
Understanding Industry Requirements for FLOSS Governance Tools 

Nikolay Harutyunyan, Andreas Bauer, Dirk Riehle  

Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany 
{nikolay.harutyunyan,andi.bauer}@fau.de, dirk@riehle.org 

Abstract. Almost all software products today incorporate free/libre, and open source software (FLOSS) com-

ponents. Companies must govern their FLOSS use to avoid potential risks to their intellectual property result-

ing from the use of FLOSS components. A particular challenge is license compliance. To manage the com-

plexity of license compliance, companies should use tools and well-defined processes to perform these tasks 

time and cost efficiently. This paper investigates and presents common industry requirements for FLOSS gov-

ernance tools, followed by an evaluation of the suggested requirements by matching them with the features of 

existing tools. 

We chose 10 industry leading companies through polar theoretical sampling and interviewed their FLOSS 

governance experts to derive a theory of industry needs and requirements for tooling. We then analyzed the 

features of a governance tools sample and used this analysis to evaluate two categories of our theory: FLOSS 

license scanning and FLOSS in product bills of materials. The result is a list of FLOSS governance require-

ments based on our qualitative study of the industry, evaluated using the existing governance tool features. For 

higher practical relevance, we cast our theory as a requirements specification for FLOSS governance tools. 

 

Keywords: Open Source Software, FLOSS, FOSS, Open Source Governance, FLOSS governance tools, com-

pany requirements for FLOSS tools 

1 Introduction 

Commercial use of FLOSS is on the rise as more companies realize the benefits of using FLOSS components in 

their products, going beyond the commonplace use of FLOSS development tools [9,12,25,34-35]. In 2017 a report 

by the European Commission estimated that using FLOSS saves the European economy an estimated EUR 114 

billion per year directly and up to EUR 399 billion per year overall [11]. However, companies also need to govern 

and regulate their use of FLOSS components to avoid common threats, such as FLOSS license non-compliance, 

copyright and patent infringement, that can result in litigation, cease and desist claims or product recalls 

[2,33,37,39]. In the context of this paper, we define FLOSS governance as the set of processes, best practices and 

tools employed by companies to use FLOSS components as part of their commercial products while minimizing 

their risks and maximizing their benefit from such use. 

FLOSS governance processes and tools can apply to the commercial use, contribution or leadership of FLOSS 

projects. We limited the scope of this paper only to the commercial use of FLOSS components, intentionally 

excluding governance considerations of FLOSS contribution or leadership by companies. This is in line with our 

earlier definition of FLOSS governance. Such focus allowed us to generate an in-depth theory covering the earliest 

maturity phase of industry involvement with open source that is of highest practical relevance to most companies 

today and novel to the growing open source research [20]. 

Despite the practical relevance of the issue, research has been slow to address the use of FLOSS in products. 

The existing literature is limited to general FLOSS governance research [1,3,7], to research of the governance of 

open source communities and their development practices [26,28,36,40], and to FLOSS license compliance re-

lated governance [10,13-17,31,42,46]. However, past research has not comprehensively addressed FLOSS gov-

ernance requirements and best practices in industry. A particularly practical aspect of FLOSS governance is its 

automation through tooling, which ensures increased efficiency and better integration into the development pro-

cess. Focusing on the specific aspect of FLOSS governance tooling, we addressed this gap by asking the following 

research question: 

RQ: What are the core industry requirements for FLOSS governance tools needed to facilitate the use of 

FLOSS components in commercial products? 

The research method employed is an adaptation of the grounded theory method [5-6] called the QDAcity‑RE 

method for structural domain modeling using qualitative data analysis [23]. We chose this novel, yet promising 

research method because it enables using qualitative data analysis (QDA) to develop a theory that can be specifi-

cally cast as a requirements specification. Answering our research question, we aimed to cast our theory as a list 



2 N. Harutyunyan et al. 

of common industry requirements for FLOSS governance tools. This format is well-understood in the industry 

and can, therefore, ensure a high practical value of our research results. Data gathering and analysis were per-

formed using formal semi-structured interviews, researcher notes, and materials review. We interviewed 15 

FLOSS governance and compliance experts from 10 diverse companies chosen through theoretical sampling of 

more than 140 companies. 

There are few reports on commercial adoption of FLOSS that are cast as lists of requirements focusing on 

technical and managerial aspects of using FLOSS in proprietary products [46]. However, neither academic nor 

practitioner literature offers a detailed list of industry requirements for FLOSS governance or its tooling that goes 

beyond a high-level of abstraction [30]. In this paper, we addressed this research gap with our main contribution 

– the theory of industry requirements for FLOSS governance tools. Our theory indicated four key categories of 

FLOSS governance tool requirements in no particular order: 

• Tracking and Reuse of FLOSS components 

• License Compliance of FLOSS components 

• Search and Selection of FLOSS components 

• Other requirements (security, education, etc.) 

We then broke down each of these categories into detailed requirements and sub-requirements. 

To evaluate our theory, we analyzed marketing materials and demos of 6 widely used and representative 

FLOSS governance tools. We compared the key tool features with our suggested theory and evaluated our pro-

posed requirements confirming many of them. In future publications, we also plan to address other aspects of 

FLOSS governance in high detail, including industry best practices for FLOSS supply chain management and 

license compliance.  

