
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

ANDREAS MISCHKE

MASTER THESIS

REAL-TIME COLLABORATIVE QDA

Submitted on April 2, 2018

Supervisors: Prof. Dr. Dirk Riehle, M.B.A.
Andreas Kaufmann, M.Sc.

Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg



Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
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Abstract

QDAcity is a cloud-based web application that supports qualitative data analysis.
Many research projects are executed by multiple researchers and therefore require
some degree of collaboration for the qualitative data analysis process. QDAcity
already aids this process by managing a single data source that can be accessed
by multiple researchers. Still collaborating in QDAcity requires a separate com-
munication channel outside of the application to coordinate the collaboration
and avoid concurrent changes to data inside QDAcity. In this thesis an extension
for QDAcity is implemented to augment the application with real-time collab-
oration capabilities. This enables researchers to work on a project and even
single documents inside QDAcity at the same time without the need for external
coordination.
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1 Introduction

Successful research projects usually require collaboration between a group of
researchers. While there are already different software tools that support the
individual activities of qualitative research, especially the analysis of qualitative
data, those tools are mostly desktop applications that do not aid collaboration
and the required coordination.

With QDAcity the Professorship for Open Source Software at the Computer
Science Department of the Friedrich-Alexander-Universität Erlangen-Nürnberg
created a web application for qualitative data analysis that makes use of the
extensive possibilities of cloud-based systems to enhance the collaboration process.

This thesis presents the design and architecture of a system that, for the first
time, allows users of QDAcity to concurrently perform the task of coding on the
same data, from any client running in a standard browser environment.

In Chapter 1 of this thesis an overview of fundamental topics is given to outline
its motivation. In Chapter 2 the requirements for this project are defined before
getting to the main Chapters 3 and 4 about architecture and implementation
of the new software features. In the end the evaluation in Chapter 5 shows if,
and to which extent, the requirements were met, before the thesis closes with a
conclusion and a prospect on future work in Chapter 6.

1.1 Qualitative Research and Data Analysis

Qualitative specifies the type of data that is being examined in the research. The
opposite is quantitative data and the two types can be differentiated as follows:

“quantitative data – which are data in the form of numbers (or mea-
surements), and qualitative data – which are data not in the form of
numbers (most of the time, though not always, this means words).”
(Punch, 2014, p. 3)
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“Qualitative research is an umbrella term for a wide variety of approaches to
and methods for the study of natural social life.” Basis for those approaches
are “primarily . . . textual materials such as interview transcripts, field notes,
and documents, and/or visual materials such as artifacts, photographs, video
recordings and Internet sites” (Saldaña, 2011, pp. 3 sq.).

According to Flick (2014, p. 3), the central step in qualitative research is data
analysis: “Whatever the data are, it is their analysis that, in a decisive way,
forms the outcomes of the research”. Within the research process qualitative data
analysis (QDA) is often one step after the collection of data. Other approaches
conduct the collection and analysis of the data in parallel or have the analysis
as the central part of the research process, guiding the way of conducting the
other steps (cf. Flick, 2014, pp. 9 sq.). Prominent example for the latter case is
grounded theory, where the state of the analysis decides the methods for further
data collection (cf. Corbin & Strauss, 2014).

A central concept in different strategies of QDA is to code the data. This means
to assign labels to parts of the examined data (e.g. paragraphs, words, visual
elements), so the data can be grouped under a common aspect. In the context of
QDA those labels are called codes. A widely used strategy is qualitative content
analysis (cf. Flick, 2014, p. 11). Schreier (2014, p. 174) describes the coding frame,
also known as code system, as “the heart of” qualitative content analysis. It is
a hierarchical set of codes consisting of main categories and subcategories. Main
categories describe the aspects that shall be examined in the analysis while their
subcategories group the details about the respective aspects.

By coding the data the researcher can identify similar phrases and common
sequences across the analyzed document. Also relationships and differences between
categories could become visible (cf. Miles, Huberman, & Saldaña, 2014, p. 10).
These findings then help to form a theory for further work.

