Friedrich-Alexander-Universitat Erlangen-Nirnberg

Technische Fakultat, Department Informatik

DENNIS SCHEFFER
MASTER THESIS

AN ARTIFACT CRAWLER FOR
DETERMINING CODE COMPONENT
ARCHITECTURES

MAVEN-BASED CRAWLING

Submitted on 16 April 2018

Supervisors: Andreas Bauer, M.Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Professur fiir Open-Source-Software
Department Informatik, Technische Fakultét

Friedrich-Alexander-Universitat Erlangen-Niirnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Priifungsbehoérde vorgelegen hat und von
dieser als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen,
die wortlich oder sinngemaf iibernommen wurden, sind als solche gekennzeichnet.

Erlangen, 16 April 2018

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 16 April 2018

https://creativecommons.org/licenses/by/4.0/

Abstract

Since it has become very common for software projects to incorporate open source
components, it is increasingly important to analyze their dependencies to avoid
potential risks like license violations or security vulnerabilities. To determine
and solve such issues we need a representation of products regarding their com-
ponent architectures. We call such a representation a product model. In soft-
ware projects, dependencies are usually handled by build systems like Maven.
Therefore this thesis focuses on the development of a crawler application that
recognizes dependencies and corresponding metadata from Maven projects. This
information is used to build a common product model and export the model in a
machine-readable format so that the application can be integrated into existing
toolchains. The crawler forms the basis for a larger application that aims to solve
the aforementioned issues.

1

Contents

1 Introduction 1
1.1 Existingtools 2

1.2 Alternative approach 4

2 Requirements 7
2.1 FO1: Crawler based on product model 7
2.2 FO02: Partial crawling oo 7
2.3 FO03: Exportable product model 8
2.4 FO04: Maven project support, 8
2.5 FO05: Identify component relationships 8
2.6 F06: Product data version 9
2.7 QO01: Modifiability and extensibility 9
2.8 QO02: Reliability 9
2.9 Evaluation scheme for requirements 9

3 Architecture and Design 11
3.1 Component models 11
3.2 Crawlerdesigno 14
3.2.1 Maven crawler designo 17

3.2.2 Partial crawling L o000 19

3.2.3 Component Relationships 21

4 Implementation 23
4.1 Maven crawler implementation 23
4.1.1 Dependency resolution 24

4.1.2 Partial crawling implementation 30

4.2 Model export 31
4.3 Command-line interface, 32
4.3.1 Containerization with Docker 33

5 Evaluation 35
5.1 Functional requirements L. 35

1l

5.2 Non-functional requirements

5.3 Other quality considerat
6 Conclusion

Appendices

IONS . . o o

A Crawler application dependencies
B Product model export excerpt

C Bootique dependencies
D Hddiff dependencies . .
E Content of compact disc

List of Figures

References

v

40

42
42
43
44
45
46

46

48

List of Abbreviations

ADL architecture definition language
AGPL GNU Affero General Public License
API application programming interface
CLI command-line interface

EPL Eclipse Public License

GPL GNU General Public License

JVM Java Virtual Machine

LGPL GNU Lesser General Public License
NIST National Institute of Standards
OSC open source component

OSCM open source component model
OSI Open Source Initiative

OSS open source software

POM project object model

RTE run-time environment

SCM source code management

1 Introduction

In recent years the prevalence of open source software (OSS) has become unde-
niable. It is rather normality than exception for software to contain open source
components. Thus the collective interpretation of OSS has shifted from a solely
ideological movement to an economic force. Even Microsoft, the years-long oppo-
nent of open source, has turned into a supporter by becoming a platinum member
of the Linux Foundation (Linux Foundation, n.d.). It is unlikely that companies
like Microsoft support open source development out of altruistic reasons. They
have rather acknowledged that there are numerous incentives for participating in
open source. These are not anymore just an individual’s need to scratch one’s
itch but have turned into economic benefits (Riehle, 2007; Dahlander & Magnus-
son, 2005; Bonaccorsi & Rossi, 2006) and even have brought forth new business
models (Riehle, 2009; Bonaccorsi, Giannangeli, & Rossi, 2006).

Despite the number of benefits some companies have been hesitant in the adoption
of OSS. This may be due to potential security risks that OSS may inherit. It
has even been reported by practitioners that 26% of open source libraries in Java
have known security vulnerabilities (Contrast Security Inc., 2014). This may lead
to companies that are developing safety-critical applications to refrain from using
OSS even though others have argued that the OSS review process is very efficient
in identifying bugs and vulnerabilities due to the potentially large number of
participants (Payne, 2002).

Another factor that is slowing OSS adoption is due to the very nature of open
source. After all OSS is published under open source licenses. The legal frame-
work around OSS is what has made open source revolutionary in itself but can
be undesirable to companies who wish to use OSS. This becomes apparent in
the guidelines for open source licenses that the Open Source Initiative (OSI) has
defined (Open Source Initiative, 2007). For instance these guidelines state that
an open source license must require the source code of a program to be some-
how available for users of the program. Therefore it is undesirable for companies
who wish to develop proprietary software to publish their software under such a
license.

But even if a company would only wish to use a certain open source component, it
may still be problematic due to the legal nature of licenses. German and Hassan
(2009) refer to a license as

m a legal mechanism used by the copyright or patent owner (the licensor) to
grant permission to others (the licensee) to use and exploit her intellectual
property in ways that would otherwise be forbidden by copyright or patent
law.

Such a permission is of paramount importance to a software vendor who wants
to use open source components. But these permissions often come with a set
of obligations. A prominent example of a license with sometimes undesirable
obligations is the GNU General Public License (GPL). Like other open source
licenses the GPL grants a licensee the right to use the licensed source code but
requires the licensee to maintain the GPL on modified versions of the source
code. If a company wishes to modify an open source component by integrating a
proprietary software component they would need to license the entire work using
the GPL (Free Software Foundation, Inc., 2007b; German & Hassan, 2009). If
the proprietary license cannot be re-licensed using the GPL, the company is in
violation.

If this were all that one needed to keep track of regarding licenses it would be fairly
easy to manage open source components. Unfortunately, there are many different
open source licenses. The Open Source Initiative alone lists 83 approved licenses
of which each has a different set of obligations (Open Source Initiative, n.d.).
Keeping track of these becomes harder the bigger a software project becomes until
it is nearly impossible to keep track of them manually. When faced with a software
project that contains many open source dependencies it becomes necessary to
have tools that help to keep track not only of used licenses but also of other
properties like known security vulnerabilities.

1.1 Existing tools

Apart from commercial solutions there exist a number of academic and open
source tools that aid in the tackling of the aforementioned problems. Fossology
for example is a toolkit designed to help with compliance activities. It scans
files regarding license information using pattern recognition methods. Fossology
helps in the license clearance process by structuring the findings and providing a
user interface to manually check as well as document clearing decisions (Gobeille,
2008; FOSSology Workgroup, 2017).

German and Penta (2012) suggest another method regarding the license com-
pliance problem for Java software. They developed a semiautomatic process

consisting of component identification, provenance discovery, license identifica-
tion, and licensing requirements analysis called Kenen. It differs from Fossology
in the sense that the first step in the clearance process is to create a reposi-
tory with pre-approved components. German and Penta (2012) argue that it is
"good policy”. For provenance discovery the authors analyze source and byte
code using their tool Joa which uses pattern matching algorithms to determine
a similarity and an inclusion index. The closest match is assumed to be the used
open source component. The license identification process functions similar to
Fossology using a pattern-matching-based tool called Ninka (German, Manabe,
& Inoue, 2010). The clearing decision is also similar to Fossology as clearance
can only be determined manually by someone with legal and software expertise.

A different tool for provenance discovery amongst other things is Sourcerer. It
takes advantage of the fact that the source code of open source components is
usually publicly available. Sourcerer builds a database of open source code and
its meta information by crawling a number of different open source repositories.
The retrieved data is analyzed regarding its structural and textual aspects. The
database is primarily used to feed a source code search engine but also provides
other services (Bajracharya, Ossher, & Lopes, 2014).

So far all the mentioned tools are collaborative to some extent but the data
retrieval is always some centralized process. Another approach is proposed by
FLOSSmole. Tt is a database that contains meta information about open source
components somewhat similarly to Sourcerer and is mostly focused on research
purposes. The crucial difference is that the data can be submitted by different
individuals regardless of how the data was gathered. It is expected that people
who use FLOSSmole’s data give back to the community in a BSD-like fashion
(Howison, Conklin, & Crowston, 2006).

Aside from open source license clearance and research a relevant aspect for tool
support is security. It has increasingly been an issue since OWASP recognized
that the usage of components with known security vulnerabilities is one of the
biggest security problems up to date (OWASP Foundation, 2013). OWASP pro-
poses a solution for this problem with the OWASP Dependency-Check (OWASP
Foundation, 2017). It is a tool that generates reports regarding known security
vulnerabilities of a Java or .NET application. The list of known security vul-
nerabilities is retrieved from data feeds by the National Institute of Standards
(NIST).

1.2 Alternative approach

The tools in Section 1.1 are mostly solving specific problems. But the reality of
development involving open source is that often many problems are relevant at
the same time. If someone wanted to analyze a project’s dependencies regarding
their licenses and security vulnerabilities using for instance Fossology and the
OWASP Dependency-Check, these tools would need to run independently be-
cause they do not have the same internal representation of project dependencies.
To automate this process one would need to write a top-level application that
runs these two separate applications. In theory this is not very problematic but
such an application is not very reusable as it is tailored to a very specific use-
case. If one were to extend the application nevertheless, it would soon become
very inefficient and impractical. So to avoid problems regarding tool chain com-
position it is advantageous to develop a generic, serializable model. Such models
are typically of software products and therefore are referred to as product models
in the following.

German and Penta (2012) mention that component identification and the corre-
sponding provenance discovery are crucial first steps for further analysis in their
Kenen process. So a product model centered around component architectures
seems sensible. Unfortunately, the term component is surrounded by controversy.
Heineman and Councill (2001) provide a definition:

m A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard.

The identification of such components is not trivial since components are usually
architectural units that cannot be directly applied to source code and are typi-
cally documented using some architecture definition language (ADL). In the case
of open source components these documents are rarely available and if they are,
they are not uniformly provided to users. This makes automated retrieval of com-
ponent architectures difficult. But even if these documents were easily available,
they usually do not define a component model. Without a common component
model comparison of components becomes hard because the definition of compo-
nents is only relative to the definition of a component model as Heineman and
Councill (2001) implicate. Alternatively, German and Hassan (2009) state that a
lax definition of components is sufficient for legal questions regarding open source.
So until component models are further examined in section 3.1 it can be assumed
that an informal definition is sufficient for other problems in open source, too.

A fundamental concept of open source development is the reuse of source code.
To make reuse practical there usually is a package management system that

2]

processors product model % export

2]

crawler

Figure 1: Component diagram showing system architecture

handles the downloading of required inter-dependencies® needed to build and run
an application (German, Gonzalez-Barahona, & Robles, 2007). Due to their re-
usability and their ability to be composed, inter-dependencies can be thought of
as software components. Consequently, it is sufficient to capture dependencies to
create a representation of an open source project’s component architecture.