2 Related Work 

The early research on FLOSS governance in companies was part of the broader research on the commercial use 

of FLOSS development tools and components [1,20]. In a systematic literature review on FLOSS adoption in 

industry, Hauge et al. identified only a limited amount of research focusing on FLOSS component selection by 

companies [7-8,22,45] and knowledge sharing within FLOSS communities [25,27,43]. Hauge et al. [20] did not 

identify any academic studies focused on the actual industry practice of using FLOSS components in products, 

thus suggesting that further research is needed on this topic. Our literature review confirmed this research gap 

prompting us to conduct this study of 10 industry-representative companies. 

We set our research scope and that of the related work review to the commercial use of FLOSS components in 

products and industry requirements for FLOSS governance tooling. We explicitly excluded FLOSS governance 

related to industry contribution to or leadership of FLOSS projects. We did not identify literature explicitly fo-

cused on FLOSS governance tool requirements. However, we found indirect references to the topic that we used 

as a starting point for our research. We derived three key categories of FLOSS governance requirements that can 

be addressed through tooling: 

• Tracking and Reuse of FLOSS components [21,32,44] 

• License Compliance of FLOSS components [10,13-17,31,42,46] 

• Search and Selection of FLOSS components [7,8,22,41,45] 

Tracking and Reuse. With the growing availability of high-quality FLOSS components, software developers 

increasingly use FLOSS components in commercial products. FLOSS governance policies in many companies 

require developers to track and document such FLOSS use [21,32]. This enables the well-structured management 

and reuse of FLOSS components that have been added into product software. Umarji et al. [45] suggest using 

FLOSS governance tools to create and maintain libraries of reusable FLOSS components. Our findings confirm 

this as one of the industry requirements for FLOSS governance tools. 

Other requirements focus on supply chain management [30], automated management of bill of materials [42], 

maintenance of FLOSS component metadata in product architecture models [38], etc. Our theory confirms and 

captures these requirements. 

License Compliance. Wang and Wang present a number of requirements for industry adoption of FLOSS. 

Some of these requirements can be translated into industry requirements for FLOSS governance tools. The authors 

suggest a managerial requirement for license compliance that includes understanding different FLOSS licenses 

and documenting their terms [46]. Our theory suggests that industry requires the use of FLOSS governance tools 

for documenting company interpretation of most common and used FLOSS licenses and their implications. This 



 Understanding Industry Requirements for FLOSS Governance Tools  3 

requirement is also confirmed by industry associations, such as The Open Source Automation Development Lab 

eG, which in 2017 attempted to standardize FLOSS license obligations through checklists and own license de-

scribing language that can eventually be used in a FLOSS governance tool [10].  

Other industry requirements for compliance tools include automated FLOSS license scanning [14-15], auto-

mated FLOSS code detection in company’s codebase and in its supply chain using source code and binary scans 

[16,31,42], checking FLOSS license compatibility when mixing licenses [17] etc. We confirm all these require-

ments through expert interviews and formalize them in our theory, while recognizing the technological complexity 

of fulfilling these requirements by the currently existing tooling. 

Search and Selection. Umarji et al. [45] surveyed a sample of 69 programmers. Their research suggested that 

software developers require and use tools for the search and selection of FLOSS components. The majority of the 

survey respondents said they used general-purpose search engines with some also using project hosting sites and 

code-specific search engines. Our expert interviews confirmed the requirement for search and selection of FLOSS 

components. A requirement in our proposed theory formalizes this industry need. 

Other industry requirements for search and selection of FLOSS components focus on the automated identifi-

cation of software families and types of FLOSS communities [41]. Our theory did not confirm the industry re-

quirement for the tool-assisted software family identification, but did confirm the need for the tool-assisted iden-

tification and evaluation of FLOSS communities. 

Many other requirements are suggested in both academic literature and practitioner white papers. However, in 

this section, we combined and presented the literature related to only several key requirements due to our narrow 

scope. 

3 Research Method 

We conducted a two-step study that consists of: 

1. Deriving a theory based on our understanding of key industry requirements for FLOSS governance tools 

through expert interviews 

2. Evaluating our understanding of industry requirements through marketing materials and demos of existing 

FLOSS governance tools 

Our research approach is represented in Figure 1 and explained below. 

For theory building, we conducted 15 interviews with ten industry-leading companies to understand their 

requirements for FLOSS governance tools.  

We employed an adaptation of the grounded theory [5-6] method called the QDAcity‑RE method for structural 

domain modeling using qualitative data analysis [23]. Corbin & Strauss [6] or Charmaz [5] define the grounded 

theory method as one that consists of systematic, yet flexible guidelines for collecting and analyzing qualitative 

data to construct a theory from that data. Kaufmann & Riehle [23] accept this definition, but extend the method 

to a more structured, traceable and iterative one providing guidelines for data collection, creation and application 

of a code system. This enabled us to use the QDAcity-RE method for requirements engineering based on our 

industry expert interviews. The result is a partial theory of industry requirements for FLOSS governance tools 

cast as a requirements specification. 

For theory evaluation, we reviewed marketing materi-

als and demos of 6 widely used FLOSS governance tools. 

We used the QDAcity‑RE method and qualitative data 

analysis to derive the common features they offer to meet 

industry needs for automating FLOSS governance. 

Assuming that the tool vendors as a whole understand 

industry needs and offer tools that address these needs, we 

compared the common tool features to our partial theory of 

industry requirements. We evaluated which tool features 

match the industry requirements in our proposed theory and 

which ones do not. We used this evaluation to demonstrate 

that our theory represents the current state of industry re-

quirements for FLOSS governance tools. To the extent that 

our theory agrees with tool features, we put the work of in-

dustry product managers onto a sound scientific base of the-

ory development based on the user’s perspective. 