1.2 QDAcity

There are several software tools for computer assisted qualitative data analysis
(CAQDAS) like MAXQDA1 or atlas.ti2. Another instance is QDAcity, a cloud-
based QDA software developed by the Professorship for Open Source Software at
the Friedrich-Alexander-Universität Erlangen Nürnberg.

QDAcity is a web application running in the Standard Environment of Google
App Engine3. The server-side component is written in Java and takes advantage

1https://www.maxqda.de/
2http://atlasti.com/
3https://cloud.google.com/appengine/
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of the various APIs provided by Google App Engine. The frontend is a JavaScript
application based on Facebook’s React framework4. Users can authenticate via
their Google account.

Researchers can use QDAcity to perform qualitative data analysis. It helps espe-
cially with managing and analyzing text documents like interview transcripts or
field notes. Core feature is its coding editor that is used to manage a code system
and a set of documents and to apply codes to the documents.

The code systems in QDAcity are rooted tree structures of codes where each code
has different attributes such as name, memo or color. Additionally there is the
possibility to define relations between codes in a code system language. Each code
can be applied to any number of text document sections.

Every project inside QDAcity can contain multiple text documents, which can also
be edited in the coding editor. This includes changes in the documents’ content,
i.e. adding and removing text, but usually the documents are created outside of
QDAcity and imported as RTF document. The major task to be accomplished
inside the application is the coding of documents.

Since multiple users can edit and code documents on the same project there
is already a certain degree of collaboration provided by QDAcity. But in the
current state of the application this must not happen simultaneously on the same
document as concurrent changes to the same document between the editors would
cause lost edits or even corrupted data. Therefore collaborators need to coordinate
which documents to code to avoid any simultaneous edits. With the features
introduced in this thesis, that need of external coordination becomes obsolete.

1.3 Real-Time Collaborative Editing

Collaborative editing is the act of working together on a piece of information.
A simple example is a piece of paper that is handed back and forth with each
party making changes on that paper. In terms of using computer systems the
piece of paper would be replaced by a document file sent back and forth via email
or on a physical drive. Consecutively editing the same item in an online service is
also collaborative editing.

Real-time collaborative editing (RTCE) is a type of collaborative editing where data
is concurrently changed by different editors. Adapting the paper example from
above, this would mean that the collaborators draw concurrently on the same sheet
of paper. The first example of RTCE in computer science was demonstrated by
Douglas Engelbart in 1968 at the Fall Joint Computer Conference in San Francisco

4https://reactjs.org/
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(Engelbart & English, 1968). A more prominent contemporary example is Google
Docs5, where users can simultaneously work on text documents, spreadsheets and
presentation slides.

The main problem with RTCE is to detect and resolve conflicts between simulta-
neous edits. There have been different approaches to address it:

• With operational transformation peers modify received operations to accom-
modate previous operations.

• Commutative replicated data types can be applied in any order.

• Differential synchronization defines an algorithm specialized for web appli-
cations.

The single approaches are discussed in more detail in the following sections.

1.3.1 Operational Transformation

Ellis and Gibbs (1989) laid the foundation of operational transformation (OT).
The aim was to add real-time collaboration capabilities to their GROVE6 system.

To collaborate using OT, every collaborator’s application instance starts with
an identical local copy of the document to be edited. All changes are immediately
reflected in the user’s own copy while at the same time a description of the
change is sent to all other connected users. The sent changes contain a position
specification (e.g. a character offset) and the action to be performed at that
position (e.g. an insertion or deletion of a character).

Client 1 Client 2

ABC ABC
ins(1, x)

ins(1, x)AxBC

ins(3, y)

ins(3, y)

AxBC

AxByC
AxByC

Figure 1.1: Operational transform with sequential changes (Based on Ellis and
Gibbs, 1989, pp. 4 sqq.)

5https://www.google.de/docs/about/
6GRoup Outline Viewing Edit
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If all changes would occur sequentially, the received changes could be executed
unmodified and every collaborator would see the same document state as the
others at any time. Figure 1.1 shows a simple sequential example where client 1
wants to insert an x between A and B while client 2 intends to add a y between
B and C. Since the changes do not overlap, the result is as expected.

