
The Patch-Flow Method
for Measuring Inner Source Collaboration

Maximilian Capraro
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany

maximilian.capraro@fau.de

Michael Dorner∗
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany

michael.dorner@fau.de

Dirk Riehle
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany
dirk.riehle@fau.de

ABSTRACT
Inner source (IS) is the use of open source software development
(SD) practices and the establishment of an open source-like culture
within an organization. IS enables and requires developers to collab-
orate more than traditional SD methods such as plan-driven or agile
development. To better understand IS, researchers and practitioners
need to measure IS collaboration. However, there is no method yet
for doing so. In this paper, we present a method for measuring IS
collaboration by measuring the patch-flow within an organization.
Patch-flow is the flow of code contributions across organizational
boundaries such as project, organizational unit, or profit center
boundaries. We evaluate our patch-flow measurement method us-
ing case study research with a software developing multi-industry
company. By applying the method in the case organization, we
evaluate its relevance and viability and discuss its usefulness. We
found that about half (47.9%) of all code contributions constitute
patch-flow between organizational units, almost all (42.2%) being
between organizational units working on different products. Such
significant patch-flow indicates high relevance of the patch-flow
phenomenon and hence the method presented in this paper. Our
patch-flow measurement method is the first of its kind to measure
and quantify IS collaboration. It can serve as a base for further
quantitative analyses of IS collaboration.

CCS CONCEPTS
• General and reference→ Empirical studies;Measurement;
Metrics; General conference proceedings; • Software and its engi-
neering → Open source model; Software creation and manage-
ment; Software development process management;

KEYWORDS
Inner source, internal open source, inner source measurement,
patch-flow, open source, open collaboration, software development
collaboration measurement, inner source metrics
∗Second and third author contributed to this paper with similar significance. Their
sequence is determined by alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196417

ACM Reference Format:
Maximilian Capraro, Michael Dorner, and Dirk Riehle. 2018. The Patch-
Flow Method for Measuring Inner Source Collaboration. In MSR ’18: MSR
’18: 15th International Conference on Mining Software Repositories , May 28–
29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3196398.3196417

1 INTRODUCTION
Open source software plays a key role in today’s software industry.
Open source (OS) development tools help to build software and
open source components are used as part of proprietary software
products. OS is recognized to be capable of delivering high quality
software [5]. The software industry has shown a significant interest
in benefiting not only from OS’s outcomes (the software compo-
nents and tools) but also from the adoption of software development
(SD) practices exercised in the OS world [30].

The “use of open source [SD] practices and the establishment of
an open source-like culture within organizations” is called inner
source (IS) [2]. While IS SD is similar to and shares attributes with
OS SD, IS opens up the development only internally within the
environment of one organization [7]. In addition to the interest of
the software industry, the research community has shown interest
in IS as a research topic indicated by a steady stream of scientific
publications [2].

However, themajority of scientific literature regarding IS presents
only qualitative results such as case study reports or taxonomies of
IS programs and projects. There is not yet a quantitative study dis-
cussing the extent of IS and participating parties in it and nomethod
to measure IS collaboration within an organization. We believe that
such a method is needed by both researchers and practitioners.
Researchers can use it as a base measurement and foundation for
sophisticated quantitative models such as evaluation models for
IS programs or metrics for IS project performance. Practitioners
can use it to derive an overview of the participants in and the state
of their IS program as well as define key performance indicators
based on the methods output.

In this paper, we present a method to quantify IS collaboration
by measuring an organization’s patch-flow. In OS, a patch is a code
contribution from an individual external to an OS project. The
word patch is historically derived from the “patch files” (produced
and consumed by the “diff” and “patch” commands) that some OS
projects use in their contribution workflow. Today, patches can
have different forms (for example a pull request on a software
forge like GitHub). Typically, the contributor of a patch does not
have write privileges to a project’s code base. The patch has to be
picked up and integrated by a person with those privileges (called

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Capraro et al.

a committer). In this way, OS projects perform quality assurance of
contributed code. Patch-flow then is the flow of such patches across
organizational boundaries. In OS, boundaries might be between
contributing organizations and an OS project. In IS, such boundaries
are intra-organizational boundaries like organizational unit, project,
or profit center boundaries. When measuring the patch-flow, it is
not sufficient to simply count patches over time. One must address
the organizational structure contextual to the patch.

Our paper answers the following research question:
• How to measure IS collaboration within a software develop-
ing organization?

We answer this research question by presenting a method to mea-
sure patch-flow. In detail, this paper contributes the following:

• Definition of the patch-flow phenomenon
• A patch-flow measurement method for measuring IS collab-
oration

• An evaluation of the patch-flow measurement method us-
ing case study research with a software developing multi-
industry company

The remainder of this paper is structured as follows. Section 2
gives an overview of the relatedwork detailing prior work regarding
IS and measuring SD collaboration. Section 3 introduces the patch-
flowmeasurement method by defining the patch-flow phenomenon,
data structures to represent patch-flow and process to measure it.
Section 4 describes our evaluation approach for the patch-flow
measurement method using case study research. Section 5 reports
the evaluating case study where we apply the method. Section 6
discusses the findings from the case study and proposes future
work. Section 7 closes the paper with a conclusion.

2 RELATEDWORK
We first discuss prior work on IS to give an introduction to the field.
Then we lay out how related work has measured IS collaboration
and SD collaboration in general.

2.1 Inner Source Definition
The term IS has been coined by O’Reilly [24]. IS is the “use of open
source software development practices and the establishment of an
open source-like culture within organizations” [2].

In IS, selected software components are made available as IS
projects. An IS project “is a software project with the goal to develop
and maintain inner source software. [...] IS projects are [like] open
source projects that do not have a defined end date. As in open
source, the name of the project is often also used to address the
ISS component” [2]. Inner source software (ISS) is the “software
product [or component] that is developed within an IS context”
[31].

Developers within the organization can read the source code of
an IS project and use it as part of their work. In addition to reading
the source code, developers can contribute patches to the IS project.
A patch is a code contribution made by a developer who is external
to an IS project. A developer is considered external to a project
if not a member of the organizational unit owning the IS project.
Typically, patches need approval by the committers of an IS project
who decide whether to reject a patch or enact it by integrating it

it into code base [12, 27]. A committer is an individual with write
(“commit”) privileges to a project’s code base. An IS project can
have one or many committers.

