their applications or purpose.

3. Types of programming languages adopted by the projects. 

We currently have no knowledge about (1) and (2), yet there are not countless many types of 
programming languages. Also, Gitee has listed some programming languages as recom-
mended keywords. By searching with these keywords, we can get an overview of all the pub-
lic repositories, which is showed in the following picture. Moreover, the search engine auto-
matically ranks the results according to its activity level. The detailed algorithm being used 
cannot be reviewed, but it is obvious that factors like last commit date, total commit numbers 
and project size, etc. are taken into calculation from the perspective of the result sequence. 
Which also simplified the data collection because the inactive projects, e.g., projects that only 
have initial commits, will be located in the back of the queue. These inactive projects are less 
interested to us because they don’t contain representative data of the samples.

Figure A1. Searching repository information using search engine
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Like many other data science researches nowadays, the scale of the data that need to be col-
lected is often quite large. For example, Gitee returns 136,105 entries of results when keyword
‘Java’ is used. In this case, a search engine crawler has been written to log these data automat-
ically, and the result is stored in a JSON file, which is a standard format for data exchange on 
the Internet. The collection procedure itself took less than an hour and generated files of 22 
MB.

After having the repository information, the next phase is to gather corresponding data which 
including numbers of contributors, the time-stamp of the commits, etc. Which is accomplished
by another Web API crawler similar to the former one. Following graph (Figure A2) illus-
trates how these components work together. It took about two weeks to finish data collection 
in this step due to the significant larger data scale. As a result, it generated files with a total 
size of 42 GB. The collection finished in March 2018. Therefore the data generated after is 
not taken into analysis.

Figure A2. Structure of data collection programm
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Appendix B Data Cleaning and Storage

Same as the initial output of both crawlers, the JSON format is used to store the raw data gath-
ered by the crawlers. If we look into the data more thoroughly, it’s not hard to find out that it 
is organized in a graph, more precisely tree data structure. Which is illustrated in the follow-
ing figure. 

Figure B1. Data structure of stored the data

The raw data collected from the response of the web service requests sent by the crawler con-
tains a significant amount of irrelevant information to our study. To process the data both time
and memory efficiently, we need to filter out the irrelevant information and extract the desired
features.

To search in a graph, the two most common algorithms are Depth-first Searching and 
Breadth-first Searching. Here the Depth-first searching is used to achieve the balance between
time and memory efficiency. Since every single entry we searched does not contain a large 
scale of depth but a large scale in breadth, using BFS will result in a lower memory need yet 
slightly longer execution time against BFS. 

The detailed process is being carried out layer by layer, a list of keys is pre-defined and stored
for each layer which is in the form of a dictionary. The searching function runs recursively to 
reach the leaf node (a dictionary that its words are in String format). The underlying figure 
shows how the searching runs stepwise.
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Figure B2. Search sequence of stored data
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Appendix C Calender Date of Chinese New Year

Year Calender Date

2006 January 29th 

2007 February 18th 

2008 February 7th 

2009 January 26th 

2010 February 14th 

2011 February 3rd 

2012 January 23rd 

2013 February 10th 

2014 January 31st 

2015 February 19th 

2016 February 8th 

2017 January 28th 
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