Client 1 Client 2

ABC ABC
ins(1, x)

ins(1, x)

AxBC
ins(2, y)

ins(2, y)

AByC

AxyBC AxByC

Figure 1.2: Operational transform with concurrent changes but no transformation
(Based on Ellis and Gibbs, 1989, pp. 4 sqq.)

In practice there is always the possibility for changes happening at the same
time. Figure 1.2 illustrates the result when the same activities as in the previous
example are executed concurrently: While client 2 sees the correct result, client 1
obtains a wrong version of the document. The insertion of the x leads to new
offsets for B and C. Therefore, the offset of the change received by client 2 now
points to the location between x and B, instead of between B and C

Client 1 Client 2

ABC ABC
ins(1, x)

ins(1, x)

AxBC
ins(2, y)

ins(2, y)

AByC

ins(1, x)ins(3, y)

AxByC AxByC

Figure 1.3: Operational transform with concurrent changes and transformation
(Based on Ellis and Gibbs, 1989, pp. 4 sqq.)

The idea of OT is to transform the received changes to correct the position
and other potentially affected parameters based on previously executed changes.
Figure 1.3 extends the above example by a transformation step that corrects the
offset for received changes. At client 1 the insertion of x requires the offsets of all
later changes that point to a position right of the x (including the insertion of y)
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to be incremented by 1. At client 2 no correction is necessary, since the insertion
of x has a smaller character offset than the already executed insertion of y.

This solution to transform the changes according to previous changes is also
a downside when using OT for more complex systems. For all possible combinations
of changes a transformation has to be defined, leading to a m×m matrix with m
being the number of possible changes.

1.3.2 Commutative Replicated Data Types

An approach similar to operational transformation are commutative replicated data
types (CRDT). As with OT, all collaborators’ systems start off with an identical
local copy of the data and then exchange operation messages. While with OT the
messages are transformed to take previous changes into account, Roh, Kim, and
Lee (2006) came up with CRDT to make the application of changes independent
from their order.

An exemplary data type is the increment-only counter described at Shapiro,
Preguiça, Baquero, and Zawirski (2011, p. 394): Given a system with n clients,
a vector of length n contains one counter per client. Only the respective client may
increment the value. After incrementing, clients do not broadcast an increment
message, but the new counter value. When receiving a change, it can always be
executed in any order. In case a change message overtakes an other, the first one
will be ignored since it is less than the second and the counter is monotonous
increasing. Even in case of lost messages, each client will eventually receive the
latest values. To get the total value of the counter a client can anytime sum up
the single counters of the vector.

Downside of the CRDT approach is, that an application can only use commutative
data types for synchronization. This is no problem for greenfield applications but
very hard for adaption in existing applications.

1.3.3 Differential Synchronization

Differential synchronization (DS) is a method developed by Fraser (2009). The aim
was to introduce a system that allows to add real-time collaboration capabilities
with minimal impact on application design and thereby also suitable for being
added to existing applications. “DS is a state-based optimistic synchronization
algorithm” (Fraser, 2009, p. 1) that avoids the drawbacks of other approaches:

• Pessimistic approaches lock sections or the whole document, so there is no
real-time collaboration possible. Further the pessimistic model is unsuitable
for unreliable network connections.
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• Edit-based algorithms like operational transformation (cf. section 1.3.1)
mirror all single user actions over the network. Any failure that leads to
an action not being mirrored causes a fork between the clients’ document
history from which the system has to recover.

• Systems relying on three-way merges send the whole document to the
server which then merges the changes of all users into a single version and
distributes that version back to all clients. The drawback of this approach
is, that there must not be any changes between sending the client’s version
to the server and receiving the merged version. This slows users down a lot
as they repeatedly have to stop their work and wait for the merge.

DS relies on a client-server-architecture, where the server keeps track of all
connected clients and their document states. Fraser (2009) includes a diff-patch
algorithm for plain text, but DS can be applied to all kind of data for which
a suitable diff-patch algorithm exists. Figure 1.4 depicts the schematic structure
that is built per client-server-connection.