IS projects communicate openly: Every individual within the
company can read and participate in discussions [22]. Open commu-
nication should not only be public within the organization but also
archived, written, and complete [26]. A common tool for exercising
open communication is a mailing list [34].

2.2 Measuring Inner Source Collaboration
Researchers and practitioners have published a steady stream of
case studies with companies that have adopted or are aiming to
adopt IS including DTE Energy [29], Ericsson [32], Hewlett-Packard
[7, 20], IBM [36], Kitware [19], Lucent [12, 13], Nokia [17], Paypal
[23], Philips [35], Rolls-Royce [30], and SAP [27].

These studies provide qualitative discussions or anecdotal ev-
idence of the IS phenomenon. To the best of our knowledge, no
study delivers an in-depth quantitative analysis of IS collaboration
or method to measure it.

However, some studies report simple counting metrics. Organi-
zations quantify the size of an IS program by counting the number
of IS projects in the portfolio [7, 27]. Other organizations extend
these metrics by counting the number of developers contributing
to or being committers in each IS project [17, 32]. In contrast to
our work, they do not discuss how actively IS projects receive IS
contributions. Gurbani et al. [12] measured the code churn in their
IS project. In contrast to our work, they do not measure what parties
are involved in contributing to the IS project.

Vitharana et al. [36] argue that measurements and metrics re-
garding IS need to account for different parties involved in IS col-
laboration. Our patch-flow measurement method does exactly this
by outputting data that shows which parties receive how much IS
code contributions from which parties within the organization.

2.3 Measuring Collaboration
Prior research addresses measurement of software development
collaboration in proprietary and open source development.

2.3.1 Social Network Analysis. A variety of studies analyze soft-
ware development collaboration using social network analysis
(SNA). Over the last years, “applying SNA to software develop-
ment teams has been a heavily researched topic” [21]. Previous
research utilizes primarily two types of social networks [21]: De-
velopers networks [3, 4, 15, 18, 28, 33] and contribution networks
[25].

Developer networks differ significantly from the patch-flow
graphs we present. A developer network is a graph showing re-
lationships (edges) between developers (nodes). Researchers con-
struct developer networks by identifying “records of social or tech-
nical connections” between developers from source code manage-
ment systems, communication logs, issue tracking systems, or other
sources [21]. Developer networks are capable of representing rela-
tionships among developers [21] andmodel the structure of develop-
ment communities [15]. In contrast, our paper presents patch-flow
graphs that use the structure of a given organization and model to
what extent parties within this structure (typically organizational
units) contribute to one another.

The Patch-Flow Method for Measuring Inner Source Collaboration MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Contribution networks are graphs showing contributions of de-
velopers to one or many source code files [21, 25]. A contribution
network shows source code files and developers as nodes; con-
tributions as directed edges from a developer to a file. In both
contribution network and patch-flow graph, directed edges repre-
sent code contributions. However, the nodes differ in semantics
and granularity. In a patch-flow graph, contributing nodes do not
represent individual developers but parties within an organization.
Receiving nodes do not represent low-level source code files, but
parties (organizational units or IS projects) receiving contributions.
Nodes in the patch-flow graph can represent parties at different lev-
els in the organizational hierarchy. Thus, the patch-flow graph can
be seen as a generalization of contribution networks. In contrast
to the contribution network, a patch-flow graph shows aggregated
contributions using information on the organizational structure.
Consequently, collaboration can be made visible even for large orga-
nizations without the information overload a contribution network
would suffer from.

2.3.2 Other Approaches. Gousios et al. [9] and Kalliamvakou et
al. [16] present a taxonomy to measure and classify contributions
to open source software projects. Similar to our work, the contri-
bution is the key element of their model. Their method focuses
on qualifying the contributions of an individual towards an open
source project. In contrast to our method, their method disregards
organizational structures because it does not aim to measure how
contributions flow across an organization.

Begel et al. [1] present a framework for the extraction of devel-
opment meta data and applies it at Microsoft. While they do not
aim to measure the patch-flow, the described data structures are
sufficient to construct a patch-flow graph.

3 PATCH-FLOWMEASUREMENT METHOD
Based on our experience from prior research on IS, we designed a
method for measuring an organization’s patch-flow and with that
IS collaboration.

3.1 Patch-Flow Phenomenon
We define the following concepts:

• A code contribution is any code change performed on a
software component.

• A patch is a code contribution made by a developer who is
external to a project.

• Patch-flow is the flow of patches across organizational bound-
aries such as project or organizational unit boundaries within
a company.

A developer is considered external to a project if not amember of the
organizational unit owning the IS project. Typically, patches need
approval by the committers of an IS project who decide whether to
reject a patch or enact it by integrating it into code base [12, 27].

3.1.1 Example. Figure 1 displays example patch-flow involving
four organizational units A,B,C,D. The white boxes are organi-
zational units; the gray arrows indicate patch-flow between two
organizational units.

In the example, ten patches flow from organizational unit A
to B. That means developers allocated to work for organizational

Figure 1: Example patch-flow between four organizational
units

10 patches

50 patches

30
 p

at
ch

es

10
 p

at
ch

es

5 patches

A
Organizational Unit

B
Organizational Unit

C
Organizational Unit

D
Organizational Unit

unit A contributed ten patches to components that are owned by
organizational unit B. A total amount of 80 patches is received by
A that only contributed 20 patches to B and C in total.

3.1.2 Relationship to Inner Source. An individual within an or-
ganization takes part in IS collaboration by contributing to an IS
project provided by another organizational unit (across an organiza-
tional boundary). Contributions to an IS project can have multiple
shapes: In addition to a code contribution, an individual may con-
tribute by reporting a bug, reviewing the contribution of somebody
else, taking part in a mailing list discussion or by other means. In
this paper, we do not consider the flow of non-code contributions
but only the flow of code contributions. Because software code
is the primary artifact resulting from a software development ef-
fort and a majority of other contributions will eventually result in
code contributions, the patch-flow is an appropriate measure for IS
collaboration. More IS collaboration equals more patch-flow.

3.2 Data Structures
We present an object-oriented model for representing the patch-
flow within an organization. From objects adhering to this model,
patch-flow graphs in differing granularity can be constructed.