                   

          

                      

                       

            

             
                 
            

            
      

            

             
        

Fig. 1. Theory Building using Industry Require-

ments and Theory Evaluation using Tool Features 



4 N. Harutyunyan et al. 

3.1 Theoretical Sampling 

For theory building, we chose ten companies sampled from our industry network of about 140 companies with 

advanced FLOSS governance practices. The companies in our sample have advanced understanding of FLOSS 

governance and use internal and/or external governance tools. We conducted polar theoretical sampling to cover 

a diverse and representative set of companies. Polar sampling aims to choose companies with highly varying 

characteristics. We considered diverse dimensions including types of business models, customer types, company 

size, market position and company maturity. The resulting sample of companies includes small, medium and large 

companies with both enterprise and retail customers and varying business models. The list of companies and their 

essential characteristics are presented in Table 1. Company names are anonymized per their request. 

Table 1. Theoretical sample of companies 

Company Company domain By business model By type of customer By size (employees) 

Company 1 Consulting SP-OS, SDS Enterprise  Medium 

Company 2 Automotive SDS Enterprise  Small 

Company 3 Automotive SDS Enterprise  Large 

Company 4 Enterprise Software SP-OS Enterprise, retail Medium 

Company 5 Enterprise Software SP-CS Enterprise, retail Medium 

Company 6 Enterprise Software SP-OS, SP-CS, MC, GT Enterprise, retail Large 

Company 7 Enterprise Software SP-OS, MC, GT Enterprise, retail Medium 

Company 8 FLOSS Foundation OSF Enterprise, retail Small 

Company 9 Hardware and Software OP Enterprise Large 

Company 10 Legal MC Enterprise, government Large 

Legend for Table 1: SDS= Software development service, SP-OS= Software product vendor for open source software,  

SP-CS= Software product vendor for closed source software, GT= Governance tool providers, MC= Management consulting,  

OSF= Open source foundation, OP= Other products incorporating software 

 

For theory evaluation, we chose 6 widely used and prominent FLOSS governance tools that represent the broader 

spectrum of FLOSS governance tools [44]. Not all tools compete but have some overlap in their functionalities, 

like support for license scanning or component repository management. To reduce bias, we made sure that our 

selection differs in these dimensions: 

• By the license under which a vendor makes its tool available. The sampling contains tools that are licensed 

under permissive and copyleft type open source licenses, and proprietary closed source licenses.  

• By the delivery model of a tool. A critical factor for companies is the ability to choose whether a software tool 

is available as cloud-based service or can be used on-premise, depending on aspects like costs, customization, 

and security. 

• By the scannable artifacts. For scanning of license information, tools can analyze source code or binary arti-

facts. Scanning of binary artifacts is necessary if the source code of dependent components is not available. In 

contrast scanning of source code artifacts provide better results. 

We also consider other dimensions for the theoretical sampling (maturity of a tool, automation and integration 

into the development process, and additional audit service by experts), but to offer more depth we focus on the 

three key dimensions presented above. The list of tools and their key characteristics are presented in Table 2. 

Table 2. Sampling of governance tools 

Tool Tool provider By license By delivery model By scannable artifacts 

Black Duck 

Hub 

Black Duck Software by Syn-

opsys 

Proprietary Cloud-based Source and binary code 

DejaCode nexB Apache 2.0 Cloud-based, on premise Source and binary code 

FOSSology FOSSology FLOSS project GPL-2.0 On premise Source and binary code 

FOSSA FOSSA Proprietary Cloud-based, on premise Source code 

OSS-Review-

Toolkit 

OSS-Review-Toolkit (ORT) 

FLOSS project 

Apache 2.0 On premise Source code 

WhiteSource WhiteSource Software Proprietary Cloud-based, on premise Source and binary code 

3.2 Data Gathering and Analysis 

For data gathering, we mainly used semi-structured interviews conducted by one or two researchers with FLOSS 

governance experts or responsible coworkers from the sampled companies. In seven companies we interviewed 



 Understanding Industry Requirements for FLOSS Governance Tools  5 

one expert, in one company we interviewed two experts, and in two companies we interviewed three experts. In 

total, we conducted 15 interviews. When possible, we recorded and transcribed the interviews. In three cases we 

took notes. We also studied additional materials both public and private about these companies and their FLOSS 

governance practices. 

We developed key questions and an interview guideline for the semi-structured interviews and kept them stable, 

except for few iterative adjustments from company to company, throughout the whole data gathering process. The 

interviews were exploratory in line with our grounded-theory-based research method. 

For data analysis, we followed the QDAcity-RE method performing iterative and incremental qualitative data 

analysis (QDA) supported by the MaxQDA software. We developed two separate coding systems for the theory 

building using expert interviews and for the theory evaluation using tool marketing materials and demos. 

During the QDA coding process, we iteratively refined the code system. Reaching theoretical saturation [23], 

the code system became the basis for our theory. Individual codes correspond to low-level tool requirements in 

our requirements specification. Both for theory building and evaluation, our code systems consist of hierarchical 

codes. We did not apply the top category codes in our QDA. We followed the QDAcity-RE method’s QDA pro-

cess as follows: 

• Open coding. We created a basic set of codes from which the hierarchy is built. Open codes are direct annota-

tions of primary materials and link to them for data-theory traceability. 

• Axial coding. We built a code system by deriving more abstract concepts and categories from open codes, thus 

developing the axes of the code system. 

• Selective coding. We applied the codes to the gathered data and chose which codes are important and which 

are not. We adjusted the coding system by removing the irrelevant codes and by adding the ones that emerged 

when applying the axial codes. 