Client Server

Edits Diff

PatchPatch

Client
Text

Client
Shadow

Server
Shadow

Server
Text

PatchPatch

Diff Edits

Figure 1.4: Schematic overview of differential synchronization
(Based on Fraser, 2009, p. 3)

Initially all the text and shadow instances are identical. The server has a single
Server Text instance but manages multiple Server Shadows, one for each connected
client. The user’s actions are immediately performed on the Client Text and the
Server Text may be changed by other clients in the meantime. The synchronization
between one client and the server runs in cycles that do not overlap:

1. A diff is calculated between the Client Text and the Client Shadow resulting
in a list of edits.

2. The Client Text is copied over to the Client Shadow.

3. The edits from step 1 are sent to the server.
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4. The server calculates patches based on the client edits and applies them to
the Server Shadow and the Server Text.

These steps are then repeated in the opposite direction: A diff between the Server
Text and the Server Shadow reveals the edits that were made by other clients,
which in return get incorporated into the Client Text and Client Shadow. After
that a new synchronization cycle starts with step 1 of the above list.

1.3.4 Discussion of the Presented Approaches

In the last three sections different approaches have been presented, that address
the problem of resolving or avoiding conflicts occuring with concurrent changes in
distributed systems.

Operational transformation and commutative replicated data types are both very
interesting solutions to the problem, but both have the disadvantage of being hard
to add to existing applications. When choosing Operational Transformation the
big number of different actions that can be performed in QDAcity would result
in a vast amount of transformations to be implemented. Adding commutative
replicated data types to QDAcity would require the reimplementation of many
existing parts that work on data to be synchronized between users.

One of the design goals of differential synchronization was to have minimal impact
on the application design and to be easily adoptable in existing applications. This
is a great advantage over the other two approaches for the implementation in
QDAcity. To apply differential synchronization a diff-patch algorithm has to be
provided for data which shall be synchronized. This is expected to be a feasible
task that can be managed within this thesis.
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2 Requirements

This work’s objective is to design and implement a real-time collaboration service
(RTCS) for the existing QDAcity application. That service shall enable users
to collaborate on documents concurrently while seeing each other’s changes in
real-time. It covers only changes made inside the coding editor of QDAcity, the
synchronization of actions performed outside of the coding editor is not in the
scope of this thesis.

2.1 Functional Requirements

The structure of the following functional requirements is based on the
FunctionalMASTeR template by Rupp (2014, pp. 215 sqq.) as shown in
Figure 2.1. Italic words are placeholders that have to be filled in, while dashed
boxes are optional. The semantic definition of the keywords shall, should and will
as used in this thesis can be found in Table 2.1. The used process words and terms
are semantically defined in Tables 2.2 and 2.3.

event system SHOULD

PROVIDE 
actor

WITH THE 
ABILITY TO

process
verb

object

WILL

-SHALL

BE ABLE 
TO

AS SOON AS

logical
expression

IF

time 
period

AS LONG AS

Figure 2.1: FunctionalMASTeR template based on Rupp (2014, pp. 230, 242)
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Keyword Semantic Definition of the Keyword

shall A requirement that has to be fulfilled for the project to
succeed.

should A requirement that is important but not necessary for the
software to work correctly.

will A requirement that is not necessary but desired.

Table 2.1: Definition of the requirement keywords

Process Semantic Definition of the Process Word

to persist In the RTCS, to persist shall be defined as storing a data
item in the data store of the backend by writing directly to
the data store or using the backend API.

to synchronize In the RTCS, to synchronize shall be defined as sending
a change to all collaborators, so all collaborators’
document copies are eventually consistent.

Table 2.2: Definition of the requirement process words

Term Semantic Definition of the Term

backend In the RTCS, a backend shall be defined as the existing
backend of the QDAcity application.

change In the RTCS, a change shall be defined as a user action
and the corresponding meta information to describe the
action.

collaborator In the RTCS, a collaborator shall be defined as a QDAcity
user who is working concurrently in the coding editor on
the same QDAcity project.

document In the RTCS, a document shall be defined as a document
that is loaded into and edited inside the QDAcity
application.