3.2.1 Patch-Flow Model. Figure 2 displays a simplified object-
oriented model in UML2 annotation capable of representing patch-
flow data. The key element is the code contribution (CodeContribu-
tion class) with attributes indicating what change was performed
on which files and when. For each code contribution, it contains
the person (Person class) authoring a code contribution and the IS
projects (InnerSourceProject class) receiving it. Each person and IS
project is associated with an organizational unit (OrgUnit class). Or-
ganizational units are modeled using the composite design pattern
[8]: An organizational unit can be composed of child organizational
units.

3.2.2 Patch-FlowGraph. We introduce the term patch-flow graph
as follows:

• A patch-flow graph is a directed weighted graph with orga-
nizational units as nodes and weighted edges representing
patch-flow between these nodes.

Each edge weight represents the number of patches flowing.
From the data measured in an organization (instantiating the classes
presented in the previous section), multiple patch-flow graphs can
be constructed depending on the granularity of organizational units.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Capraro et al.

Figure 2: Simplified patch-flow flow data model as UML2
class diagram

OrgUnit

CodeContribution

receiving project

author

InnerSourceProject

member

Person
*

**

hosting org unit *

Figure 3: Patch-flow graphs with different granularity

A

B

C

D
D1 D3

D2 D4

B1 B4

B2 B3

A1 A4

A2 A3

C1 C3

C2 C4

(a) coarse-grained (b) fine-grained

To distinguish patch-flow between organizational units of differ-
ent granularity, we apply the concept of levels to the organizational
hierarchy. In a tree, the level of each node is n + 1 with n being the
level of its parent. The root node always has the level 0. Translated
to organizational hierarchies, the organization itself has level 0 and
its top-level organizational units have level 1. Their children orga-
nizational units have level 2 etc. Level 0 is considered the highest
level. We define the following terms:

• The lowest common ancestor (LCA) of two organizational
units is the lowest node that has both as descendants.

• Patch-flow crosses level n if and only if n < nlca with nlca
being the level of the lowest common ancestor of the con-
tributing and the receiving organizational unit.

Code contributions between descendants and ancestors not consid-
ered patch-flow. Patch-flow crossing level n always crosses level
n+1. The highest level crossed of a patch-flow (n = nlca−1) serves as
a metric for the distance between the two involved organizational
units: Two coarse-grained business units in a large conglomerate
have a higher distance, then two teams within one of these business
units.

Figure 3 shows two patch-flow graphs visualizing patch-flow in
the example organization from the previous section. The organiza-
tion is composed of organizational units A,B,C,D (level 1). They
each have four children numbered with A1,A2, ... (level 2).

• Part (a) shows the patch-flow crossing level 1 (between four
organizational units A,B,C,D).

• Part (b) is more fine-grained showing the patch-flow crossing
level 2 (between the children of A,B,C,D).

Constructing different patch-flow graphs allows researchers and
practitioners to study the patch-flow between organizational units
on different levels in the organizational hierarchy.While this “drilling
down” increases the level of detail, in organizations with a lot of
patch-flow this might lead to information overload and reduce the
comprehensibility of the graph for a human reader.

3.3 Measurement Process
Before measuring the patch-flow in an organization, we assume
that a researcher or practitioner defined a scope by deciding which
IS projects to include in measurement. There are valid reasons for
a narrow scope and for not including all software developed within
the organization: For example, a complete list of all IS projects and
software components is not always available or an organization
could decide to allow patch-flow measurement only for selected
IS projects due to the protection of intellectual property or other
sensitive data. IS collaboration can occur regarding software that is
not formally part of an IS project. Thus, projects with allegedly no
IS collaboration can be considered as well.

The patch-flow in a given organization can be measured by
executing the following activities:

(1) Extraction of code contributions. Extract code contributions
regarding the IS projects in the scope. Typically, code contri-
butions result in commits to a source code repository and
can be extracted from there.

(2) Mapping of code contributions to IS projects.Map the receiving
IS project to each code contribution.

(3) Extraction of organizational data. Extract data about the struc-
ture of the studied organization. Organizational data can be
extracted from a variety of databases like directory services
or project management tools. However, the complexity of
organizational modeling might require manual extraction or
cleaning of the data.

(4) Identification of author. Identify the author of each code con-
tribution. Depending on the source code repository used,
authors might only be identified by pseudonym strings or
other identifiers like email addresses.

(5) Mapping of authors to organizational unit.Map the authors
of a code contribution to their organizational unit.

(6) Mapping of IS projects to organizational units. Map the IS
projects to the organizational units responsible for them.
For some IS projects, it might not be possible to allocate an
organizational unit.

The activities do not need to be executed in the given order. For
example one could decide to identify authors (activity 4) and sub-
sequently extract organizational data (activity 3) only for active
authors’ and IS projects’.

Whenmeasuring the patch-flow incrementally, the measurement
costs are reduced significantly after the first increment because a
large number organizational units and authors are already iden-
tified. Ideally, all activities are automated to reduce measurement
costs and risk of human errors during measurement.

The Patch-Flow Method for Measuring Inner Source Collaboration MSR ’18, May 28–29, 2018, Gothenburg, Sweden

4 EVALUATION APPROACH: CASE STUDY
RESEARCH

We evaluated the patch-flow measurement method by applying it
in an industry case study following Yin [37]. We developed a case
study protocol [37] to outline our case study design including data
gathering and evaluation mechanisms in detail. We evaluate three
dimensions of our patch-flow measurement method:

(1) We evaluate the relevance of the patch-flow phenomenon
and measurement method in the context of the case study’s
findings.

(2) We evaluate the method’s viability within the context of the
case study organization.

(3) We demonstrate the usefulness of the patch-flow data and
patch-flow graphs to represent IS collaboration within an
organization by analyzing the measured patch-flow and dis-
cussing it in-depth in the context of the case organization.

4.1 Case Selection
We searched for a software developing organization with estab-
lished development processes, a large number of developers, and
existing IS collaboration. From our professional network, we iden-
tified an organization fulfilling these requirements. Upon request
of our partners in the case organization, we do not disclose the real
name of the organization.

The studied organization is a multi-industry company with sig-
nificantly more than 10.000 developers. It operates internationally
but the majority of development work is performed within one
country. Most dominantly, it uses (traditional) plan-driven develop-
ment processes.

The company is structured into multiple segments. Within one
segment, we identified 18 test infrastructure components that are
set up as IS projects. The source code of these components is open
for all developers within the organizations to read and contribute
to. We measure the patch-flow regarding these 18 IS projects.