4 Research Results 

This section presents our partial theory of industry requirements for FLOSS governance tools, followed by the 

evaluation of the suggested theory through feature analysis of existing FLOSS governance tools. Section 4.1 pre-

sents our theory cast as a requirements specification for high practical relevance. Section 4.2 presents our evalu-

ation of the theory. 

4.1 Theory of Industry Requirements for FLOSS Governance Tools 

We limited our scope to FLOSS governance tools related to the commercial use of FLOSS components, explicitly 

excluding companies’ contribution to or leadership of FLOSS projects. We only present the requirements that 

have been directly derived or inferred from our data, thus excluding the ones that have been presented in the 

literature, but not confirmed by our industry study. The result is a partial theory that covers the key requirement 

categories and requirements based on our sample. Analyzing 15 expert interviews, researcher notes and company 

materials, we derived the following high-level industry requirements for FLOSS governance tools: 

1. Tracking and Reuse of FLOSS components 

1.1. The tool should help users identify the use of FLOSS components in their code base. 

1.2. The tool should help users report the use of FLOSS components in a product architecture model. 

1.3. The tool should help users update FLOSS components and their metadata. 

1.4. The tool should help users maintain a bill of materials of the FLOSS components used in a product. 

1.5. The tool should help users reuse FLOSS components that have already been used in a product. 

Virtually all companies track their use of FLOSS components in order to efficiently manage FLOSS integration 

into their products, as well as to enable cost-saving reuse of FLOSS components already used by the company’s 

other developers. Efficient FLOSS component management ensures a company’s ability to maintain and produce 

upon customer request an up-to-date bill of materials. One interview partner mentions this requirement for this 

use case (Requirement 1.4): 

“So, we do have tools to keep track of different components or licenses we’re using. If you get requests or 

requirements from customers to provide a list of used [FLOSS] components and licenses, we use this tool to track 

those and push those requirements into our [development] process.” (Company 7) 

Another expert suggests a requirement to enable tracking and reusing FLOSS components (Requirement 1.5): 

“What we have there at the moment is that [for] half of the company we have essential database or half of the 

company uses that central database of components and their licenses.” (Company 2) 



6 N. Harutyunyan et al. 

2. License Compliance of FLOSS components 

2.1. The tool should help users interpret open source licenses. 

2.2. The tool should help users document the identified licenses of the used FLOSS components in the 

company’s open source license repository or license handbook. 

2.3. The tool should help users find and document the unidentified licenses of the used FLOSS components 

in the company’s open source license repository or license handbook. 

2.4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS 

license compliance guidelines. 

2.5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS 

components used in that product. 

FLOSS license compliance is a central aspect and key tool requirement category to the companies we studied. 

Companies strive to automate license compliance, license scanning and license management. Some companies 

employ continuous integration/deployment and thus require appropriate license compliance tools that can be in-

tegrated in their development process. Tool requirements for license compliance go on to encompass automated 

license interpretation, license identification and documentation, etc. 

An expert from Company 7 mentions the tool requirement for automating FLOSS license scanning and identi-

fication of other FLOSS component metadata (Requirement 2.2), as well as the requirement for automating com-

ponent approval (Requirement 2.4): 

“We have a full toolset that goes through and scans the code, that pulls out all the license information, the 

authorship [copyright] information, and runs that through our process for verification, for compliance, for com-

patibility and so forth.” (Company 7) 

Another expert talks about the need to find and document the unidentified FLOSS components and licenses 

(Requirement 2.3): 

“We need this [license scanning] tool to re-check if any of the developers are not handling [FLOSS compo-

nents] in the way [the management] wants, to better do it because we have no possibility to check it in a clear 

way if you have no tool.” (Company 3) 

3. Search and Selection of FLOSS components 

3.1. The tool should help users search for FLOSS components. 

3.2. The tool should help users select best FLOSS components. 

3.3. The tool should help users estimate the cost of using an FLOSS component. 

Companies need to FLOSS governance tools to efficiently search and select the right FLOSS components, which 

translates into tool requirements on evaluating different component candidates and estimating the cost of their 

usage. One interviewee talks about the role of tools in FLOSS component selection process (Requirement 3.2): 

“When you move on from a strategic decision to component selection like with components of open source 

projects to be used, then we have a process that we require the projects to name all the open source components 

to assess that they want to use, that they assess the license, that they check the license, and that they document 

that and that again this assessment is communicated to upper management and signed off that.” (Company 2) 

4. Other requirements 

4.1. The tool should help users detect and prevent security vulnerabilities in product’s FLOSS components. 

4.2. The tool should help users document and communicate company’s FLOSS governance strategy, poli-

cies and best practices. 

4.3. The tool should help users get training on FLOSS governance and compliance when using open source 

software in products and contributing to open source projects. 

The detailed subcategories of requirements for Tracking and Reuse of FLOSS components are demonstrated in 

Table 3. The detailed subcategories of requirements for License Compliance of FLOSS components are demon-

strated in Table 4. The detailed subcategories of requirements for Search and Selection of FLOSS components are 

demonstrated in Table 5. 

Table 3. 1. Tracking and Reuse of FLOSS components requirements 

1. The tool should help users identify the use of FLOSS components in their code base. 

a. The tool should allow reading in an existing code base. 

b. The tool should allow automated finding of open source licenses in an existing code base. 

c. The tool should allow automated finding of open source software checked-in and used by a company developer. 

d. The tool should allow automated finding of open source software not checked-in, but used by a company developer. 