The assumption is that these specific properties of OSS can be used to solve
the problems highlighted in chapter 1. This thesis is part of the Open Source
research group’s effort at the Friedrich-Alexander university to build a tool for
that purpose. The contribution of this thesis is a crawler tool that creates a
representation of a software projects component architecture. The main idea in
this process is that component architectures are identified by analyzing software
artifacts. After extraction component architectures form the basis for further
analysis in compliance to the product model. The product model is at the center
of the system architecture as shown in figure 1. Crawlers are essential for feeding
the product model with data but are just part of a larger application. This thesis
will focus on the design of a crawler and an export component. In figure 1 the
lower opacity of the remaining components signals that these components are
not the focus of this thesis. But the bigger picture indicates that after a product
model has been filled by a crawler it is used by processors to solve the problems
mentioned before.

Due to the typically sheer amount of dependencies OSS usually requires some
configuration management system according to German et al. (2007). This poses
the opportunity to extract dependency meta data from the configuration man-
agement system at hand. Ultimately the application must support different kinds
of languages and systems. But this thesis will focus on the analysis of Java soft-
ware. In their Kenen process German and Penta (2012) haven relied on Maven2
for their provenance discovery. It makes all the more sense to focus on Maven in
this thesis as it is one of the most popular build systems for Java OSS.

nter-dependencies will also be referred to as just dependencies throughout this thesis.

Consequently, the crawler is an extensible tool that fills a component-based prod-
uct model with a respective product’s architectural information like component
hierarchy and metadata as well as exports the gathered data in a machine read-
able format (e.g. XML, JSON, YML) for further analysis with other frameworks.
I will examine the requirements for such a crawler tool in chapter 2. Subse-
quently, I will shine some light on the architecture and design of the tool in
chapter 3. This includes general design considerations in respect to the nature of
the software products which are to be analyzed. Chapter 4 focuses on the imple-
mentation of the crawler and export modules. In conclusion chapter 5 highlights
the evaluation of the crawler.

2 Requirements

Requirements analysis typically presupposes the identification of relevant stake-
holders. But since the project of which this thesis is a part of is still in its early
stages the relevant stakeholders are limited to the developers involved. In the
future there will be more stakeholders involved and therefore the requirements
below are subject to change. The focus of this thesis lies in developing the func-
tionality first. The functional requirements are explained in sections 2.1 to 2.6.
Non-functional requirements are not the main focus of this thesis but nonetheless
there are a few key non-functional requirements which are explained in section
2.7 and section 2.8. More non-functional requirements will become relevant at
later stages of the project.

2.1 FO01: Crawler based on product model

e The software fills the product model based on provided inputs with architec-
tural component data from given software artifacts according to a specific
crawler implementation.

This requirement is the central functionality of the tool. A crawler must identify
a software projects component architecture based on the product model. The
crawling process must be able to support different types of future crawler im-
plementations as the products may be represented by different build systems or
even programming languages.

2.2 F02: Partial crawling

e The software supports crawling of partial products. The sum of parts must
be equivalent to the entire product model.

Partial crawling can improve performance of the tool as it may be possible to run
multiple threads in parallel that produce partial product models. If one were to

look at this requirement only from the performance angle, it may as well be a
non-functional requirement. The functional angle is that this requirement is also
necessary for the combination of partial product models resulting from different
crawler implementations. After all it is possible to use multiple build systems
or programming languages in a single project. Also, it turns out that in the
case of Maven multi-module projects it is also necessary to crawl each module
individually and then put the parts together.

2.3 FO03: Exportable product model

e The software exports product model data in a machine readable format so
that the tool can be used as part of a toolchain.

The crawler tool must be able to export the product model in some machine
readable format to be re-usable as part of a toolchain. The most common formats
for structured data are XML, JSON and YAML. So it makes sense to support all
of these data types as exportable types.

2.4 FO04: Maven project support

e The software supports the analysis of Maven projects. Maven is one of the
most common build tools for Java. This serves as a reference implementa-
tion for other, future crawlers.

As mentioned in the requirements FO1 and F02 the tool must support different
crawler implementations. This thesis will only focus on the implementation of a
Maven based crawler as the implementation of additional crawlers would be out
of its scope.

2.5 FO05: Identify component relationships

e The software identifies relationships between components like static linking,
dynamic linking or web calls.

Certain problems in OSS like license compliance are dependent on the manner in
which an open source component is used. Therefore, it is important to identify
what type of relationship certain components have so that future processors! have
the necessary information to solve such problems.

IProcessors as mentioned in section 1.2

2.6 F06: Product data version

e The software supports versioning/timestamping of product data so that a
comparison of changes over time will be possible.

One of the goals of the tool is to monitor changes over time in product mod-
els. Therefore it must be possible to differentiate between snapshots of product
models. This can be achieved by adding timestamps to product model snapshots.

2.7 QO01: Modifiability and extensibility

e The software is easily extensible by additional crawlers. It is sufficient to
implement one interface for new crawler implementations.

As this thesis is part of an academic project it can be assumed that a couple of
different developers will work on future crawler implementations. Therefore it
is crucial to make modifiability as easy as possible. A crawler must comply to
some interface so that the underlying implementation can start a crawler. This is
unavoidable complexity. So to keep it as simple as possible the implementation
of a single interface must be sufficient. That way a developer does not need to
understand the full source code to start working on a crawler implementation.

2.8 QO02: Reliability

e The software identifies more than 50 percent of all components of a given
software product.

The tool must have some measure as to how well it performs. Therefore the tools
reliability is measured by how many components in a project it can identify. This
measure is the minimal threshold for confidence in the tool. Anything below the
threshold will result in the tool being unreliable.

2.9 Evaluation scheme for requirements

To ensure that the software is functional it is in order to run tests even though the
successful completion of tests does not ensure the program’s correctness. In fact
the absence of errors can never be guaranteed with the exception of formal testing
methods which are not suitable for this thesis. If one had unlimited resources one

could approximate correctness by running very thorough tests. But most of these
would be out of scope in the context of this thesis. To ensure minimal confidence
in the code, the tests cover a 100% lines of code. This is accomplished through
unit tests.

In terms of non-functional requirements a separate approach is taken. Q01 can
be easily evaluated by looking at the number of interfaces that need to be imple-
mented for a new crawler. For that there is no need for any special test cases.
But Q02 is quite tricky to evaluate. This is due to the fact that it is difficult
to get a test oracle that can be asked during a test run whether the number of
recognized components is sufficient. If there was a program that was capable
of posing as an oracle then the implementation of a crawler that does the same
would be obsolete. To get at least the slightest grasp of whether Q02 is met,
the software is tested against a small number of handpicked projects where the
number of components has been determined manually. This is used to design a
number of integration tests to build confidence that the crawler’s units correctly
operate with each other.

10

3 Architecture and Design

To satisfy the requirements established in chapter 2, a number of software archi-
tectural design aspects have to be discussed first. Section 3.1 introduces these
aspects by addressing the definition of components in relation to their link to
component models since software components are an integral part of the results
produced by the application. This is followed by the actual crawler design con-
siderations in section 3.2.

3.1 Component models

The term component is somewhat controversial and it is therefore necessary to
define the term in the context of this thesis in order to achieve requirement
FO01 as its goal is to create a component-based representation of architectural
information. So what exactly is a component?

Historically a component refers to some electronic building block that can be
embedded in arbitrary circuits, provided that the circuits adhere to the rules
imposed by the building blocks. Typically, this means that circuits provide some
standardized sockets where certain components can be embedded. Like it is the
case with many other interdisciplinary terms, computer science has adopted the
term component to refer to something vaguely similar — hence the controversy.
Szyperski (2002) prominently refers to a component as "a unit of composition
with contractually specified interfaces and explicit context dependencies only”.
He acknowledges that his definition is rather general and that there is more
to components than just that. Especially, since components can be fundamen-
tally different from each other, a respective component has to impose rules for
things like interaction and composition with other components. Such rules form
a component model which is part of the mentioned explicit context dependencies.
Heineman and Councill (2001) refer to a component model as an entity that de-
fines components’ specific interaction and composition standards. This makes
component models the essence of what specific components can do. Therefore,
the definition of specific components is implicated by their component model. As

11

component models are relevant to the understanding of components, throughout
this thesis the definition by Heineman and Councill (2001) will be used:

A software component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard.

With the understanding about component models it can be deduced that it is
not practical to compare components that comply to different component mod-
els. If one were to compare such components nevertheless, it would be under
the assumption of a very general definition of components like the one proposed
by Szyperski (2002). In that case all that components would have in common
would be that they are units of composition, have interfaces and explicit context
dependencies only. But their manner of composition and context dependencies
might be fundamentally different which makes them uncomparable in that re-
spect. Therefore, one could only compare components regarding their interfaces.
Unfortunately, the reality of components is that such an approach results in a
rather abstract comparison and it does not solve the questions from chapter 1
which are relevant to open source software. Regarding open source the conse-
quence is that it is necessary to not look at a component as a general building
block but as an open source component (OSC).

Like Crnkovic, Sentilles, Vulgarakis, and Chaudron (2011) defined components
relative to their respective component models, the sensible way of defining OSC
is to define the open source component model (OSCM) and make the def-
inition of OSC implicit to the OSCM. Incidentally the Maven build system has
many characteristics that can be attributed to a component model. Whether
these characteristics apply to other build systems is out of the scope for this
thesis.

An examination of how software that is developed with Maven fits into exist-
ing categorizations of component models, helps in the understanding of Maven’s
component model aspects. In the general case Lau and Wang (2007) propose
an idealized component life cycle in order to derive a taxonomy of component
models. They identify four categories — Design without repository, design with
deposit-only repository, deployment with repository and design with repository.
Figure 2 shows a component life cycle based on Maven in an analogue fashion to
the one proposed by Lau and Wang (2007). During the builder phase Java code
is written by developers. After that Maven can be used to compile the code into
class files which by default are packaged into a jar file. During the repository
phase dependency jars are placed in the local repository. These dependencies
are defined in a Maven project object model (POM) file. Maven resolves
transitive dependencies and downloads all the required dependencies from a re-
mote Maven repository if the respective dependencies cannot be found in the
local repository (Apache Software Foundation, 2018c). Note that dependencies

12

Maven JVM

Builder Repository Assembler RTE

A compile > A > TnsA
package

W W

B depfeer;iﬁncy > B > B > TnsB

W W

C depfeer;ﬂﬁncy > C » C > InsC

Figure 2: Composition with Maven in an idealized component lifecycle.

are treated the same way as locally installed components. Then the repository
phase is followed by an assembler phase. Typically, there is no need for Java to
be assembled in the sense of native software but Maven provides an optional step
using plugins like the Apache Maven Assembly Plugin that packages the main jar
and all its dependencies in a single jar file (Apache Software Foundation, 2017a).
Components are then passed to a run-time environment (RTE) — in this case the
Java Virtual Machine (JVM). The way a component’s classes are loaded by the
JVM is highlighted more closely in section 3.2.3.