4.2 Data Gathering
Weemployed two data gatheringmechanisms:We applied the patch-
flow measurement method for the 18 identified test infrastructure
IS projects. In parallel, we gathered qualitative data to broaden our
understanding of the case organization and interpret the measured
patch-flow data.

4.2.1 Iterative Gathering of Qualitative Insights. We performed
three unstructured interviews with the engineering manager re-
sponsible for the test infrastructure development. Towards the end
of our case study inquiry, we performed an extensive workshop
with more than 10 employees in development and project manage-
ment roles within the studied organization. Table 1 presents details
about the interviews and workshop. We reference each interview
and workshop throughout the paper using its ID.

In interviews I1 and I2, we inquired about what how to measure
and interpret base data for the patch-flow measurement. In inter-
view I3 and workshop W1, we presented different visualizations
of the patch-flow data, asked for the employees’ interpretations,
presented our interpretations, and collected feedback regarding
our interpretations. While the focus of this paper is on quantifying

Table 1: Gathered qualitative data

ID Type Participants Topics
I1 Interview Eng. manager test

infrastructure
IS collaboration, organi-
zational structure

I2 Interview Eng. manager test
infrastructure

Organizational struc-
ture

I3 Interview Eng. manager test
infrastructure

Interpretation of visual-
izations, feedback

W1 Workshop Employees in multi-
ple roles

Interpretation of visual-
izations, feedback

IS collaboration, we used this qualitative feedback to broaden our
understanding of the collaboration and context within the studied
organization.

4.2.2 Application of Patch-Flow Measurement Method. We fol-
lowed the patch-flow measurement method discussed in the previ-
ous section.

The studied organization stores the source code of the 18 identi-
fied IS projects in a Microsoft Team Foundation Server (TFS) code
repository. With the help of an on-site engineer, we utilized a TFS
export script proprietary to the studied organization to extract the
code contributions from the repository (activity 1 from section 3.3).
We considered code contributions between April 1st, 2015 and June
30th, 2016 (boundaries included). Code for each IS project is located
in a designated sub-directory of the repository. We utilized the di-
rectory paths to determine for each code contribution the receiving
IS project (activity 2).

Organizational data sources like the organization’s LDAP direc-
tory did not provide a detailed description of the organizational
structure. While they were containing the high-level organizational
units of each developer (i.e. business units), they did not contain the
lower level organizational units (i.e. project teams). An engineering
manager responsible for the test infrastructure development manu-
ally assembled information on the organizational structure into a
machine readable format (activity 3). The studied organization is a
matrix organization. Employees report to their disciplinary superior
(disciplinary organization) and at the same time are allocated to a
project team (project organization). We use the project organization
for patch-flow measurement because it represents everyday work
routine. We consulted with employees of the organization who ex-
pressed that the disciplinary organization had little impact on their
everyday work routine but merely represented where and how an
individual was hired (interview I1, I2). In addition, software artifacts
are owned by organizational units of the project organization.

Due to privacy concerns, we did not get access to the employee
database. An employee of the studied organizationmanually searched
the identifiers of each code contribution author (activity 4), mapped
them to their organizational unit (activity 5), and using an internal
database assigned the owning organizational unit (activity 6). Like
Guzzi et al. [14], we observed that the employee database contained
no historical data. As a consequence, we could not identify the
author of every code contribution.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Capraro et al.

We excluded code contributions from analysis where we could
not identify the author of the change (116 code contributions),
the organizational unit of the author (14 code contributions), or
an IS project receiving the contribution (827 code contributions).
In addition, we considered only code contributions with actual
changes to the code: We excluded changes induced by repository
management tasks like branching or merging. The data gathering
resulted in 2194 not-excluded code contributions.

5 EVALUATION RESULTS: PATCH-FLOW AT
STUDIED ORGANIZATION

We found significant patch-flow between the organizational units
of the studied organization.

5.1 Organizational Structure
Figure 4 displays an excerpt of the organizational structure of the
studied organization. The nodes (circles) represent organizational
units. The edges (lines) indicate child-parent relationships between
organizational units. The nodes are annotated with letters that
are used to construct organizational unit identifiers (if a node is
annotated with b and its parent node with a, then the identifier is
ab). The excerpt only contains organizational units that took part
in IS collaboration by contributing patches to or providing an IS
project.

The organizational hierarchy is at maximum six levels deep. The
studied organization has a basic model of the structure defining
a type for organizational units on each level (interview I2). Using
this type information, we adjusted the level for ab, baba, and their
descendants. We assigned each organizational level one color that
we use to identify the level throughout this paper.

We refer to the most coarse-grained organizational units as seg-
ments (level 1). In the studied organization, segments are essentially
companies within the company. They offer independent services
and product portfolios, and cater to different markets (interview I1,
I2). The segments have more than 10,000 employees each.

Segments are composed of business units (level 2). A business
unit encapsulates one specific product domain within the market of
its segment. Organizational units on level 5 each develop a different
product or a small set of tightly related products. Teams (level 6) are
the most fine-grained organizational units and typically consist of 5
to 15 developers. Each team has a specific technical task regarding
one part of a product. Figure 4 displays each team with its full
identifier consisting of the parent organizational unit (e.g. aaaaa)
and a team identifier (ti , with index i of a,b, c, ...).

Eleven teams own one or more IS projects (gray boxes in figure
4). All IS projects are provided by teams in segment a. Each level 4
descendant of segment a provides an IS project.

In the studied organization, all IS projects and developers be-
long to a team (leaf node). This is not necessarily the case in every
organization. For example in other organizations higher level orga-
nizational units could own an IS project or employees assigned to a
higher level organizational unit could decide to contribute patches.

5.2 Patch-Flow Overview
Figure 5 shows the patch-flow aggregated by level 4 organizational
units as a graph. For comprehensibility, we use a different notation

than for the previous patch-flow graphs: The white boxes represent
level 4 organizational units. The figure also displays a part of the
organizational hierarchy. Level 4 organizational units are contained
by gray boxes representing level 3 organizational units. Gray lines
around these boxes indicate level 2 organizational units (business
units). Directed edges between the level 4 organizational units
represent the patch-flow.

The width of an edge shows its weight (the amount of patches
flowing). The edges spin mathematically positive (counter clock-
wise). Both, the color and line-type of an edge indicates the highest
level crossed by the patch-flow. In the studied organization, all
patch-flow crossing level 2 also crosses level 1. Consequently, the
figure only contains the colors for patch-flow with highest level
crossed equals 1, 3, and 4.