 Understanding Industry Requirements for FLOSS Governance Tools  7 

e. The tool should allow automated finding of open source software that is part of the supplied proprietary software 

using commonly accepted data exchange standards (such as SPDX). 

f. The tool should allow automated finding of open source software that is part of the supplied proprietary software 

using binary or source code scanning. 

2. The tool should help users report the use of FLOSS components in a product architecture model. 

a. The tool should allow creating a product architecture model to systematically record use of FLOSS components, their 

metadata and component dependencies. 

b. The tool should allow manual recording of metadata of the used FLOSS components. 

c. The tool should allow confirming the metadata of FLOSS components identified automatically. 

d. The tool should allow modifying the metadata of FLOSS components identified automatically. 

e. The tool should allow removing the metadata of FLOSS components identified automatically. 

f. The tool should allow automated reporting of a newly used FLOSS component within the build process and/or con-

tinuous integration process. 

g. The tool should allow reporting undeclared use of FLOSS components and their metadata. 

3. The tool should help users update FLOSS components and their metadata. 

a. The tool should allow automated updates of FLOSS components to their newest available versions. 

b. The tool should allow to back up the current versions of FLOSS components before updating them. 

c. The tool should allow automated identification of changed metadata including FLOSS component license and copy-

right information. 

d. The tool should allow automated history recording of FLOSS components and their metadata. 

4. The tool should help users maintain bill of materials of the FLOSS components used in a product. 

a. The tool should allow creating a formal bill of material using a commonly accepted data exchange standard (such as 

SPDX). 

b. The tool should allow automated generation of a formal bill of materials using company’s product architecture model. 

c. The tool should allow developers to add identified and reported metadata on used FLOSS components into the formal 

bill of materials. 

d. The tool should allow developers to update the formal bill of materials. 

e. The tool should allow automated generation of a bill of materials instance in a structured textual format. 

f. The tool should allow automated generation of a bill of materials instance in a commonly accepted data exchange 

standard (such as SPDX) format. 

5. The tool should help users reuse FLOSS components that have already been used in a product. 

a. The tool should allow creating a centralized and company-wide accessible FLOSS component repository. 

b. The tool should allow automated adding of FLOSS components and their metadata into the repository using the 

product architecture model. 

c. The tool should allow automated updating of FLOSS components repository using the product architecture model. 

d. The tool should allow all company developers to access the FLOSS components repository. 

e. The tool should allow searching in the FLOSS component repository. 

f. The tool should allow finding the company developers who used an FLOSS component from the repository. 

  Table 4. 2. License Compliance of FLOSS components requirements 

1. The tool should help users interpret open source licenses. 

a. The tool should allow user to document open source license interpretations using a formal language or notation 

supported by the tool. 

b. The tool should provide automated standard interpretation of the most common FLOSS licenses in company’s license 

repository or license handbook. 

c. The tool should allow users to modify license interpretation of the most common FLOSS licenses in company’s 

license repository or license handbook. 

d. The tool should allow users to add license interpretation of the FLOSS licenses of the used FLOSS components to 

company’s license repository or license handbook. 

e. The tool should allow users to change license interpretation in the license repository or license handbook. 

f. The tool should allow developers to request license interpretation of a FLOSS license of an FLOSS component s/he 

wants to use in a product. 

g. The tool should allow open source program office to discuss license interpretation requests. 

h. The tool should allow open source program office to fulfill license interpretation requests. 

2. The tool should help users document the identified licenses of the used FLOSS components in the company’s open 

source license repository or license handbook. 

a. The tool should allow creating an open source license repository. 



8 N. Harutyunyan et al. 

b. The tool should allow developers, lawyers and managers to read the open source license repository. 

c. The tool should allow automated inventorying of known open source licenses from the product architecture model. 

d. The tool should allow users to add new open source licenses into the open source license repository. 

e. The tool should allow users to remove obsolete open source licenses from the open source license repository. 

f. The tool should support the commonly accepted data exchange standards (such as SPDX). 

g. The tool should allow users to search open source license information in the open source license. 

3. The tool should help users find and document the unidentified licenses of the used FLOSS components in com-

pany’s open source license repository or license handbook. 

a. The tool should allow software package scanning to find the open source licenses unidentified previously through 

product architecture model. 

b. The tool should allow source code scanning for the internally developed code to find the origin of used, but uniden-

tified open source code and its license. 

c. The tool should allow source code scanning for the FLOSS components taken from FLOSS projects to find the origin 

of used, but unidentified open source code and its license. 

d. The tool should allow binary scanning for the FLOSS components that are part of the supplied proprietary software 

components to find the origin of used, but unidentified open source code and its license. 

e. The tool should allow automated inventorying of the open source licenses identified because of binary and source 

code scanning. 

f. The tool should allow manual changing the automatically identified open source licenses. 

g. The tool should allow removing the automatically identified open source licenses. 

h. The tool should support binary and source code scanning integration into the build process and/or continuous inte-

gration process. 

i. The tool should allow finding and documenting copyright notices, export restriction information and other compli-

ance-related metadata for FLOSS components used in a product. 

4. The tool should help users approve the use of a FLOSS component in a product based on FLOSS license compli-

ance guidelines. 

a. The tool should allow creating white lists of company-approved FLOSS licenses according to company policy. 

b. The tool should allow creating black lists of company-blocked FLOSS licenses according to company policy. 

c. The tool should allow updating white and black lists of FLOSS licenses. 

d. The tool should allow creating license interpretation-based rules for automated recommendation on component use 

approval according to company policy. 

e. The tool should allow developers to request approval of FLOSS components with previously unassessed licenses. 

f. The tool should allow lawyers to approve or block use of FLOSS components due to license incompatibility with 

company policy. 

g. The tool should allow automated recording of FLOSS license approval decisions in company’s open source license 

repository. 