RTCS In the RTCS, a RTCS shall be defined as the real-time
collaboration service that is implemented in the scope of
this thesis.

user In the RTCS, a user shall be defined as a physical person
that is using the QDAcity application.

Table 2.3: Definition of the requirement terms

10



2.1.1 Synchronization of Codings

Central feature of the QDAcity coding editor is the possibility to add and remove
codings to or from a document. These are also the main actions that have to be
synchronized by the RTCS. Therefore the following requirements can be defined:

FR–1: As soon as a user adds a coding to a document the RTCS shall
persist the change in the backend.

FR–2: As soon as a user adds a coding to a document the RTCS shall
synchronize the change to all collaborators.

FR–3: As soon as a user removes a coding from a document the RTCS
shall persist the change in the backend.

FR–4: As soon as a user removes a coding from a document the RTCS
shall synchronize the change to all collaborators.

2.1.2 Synchronization of Codes

Another set of essential actions to be synchronized are changes that apply to
single codes inside the code system or the relation between two or more codes:

• adding a code,

• relocating a code, i.e. assigning a new parent code in the hierarchy,

• changing the code book entry of a code,

• changing a code’s properties: name, color or author,

• adding a relation between two codes,

• changing a relation between two codes,

• removing one or all relations of a code,

• removing a code.
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Besides adding and removing a code, all actions can be seen as changing one or
more properties of a code. On this basis, these requirements can be defined:

FR–5: As soon as a user adds a code to the code system the RTCS shall
persist the change in the backend.

FR–6: As soon as a user adds a code to the code system the RTCS shall
synchronize the change to all collaborators.

FR–7: As soon a user changes one or more properties of a code the RTCS
shall persist the change in the backend.

FR–8: As soon a user changes one or more properties of a code the RTCS
shall synchronize the change to all collaborators.

FR–9: As soon as a user removes a code from the code system the RTCS
shall persist the change in the backend.

FR–10: As soon as a user removes a code from the code system the RTCS
shall synchronize the change to all collaborators.

2.1.3 Synchronization of Collaborators

Users need to recognize that they are not the only user in a document but have
collaborators changing the same document concurrently. To achieve that, the
following requirements are defined:

FR–11: The RTCS shall display a list of all collaborators in the QDAcity
coding editor interface.

FR–12: As long as there are no collaborators the RTCS shall display a
corresponding message instead of the collaborator list.

FR–13: As soon as a user enters the QDAcity coding editor the RTCS
shall add this user to all collaborators’ collaborator lists.

FR–14: As soon as a user intentionally leaves the QDAcity coding editor
the RTCS shall remove this user from all collaborators’ collaborator
lists.

FR–15: As soon as a user looses connection to the RTCS server the RTCS
shall remove this user from all collaborators’ collaborator lists.

12



2.1.4 Synchronization of Text Changes

Though editing text is possible within the QDAcity coding editor, the average
user is expected to spend significantly more time with coding activities than
with text editing activities. Usually documents are written outside QDAcity and
imported once. After initial corrections, changes to the documents’ content are
not a common occurrence during coding. Therefore synchronizing text changes is
assigned a low priority.

FR–16: As soon as a user adds a character to a document the RTCS should
synchronize the change to all collaborators.

FR–17: If a user has added a character to a document the RTCS should
eventually persist the change in the backend.

FR–18: As soon as a user changes the styling of a character of a document
the RTCS should synchronize the change to all collaborators.

FR–19: If a user has changed the styling of a character of a document the
RTCS should eventually persist the change in the backend.

FR–20: As soon as a user removes a character from a document the RTCS
should synchronize the change to all collaborators.

FR–21: If a user has removed a character from a document the RTCS
should eventually persist the change in the backend.

2.1.5 Synchronization of Text Selections

To make real-time collaboration in QDAcity more convenient, each user’s text
selection inside the document should be synchronized to the other editors. This
helps users to identify sections where other users are actively working on, so they
can avoid conflicts or duplicate work by not editing the same section.