We measured significant patch-flow regarding the sampled IS
projects. In total 820 code contributions (37.4% of all contributions
to the IS projects) constituted patch-flow across a level 4 boundary
or higher.

Seven level 4 organizational units contribute or receive patches
crossing level 4 and are consequently included in figure 5. Three of
them (aaad,aaca,baba) do not receive patches. The organizational
units aaad and aaca receive no patches crossing level 4 despite host-
ing IS projects. The organizational unit baba receives no patches
as a consequence of our sampling: We considered only IS projects
of segment a. Consequently, we do not find any patch-flow into
organizational units of other segments.

Identifying contribution activity. How much an organizational
unit’s developers contribute to IS projects of other organizational
units varies. On the one hand, developers of the organizational unit
aba contribute no patches to other organizational units (indicated
by no edge). Developers of other organizational units (for example
aaca) contribute only a few patches. On the other hand, developers
of select organizational units contribute a significant number of
patches to IS projects in other organizational units (aaad contribut-
ing 315 patches, aaba contributing 172 patches). The patch-flow
graph is capable of expressing how much an organizational unit
contributes to other organizational units’ IS projects (sum of the
weight of all outgoing edges).

Identifying contribution receival. Organizational units receive a
varying number of outside patches. Two organizational units do
not receive patch-flow despite hosting an IS project within our sam-
ple (aaca, aaad). The organizational unit aaaa receives the highest
number of patches (606). The patch-flow graph is capable of express-
ing how many patches an organizational unit receives from other
organizational units (sum of the weight of all incoming edges).

Identifying collaboration relationships. An organizational unit
might collaborate only with select organizational units. For ex-
ample, we observed intense collaboration between the children
organizational units of aaa and aab compared to other level three
organizational units. Children of aaa contribute 131 patches to aab;
children of aab contribute 172 patches to aaa. The patch-flow graph
is capable of expressing how intense two organizational units col-
laborate with one another (sum of edge weights between these two
organizational units).

The Patch-Flow Method for Measuring Inner Source Collaboration MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Figure 4: Organizational structure including all organizational units participating in IS collaboration

IS Projects

Level 6
Teams

Level 4

Level 2
Business Units

Level 5

Level 3

Level 1
Segments a b

a b

a

b
a

a a c b

aaaaa tb,tc

2

aaaab tb

aaaca tb-td

3

aaada ta-te

5

aabab tb-td

3

aabaa ta

aabac ta

aabad ta

aacaa ta

abaa tb

abab ta

baba ta,tb

2

abaa ta

b c a a

a b c

a

aaaaa ta
p

1,p
2

2

a

a
aaaab ta

p
3

b

aaaba tb,tc

2

aaaba ta
p

4

a

aaabb tb,tc

2

aaabb ta
p

5,p
6

2

aaabc tb

aaabc ta
p

7

c

aaaca ta
p

8

a

aaadb tb

aaadb ta
p

9

b

d

aabaab ta
p

10-p
13

4

b

aabad tb

p
14,p

15

2

d

aacab tb

p
16,p

17

2

a

p
18

ab

Figure 5: Patch-flow graph showing patch-flow between the level 4 organizational units

Level 1 Level 3 Level 4

a a ba a a a a c b a b

a a a a a a a b a a a c a a a d a a c a b a b aa a b a

5.3 Patch-Flow Over Time
In the previous section, we presented a patch-flow graph that was
augmented with hierarchical information regarding the organiza-
tion. With an increasing amount of involved organizational units
or hierarchical depth of the organization, such a graph can quickly
become incomprehensible. However, hierarchical information must
not be neglected: A patch-flow between two low-level organiza-
tional units (e.g. teams) can have a different meaning than a patch-
flow between two top level organizational units (e.g. segments): For
example, there might be more and harder challenges to overcome
establishing IS collaboration among large segments than among
teams within the same segment.

Figure 6 provides an alternative representation of the patch-
flow considering the organizational hierarchy. The x-axis presents
the time. The y-axis displays the patch-flow relative to the total

amount of code contributions to the IS projects per month. The
color and line type of each line indicates the highest level crossed
by the patches. For example, the red line shows the percentage of
patches flowing between level 6 organizational units (teams). The
yellow line shows the percentage of patches flowing between level
5 organizational units.

We observe intense IS collaboration (significant patch-flow) across
level 6 to level 4 of the organization:

• 47.9% of all code contributions to the IS projects in our mea-
surement period flow across level 6 (teams)

• 42.4% across level 5
• 37.4% across level 4

There is less patch-flow among level 3 organizational units:

• 18.5% across level 3

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Capraro et al.

Figure 6: Patch-flow relative to all code contributions over
time by highest level crossed

We observe nearly absent collaboration (insignificant patch-flow)
among level 2 and 1 organizational units:

• 0.4% across level 2 (business units)
• 0.4% across level 1 (segments)

Patch-flow across level 6 to level 4 of the organization is routine
with the sampled IS projects. More than half of the contributions
to IS projects come from other teams; over a third from other level
4 organizational units. There is less patch-flow crossing lower level
boundaries. Business units and segments do not significantly col-
laborate with one another. Despite the openness brought by inner
source practices they can still be considered so called “silos” (orga-
nizational units that do not collaborate).

Identifying silo boundaries. A visualization of the patch-flow
crossing different organizational levels as in figure 6 is capable to
express on what organizational levels silos have formed and across
which levels how much IS collaboration happens.

5.4 Patch-Flow into IS Projects
Figure 7 shows the total number of code contributions received by
an IS project. The y-axis lists the IS projects. Each bar along the y-
axis indicates the number of received code contributions. The color
and pattern of the stacked bars indicate the highest level crossed
by the patches. The black striped bar indicates contributions that
do not constitute patch-flow (contributions by the team running
the IS project).

The IS projects receive a varying number of code contributions.
Two IS projects received no code contributions in our measurement
period (p9, p18). Seven projects receive code contributions but less
than twenty (p2, p6, p10, p12, p13, p15, p16). We consider these IS
projects inactive. Four projects (p1, p3, p8, p11) receive more than
200 code contributions.

Figure 8 displays only the projects we consider active. The y-
axis is ordered by total amount of received code contributions. In
contrast to figure 7, the bars along the x-axis show the percentage
of received patches.