5. The tool should help users distribute a product that is compliant with the FLOSS licenses of the FLOSS compo-

nents used in that product. 

a. The tool should allow automated generating of FLOSS license obligations for each product using product architecture 

model and open source license repository. 

b. The tool should allow automated assignment of tasks that will ensure compliance with FLOSS license obligations. 

c. The tool should allow automated audit of product’s bill of materials before distribution. 

d. The tool should allow manual audit of product’s bill of materials before distribution. 

e. The tool should allow adjusting product’s bill of materials before distribution. 

Table 5. 3. Search and Selection of FLOSS components requirements 

1. The tool should help users search for FLOSS components. 

a. The tool should allow automated search of available FLOSS components using publicly available data. 

b. The tool should allow automated comparison of available FLOSS components using publicly available data. 

2. The tool should help users select best FLOSS components. 

a. The tool should allow automated health assessment of open source communities using publicly available data. 

b. The tool should allow automated maturity assessment of open source communities using publicly available data. 

c. The tool should allow automated corporate dependence assessment of open source communities using publicly avail-

able data. 

d. The tool should allow automated maturity assessment of open source communities using publicly available data. 

e. The tool should allow automated responsiveness assessment of open source communities using publicly available 

data. 



 Understanding Industry Requirements for FLOSS Governance Tools  9 

3. The tool should help users estimate the cost of using an FLOSS component. 

a. The tool should allow automated cost estimation of FLOSS component integration and maintenance in a product. 

b. The tool should allow automated risk assessment of FLOSS community discontinuing its development of the FLOSS 

component and automated cost estimation of internal maintenance of the FLOSS component. 

c. The tool should allow users semi-automated estimation of the benefit of using an FLOSS component compared to 

proprietary and in-house development alternatives. 

4.2 Evaluation 

This section presents the evaluation of our suggested theory using the feature analysis of existing FLOSS govern-

ance tools. We analyzed marketing materials and demos of six widely used FLOSS governance tools. The analysis 

resulted in the following list of common key features related to FLOSS use in products: 

• Component Tracking & Reporting: support for bill of materials, component inventory, knowledge base (exter-

nal inventory), license obligation reporting, and commonly accepted data exchange standard support; 

• Scanning / License Checking: support for licenses identification, copyright identification, code origin identifi-

cation, and license management; 

• Policies: support for applying/ensuring FLOSS policies; 

• Security: support for security vulnerability detection; 

• Development Integration & Automation: support for integration into continuous integration and deployment. 

To ensure the depth of evaluation, we focus on two main requirement categories: Tracking and Reuse of FLOSS 

components and License Compliance of FLOSS components. We chose these categories because these require-

ments are fundamental to any software company according to the analysis of the industry interviews and tools 

support of these requirements as base functionalities. 

Tracking and Reuse of FLOSS components. The identification of FLOSS components and their licenses in a 

given software product or component is a core functionality of all sampled tools. All the high-level requirements 

of the category 1 in the proposed theory are matched by the features of the sampled tools. For example, Black 

Duck Software enables its users to identify the used FLOSS components (Requirement 1.1) in both the source 

code and in binaries (with lesser precision): 

"[Black Duck Hub enables to] fully discover all open source in your code" (Black Duck Hub) 

FOSSA helps explore and report relationships between modules incl. the open source ones (Requirement 1.2): 

"[FOSSA allows its user to] explore relationships between modules and if/how dependencies are included in 

your build" (FOSSA) 

Black Duck Hub also has features for BOM maintenance (Requirement 1.4) and for FLOSS component reuse 

(Requirement 1.5): 

“We provide a license obligation report, including an easily consumable bill of materials (BOM) that you can 

deliver to your customers and/or internal stakeholders.” (Black Duck Hub) 

“[Black Duck Hub enables to] eliminate uncertainty and promote reuse [of FLOSS]” (Black Duck Hub) 

However, not all detailed (low-level) requirements from the proposed theory are supported by existing tool 

features. Requirement 1.1.d, for example requires tools to allow automated finding of open source software not 

checked-in but used by a company developer. This requirement is not entirely supported by any of the studied 

tool because of its technological complexity. 

License Compliance of FLOSS components. All the studied tools support FLOSS license compliance features. 

They fulfill offer fulfilling requirements, such as license interpretation, license identification and documentation, 

FLOSS component approval etc.  

FOSSology covers several requirements related to FLOSS license compliance (Requirement 2.2, 2.3): 

“FOSSology is an open source license compliance software system and toolkit. As a toolkit you can run license, 

copyright and export control scans from the command line. As a system, a database and web UI are provided to 

give you a compliance workflow. License, copyright and export scanners are tools available to help with your 

compliance activities.” (FOSSology)  

However, none of our studied tools completely fulfill some of the following low-level requirements: Require-

ment 2.1.b (automated standard interpretation of common FLOSS licenses), Requirement 2.3.h (automated license 



10 N. Harutyunyan et al. 

checking within continuous integration), Requirement 2.5.b (automated assignment of FLOSS compliance tasks), 

Requirement 2.5.c (automated audit of product’s bill of materials before distribution). One reason is the complex 

computational nature of the complete automation of compliance tasks. An empirical study by German et al. [16] 

showed that a deeper understanding of licensing issues requires human expertise, which limits the automation of 

some license compliance tasks. Moreover, most companies don’t allow complete automation of compliance as 

they require a human actor to be responsible for legal matters, even if they use semi-automated tooling. 