After adapting a typical Maven lifecycle to the idealized component lifecycle pro-
posed by Lau and Wang (2007), it seems that Maven fits best into the deployment
with repository category. Note that Maven deviates from the categorization in
the sense that locally packaged components are not necessarily installed in the
local repository as shown in figure 2. Nevertheless, keeping in mind that a com-
ponent model consists of rules for component composition and interaction, this
means that composition of components is restricted to the assembler phase using
something like the Maven assembler plugin. Consequently, multiple components
can be assembled to a single jar file which may in turn result in a new compo-
nent. Interaction between components is restricted by the run-time environment
which is the JVM. Any interactions that are allowed by the JVM are allowed
for components. This means that components are not required to interact using
standardized interfaces but may sometimes be more similar to software modules
where interaction is only restricted by the built-in visibility of classes. This may
change with the modification of components to work on Java 9 as a key feature of
Java 9 is Jigsaw which lets developers properly encapsulate the classes of a com-
ponent while allowing access to intended classes only from outside the component

13

(Oracle America, Inc., 2017).

In conclusion the properties of Maven components can be transformed into rules
to formulate a component model:

1. Components are singular files that can be loaded by the JVM.

2. Components are only composed during the Assembler phase of the idealized
component life cylce.

3. Interaction between components is restricted by the JVM.

In order to define an OSCM this model has to be extended by the open source
aspect of components. The Open Source Initiative suggests in their definition
of open source that as long as the used license ensures that a product complies
to the rules stated in their definition of open source, the product is open source
(Open Source Initiative, 2007). As trivial as it may sound an OSC is therefore
licensed using open source licenses.

Components that comply to the rules imposed by the OSCM are OSCs. Notably,
it is possible that after composition the resulting component no longer complies
to the rules. This happens when for example some component of a composition
is a proprietary component that uses a number of OSCs. Provided the OSCs
licenses allow such usage, the composition may be legal but the entirety may not
be licensed using an open source license anymore. In such a case the result of
the composition is simply called an assembly (Crnkovic et al., 2011). Tt is in turn
not an OSC. But as long as such assemblies comply to the other rules, they will
still be considered as components throughout this thesis.

3.2 Crawler design

Now that a basic understanding of what a component is has been established, to
fulfill requirement FO1 a crawler basis has to be designed. Considerations from
section 3.1 that are of relevance to this task are:

e C1: Dependencies which are resolved by a build system can be considered
as components. If they are licensed using an open source license, they can

be considered OSCs.

e C2: A component has one corresponding file which is considered the com-
ponent’s artifact.

These considerations are realized by the product model which is provided to the
crawler module — as mentioned in section 1.2. Figure 3 shows a diagram of what
it generally consists of. The top-level is called Project. It corresponds to a project

14

Project

0..*
0..*%
«interface» Combonent Artifact
Metadata E ® p) % ife

% L% “ =

dependencies

LicenseData InterfaceData

Figure 3: The generic product model.

that is provided as input to the crawler application and whose dependencies are
to be determined. A Project has a number of root components. In the simplest
case a Project has only one root component. In the case of Maven multi-module
projects for example it has more than one.

The centerpieces of the model are Components. As required by consideration
C2 a Component has exactly one Artifact. In accordance to C1 dependencies
are modeled as a relationship between Components. A component can have
an arbitrary number of dependencies and a dependency can be required by an
arbitrary number of components as long as it is required by at least one. If a
dependency is never required, then it is not part of a project. A Component can
have an arbitrary number of Metadata objects. This accounts for the uncertainty
of what information different crawler implementations may be able to provide.
Examples for possible metadata are LicenseData and InterfaceData but it is likely
that the product model will be extended by more metadata in the future.

A crawler implementation will produce a Project object based on the product
model regardless of the implementation details of the crawler. This makes it
fairly easy to implement crawlers using the strategy pattern as defined by Gamma,
Helm, Johnson, and Vlissides (1994). The strategy pattern is categorized as a
behavioral design pattern which splits algorithms from their context and makes
the algorithms interchangeable. Figure 4 shows how it is realized in this thesis. A
strategy must implement the Crawler interface. The interface provides a method
to start a crawl run and to retrieve the Project result. A concrete implementation
would be the MavenCrawler which is explained in more detail in section 3.2.1.
The CrawlContext contains a strategy and is the handle for starting a crawl run
and retrieving the result. The CrawlContext also contains crawler independent
input parameters like the path to the project to be analyzed or a working directory
for the strategy. The manner in which the CrawlContext is used, remains the
same regardless of the strategy.

15

CrawlContext «interface»
+ doCrawl() strategy Crawler

+ getCrawlResult(): Project E - crawl()

1
+ getResult(): Project

i

MavenCrawler

Figure 4: Crawler design with strategy pattern.

The fact that any new strategy only needs to implement the Crawler interface, is
already enough to satisfy the requirement Q01 but Gamma et al. (1994) suggest
that the strategy pattern has even more benefits that apply to this thesis:

e The Crawler interface can implement common functionality for all crawler
implementations. This may become relevant in the future when crawler
implementations may need to run concurrently for example.

e Since the actual behavior is implemented in strategies, the CrawlContext’s
complexity stays manageable even if the context will be extended by a lot
in the future.

e The use of strategies eliminates a lot of conditional statements. If crawlers
were implemented in a single class, there would be a lot of conditions that
check for specific build systems of the project to be analyzed.

Gamma et al. (1994) also state some disadvantages of the strategy pattern. Here
are the disadvantages and reasons why none of them have an impact on this
thesis:

e Strategies are only suitable if the differences in implementation
of strategies are meaningful to clients. Otherwise a client (or pro-
gram) that uses the CrawlContext does not know what strategy
to choose. Since the strategy pattern is primarily used to account for dif-
ferent build systems of projects to be analyzed, this disadvantage does not
apply. The reason for that is that it can be determined fairly easily what
build system is used.

e The strategy pattern sometimes causes unnecessary overhead since
the CrawlContext provides each strategy with the same informa-
tion regardless of whether the strategy needs all that information
to function or not. This may become a problem if the CrawlContext

16

becomes more complex in the future but can be disregarded in this thesis
because the CrawlContext is only designed to work with the MavenCrawler
for now. Naturally, all the necessary information passed by the context is
needed by the strategy here.

e The strategy pattern causes the creation of more objects. In some
cases this can be quite an extensive overhead but in this thesis the strategy
pattern only causes one additional object to be created — the CrawlContext.

All this makes the strategy pattern very suitable for the crawler design but that
does not mean that other patterns were not considered. For instance, if the
crawler is a process that returns products, the entire process can be thought of
as the building of a complex object. In that case the builder pattern (Gamma
et al., 1994) would be suitable. It provides a common interface for the building
process which makes concrete builders interchangeable. This would be similar
to different strategy implementations. But the crucial difference is that each
concrete builder returns different products which do not share a common interface
according to Gamma et al. (1994). This does not serve the requirement FO1
since a crawler implementation always returns the same kind of product. Also,
the builder pattern imposes methods for the creation of product parts which
may provide better structuring of some building processes. But this leaves a
concrete builder with less flexibility. This might make the implementation of a
concrete builder more difficult since the underlying problem of analyzing projects
may be vastly different depending on the given build system. Other than that
the strategy pattern simply provides more advantages for the crawler than the
builder pattern. This leaves the strategy pattern as the clear choice.

3.2.1 Maven crawler design

To satisfy requirement F04 a crawler has to be designed that works on Maven
projects. Since it has been established in section 3.2 that crawlers are imple-
mented as strategies, the design of the strategy can be handled independently
from the rest of the application as long as it implements the Crawler interface.
Another useful property of the strategy pattern comes in handy during the design
of the strategy. After all the pattern enables the encapsulation of any internal
models used by the strategy (Gamma et al., 1994). This means that it is possi-
ble to define a Maven specific product model that possibly contains information
that is not needed by the general product model. This is especially useful in the
context of this thesis because the development of the strategy and the general
product model is happening in parallel.

The general product model and the Maven model are quite similar even though
the terminology of the Maven model is inspired by Crnkovic et al. (2011). The

17

Project

1'_*

1.%

ExtraFuntionalProportics%’ ‘H ComponentFile

Component

1
]“*<? i \ 0.%
0..% 1

children

Binding MavenIdentifier

Figure 5: The model used by the Maven crawler.

relevant difference is how metadata is incorporated in the Maven model. In the
context of the Maven model it is not necessary to account for the uncertainty
of what information the strategy is able to provide as opposed to the general
product model. Therefore instead of having a variable number of objects im-
plementing the Metadata interface, it is sufficient for each Component to have
an EztraFuntionalProperties object. These extra functional properties contain
information about Maven modules, open source licenses and other relevant meta-
data. What is realized as InterfaceData of the general product model is called
Binding in the Maven model. Another specialty of the Maven model is that each
Component has a Mavenldentifier. This is due to the special property of Maven
components being identified by their group id, artifact id, version and packaging
type. This is referred to as Maven coordinates in the Maven POM reference
(Apache Software Foundation, 2018c).

As mentioned before the Maven model is the internal model of the MavenCrawler
strategy. The strategy does a number of procedures sequentially. So to keep
the strategy manageable it is split into a number of so called CrawlProcessors?.
CrawlProcessors can do arbitrary procedures but always take Project objects as
input. The output can be any type but is usually a Maven model Project. That
way they can be piped sequentially. Note that it is the programmers responsibility
to make sure that the output of a CrawlProcessor is compatible with the input
of its subsequent CrawlProcessor. Figure 6 shows all the CrawlProcessors as well

as the order in which they are executed:

e The ResourceProcessor looks at the input path provided by the Crawl-
Context to determine whether the input project is a valid Maven project.

e The PomProcessor uses the input projects POM file to determine depen-

I'Not to be confused with the processors module mentioned in section 1.2

18

MavenCrawler

input ResourceProcessor

|

PomProcessor

|

JarProcessor

|

BytecodeProcessor

|

output< MavenProject ToGenericProjectProcessor

Figure 6: Internal procedures of MavenCrawler.

dencies and builds an initial Project object.

e The JarProcessor looks for the artifacts corresponding to each Compo-
nent. In the course of that the JarProcessor usually builds the project to
be analyzed in order to get the resulting artifacts.

e The BytecodeProcessor analyzes the artifact of each respective com-
ponent and determines the classes/interfaces that it requires from other
components.

e The MavenProjectToGenericProjectProcessor is responsible for con-
verting the internal Maven model to the generic product model that the
strategy is required to return.

3.2.2 Partial crawling

Since Projects are not trivial data structures it is necessary to design a sensible
algorithm in order to satisfy requirement F02. While designing such an algo-
rithm, it is crucial to be aware of the fact that dependencies in projects may
overlap. So when overlapping dependencies are found while combining projects,
the relationships between Component objects need to be redirected. Another
aspect in the case of Maven dependencies is that dependencies in a project are

19

sub-project

Figure 7: Appending a sub-project.

uniquely identified by their coordinates as mentioned in section 3.2.1 and there-
fore their transitive dependencies can always be deterministicly resolved. This
means that if overlapping dependencies are found, then there is no need to look
at the respective dependency’s dependencies?.

Figure 7 shows an example of how such an algorithm would operate on a depen-
dency tree:

1. The subproject consisting of D2, DI and D3 is appended to the Root node
of the project consisting of Root, D1 and D3. Since D2 can not be found
in the project the node is added as a dependency of Root. Subsequently,
the algorithm checks whether the dependencies of D2 can be found in the
project. In fact D2 has a common dependency (D1) with the project.