Figure 7: Absolute number of code contributions received by
IS project

Figure 8: Ratio of patches to all code contributions by IS
project

All active IS projects receive patch-flow. However, they receive
a varying portion of patch-flow. Project p17 receives the smallest
ratio of outside patches (4.2%) and project p3 the largest (61.5%).
The IS projects receive patch-flow crossing different levels. While
p17 received only patches crossing level 6 (other team), the majority
of teams receives a mix of contributions crossing level 6 to 3. Only
two projects (p11, p14) receive patches that crossed a level 1 (other
segment).

Indicating different reach of IS projects. The measured patch-flow
indicates that IS projects acquire different reach within the organi-
zation with some receiving patches only from neighboring teams
and others attracting contributions even from other segments.

We consider project p1 an outlier because it received 100% patch-
flow. The team responsible for the IS project did not perform any
code contributions. In total, eleven level 6 organizational units
(teams) from six level 4 organizational units contribute to p1. Most
patches (90,1%) are contributed by the team aaadbta . Our con-
tacts at the studied organization confirmed to us that another team

The Patch-Flow Method for Measuring Inner Source Collaboration MSR ’18, May 28–29, 2018, Gothenburg, Sweden

(aaaaata) is the owner of p1 and and coordinates work on this IS
project (interview I3, workshop W1). However, aaadbta performs
a majority of the development and maintenance tasks.

Indicating problems with ownership and component granularity.
The significant patch-flow into project p1 (and the tight collabora-
tion it expresses) is not necessarily a positive indicator regarding
the studied organization’s development setup. We believe outliers
receiving higher patch-flow can indicate a problem. In the case of
project p1 responsible teams are not doing the actual work. We
suggest practitioners facing such a situation to reconsider who are
the owners of the IS project. We believe that inconveniently cut or
too coarse grained components could lead to a high patch-flow.

6 DISCUSSION
In this section, we discuss the findings from our case study. We
first discuss the evaluation of our patch-flow measurement method.
Subsequently, we discuss how the patch-flow can serve as an oper-
ational definition for IS collaboration, evaluate the trustworthiness
of our research and lay out suggested future research.

6.1 Evaluation
We evaluate our patch-flow measurement method based on its
relevance, viability, and usefulness.

6.1.1 Relevance. In the evaluating case study, we found that
about half (47.9%) of all code contributions constitute patch-flow
between organizational units, almost all (42.2%) being between
organizational units working on different products. The significant
patch-flow measured in the studied organization indicates high
relevance of the patch-flow phenomenon and hence the method
presented in this paper.

6.1.2 Viability. To evaluate its viability, we applied the patch-
flowmeasurementmethod in an industry case studywith a software
developing multi-industry company. Following the measurement
activities, we populated the discussed patch-flow data structures.
Patch-flow measurement using our method is feasible; the method
was applicable to the case study organization.

However, we observed pitfalls practitioners and researchers
should be aware of when measuring the patch-flow:

First, the organizational databases stored only incomplete records
of the organizational structure. We had to manually collect data
regarding the organizational structure. We recommend individuals
applying the patch-flow measurement method, to carefully vet sys-
tems that might contain data on the organizational structure and
to rely on costly manual collection of data only as a last resort.

Second, every IS project at the studied organization has a ded-
icated team that is responsible for it. Which team is determined
as owner of an IS project is crucial for the measured patch-flow.
Individuals faced with a project receiving only outside contribu-
tions (like p1 in section 5.4) need to carefully re-evaluate who owns
this project. Capraro and Riehle [2] discuss that with evolving IS
initiatives, some IS projects might be owned by many or even all
teams of an organization. In such cases, researchers need to find
operational definitions of IS project ownership that fit the context
of their study. For example IS projects owned by more than one

team can be modeled as belonging to the owners’ lowest common
ancestor organizational unit.

Third, developers and IS projects are not necessarily assigned to
leaf nodes in the organizational hierarchy.Where this is not the case,
one should carefully refer to the definitions given in section 3.2.2:
A code contribution from an organizational unit to its descendant
or ancestor is not patch-flow (because its is not possible that both
organizational units have a level n < nlca with nlca being the level
of their lowest common ancestor).

6.1.3 Usefulness. Three observations from the case study are
relevant to evaluate the usefulness of patch-flow method and its
outcomes for practitioners:

First, the case organization invested own resources to support
our patch-flow measurement (see section 4.2). This indicates to us,
that our contact persons in the organization, expected the results
to be useful to them even before measurement started. Second,
during workshop W1, the participants used the patch-flow as a
base for discussion of their collaboration practices. Participants
saw the amount of outside contributions to IS projects and the
diversity of contributing teams, as an argument to strengthen the
role of committers and staff their active IS projects with more than
one committer. That our visualizations led to the discussion of
concrete actions, indicates to us, that the they are useful to practi-
tioners. Third, During interview I3 and workshop W1, individual
participants inquired about specific additional aggregations of the
patch-flow data. This indicates to us, that patch-flow visualizations
can deliver an overview of IS collaboration, but that practition-
ers can use them as a starting point to define additional metrics
and visualizations (using the patch-flow data) regarding specific
collaboration goals or information needs of their organization.

We believe that the insights delivered by the visualizations in
section 5 are useful to both practitioners and researchers: The
patch-flow graph enriched with additional hierarchical informa-
tion, allows to identify hot spots with tight IS collaboration, and
organizational units not participating in IS collaboration. In ad-
dition to the patch-flow graph, patch-flow data can show what
organizational levels are typically crossed by patches, which IS
project is developed how actively, and from where each IS project
attracts patches.

6.2 Operational Inner Source Definition
On the one hand, some organizations run IS projects without call-
ing them IS projects or even without people being aware that they
are performing IS collaboration. For researchers, this can lead to
a struggle in establishing construct validity regarding what they
claim to be (or not be) IS projects or instances of IS collaboration or
IS in general. On the other hand, some organizations might use the
term IS project despite a component receiving no or insignificant
contributions (like the inactive IS projects in section 5.4). We believe
that the patch-flow can be used to establish an operational defi-
nition of IS collaboration: IS collaboration is collaboration across
organizational boundaries such as project or organizational unit
boundaries within a company. Consequently, where there is a flow
of patches (or other contributions), there is IS collaboration.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Capraro et al.