Our limited evaluation demonstrates that the high-level requirements of our theory do match the features of-

fered by industry leading FLOSS governance tools. The evaluation shows that existing tools satisfy most of the 

low-level requirements by the industry, but not others, such as requirements of complete automation. 

5 Discussion 

Our main contribution is the requirements specification presented in Section 4.1 and its evaluation in Section 4.2.  

We recognize that our research results are limited, but novel and practice relevant. They present only a partial 

theory on the issue. However, we lay groundwork for future studies into FLOSS governance tool requirements, 

that will hopefully expand our requirements specification theory. Our work leads us to propose the following 

research questions for future research: 

RQ1: What are other detailed FLOSS governance tool requirements beyond Tracking and Reuse of FLOSS com-

ponents, License Compliance of FLOSS components and Search and Selection of FLOSS components? 

RQ2: How can FLOSS governance tool requirement theories be better evaluated or validated? 

RQ3: How to engineer FLOSS governance tool requirements of the future addressing missing features and in-

dustry needs before companies become aware of them? 

6 Research Limitations 

The study faces several limitations including those to internal validity and to external validity: 

Internal validity. Qualitative data research realized by one researcher has inherent subjectivity and bias. Even 

though we followed the research method constructs carefully, there is bias associated with method interpretation 

and application to our specific context. To address this limitation, we had a second coder analyze our data and 

improved our original QDA coding with that of the second coder. The high inter-coder agreement between the 

original coding and the second coder coding suggests an adequate quality of our code system and by extension an 

adequate quality of the derived theory [29]. 

External validity. The resulting theory is based on the data gathered from the experts of the ten companies we 

interviewed. We cannot claim broad generalizability of the findings, even though we followed a careful theoretical 

sampling to ensure the applicability of our results. This limitation can be tested with further validation studies. 

7 Conclusion 

This paper presents a study of ten industry companies with advanced FLOSS governance practices. Our study 

concluded in a partial theory of FLOSS governance tool requirements by the industry. Also, we provide a detailed 

hierarchical list of these industry relevant requirements. As such it offers unique insight into industry understand-

ing of FLOSS governance tools and their expectations from them, alongside existing tools and their features. 

The data gathered through semi-structured interviews and materials collection was analyzed using the novel adop-

tion of grounded theory method – the QDAcity-RE method. We cast our theory as a requirements specification 

making it applicable and practice relevant to the companies willing to employ these requirements. Finally, we 

evaluated our findings using six industry leading FLOSS governance tools and the analysis of their features 

matched with the requirements of the suggested theory. 

The study of the missing features of existing tools is out of scope of this paper but it can be a valuable part of 

further research. Further research can also focus on the reasons why tool providers do not fulfill the unsatisfied 

requirements of our theory (e.g. full automation of compliance) and how such problems can be solved. 

Acknowledgments. We would like to thank Hannes Dohrn, Michael Dorner, Maximilian Capraro, Andreas Kauf-

mann and Shushanik Hakobyan for their generous feedback that helped us improve our paper. We would also like 

to thank our industry partners that provided their valuable time and expertise for this research project. 



 Understanding Industry Requirements for FLOSS Governance Tools  11 

References 

1. Aksulu, A., Wade, M.: A comprehensive review and synthesis of open source research. In: Journal of the Association for 

Information Systems, 11(11), 576 (2010) 

2. Black Duck Software: 2017 Open Source Security and risk analysis. Center for Open Source Research & Innovation. In: 

(self-published white paper). (2017). 

3. Bonaccorsi, A., Rossi, C.: Why open source software can succeed. In: Research policy, 32(7), 1243-1258 (2003) 

4. Capra, E., Francalanci, C., Merlo, F.: An empirical study on the relationship between software design quality, develop-

ment effort and governance in open source projects. In: IEEE Transactions on Software Engineering, 34(6), 765-782 

(2008) 

5. Charmaz, K.: Constructing grounded theory. In: Sage (2014) 

6. Corbin, J., Strauss, A.: Basics of qualitative research: In: Techniques and procedures for developing grounded theory. 

Sage publications (2014) 

7. Cruz, D., Wieland, T., Ziegler, A.: Evaluation criteria for free/open source software products based on project analysis. 

In: Software Process: Improvement and Practice, 11(2), 107-122 (2006). 

8. Deprez, J. C., Alexandre, S.: Comparing assessment methodologies for free/open source software: OpenBRR and QSOS. 

In: International Conference on Product Focused Software Process Improvement (pp. 189-203). Springer, Berlin, Heidel-

berg (2008, June) 

9. Deshpande, A., Riehle, D.: The total growth of open source. In: Open Source Development, Communities and Quality, 

197-209 (2008) 

10. Emde, C., Jaeger, T.: Open Source License Obligations Checklists (version 5). In: Open Source Automation Development 

Lab (self-published white paper). (2017) 

11. European Commission: The economic and social impact of software & services on competitiveness and innovation 

(SMART 2015/0015). In: Luxembourg, Publications Office of the European Union, 197-198 (2017) 

12. Fitzgerald, B.: The transformation of open source software. In: Mis Quarterly, 587-598 (2006) 

13. Gangadharan, G. R., De Paoli, S., D’Andrea, V., Weiss, M.: License Compliance Issues in Free and Open Source Soft-

ware. In: MCIS 2008 Proceedings, 2 (2008) 

14. Gangadharan, G. R., D’andrea, V., De Paoli, S., Weiss, M.: Managing license compliance in free and open source software 

development. In: Information Systems Frontiers, 14(2), 143-154 (2012) 

15. German, D. M., Hassan, A. E.: License integration patterns: Addressing license mismatches in component-based devel-

opment. In: Proceedings of the 31st International Conference on Software Engineering (pp. 188-198). IEEE Computer 

Society. (2009, May). 