2. The dependency of D2 is redirected to the project’s D1. Since it is assumed
that the dependencies of D1 are the same for all partial projects, there is
no need to further examine the dependencies of DI. The subproject’s D1
and D3 can be deleted since D2 no longer has any reference to them.

Assuming that a Component in a Project can be found in constant time, the
algorithm has a worst case complexity of O(n?) where n is the number of nodes

2Dependencies’ dependencies will also be called dependencies’ children throughout this the-
sis.

20

in the subproject. But the algorithm will usually run substantially faster because
the worst case assumes a very unlikely subproject and partial projects often
contain overlapping dependencies like utility libraries and such. The details of
the algorithm will be further examined in section 4.1.2.

3.2.3 Component Relationships

In terms of open source license compliance it is important to consider in what
manner software components interact to form a complex program. The reason
for that is that certain open source licenses impose obligations (as mentioned in
chapter 1) on a licensee if a component interacts with the licensed component
in a certain way. A software component licensed under the GNU Lesser General
Public License (LGPL) for example does not become viral — meaning it does
not propagate its license to other software components — if the components are
dynamically linked (Free Software Foundation, Inc., 2007¢). Other licenses like
the GNU Affero General Public License (AGPL) do become viral even if software
components only interact using web calls (Free Software Foundation, Inc., 2007a).

Therefore, requirement F05 states that the crawler tool must support the iden-
tification of such types of interactions between components which are also called
component relationships throughout this thesis. But since this thesis is focused
on Java using the Maven built system, it is necessary to examine how linking is
accomplished in the JVM which in turn requires a deeper delve into the inner
workings of the Java language.

Figure 8 shows a simplified life cycle of java classes. Initially there are Java files
that simply contain source code. The source code is then processed by the Java

AN AN
""""" has main
---------- A

Ajava A .class "*JoadClass

Y
Y

« Java B el 1 ‘_)?‘_l(_j}(‘_“f _____ Bootstrap
71 Compiler Classloader

Y

B.java B.class 7
_-loadClass
N e
> < I C rad
C.java C.class

Figure 8: Java from source code to loaded classes.

21

compiler which produces class files. These class files contain Java bytecode which
represents an encoded data structure containing all the class specific information
needed by the JVM to run the classes. This for instance contains arrays of fields,
methods as well as symbolic class references among other elements in a class’s
constant pool. Methods in turn contain JVM compatible instructions that are
executed when the methods are run. This can be thought of as the assembly of
a compiled C file.

The JVM is dependent on class loaders to resolve class files. There are two types
of class loaders. The first type is only the default bootstrap class loader and
the second type is user-defined class loaders. Usually the default class loader
loads the initial class (A) containing the main method which is the entry point
to the program. Eventually some class loader resolves other classes (B and ().
Resolution takes place when a JVM instruction makes a symbolic reference to
the run-time constant pool (Oracle America, Inc., 2015). In the case of Figure 8
class A is loaded by the bootstrap class loader. While running the main method
some JVM instruction references class B. The class loader used to load class A
is then used to load class B. This is the case even if some other class loader
than the bootstrap class loader were used. The same happens with class C. This
means that classes are always dynamically loaded when Java programs run in
the JVM. Even if class files are packaged as jar files, the mechanism remains
the same since jar files are only zip archives containing class files. Generally
though, it can not be determined how classes are loaded since there is always
the possibility that user-defined class loaders are used. This makes a nuanced
identification of component relationships difficult. Nevertheless, it is assumed
throughout this thesis that Java classes are dynamically linked and consequently
that static linkage is impossible using Java.

This leaves requirement F05 with the problem of web calls. There is no singular
way of making web calls in Java. If one were to analyze software artifacts regard-
ing this aspect, one would have to consider a multitude of web call possibilities.
This would be quite an effort considering that an easier approach is to simply run
the software that is to be analyzed and listen for outgoing web calls. But such an
approach is out of the scope for this thesis since the crawler tool is based on the
analysis of software artifacts. That being stated, requirement F05 can only be
partially satisfied in the sense that components written in Java will be identified
as dynamically linked components. Whether static and dynamic linkage in other
programming languages can be detected is to be determined in future work.

22

4 Implementation

Since the crawler application analyzes Maven projects it makes sense that the
crawler application itself is implemented using Maven — especially, because the
application requires a number of dependencies. Among them are dependencies
from the Apache Maven project. The core dependency is the Apache Maven
Artifact Resolver (Apache Software Foundation, 2018a) which is used for depen-
dency resolution. See appendix A for a full list of dependencies required by the
crawler application. Except for one dependency all the dependencies in appendix
A are licensed using the Apache 2.0 license (Apache Software Foundation, 2004)
which is a fairly permissive license. The one dependency not licensed under the
Apache license is the Logback library which is dual-licensed under the Eclipse
Public License (EPL) and the LGPL (Quality Open Software, 2018). Since Log-
back is only used for logging it would make sense to choose the library as a LGPL
licensed component. In that case Logback can be used without major obligations
like having to propagate the LGPL to the entire work. That is because it is
dynamically linked which is always the case for Java as established in section
3.2.3.

Now that general implementation considerations have been addressed the fol-
lowing will dive into important implementation details starting with the Maven
crawler implementation in section 4.1. After that the implementation of the
model exports is highlighted in section 4.2. Subsequently, the implementation
chapter is concluded by some details about the command-line interface for the
crawler application in section 4.3.

4.1 Maven crawler implementation

This section focuses on two particular aspects of the MavenCrawler implementa-
tion. Section 4.1.1 highlights dependency resolution and section 4.1.2 focuses on
the algorithm used for appending a subproject mentioned in section 3.2.2. Other
aspects handled by the MavenCrawler like the conversion of the internal Maven
model to the general product model are not attended to in detail. It is worth

23

noting though that requirement FO06 is satisfied during this conversion!. There
the product model receives a timestamp using Instant.now().

4.1.1 Dependency resolution

As mentioned in section 3.2.1 the MavenCrawler is divided in five subtasks called
CrawlProcessors — the ResourceProcessor, PomProcessor, JarProcessor,
BytecodeProcessor and MavenProjectToGenericProjectProcessor. The
first and last processor are respectively responsible for transforming the input and
output of the MavenCrawler. But the dependency resolution is a three-step pro-
cess which corresponds to the PomProcessor, JarProcessor and Bytecode-
Processor. Each produces a partial result which is extended by its subsequent
CrawlProcessor.

Dependency tree resolution

The building of the dependency tree is handled by the PomProcessor. It uses
the Maven Artifact Resolver? (Apache Software Foundation, 2018a). The artifact
resolver internally produces a dependency graph — that is a graph of all the
dependencies required directly and transitively containing dependency conflicts.
Dependency conflicts occur when two or more dependencies require the same
dependency but in different versions. In that case Maven generally attempts
to resolve these conflicts by determining one of the conflicting versions to be
used. After conflict resolution the artifact resolver returns a dependency tree
(Bentmann & Irawan, 2014).

For that to work the MavenCrawler needs to be initialized with a valid path for
the local Maven repository. The local repository is a directory containing artifacts
of dependencies. The artifact resolver will always use artifacts from the local
repository first before downloading them from a remote repository. The path to
the local repository is passed to the PomProcessor by the MavenCrawler. The
first step for the PomProcessor is to put the POM file of the input project inside
the local repository. So when the artifact resolver starts resolution from this root
POM, it will not try to download the file from a remote repository. Among other
information, POM files contain all the required dependencies of a component.
The artifact resolver iterates over these files and collects dependencies as well as
downloads POM files of dependencies from remote repositories in case they are
not present in the local repository.

!'Handled by the MavenProjectToGenericProjectProcessor
2Formerly known as Eclipse Aether.

24

The artifact resolver returns a dependency tree that can be traversed using a
visitor. The visitor design pattern allows to apply new operations to each of the
elements of a data structure without having to change the classes of the data
structure (Gamma et al., 1994). In the case of the PomProcessor the new
operation is a visitor that traverses the dependency graph and builds the internal
Maven model. This visitor is called MavenDependency Visitor and implements the
interface DependencyVisitor in listing 4.1. The interface allows detailed control
over the traversing of the structure. If the wvisitEnter method returns false, then
the visitor will not visit the child nodes of the current node. Similarly, if visitLeave
returns false, the visitor will not visit further siblings of the current node. During
the traversing of each node the corresponding POM file is parsed in order to
retrieve wanted metadata for the product model. For parsing the POM files
the class MavenXpp3Reader is used which is provided by the crawler application
dependency maven-model.

package org.eclipse.aether.graph;

public interface DependencyVisitor {
boolean visitEnter (DependencyNode node);

boolean visitLeave (DependencyNode node) ;
Listing 4.1: DependencyVisitor interface.

Figure 9 shows the dependency tree’s visualization of the crawler application
itself. It holds limited information about its dependencies because complex rela-
tionships among dependencies are eliminated by conflict resolution. Nevertheless,
the dependency tree provides interesting information. It can be easily seen where
certain dependencies are introduced from. For instance, since the red root node
is representing the crawler application, dependencies of degree one are directly
required by it. Another interesting aspect is that the maximum degree of depen-
dencies is three with five dependencies. Most of these are transitively introduced
by the maven-aether-provider dependency which is the implementation of Maven-
like resolution needed by the artifact resolver. The dependency is introduced by
the crawler application instead of the artifact resolver implementation because it
is necessary to wire the provider to the artifact resolver inside the crawler appli-
cation. But if one wanted to reduce the number of dependencies, he could easily
determine with this dependency tree that the maven-aether-provider dependency
is a good starting point for optimization.