6.3 Trustworthiness
We evaluate the trustworthiness of our results using the quality
criteria credibility, dependability, confirmability and transferability
[11]. These quality criteria for naturalistic research can be applied
to evaluate case study inquiries in general [11], case studies in
the context of software engineering [6], and have been applied to
discuss the trustworthiness of case studies that evaluate theories
[30]. Our case study follows a naturalistic research paradigm as
we evaluate the patch-flow measurement method in a real world
context. Consequently, the presented trustworthiness criteria are a
better fit to evaluate our results than rationalistic criteria (external
validity, internal validity, ...) typically used in studies that mine
software repositories.

6.3.1 Credibility. Credibility is the degree to which we can es-
tablish confidence in the truth of our findings in the context of the
inquiry [11]. For ensuring credibility, we applied two techniques:

We performed intense peer debriefing [11]: We intensively dis-
cussed this work and gathered feedback from two colleagues within
our research group and in an informal setting with external re-
searchers and practitioners. We performed a writer’s workshop
[10] regarding an earlier draft of this paper with three researchers.

We performed extensive member checks [11]: As described in
section 4.2.1, we iteratively performed unstructured interviews and
a workshop to support our interpretation of the patch-flow data.
During interview I3 and workshopW 3, we reflected our findings
and interpretations to employees of the studied organizations to
discuss our findings and receive feedback which we incorporated
into this paper.

6.3.2 Dependability. Dependability is the degree of stability of
the findings and traceability from collected data to the findings. We
established dependability by providing an audit trail [11] containing
a log of all (unmodified) data with information on how it was
received or measured, when, and by whom. It contains notes for all
interviews and workshops and a journal of the analysis process.

6.3.3 Confirmability. Confirmability is the degree to which we
are neutral towards the inquiry and might bias the findings [11]. As
we are the authors presenting the patch-flow measurement method,
we are at risk to overstate the relevance, viability, and usefulness
of our method. We addressed this risk using the tactics described
in section 6.3.1 regarding credibility.

6.3.4 Transferability. Transferability is the degree to which find-
ings of our inquiry hold validity in other contexts. For our evalu-
ating case study, we selected an established organization that is
running IS projects. The setup of our study does not allow us to
draw immediate conclusions on whether our patch-flow measure-
ment method is applicable and useful in other contexts. However,
we did not find indication that the patch-flowmeasurement method
cannot be applied in other established organizations using IS.

6.4 Future Research
We suggest further research applying the patch-flow measurement
method:

Additional case studies. So far, IS case studies collected primary
qualitative data. We recommend to perform case study research that

not only collects qualitative data on IS but also analyzes the result-
ing patch-flow. In this paper, we intentionally used our case study
only to evaluate the patch-flow measurement method. We suggest
that future case studies analyze the patch-flow for theory building,
for example to analyze which IS practices trigger or support what
volume of contributions from what parties in an organization.

Inner source benchmarks. It is unclear how much IS collabora-
tion happens in organizations. We recommend future research to
provide benchmarks of IS collaboration by applying the patch-
flow measurement method to a representative sample of software
companies. Researchers could use such a benchmark to locate the
organizations they study on a map and discuss the generalizability
of their findings on a solid basis. Practitioners could gain insights
on the maturity and success of their IS initiatives.

Derived metrics. The patch-flow measurement method provides
primitive data about the IS collaboration. We encourage researchers
to use this data to theorize and validate metrics for practitioners’ in-
formation needs regarding IS model (e.g. a management accounting
model for IS contributions, models for evaluating the performance
of IS projects, incentive systems for IS, etc.).

7 CONCLUSION
In this paper, we present the patch-flow measurement method –
the first method to measure IS collaboration. It measures flow of
code contributions within an organization.

We evaluate our patch-flow measurement method using case
study research. In the case study organization, we found significant
high patch-flow. This indicates high relevance of the patch-flow
phenomenon and justifies the method research presented in this
paper. Using case study research, we evaluate the viability of the
patch-flow measurement method. We found our method viable to
measure the required patch-flow data. We demonstrate the useful-
ness of the patch-flow data and graphs and found that they are
capable to express IS collaboration in the studied multi-industry
organization.

We recommend further research based on our method including
additional case studies and benchmarks of IS collaboration. We
believe our method is of interest to researchers and practitioners
seeking to understand IS collaboration within an organization.

8 ACKNOWLEDGMENTS
This work was partially funded by DFG grant 382466185 and two
industry grants to the Open Source Research Group at Friedrich-
Alexander-Universität. We thank our contacts at the studied orga-
nization for their help in collecting and interpreting the patch-flow
data, Minghui Zhou for the helpful discussion and feedback, as
well as Andreas Bauer, Nikolay Harutyunyan, Andreas Kaufmann,
and Daniel Knogl for improving this paper in a writer’s workshop,
and Sebastian Duda and Julia Werner for improving it with their
feedback.

REFERENCES
[1] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. 2010. Codebook:

discovering and exploiting relationships in software repositories. In Software
Engineering, 2010 ACM/IEEE 32nd International Conference on, Vol. 1. IEEE, 125–
134.

The Patch-Flow Method for Measuring Inner Source Collaboration MSR ’18, May 28–29, 2018, Gothenburg, Sweden

[2] Maximilian Capraro and Dirk Riehle. 2017. Inner source definition, benefits, and
challenges. ACM Computing Surveys (CSUR) 49, 4 (2017), 67.

[3] Gabriella CB Costa, Francisco Santana, Andréa M Magdaleno, and Cláudia ML
Werner. 2014. Monitoring Collaboration in Software Processes Using Social
Networks. In CYTED-RITOS International Workshop on Groupware. Springer, 89–
96.

[4] Kevin Crowston and James Howison. 2005. The social structure of free and open
source software development. First Monday 10, 2 (2005).

[5] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2008.
Free/Libre Open-source Software Development: What We Know and What We
Do Not Know. ACM Comput. Surv. 44, 2, Article 7 (March 2008), 35 pages.
https://doi.org/10.1145/2089125.2089127

[6] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis
in software engineering. In Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on. IEEE, 275–284.

[7] Jamie Dinkelacker, Pankaj K Garg, RobMiller, and Dean Nelson. 2002. Progressive
open source. In Proceedings of the 24th International Conference on Software
Engineering. ACM, 177–184. http://doi.acm.org/10.1145/581339.581363

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
patterns: elements of reusable object-oriented software. (1994).