FR–22: As soon as a user selects text in a document the RTCS should
display the selection in all collaborators’ text editors.

FR–23: As soon as a user deselects text in a document the RTCS should
display the selection in all collaborators’ text editors.
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2.1.6 Authentication and Authorization

Authentication and authorization is already implemented in the frontend and the
backend of QDAcity. Since the RTCS will accept changes and modify the backend
copy of a document, it has to ensure that only changes by authorized users are
accepted.

FR–24: The authentication mechanism of the RTCS shall only allow au-
thenticated users to make changes to a document.

2.2 Non-Functional Requirements

The formulation of the non-functional requirements is based on the
PropertyMASTeR and the EnvironmentMASTeR templates by Rupp (2014,
pp. 234 sqq.) as shown in Figures 2.2 and 2.3. As in Figure 2.1, the parts in dashed
boxes are optional and the italic words have to be filled in.

AS SOON AS 
event

characteristic SHOULD
qualifying
expression

value

WILL

SHALL

BE

IF logical
expression

AS LONG AS 
time period

subject
matter

Figure 2.2: PropertyMASTeR template based on Rupp (2014, p. 239)

SHOULD object

WILL

SHALL

BE DESIGNED 
IN A WAY

subject
matter

value
CAN BE 

OPERATED
characteristic

AS SOON AS 
event

IF logical
expression

AS LONG AS 
time period

Figure 2.3: EnvironmentMASTeR template based on Rupp (2014, p. 239)
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2.2.1 Technological Requirements

The nature of the existing application induces some technological requirements
for the RTCS. Since QDAcity is a web-based client-server application hosted on
Google App Engine, the RTCS should run in the same ecosystem.

NFR–1: The architecture of the RTCS shall be a client-server architecture.

NFR–2: The client part of the RTCS shall be designed in a way that it can
be operated as a part of the existing QDAcity frontend.

NFR–3: The server part of the RTCS should be designed in a way that its
running instances can be managed via the Google Cloud Console.

NFR–4: The server part of the RTCS should be designed in a way that it
can be operated in a distributed way on multiple instances.

2.2.2 User Interface Requirements

The user should not experience any delay when editing the document locally.
A delay when incorporating changes of other users is inevitable due to the usage
of remote network connections, but should stay as low as possible.

For similar use cases, Tolia, Andersen, and Satyanarayanan (2006, p. 47) ascer-
tained that “user productivity is not impacted by response times below 150 mil-
liseconds. . . . Above one second, users become unhappy”. Therefore theses limits
are targeted for the synchronization tasks in the RTCS.

NFR–5: The RTCS should be designed in a way that it can continue
operation after the synchronization of a change has failed.

NFR–6: The RTCS should be designed in a way that the synchronization
of changes is transparent to the user.

NFR–7: The synchronization time of the RTCS should be below 150 mil-
liseconds.

NFR–8: The synchronization time of the RTCS shall be below 1 second.
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3 Architecture

Based on the requirements in Chapter 2 this chapter presents the architecture
of the RTCS. The first section defines the fundamental architecture, before the
second section elaborates on some aspects of the architecture in more detail.
Finally the replacement of the currently used text editor component is described
and reasoned.

3.1 General Architecture

The RTCS needs to distribute changes between several users across the internet,
so it is obvious to have some centralized server as communication hub. At the
same time a client module is needed, that connects the QDAcity frontend to this
central RTCS server. This leads to a client-server architecture.

In this section the fundamental design decisions are described, that follow on
the architectural decision reasoned above. The section starts with the choice of
the programming language and the RTCS-internal client-server-protocol. Based
on those choices the selection of the server runtime environment and a shared
in-memory database is reasoned before summarizing the section in an overview of
the involved systems and the connections between them.