Artifact identification

The second step in dependency resolution is to identify the artifacts of each com-
ponent. For now the only supported artifact type is Jar. Therefore, this process

25

degree mmm sm—

org.codehaus.mojo:animal-sniffer-annotations:1.14 com.fasterxml.jackson.core:jackson-core:2.9.4
com.google.j2objc:j2objc-annotations:1.1 com.fasterxml.jackson.core:jackson-annotations:2.9.0

com.google.code.findbugs:jsr305:1.3.9 commons-codec:commons-codec:1.6

org.checkerframework:checker-compat-qual:2.0.0

om.fasterxml.jackson.cope:jackson-databind:2.9.4

com.google. guava;guava: org.apache.httpcomponents:httpclient:4.2.6

com.google.errorprone:error _prone_ annotations:2.1.3 <4——7m ™

. g he.maven.resolver:mayén-r T-Cconn 1-basic:1.0.
com.beust:jcomman org.apache.maven.resolver:ma; esoler-connector-basic:1.0.3

org.yaml:snakeyaml:1.18 -~

com.fasterxml.jackson.dataformat:jackson-dataformat-yaml:2.9.4

org.apache.mavenshared:maven-myoker:3.0.0

.apache.maven.resolve:

org.apache.httpcomponents:httpcore:4.2.5
/ org.slfdj:jcl-over-slf4j:1.6.2

“cs.oss.productmodel:product-model:1.0-SNAPSHOT
org.apache.bcel:bcel:6.1

naven-resolver-transport-http:1.0.3

org.apache.maven.resolver:maven-resolver-api:1.0.3

org.apache.commons:commons-lang3:3.4

com.fasterxml.jackson.datatype:jackson-datatype-jsx310:2.9.4
org.eclipse.aether:aether-api:1.0.2.v20150114
org.apache.maven:maven-artifact:3.3.9

com.fasterxml.jackson.dataformat:jackson-dataformat-xml:2.9.4
~_ > com.fasterxml.woodstox:woodstox-core:5.0.3

org.apache.mavi

resolver:maven-resolver-impl:1.0.3
solver-util:1.0.3

. -—— ong.apache.laven.resolver:
org.apache.maven:maven-repository-metadata:3.3.9 .
org.apache.mavenymaven-aether-provider? org.apache.mavep:maven-model:3.5.2
org.apache.maven:maven-builder-support:3.3.9 ch.qos logback:logbaclgclassic:1.2.3
/ org.codehaus.woodstox:stax2-api:3.1.4

org.apache.maven:maven-model-builder:3.3.9
:1.0.2.v20150114
org.apache.maven.resolver:maven-resolver-spi:1.0.3

org.eclipse.aether:aether-util:1.0.2.v20150114

.v20150114

org.codehaus.plexus:plexus-component-annotations:1.6

org.eclipse.aether:aether-impl:1.

ch.qos.logback:logback-core:1.2.3

.slf4j:slf4j-api:1.7.2
org.codehaus.plexus:plexus-interpolation:1.21 orgslfdj:slfdj-api:1.7.25

Figure 9: Crawler application dependency tree.

0

1

2 3

com.fasterxml. Jjackson.module:jackson-module-jaxb-annotations:2.9.4

26

is handled by the JarProcessor. For each jar-component determined by the
previous processor it will look for the corresponding Jar-Files in the local repos-
itory. Like with the PomProcessor the path to the local repository is provided
by the MavenCrawler to the JarProcessor. A Project provided as input for
the JarProcessor must always have a root component. Such a component rep-
resents the entire software project to be analyzed. Typically the artifact of the
root component is not present in the local repository. In such a case the JarPro-
cessor will attempt to build the artifact. Since the project to be analyzed is a
Maven project a build will automatically download all the dependencies to the
local repository.

Generally, for building the artifact the Apache Maven Invoker is used. It requires
a local Maven installation to be present. The invoker will look for a Maven
installation in the maven.home system property or the M2_HOME environment
variable (Apache Software Foundation, 2017b). This issue is further addressed
in section 4.3. Alternatively, the JarProcessor can use a Maven wrapper script
if the CrawlContext specifies a build script®. The consequence of this is that the
JarProcessor will not require a local Maven installation but will instead use a
wrapped Maven script. If the build fails, there is no artifact to associate the root
component with and therefore the JarProcessor will throw an exception.

Regardless of which method is used for building, the install command of the
Maven default lifecycle is issued. Maven has the characteristic that whenever a
command is issued, the previous phases of the default lifecycle are executed first
(Apache Software Foundation, 2018b). That is why the install command will
result in Maven producing artifacts (package phase) even though the command
is only responsible of placing the artifacts in the local repository. The following
phases are executed when issuing an install:

1. validate
2. compile
3. test

4. package
5. verify
6. install

The consequence is that the build can be a lengthy process because prior to
installing the artifacts to the local repository, Maven will execute unit tests (test
phase) as well as integration tests (verify phase). To circumvent this problem the
system property skip Tests is set to true while issuing the install command. This
system property is honored by the Surefire plugin which is typically used for unit

3This would be determined in the ResourceProcessor

27

tests as well as the Failsafe plugin which is typically used for integration tests
(Apache Software Foundation, 2018d). If tests are run as part of other plugins
in the build process, they will run nevertheless.

Relationship identification

Finally, the BytecodeProcessor determines relationships between components.
To do that it needs to analyze the artifacts previously determined by the JarPro-
cessor. As mentioned in section 3.2.3 jar-files are nothing more than zip archives.
Therefore, the first thing to do is unpack the class files of all artifacts. Each class
file is associated with a component. Subsequently, the BytecodeProcessor tra-
verses through the Project passed from the JarProcessor and looks at all the
symbolic references to other classes in each class file’s constant pool. To get the
constant pool of a class file the Apache Commons Byte Code Engineering Library
is used (Apache Software Foundation, 2017c).

Since the constant pool also contains references to Java language specific classes
which are not particularly interesting in the context of this thesis, the constant
pool of each class file has to be filtered. For that it is sufficient to look at the fully
qualified names of the references. Java language classes will have a fully qualified
name that starts with ”java/”. Since apart from regular classes the only other
types of references in the constant pool can be arrays, it is also necessary to
filter all the references whose fully qualified names start with ”[Ljava” (Oracle
America, Inc., 2015). That leaves each constant pool with references to classes
either inside the same component or to other components.

Once the references have been determined the BytecodeProcessor adds the
respective Bindings to the Project. This excludes Bindings if they represent a
relationship of a component to itself. Whenever a Binding is added to a Project,
there is also a relationship added between the Component objects involved in the
Binding. This results in components having dependencies that have previously
been eliminated by conflict resolution in the PomProcessor if the dependencies
are real — meaning that the classes of a declared dependency in a POM file are
actually used.

Figure 10 shows a visualization of the resulting Project based on the crawler
application’s dependencies. Aside from looking more confusing it can be seen that
the degree of some components has changed in comparison to the dependency tree
shown in figure 9. This is due to the fact that the crawler application uses classes
of transitive dependencies. This lowers the degree of the transitive dependencies
even though they are not directly required by the crawler application. If one
were to remove a direct dependency that causes a transitive dependency which
is required by the actual application, it would cause unforeseen behavior. That

28

‘ydeis Aouspuadop uorjeotidde roimer)) :QT 9In3dig

¥°6°g:SuoIRIOUTR-(|XR[-5[NPOUT-T0SR ;M PO TOSOR[* [MIX19)SR] TH0D
QT T:[urefoxrus:[ured 310
/ €°()'G19I00-X0)SPOOMX0)SPOOM [UIXID)SR] UI0D
6 PUIqRIRP-U0SDR[:0100 WOSYOR([UIXI9)SR) 0D

¥°6°¢:01¢1s[-od Ayejep-uosyorl:adLyeyep nosye([UIX19)se] 0D 76 ¢RI09-Jos3pt[:0100 t0SY DR THIX 10)sBY TW0D

w‘a‘m;E@%-S:E&.E.mv-:oﬁuw.mamEk&EmvdOmem.SEﬁﬁwﬁ.E} “‘ — —— 30 PTgi1dR-gXRISIX0)SPOOM SIRTOPOD" B10
€' T:0100-3peqSor:peqdorsobp ——— ¥'6°¢: [WX-)RULIOJR)RP-UOSIDR[: JRULIOjR R D UOS IR [[X.I9)Se] 0D
¢ g ToIssep-peqiorpeqSorsob (Y 6 SuoTRISUTR-TI0SYOR (19100 10 TIXI9)SR] 0D
’ 7L T:Iopurumon(:)snoq uod
T'9:1erqieaq atprdu-510 0" ¢: TN OAUT-TPARTIL: PATRYS TDARTT dToRd e 310

‘)L TTHIS-10 o-[oL:(FJ1s"810 9’ 1:99P0D-SUOUIUI0D:DIPOI-SUOTIUIOD
1 ‘

\V

9°¢ puarpdyyg:sjuanodmoodyyy oypede 8o

TLOHSJVNS-0 T:[epour-1onpod:[ppotggonpold-s3e:so hieka
Gz L 1de-[pgs:(j31s°810 — ’Idv

€0 T:[[1-IAJOSOI-UDARTIL IDA[0SA.I TIoARTI dTede 10 \\-

ssun-snxerd:snxerd-sneyspod 310
("¢ ¢ R IIIR-TDARTIL: ToARTIL O [ordR 10
bo:suomrod-apede 310

FIT0CTOZA T 0" T:[IIN-10yjoR: 101 jor sd /(5 5Te

€°()° T:91SR(~1009UUOD-I0A [0SOI-UDARTL: IOA[0ST TIARTI DR dR 810 r‘\
€0 T:1dS-19A[0S1-UOARTLIA[0SOT UDARKL A PRTT-B4g

€0 T:dWI-I9A]OSOI-TIOARTL: IOAJOSOT ToARUL DT pede 510 N‘
X <

6°¢ ¢ 1op1aoId-1otjor-194pA 'ﬂ Hedease
' : B’f q\\\
—

F110CT10%A g 0 T [dur-1otjae:1atjar-asdipe 810 3 ; Pﬁ Spede B0
€0 1:1dR-TOA[0SOI-TIDARUL IOA[0SOI TR AR 516 '\ 6°¢" €1 IOP[M-[PPOW-TaARUL: IDARTI dToede 10
6°€ grrIRpRIdHL-A10Is0doI-UoARUII: IDART DTDedR 310
PIT0GT0GA g 0" T:1ds-1ot3or:10r3or-0sdra-8io (7 gz eaengieaens-o[3008 wo:
/ 1¢ 1:uoryejodisjur-snxo[d:snxayd snerppos 810

®>®EH~®>~Om®.~.=®>.NE.®JU‘NQ.N.M.HO

pa100d)):syuauoduood)y-ayprde- 810
6°¢ ¢:pr0ddns-Top[mq-uaseur:uaARw -dyede 810

FIT0CT0GA G 0 T 1de-To1)jor: Ta119R asdI[0a" 810

T -olqog(:alqog (018008
9" T:suoryejoune-jusuoduod-snxad:snxa(d-sneyopod 310 T T:STORRIOUE-GOg 21q0gT 912000700

0°0°Z:[eNb-1RdU00- 1000 IOMOUIR I 18501810 P’ T:SuoIRIOUUR-IOPIUS-Teuue:o[our sneyopoo 810
ez 10 6°¢ T:60gIs:s8npuy-9pod-9[3003 0

¢ T gsuonyejoune auold 10119:0101d 10119918008 0D
s mm 99139D

29

11

is why the analysis of the byte code and the reconstruction of dependencies is
necessary.

4.1.2 Partial crawling implementation

Originally, the need for partial crawling was motivated by the outlook of different
crawler implementations producing partial products that need to be put together.
But it turns out that sometimes this is already required inside the MavenCrawler.
When the project to be analyzed is a multi-module project, it is not possible to
run the PomProcessor only from the project root because the dependencies
of modules would not be considered that way. Therefore, for each module a
dependency tree has to be determined and afterwards the partial dependency
trees need to be combined. To accomplish this, the internal model’s Project class
implements an appendProject method as shown in listing 4.2.

A Project has a HashMap containing all the Component objects that are part of
the dependency graph. This serves as a sort of index for the data structure. Each
component’s key is its Maven coordinate as a string*. That way components can
be found in constant time using their key which improves the performance of the
algorithm.

public void appendProject(String parentKey, Project subproject) {

C...)
Component parent = components.get (parentKey);
Component subprojectRoot = subproject.getRoot ();
this.doAddComponent (subprojectRoot) ;
parent.getChildren () . put (

subproject.rootNode,

components.get (subproject.rootNode)) ;

relinkChildren (subprojectRoot) ;
Listing 4.2: appendProject method.