[9] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. 2008. Measuring
developer contribution from software repository data. In Proceedings of the 2008
international working conference on Mining software repositories. ACM, 129–132.

[10] Hillside Group. 2010. How to Hold a Writers Workshop. (2010).
Last retrieved in January 2018, http://hillside.net/conferences/plop/
235-how-to-hold-a-writers-workshop. Publication year estimated using
http://web.archive.org.

[11] Egon G Guba. 1981. Criteria for assessing the trustworthiness of naturalistic
inquiries. Educational Technology Research and Development 29, 2 (1981), 75–91.

[12] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2006. A Case Study
of a Corporate Open Source Development Model. In Proceedings of the 28th
International Conference on Software Engineering (ICSE ’06). ACM, New York, NY,
USA, 472–481. https://doi.org/10.1145/1134285.1134352

[13] Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2010. Managing a
Corporate Open Source Software Asset. Commun. ACM 53, 2 (Feb. 2010), 155–
159. https://doi.org/10.1145/1646353.1646392

[14] Anja Guzzi, Andrew Begel, Jessica K Miller, and Krishna Nareddy. 2012. Facili-
tating enterprise software developer communication with CARES. In Software
Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE, 527–536.

[15] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From developer networks to verified communities: a fine-grained approach.
In Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 563–573.

[16] Eirini Kalliamvakou, Georgios Gousios, Diomidis Spinellis, and Nancy Pouloudi.
2009. Measuring Developer Contribution From Software Repository Data. MCIS
2009 (2009), 4th.

[17] Juho Lindman, Matti Rossi, and Pentti Marttiin. 2008. Applying Open Source
Development Practices Inside a Company. In Open Source Development, Com-
munities and Quality, Barbara Russo, Ernesto Damiani, Scott Hissam, Björn
Lundell, and Giancarlo Succi (Eds.). IFIP – The International Federation for In-
formation Processing, Vol. 275. Springer US, 381–387. https://doi.org/10.1007/
978-0-387-09684-1_36

[18] GregoryMadey, Vincent Freeh, and Renee Tynan. 2002. The open source software
development phenomenon: An analysis based on social network theory. AMCIS
2002 Proceedings (2002), 247.

[19] Ken Martin and Bill Hoffman. 2007. An Open Source Approach to Developing
Software in a Small Organization. Software, IEEE 24, 1 (Jan 2007), 46–53. https:
//doi.org/10.1109/MS.2007.5

[20] Catharina Melian and Magnus Mähring. 2008. Lost and Gained in Translation:
Adoption of Open Source Software Development at Hewlett-Packard. In Open
Source Development, Communities and Quality, Barbara Russo, Ernesto Damiani,
Scott Hissam, Björn Lundell, and Giancarlo Succi (Eds.). IFIP – The International
Federation for Information Processing, Vol. 275. Springer US, 93–104. https:
//doi.org/10.1007/978-0-387-09684-1_8

[21] Andrew Meneely and Laurie Williams. 2011. Socio-technical developer networks:
Should we trust our measurements?. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 281–290.

[22] Andreas Neus and Philipp Scherf. 2005. Opening minds: Cultural change with
the introduction of open-source collaboration methods. IBM Systems Journal 44,
2 (2005), 215–225. https://doi.org/10.1147/sj.442.0215

[23] Andy Oram. 2015. Getting started with inner source. O’Reilly Media, Inc.
[24] Tim O’Reilly. 2000. Archived email discussion on Open Source and OpenGL.

(2000). Last retrieved in January 2018, http://archive.oreilly.com/pub/a/oreilly/
ask_tim/2000/opengl_1200.html.

[25] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. 2008. Can
developer-module networks predict failures?. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering. ACM,
2–12.

[26] Dirk Riehle. 2015. The five stages of open source volunteering. In Crowdsourcing.
Springer, 25–38.

[27] Dirk Riehle, John Ellenberger, Tamir Menahem, Boris Mikhailovski, Yuri Natch-
etoi, Barak Naveh, and Thomas Odenwald. 2009. Open collaboration within
corporations using software forges. Software, IEEE 26, 2 (2009), 52–58.

[28] Michael Schwind and Christian Wegmann. 2008. SVNNAT: Measuring collabora-
tion in software development networks. In E-Commerce Technology and the Fifth
IEEE Conference on Enterprise Computing, E-Commerce and E-Services, 2008 10th
IEEE Conference on. IEEE, 97–104.

[29] Phillip Smith and Chris Garber-Brown. 2007. Traveling the Open Road: Us-
ing Open Source Practices to Transform Our Organization. In Agile Conference
(AGILE), 2007. 156–161. https://doi.org/10.1109/AGILE.2007.65

[30] Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian
Fitzgerald. 2014. Key Factors for Adopting Inner Source. ACM Trans. Softw. Eng.
Methodol. 23, 2, Article 18 (April 2014), 35 pages. https://doi.org/10.1145/2533685

[31] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. 2011.
A comparative study of challenges in integrating Open Source Software and Inner
Source Software. Information and Software Technology 53, 12 (2011), 1319–1336.

[32] Richard Torkar, PauMinoves, and Janina Garrigós. 2011. Adopting free/libre/open
source software practices, techniques and methods for industrial use. Journal of
the Association for Information Systems 12, 1 (2011), 88–122.

[33] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2014. Collaboration in open-
source projects: Myth or reality?. In Proceedings of the 11th working conference on
mining software repositories. ACM, 304–307.

[34] Frank van der Linden. 2013. Open Source Practices in Software Product Line
Engineering. In Software Engineering, Andrea De Lucia and Filomena Ferrucci
(Eds.). Lecture Notes in Computer Science, Vol. 7171. Springer Berlin Heidelberg,
216–235. https://doi.org/10.1007/978-3-642-36054-1_8

[35] Frank van der Linden, Björn Lundell, and Pentti Marttiin. 2009. Commodification
of Industrial Software: A Case for Open Source. Software, IEEE 26, 4 (July 2009),
77–83. https://doi.org/10.1109/MS.2009.88

[36] Padmal Vitharana, Julie King, and Helena Shih Chapman. 2010. Impact of internal
open source development on reuse: Participatory reuse in action. Journal of
Management Information Systems 27, 2 (2010), 277–304.

[37] Robert K Yin. 2013. Case study research: Design and methods. Sage publications.