16. German, D. M., Di Penta, M., Davies, J.: Understanding and auditing the licensing of open source software distributions. 

In: Program Comprehension (ICPC), 2010 IEEE 18th International Conference on (pp. 84-93). IEEE (2010, June) 

17. German, D. M., Manabe, Y., Inoue, K.: A sentence-matching method for automatic license identification of source code 

files. In: Proceedings of the IEEE/ACM international conference on Automated software engineering (pp. 437-446). ACM 

(2010, September) 

18. Gobeille, R.: The fossology project. In: Proceedings of the 2008 international working conference on Mining software 

repositories (pp. 47-50). ACM (2008, May) 

19. Hammond, J., Santinelli, P., Billings, J.J., Ledingham, B.: The tenth annual future of open source survey. In: Black Duck 

Software. (self-published presentation). (2016) 

20. Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-intensive organizations–A systematic 

literature review. In: Information and Software Technology, 52(11), 1133-1154 (2010) 

21. Helmreich, M.: Best practices of adopting open source software in closed source software products. In: (Doctoral disser-

tation, Diplomarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg). (2011) 

22. Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: Pulling reusable software out of thin air. In: IEEE software, 25(5). 

(2008) 

23. Kaufmann, A., Riehle, D.: The QDAcity-RE method for structural domain modeling using qualitative data analysis. In: 

Requirements Engineering, 1-18 (2017) 

24. von Krogh, G., Spaeth, S., Haefliger, S.: Knowledge reuse in open source software: An exploratory study of 15 open 

source projects. In: System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference 

on (pp. 198b-198b). IEEE (2005, January) 

25. Von Krogh, G., Von Hippel, E.: The promise of research on open source software. In: Management science, 52(7), 975-

983 (2006) 

26. De Laat, P. B.: Governance of open source software: state of the art. In: Journal of Management & Governance, 11(2), 

165-177 (2007) 

27. Lakhani, K. R., Von Hippel, E.: How open source software works:“free” user-to-user assistance. In: Research policy, 

32(6), 923-943 (2003) 

28. Lattemann, C., Stieglitz, S.: Framework for governance in open source communities. In: System Sciences, 2005. 

HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on (pp. 192a-192a). IEEE (2005, January) 

29. Lombard, M., Snyder‐Duch, J., Bracken, C. C.: Content analysis in mass communication: Assessment and reporting of 

intercoder reliability. In: Human communication research, 28(4), 587-604 (2002) 

30. OpenChain Specification (2018). https://www.openchainproject.org/spec. 



12 N. Harutyunyan et al. 

31. Di Penta, M., German, D. M., Antoniol, G.: Identifying licensing of jar archives using a code-search approach. In: Mining 

Software Repositories (MSR), 2010 7th IEEE Working Conference on (pp. 151-160). IEEE (2010, May) 

32. Popp, K. M.:Best Practices for Commercial Use of Open Source Software. In: Business models, processes and tools for 

managing open source software. BoD–Books on Demand (2015) 

33. Radcliffe, M., Odence, P.: The 2017 Open Source Year in Review. In: Black Duck Software, DLA Piper. (self-published 

presentation) (2017) 

34. Riehle, D.: The economic motivation of open source software: Stakeholder perspectives. In: Computer, 40(4). (2007) 

35. Riehle, D.: The commercial open source business model. In: Value creation in e-business management (pp. 18-30). 

Springer, Berlin, Heidelberg (2009) 

36. Riehle, D.: Controlling and steering open source projects. In: IEEE Computer, 44(7), 93-96 (2011) 

37. Riehle, D., Lempetzeder, B.: Erfolgsmethoden der Open-Source-Governance und-Compliance. In: Friedrich-Alexander-

Universität Erlangen-Nürnberg (FAU). (2014) 

38. Riehle, D., Harutyunyan, N.: License Clearance in Software Product Governance. In: NII Shonan. (2017). 

39. Ruffin, C., Ebert, C.: Using open source software in product development: A primer. In: IEEE software, 21(1), 82-86 

(2004) 

40. Sadowski, B. M., Sadowski-Rasters, G., Duysters, G.: Transition of governance in a mature open software source com-

munity: Evidence from the Debian case. In: Information Economics and Policy, 20(4), 323-332 (2008) 

41. Semeteys, R.: Method for qualification and selection of open source software. In: Open Source Business Resource, (May 

2008) 

42. Software Package Data Exchange (SPDX) (2018). https://spdx.org/ 

43. Sowe, S. K., Stamelos, I., Angelis, L.: Understanding knowledge sharing activities in free/open source software projects: 

An empirical study. In: Journal of Systems and Software, 81(3), 431-446 (2008) 

44. Tools for Managing Open Source Programs 2018. https://www.linuxfoundation.org/tools-managing-open-source-pro-

grams/ 

45. Umarji, M., Sim, S. E., Lopes, C.: Archetypal internet-scale source code searching. In: IFIP International Conference on 

Open Source Systems (pp. 257-263). Springer, Boston, MA. (2008, September) 

46. Wang, H., Wang, C.: Open source software adoption: A status report. In: IEEE Software, 18(2), 90-95 (2001) 