The appendProject method takes the Project to be appended® and the key for
Component to which the Project shall be appended. The general idea of the
algorithm is to stop whenever a component is already part of the Project. The
exception to this idea is the start of the algorithm. For the first component it is
necessary to always look at its children because if the first component is the root
of a Maven module, it is possible that the component is part of the Project but
its children could not have been determined.

4Maven coordinates are presented as ”groupld:artifactld:version”
5Also called subproject in this section

30

The dependencies of the project to be appended are redirected in the relinkChil-
dren method. The first thing done in that method is to put the component whose
children are to be checked in a HashSet containing all the components that have
already been visited while iterating over the children. This avoids infinite itera-
tions when circular dependencies occur. Then the subproject’s root and each of
its children will be paired and put into a buffer. This is followed by the actual
iteration over the children. The loop will always take the parent-child pair at the
index zero of the buffer while there are any left and do one of the following two
operations after adding the child to the wvisited set:

e If the child is already part of the Project to which the subproject is being
appended, then redirect the dependency. In this case the children of the
dependency do not need to be checked.

e If the previous is not the case, then the child is added to the Project as
a new dependency and the children of the child are added as parent-child
pairs to the buffer provided that the children are not in the wisited set yet.

At the end of each iteration the buffer entry at index zero is removed from the
buffer. That way the loop will definitely come to a halt at some point. The
best case complexity of the algorithm is o(m) where m is the number of the
root component’s children of the subproject. The worst case complexity is O(n?)
where n is the number of components in the subproject. It is quadratic because
there is a second loop inside the main iteration when the parent-child pairs are
added to the buffer. But the algorithm usually runs a lot faster than the worst
case because related projects often have overlapping dependencies like utility
libraries and such.

4.2 Model export

The model export becomes quite simple when using the Jackson library for con-
verting the model to serialized representations. Jackson is a widely used library
for JSON serialization and parsing (FasterXML, LLC., 2018). Most objects can
be serialized and parsed out of the box but sometimes classes have to be imple-
mented using Jackson annotations.

The relevant annotations used for serialization in the product model are JsonMan-
agedReference and JsonBackReference. These annotations are used to indicate
parent/child relationships between nodes (FasterXML, LLC., 2016). This is used

for component relationships.

Although Jackson is originally intended for JSON representations, there are
extensions for Jackson that enable the framework to produce XML (jackson-

31

dataformat-zml) and YAML (jackson-dataformat-yaml) data formats without
having to implement a data model using different annotations. These extensions
simply override the ObjectMapper class which is responsible for serialization and
parsing of data.

Appendix B shows an excerpt of an exported JSON representation. It demon-
strates how dependencies as well as their metadata translate into serialized rep-
resentations. Note that if certain string values can not be determined during a
crawl run, the export will display none as the value. This is the case for "home-
pageUrl” in appendix B.

4.3 Command-line interface

As mentioned in section 1.2 the motivation for the crawler application is to be
used in existing tool chains. So it makes sense to provide a command-line interface
(CLI) for that purpose. That way a user can easily combine the application with
existing tools, e.g. in a build script. An alternative would be to provide the
application via some web application programming interface (API). But that
would require a web server to be implemented which is an substantial effort.
Since there is no special requirement for a web API, the much simpler alternative
of providing a CLI is chosen. To build the CLI the library JCommander is used.
It makes parsing command-line arguments very easy by adding annotations to
the respective parameters (Beust, 2017).

The supported options are shown in listing 4.3. The CLI always requires the
-¢ flag to be set because it is the only operation that the tool supports at the
moment. In the future there will be more options to choose from. Another
interesting option is the -m option. This is required to be set if a local maven
installation is used to build the project to be analyzed. As mentioned in section
4.1.1, the JarProcessor uses the Apache Maven Invoker for that. It requires
either the maven.home system property or the M2_HOME environment variable
to be set. Therefore, the CLI makes sure that the maven.home system property
is set by calling the System.setProperty method before starting a crawl run. That
way a user will not have to make sure that the M2_HOME environment variable
is set prior to starting the crawler application.

Usage: <main class> [options]

Options:
--crawl, -c
Do a crawl run.
--export, -e

File path to which model should be exported.
SUPPORTS: json, xml, yaml
-—-input-dir, -i

32

11

13

11

Input directory for the crawler.

--output-dir, -o
Directory where produced files are stored.
--maven, -m

Path to maven installation base directory.

Listing 4.3: Command-line interface usage description.

4.3.1 Containerization with Docker

It has become apparent that the crawler application has two external dependen-
cies. The first is a Java RTE and the second is a Maven installation. The latter
is optional in some cases. But since the application will support more crawler
implementations in the future, it is very likely that the number of external de-
pendencies is going to rise. This makes providing a stable system difficult on
which the crawler application reliably runs. A solution for this problem is to run
the application inside a container. To date one of the most popular container-
ization technologies is Docker. Docker containers can be easily built using so
called Dockerfiles which are basically blueprints for the containers. In such a file
the respective versions of external dependencies can be statically defined which
attributes to a stable environment. Additionally, docker images can be hosted in
docker repositories like Docker Hub® which makes deployment very convenient.

Such a docker image for the crawler application can be built using the Dockerfile
depicted in listing 4.4. The image is built from the minimal Alpine Linux base
image which is only roughly 8 MB large (Alpine Linux Development Team, 2017).
The only additional programs installed are a openJDKS and its RTE as the Java
installation as well as Maven. For the Maven installation a specific version can
be pinned in case the build of a project to be analyzed requires that. A user can
also add additional dependencies needed for the build here.

FROM alpine:3.7

RUN apk add --update \
openjdk8-jre \
openjdk8 \
maven=3.5.2-1r0

COPY docker/maven/assets/start.sh /start.sh
COPY target/product-model-1.0-SNAPSHOT-jar-with-dependencies. jar
/product -model. jar

ENTRYPOINT ["/start.sh"]
VOLUME ["/project"]

Shttps://hub.docker.com/

33

https://hub.docker.com/

13

VOLUME ["/output"]
Listing 4.4: Dockerfile for crawler application

The entry point for the Docker image is the start.sh script. It determines the
installation directory of Maven inside the container and starts the crawler appli-
cation with the appropriate command-line options. The only additional thing a
user needs to do when running the Docker image, is to mount the input directory
to the ”/project” volume and the output directory to the ”/output” volume.

34

5 Evaluation

As mentioned in section 2.9 the functionality of the application — meaning its
functional requirements — is verified with tests. Even though the successful com-
pletion of tests is not a guarantee for correctness of the program, it is still a valid
indicator. Section 5.1 highlights the evaluation of the functional requirements
whereas section 5.2 focuses on the non-functional requirements. The chapter
closes with other quality considerations which are not part of the original re-
quirements in section 5.3.

5.1 Functional requirements

Each of the functional requirements is realized as part of a class or set of classes
as highlighted in chapter 3 and 4. Therefore, it is sufficient to test all the relevant
classes and their interactions to gain confidence in the correct realization of the
requirements. As mentioned in section 2.9 the minimum threshold for confidence
in the implementation of the functional requirements’ correctness is a code line
coverage of 100%. Table 5.1 shows the coverage of the top-level packages of the
crawler application at the time of this writing. It can be seen that the crawler
package as well as the export package have a coverage of 100% which are the
packages that implement all the functional requirements.

Element | Class, % Method, % Line, %

crawler | 100% (33/33) | 100% (259/259) | 100% (1277/1277)
oxport | 100% (5/5) | 100% (19/19) | 100% (63/68)
model | 100% (11/11) | 86% (80/93) | 85% (224/263)

Table 5.1: Unit test coverage.

But this is not enough to verify that the interactions between the software’s units
is correct. That is why integration tests are run as well. The projects chosen

35

11

13

15

17

as input for the integration tests are Bootique! and Hddiff>. The functionality
of these projects is not important in the context of the integration tests. They
were simply chosen because they were sufficiently large but not so large that the
integration tests would run too long to be practical. One of the challenges here
is to reliably set up the integration test environment so that the tests produce
deterministic results. This is accomplished using the Maven SCM Plugin which
is a plugin that can do a variety of operations on source code management (SCM)
systems (Apache Software Foundation, 2016). Listing 5.1 shows part of the SCM
plugin configuration from the crawler applications POM file. It can be seen that
the execution of the plugin is bound to the pre-integration-test phase which is the
appropriate phase to set up the integration test environment (Apache Software
Foundation, 2018b).
<execution>
<id>clone-hddiff </id>
<goals>
<goal>checkout </goal>
</goals>
<phase>pre-integration-test</phase>
<configuration>
<checkoutDirectory>
${project.basedir}/target/test-classes/hddiff
</checkoutDirectory >
<connectionType >connection</connectionType >
<connectionUrl >
scm:git:https://github.com/sweble/hddiff.git
</connectionUrl >
<scmVersionType >tag</scmVersionType>
<scmVersion>hddiff-2.0.4</scmVersion>
</configuration>
</execution>

Listing 5.1: Integration test project download.

The model package does no have a coverage of 100% because it contains the gen-
eral product model which is still in development at the time of this writing. Also,
the CLI has not been verified since it is most likely going to change significantly in
the future. The following will explain how each functional requirement is verified
in more detail.

F01: Crawler based on product model

This requirement is the top-level functional requirement. It states that the soft-
ware produces a product model based on a crawler implementation. Since the

thttps://github.com /bootique/bootique
Zhttps://github.com/sweble/hddiff

36

https://github.com/bootique/bootique
https://github.com/sweble/hddiff

only crawler implementation available is the MavenCrawler, this requirement is
dependent on requirement F04. But in general FO1 is about having a frame-
work that is able to run different crawler implementations. Since the crawler
implementations are realized as strategies they can be replaced by stubs during
testing. Stubs are well suited in this case because the strategies return values
that can be hard-coded in a stub (Meszaros, 2007). Error behavior of the imple-
mented strategy pattern is also tested using a saboteur which is a variation of
general stubs (Meszaros, 2007). In the case of the crawler application all stubs
are injected using Java reflection.

F02: Partial crawling

The partial crawling requirement is only implemented for the internal Maven
model used by the MavenCrawler because the general product model is still in
development at the time of this writing. But in principle the algorithm described
in section 3.2.2 should be applicable to the general product model. Regardless,
this requirement can be entirely verified for the internal Maven model by unit
tests since it is only an operation on the Project data structure. But it is also
applied during integration tests since the operation is used in Maven multi-module
projects which the test projects are.

F03: Exportable product model

The serialization of the product model is handled by the Jackson framework
which is already well-tested. Therefore, it is only necessary to test the export
regarding the completeness and correctness (e.g. correct timestamp format) of the
exported model. This is accomplished with unit tests. Similarly to requirement
FO01 the export’s error behavior is tested using a saboteur.

F04: Maven project support

To verify this requirement the MavenCrawler strategy is tested. It is quite exten-
sive and is therefore split into CrawlProcessors. Each of these CrawlProcessors
is tested as individual units and the MavenCrawler itself is tested using stubs
as CrawlProcessors similarly to FO1. To ensure that these units work correctly,
they are integrated all at once and tested during integration tests. This completes
requirement FO1 as well.

37

F05: Identify component relationships

As determined in section 3.2.3 the crawler application can only recognize dynamic
linking since static linking is strictly not possibly in Java and the detection of
web calls is out of scope for this thesis. So this requirement is only partially met.

F06: Product data version

This requirement is almost trivially satisfied since it only involves setting a times-
tamp on the product model. This is verified using unit tests and can be seen in
appendix B ("analyzeTime” field).

5.2 Non-functional requirements

As mentioned in section 3.2.1 requirement QO1 is already satisfied through the
crawler design since it only requires easy implementation of additional crawlers
by having exactly one interface to implement. This leaves the evaluation of the
application’s reliability (requirement Q02). The threshold for minimal reliability
was set at 50% of components recognized. This is verified through integration
tests.

To produce deterministic results the projects used for integration tests are checked
out using static tags from their respective git repositories. In the case of Hddiff for
instance the tag hddiff-2.0.4 is used. This is enough to run the MavenCrawler
with the downloaded projects as input. But the results of the MavenCrawler
can not be easily verified. To verify that the correct number of dependencies
is recognized by the MavenCrawler it is necessary to find out what the correct
number actually is. Unfortunately this is a manual process. The results of this
manual process can be seen in the appendices C and D.

Since the MavenCrawler only determines non-optional dependencies this leaves
Hddiff ’s dependencies with a total number of 25 and Bootique’s dependencies
with 76. These numbers are confirmed by the integration tests. This means that
the requirement is satisfied. But it may very well be that other projects pro-
duce subpar results. This is because the component identification process relies
on only the Maven build system to handle dependencies. So if manually copied
dependencies are used, they are not detected by the application. Similarly, de-
pendencies introduced by different build systems in subprojects, are not detected,
as well. These issues could be eliminated by future crawler implementations.

38

5.3 Other quality considerations

Throughout the development of the crawler application it has become appar-
ent that some code quality requirements are implied instead of explicitly stated
as non-functional requirements. One of these implied requirements is the wish
to keep the code as simple as possible so that it stays maintainable as well as
readable. To determine methods which might be too complex, the cyclomatic
complexity introduced by McCabe (1976) was calculated. This was accomplished
using the MetricsReloaded® plugin of the Intellij IDEA integrated development
environment. If a method’s cyclomatic complexity was greater than five, the
method was refactored. The consequence is more easily readable code. The
threshold of five was arbitrarily chosen.

3https://plugins.jetbrains.com/plugin/93-metricsreloaded

39

https://plugins.jetbrains.com/plugin/93-metricsreloaded

6 Conclusion

The underlying task of the crawler application is to enable solutions for difficult
problems in using OSS as mentioned throughout chapter 1. One of these problems
is that OSCs often have known security vulnerabilities. The crawler application
can be used to find out whether affected components are used in software projects.
This is accomplished by analyzing the byte code of all the Java classes used as
mentioned in section 4.1.1. The resulting bindings can be found as metadata of
type Interface in the exported product model. Using this information it is possible
to look up whether known security vulnerabilities like the ones published by the
NIST may apply to certain parts of software projects. This is already useful
information but the identification process of interfaces may have limitations in
some cases. This is due to the fact that classes may not be directly portrayed
in byte code when for example custom class loaders are used. Also, it may be
difficult to capture classes in byte code that have been instantiated using the
Java reflection API.

Another open source specific issue mentioned in chapter 1 is the problem of de-
tecting licensing conflicts. The crawler application is intended to provide all the
licenses of each component so that other software can determine licensing con-
flicts. The MavenCrawler takes all of the metadata except interface information
from each component’s POM file. These files provide an optional field where li-
censes can be declared which is used to feed the results of the crawler application
with licensing information. The unfortunate reality is that this optional field is
rarely provided. In case of the test projects for the crawler application, only 13
of a total of /1 (31,7%) components provided licensing information in their POM
files. This may be due to developers not caring about providing complete POM
files but is more likely the case because a lot of Java OSCs were originally not
developed using Maven. When such a component is hosted on a Maven repos-
itory the respective POM files are probably automatically generated. Since the
detection of licenses is not trivial, the field is left out in that case. A solution
would be to enhance the product model with some secondary information source
for each component. This may be accomplished in similar fashions as used by
the existing programs mentioned in section 1.1.

40

It can be seen that there are still issues that need to be addressed in the future
but the crawler application already provides a fairly reliable dependency graph in
the form of machine-readable exports. Even though some relationships between
components may not be detected, the underlying dependency tree includes all
the dependencies that an analyzed software project requires if the project only
uses Maven for dependency management. The resulting product model enables
future work on the mentioned issues as well as potentially more use cases and the
MavenCrawler itself serves as a reference for future crawler implementations.

While future crawlers could use Gradle, CMake and even NPM as their base build
systems, other use cases of the MavenCrawler may involve comparison of the data
provided by POM files with secondary data sources. Another use case which could
be particularly interesting for practitioners is research on effective visualizations
of the gathered models. This could be useful since even small project’s depen-
dencies quickly become very confusing as demonstrated throughout this thesis.
These examples show that collecting data in the form of a product model is
equally useful to academic research as well as to engineers building software with

OSCs.

41

Appendix A: Crawler application dependencies

Artifact id Version | License Description
bceel 6.1 Apache Library for analyzing byte-
v2.0 code.
guava 24.0-jre | Apache General utility library for
v2.0 Java.
jackson-databind 2.9.4 Apache General data-binding
v2.0 package used for export.
jackson-dataformat-xml 2.94 Apache XML data format imple-
v2.0 mentation.
jackson-dataformat-yaml 2.94 Apache YAML data format imple-
v2.0 mentation.
jackson-datatype-jsr310 2.94 Apache Jackson extension for sup-
v2.0 porting Java 8 date/time
data types.
jcommander 1.72 Apache Library for building
v2.0 command-line interfaces.
logback-classic 1.2.3 EPL v1.0 / | Logging utility
LGPL 2.1
maven-aether-provider 3.3.9 Apache Implementation of Maven
v2.0 resolution for maven-
resolver.
maven-invoker 3.0.0 Apache Java API for issuing com-
v2.0 mands to local maven in-
stallation.
maven-model 3.3.9 Apache Used for parsing POM
v2.0 files.
maven-resolver-api 1.0.3 Apache The API of the Maven ar-
v2.0 tifact resolver.
maven-resolver-connector-basic | 1.0.3 Apache Implementation of reposi-
v2.0 tory connections.
maven-resolver-impl 1.0.3 Apache Implementation of the
v2.0 maven-resolver-api.
maven-resolver-transport-http | 1.0.3 Apache Implementation of the
v2.0 HttpTransporter service.
maven-resolver-util 1.0.3 Apache Utility used for handling
v2.0 dependency scopes.

Table A: Crawler application dependencies

42

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

Appendix B: Product model export excerpt

"name" : "hddiff-parent",
"homepageUrl" : null,
"vcs" : "https://github.com/sweble/hddiff",
"declaredLicenses" : ["GNU Affero General Public License"],
"buildTool" : "MAVEN",
"rootComponents" : [... , {

"name" : "hddiff",

"namespace" : "de.fau.cs.osr.hddiff",

"version" : "2.0.4",

"artifact" : {

"filePath" : "/output/jars/target/dependency/hddiff-2.0.4.jar",

"hashAlgorithm" : "SHA512",

"hash" : "30970635F17893DDE4E39EEC176CE73B
B849F99A800E1F55159E94D5E002038E
CCOF1419DE7429391E248794558364B6
2ABC120A2272E4DB2B148B126C9447CE"

},
"metaData" : [{
"description" : "Interface",
"value" : {
"provider" : "de.fau.cs.osr.utils:utils:3.0.6",
"requiredFrom" : "de.fau.cs.osr.hddiff.editscript.EditOpInsert",
"providedInterface" : "de.fau.cs.osr.utils.StringTools"
}
Y, ... 1,
"dependencies" : [{
"target" : {
"name" : "utils",
"namespace" : "de.fau.cs.osr.utils",
"version" : "3.0.6",
"artifact" : {
"filePath" : "/output/jars/target/dependency/utils-3.0.6.jar",
"hashAlgorithm" : "SHA512",
llhashll . n . n
1,
"metaData" : [... 1],
"dependencies" : [...]
3,
"type" : "DYNAMIC_IMPORT"
Y, ... 1]
1,
"analyzeTime" : "2018-04-05T09:01:42.645Z"

}

Listing B: Excerpt from JSON product model export of the Hddiff project.

43

Appendix C: Bootique dependencies

Artifact Id Group Id Optional
aopalliance aopalliance No
asm org.ow2.asm Yes
bootique io.bootique No
bootique-test io.bootique No
bootique-test-badspi-it io.bootique No
cglib cglib Yes
guava com.google.guava No
guice com.google.inject No
guice-multibindings com.google.inject.extensions No
hamcrest-core org.hamcrest No
jackson-annotations com.fasterxml.jackson.core No
jackson-core com.fasterxml.jackson.core No
jackson-databind com.fasterxml.jackson.core No
jackson-dataformat-yaml com.fasterxml.jackson.dataformat | No
javax.inject javax.inject No
jopt-simple net.sf.jopt-simple No
jsr305 com.google.code.findbugs Yes
junit junit No
snakeyaml org.yaml No

Table C: Bootique dependencies

44

Appendix D: Hddiff dependencies

Artifact Id Group Id Optional
commons-codec commons-codec No
commons-collections commons-collections No
COMMONS-COMpress org.apache.commons No
commons-io commons-io No
commons-lang3 org.apache.commons No
diff com.sksamuel.diff No
gson com.google.code.gson No
hddiff de.fau.cs.osr.hddiff No
hddiff-perfsuite de.fau.cs.osr.hddiff No
hddiff-wom-adapter de.fau.cs.osr.hddiff No
jaxb-impl com.sun.xml.bind No
joda-convert org.joda Yes
joda-time joda-time No
ptk-common de.fau.cs.osr.ptk No
rats-runtime xte No
Saxon-HE net.sf.saxon Yes
slf4j-api org.slf4j No
swc-engine org.sweble.wikitext No
swe-parser-lazy org.sweble.wikitext No
sweble-engine-serialization | org.sweble.engine No
sweble-wom3-core org.sweble.wom3 No
sweble-woma3-json-tools org.sweble.wom3 No
sweble-wom3-swc-adapter org.sweble.wom3 No
utils de.fau.cs.osr.utils No
xalan xalan Yes
xercesImpl xerces No
xml-apis xml-apis No
xml-resolver xml-resolver Yes
xmldiff fc.xml.diff No
X7 org.tukaani Yes

Table D: Hddiff dependencies

45

Appendix E: Content of compact disc

The attached compact disc contains the source code files as well as other project
files of the crawler application and the digital version of this thesis including all
the TEX files for this writing. The top-level files on the disc are:

thesis.pdf: This is the digital version of this thesis.

latex: This is a directory containing all the tex files, graphics and the bibliogra-
phy file of this thesis.

source: This is a directory containing the entire project folder of the crawler
application.

46

List of Figures

0 3 O U i~ W N

Ne)

Component diagram showing system architecture

Composition with Maven in an idealized component lifecycle. . . .
The generic product model.
Crawler design with strategy pattern.
The model used by the Maven crawler.
Internal procedures of MavenCrawler.
Appending a sub-project.
Java from source code to loaded classes.

Crawler application dependency tree.
Crawler application dependency graph.

47

References

Alpine Linux Development Team. (2017). About. https://alpinelinux.org/about /.
Accessed: 2018-03-25.

Apache Software Foundation. (2004, January). Apache license. https://www.
apache.org/licenses/ LICENSE-2.0. Accessed: 2018-03-23.

Apache Software Foundation. (2016, July). Maven scm plugin. https: //maven.
apache.org/scm/maven-scm-plugin/. Accessed: 2018-03-25.

Apache Software Foundation. (2017a, August). Apache maven assembly plugin.
http: / /maven.apache.org / plugins / maven - assembly - plugin/. Accessed:
2018-01-09.

Apache Software Foundation. (2017b, January). Apache maven invoker — usage.
https: //maven.apache.org /shared /maven-invoker /usage.html. Accessed:
2018-03-24.

Apache Software Foundation. (2017c, December). Commons beel. https://commons.
apache.org/proper/commons-bcel /. Acessed: 2018-03-24.

Apache Software Foundation. (2018a, February). Apache maven artifact resolver.
https://maven.apache.org/resolver/. Accessed: 2018-03-23.

Apache Software Foundation. (2018b, March). Introduction to the build lifecylce.
https: / /maven . apache.org / guides / introduction / introduction - to- the-
lifecycle.html. Accessed: 2018-03-24.

Apache Software Foundation. (2018c, March). Pom reference. https://maven.
apache.org/pom.html. Accessed: 2018-03-18.

Apache Software Foundation. (2018d, March). Skipping tests. http://maven.
apache.org /surefire /maven-failsafe- plugin /examples / skipping- tests. html.
Accessed: 2018-03-25.

Bajracharya, S., Ossher, J., & Lopes, C. (2014, January). Sourcerer: an infras-
tructure for large-scale collection and analysis of open-source code. Science
of Computer Programming, 79, 241-259. doi:10.1016/j.scico.2012.04.008

Bentmann, B. & Irawan, H. (2014, July). Aether/dependency graph. http://wiki.
eclipse.org/Aether/Dependency Graph. Accessed: 2018-03-24.

Beust, C. (2017, May). Jcommander. http://jcommander.org/. Accessed: 2018-
03-25.

48

https://alpinelinux.org/about/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://maven.apache.org/scm/maven-scm-plugin/
https://maven.apache.org/scm/maven-scm-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/shared/maven-invoker/usage.html
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://maven.apache.org/resolver/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
http://maven.apache.org/surefire/maven-failsafe-plugin/examples/skipping-tests.html
http://maven.apache.org/surefire/maven-failsafe-plugin/examples/skipping-tests.html
https://dx.doi.org/10.1016/j.scico.2012.04.008
http://wiki.eclipse.org/Aether/Dependency_Graph
http://wiki.eclipse.org/Aether/Dependency_Graph
http://jcommander.org/

Bonaccorsi, A., Giannangeli, S., & Rossi, C. (2006, July). Entry strategies under
competing standards: hybrid business models in the open source software
industry. Management Science, 52(7), 1085-1098. doi:10.1287 /mnsc.1060.
0547

Bonaccorsi, A. & Rossi, C. (2006, December). Comparing motivations of indi-
vidual programmers and firms to take part in the open source movement:
from community to business. Knowledge, Technology & Policy, 18(4), 40—
64. doi:10.1007/s12130-006-1003-9

Contrast Security Inc. (2014). The unfortunate reality of insecure libraries.

Crnkovic, 1., Sentilles, S., Vulgarakis, A., & Chaudron, M. R. V. (2011, Septem-
ber). A classification framework for software component models. IEEE
Transactions on Software Engineering, 37(5), 593-615. doi:10.1109/tse.
2010.83

Dahlander, L. & Magnusson, M. G. (2005, May). Relationships between open
source software companies and communities: observations from nordic firms.
Research Policy, 34(4), 481-493. doi:10.1016/j.respol.2005.02.003

FasterXML, LLC. (2016, November). Jackson annotations. https://github.com/
FasterXML / jackson - annotations / wiki / Jackson - Annotations. Accessed:
2018-03-25.

FasterXML, LLC. (2018, February). Jackson project home @github. https://
github.com /FasterXML /jackson /blob /master / README.md. Accessed:
2018-03-25.

FOSSology Workgroup. (2017). Fossology. https://www.fossology.org/. Accessed:
2017-12-01.

Free Software Foundation, Inc. (2007a, June). Gnu affero general public license.
https://www.gnu.org/licenses/agpl-3.0.en.html. Accessed: 2018-01-09.

Free Software Foundation, Inc. (2007b, June). Gnu general public license. https:
//www.gnu.org/licenses/gpl-3.0.en.html. Accessed: 2017-12-01.

Free Software Foundation, Inc. (2007¢c, June). Gnu lesser general public license.
https://www.gnu.org/licenses/lgpl-3.0.en.html. Accessed: 2018-01-09.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: ele-

ments of reusable object-oriented software. Addison-Wesley Professional.

German, D. M., Gonzalez-Barahona, J. M., & Robles, G. (2007, October). A
model to understand the building and running inter-dependencies of soft-
ware. In 14th working conference on reverse engineering (WCRE 2007).
[EEE. do0i:10.1109/wcre.2007.5

German, D. M. & Hassan, A. E. (2009). License integration patterns: addressing
license mismatches in component-based development. In 2009 IEEE 31st
international conference on software engineering. IEEE. doi:10.1109 /icse.
2009.5070520

German, D. M., Manabe, Y., & Inoue, K. (2010). A sentence-matching method
for automatic license identification of source code files. In Proceedings of the

49

https://dx.doi.org/10.1287/mnsc.1060.0547
https://dx.doi.org/10.1287/mnsc.1060.0547
https://dx.doi.org/10.1007/s12130-006-1003-9
https://dx.doi.org/10.1109/tse.2010.83
https://dx.doi.org/10.1109/tse.2010.83
https://dx.doi.org/10.1016/j.respol.2005.02.003
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://github.com/FasterXML/jackson/blob/master/README.md
https://github.com/FasterXML/jackson/blob/master/README.md
https://www.fossology.org/
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://dx.doi.org/10.1109/wcre.2007.5
https://dx.doi.org/10.1109/icse.2009.5070520
https://dx.doi.org/10.1109/icse.2009.5070520

IEEE/ACM international conference on automated software engineering -
ASE ’10. ACM Press. doi:10.1145/1858996.1859088

German, D. M. & Penta, M. D. (2012, May). A method for open source license
compliance of java applications. IEEE Software, 29(3), 58-63. doi:10.1109/
ms.2012.50

Gobeille, R. (2008). The fossology project. In Proceedings of the 2008 inter-
national working conference on mining software repositories (pp. 47-50).
ACM.

Heineman, G. T. & Councill, W. T. (2001, June 11). Component-based soft-
ware engineering: putting the pieces together. ADDISON WESLEY PUB
CO INC.

Howison, J., Conklin, M., & Crowston, K. (2006). FLOSSmole: A collaborative
repository for FLOSS research data and analyses. International Journal of
Information Technology and Web Engineering, 1(3), 17-26. doi:10.4018/
jitwe.2006070102

Lau, K.-K. & Wang, Z. (2007, October). Software component models. IEEE
Transactions on Software Engineering, 33(10), 709-724. doi:10.1109/tse.
2007.70726

Linux Foundation. (n.d.). Corporate members. https://www.linuxfoundation.
org/membership/members/. Accessed: 2017-12-01.

McCabe, T. (1976, December). A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4), 308-320. doi:10.1109/tse.1976.233837
Meszaros, G. (2007). Xunit test patterns: refactoring test code. Addison-Wesley.
Open Source Initiative. (n.d.). Licenses by name. https:/ /opensource.org /

licenses/alphabetical. Accessed: 2017-12-01.

Open Source Initiative. (2007, March). The open source definition. https://
opensource.org/osd. Accessed: 2017-11-27.

Oracle America, Inc. (2015, March). The java® virtual machine specification:
java se 8 edition. https://docs.oracle.com/javase/specs/jvms/se8 /jvms8.
pdf. Accessed: 2018-01-08.

Oracle America, Inc. (2017, August). The java® language specification: java se
9 edition. https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf. Accessed:
2018-03-19.

OWASP Foundation. (2013). 2013 top 10 list. https://www.owasp.org/index.
php/Top_10_2013-Top_10. Accessed: 2017-12-04.

OWASP Foundation. (2017). Owasp dependency-check. https://www.owasp.org/
index.php/OWASP _Dependency_Check. Accessed: 2017-12-04.

Payne, C. (2002, January). On the security of open source software. Information
Systems Journal, 12(1), 61-78. doi:10.1046/;.1365-2575.2002.00118.x
Quality Open Software. (2018). Logback project. https://logback.qos.ch/. Ac-

cessed: 2018-03-23.

Riehle, D. (2007). The economic motivation of open source software: stakeholder

perspectives. Computer, 40(4), 25-32.

20

https://dx.doi.org/10.1145/1858996.1859088
https://dx.doi.org/10.1109/ms.2012.50
https://dx.doi.org/10.1109/ms.2012.50
https://dx.doi.org/10.4018/jitwe.2006070102
https://dx.doi.org/10.4018/jitwe.2006070102
https://dx.doi.org/10.1109/tse.2007.70726
https://dx.doi.org/10.1109/tse.2007.70726
https://www.linuxfoundation.org/membership/members/
https://www.linuxfoundation.org/membership/members/
https://dx.doi.org/10.1109/tse.1976.233837
https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical
https://opensource.org/osd
https://opensource.org/osd
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://dx.doi.org/10.1046/j.1365-2575.2002.00118.x
https://logback.qos.ch/

Riehle, D. (2009). The commercial open source business model. In Lecture notes
in business information processing (pp. 18-30). Springer Berlin Heidelberg.
do0i:10.1007/978-3-642-03132-8_2

Szyperski, C. (2002). Component software: beyond object-oriented programming
(2nd edition). Addison-Wesley Professional.

o1

https://dx.doi.org/10.1007/978-3-642-03132-8_2

	Introduction
	Existing tools
	Alternative approach

	Requirements
	F01: Crawler based on product model
	F02: Partial crawling
	F03: Exportable product model
	F04: Maven project support
	F05: Identify component relationships
	F06: Product data version
	Q01: Modifiability and extensibility
	Q02: Reliability
	Evaluation scheme for requirements

	Architecture and Design
	Component models
	Crawler design
	Maven crawler design
	Partial crawling
	Component Relationships

	Implementation
	Maven crawler implementation
	Dependency resolution
	Partial crawling implementation

	Model export
	Command-line interface
	Containerization with Docker

	Evaluation
	Functional requirements
	Non-functional requirements
	Other quality considerations

	Conclusion
	Appendices
	Crawler application dependencies
	Product model export excerpt
	Bootique dependencies
	Hddiff dependencies
	Content of compact disc

	List of Figures
	References