3.1.1 Selection of the Programming Language

In many client-server applications there is a clear separation between operations
performed by the client and operations performed by the server. Often the client
is focused on displaying data and accepting user input, while the server handles
the business logic and persistence of the data. Or in other cases the business logic
is also moved to the client while the server is confined to the data persistence.
In contrast both the client module and the server of the RTCS have to execute
similar operations on the data, e.g. applying changes to a document.
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This leads to the consideration of using a common programming language for both
the server and the client. Since the choice of client side programming languages is
limited to JavaScript there is no alternative than using JavaScript for the server
side as well. Using a common language allows to implement a shared library for
data manipulation to be used on client and server side. This has several benefits:

• Reduced implementation time. Implementing and reusing a single li-
brary saves a considerable amount of time. This applies not only to the
initial implementation but to every future addition of new features or bug
fixing.

• Identical handling of data. Since the sending and receiving side are
identical, the chance of having errors by differently handling the data sent
back and forth is reduced.

• Increased maintainability. When enhancing the application with new
features or when fixing errors in the application this only has to be done in
one single place. That reduces work on the one hand and on the other hand
prevents errors by modifying only one part of the communication structures.

Using JavaScript for the implementation of the RTCS server has also drawbacks,
namely the limitation of options for choosing a server run time (cf. Section 3.1.3).
Still the benefits outweigh this limitation, so JavaScript is selected as the pro-
gramming language for the RTCS server.

3.1.2 Client-Server Communication

The RTCS needs to notify connected clients about changes on documents or the
code system. Conventional HTTP requests are always initiated by the client, so
the server cannot independently send messages to a client, but only respond to
client requests. There exist solutions based on HTTP, namely HTTP long polling
and HTTP streaming (cf. Loreto, Saint-Andre, Salsano, & Wilkins, 2011), both
requiring “an abuse of HTTP to poll the server for updates” (Fette & Melnikov,
2011). HTTP long polling uses consecutive requests that wait for a delayed server
response or a request timeout, whatever may occur first. HTTP streaming also
starts with a request by the client while the server response is kept open so the
server can append data to the stream at any time.

“The WebSocket Protocol is designed to supersede existing bidirectional commu-
nication technologies that use HTTP as a transport layer” (Fette & Melnikov,
2011). In contrast to standard HTTP requests a single TCP connection is used
for full-duplex communication. This way the server saves resources by only main-
taining one instead of two or more TCP connections per client. Also the protocol
overhead when sending small messages is reduced as there is no HTTP header
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needed on every message like it would be the case with standard HTTP requests.
This helps on keeping the network latency and thereby the perceived response
time low for the user.

Within this project socket.io1 is used, an open-source JavaScript framework that
provides an abstraction layer on top of WebSockets. To have a concise wording in
the following sections, the data units sent from a RTCS client to a RTCS server
are called messages, while events denote data units sent from RTCS servers to
RTCS clients.

3.1.3 Server Runtime Environment

QDAcity is completely hosted on Google App Engine. To simplify monitoring
and administration of all application parts, i.e. to have a single place for logging
output and to manage all systems in a single dashboard, it’s sensible to have the
RTCS running in the Google Cloud Platform2.

First choice would be to also use Google App Engine. There are two different envi-
ronments, the Standard Environment and the Flexible Environment3. JavaScript
is not supported in the Standard Environment, so this is not an option. The
Flexible Environment does support JavaScript, but is also not usable for this
project, since it does not support WebSockets.

The more flexible but less managed alternative inside the Google Cloud Platform
is the Google Compute Engine4. Google’s Infrastructure as a Service component
provides the option to launch fully controllable virtual machines. As with the
Google App Engine Flexible Environment it is possible to launch multiple instances
of the same service and configure load balancing between those instances.

3.1.4 Handling of Shared Data

To support load-balancing at application level any shared data has to be handled
in particular. QDAcity application data should be kept in the existing backend
and only loaded for processing tasks and written back afterwards. Metadata that
is needed across RTCS instances for the purpose of synchronizing collaborators
and similar tasks is stored in an in-memory database.

1https://socket.io/
2https://cloud.google.com/
3https://cloud.google.com/appengine/docs/the-appengine-environments
4https://cloud.google.com/compute/
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Two options for in-memory databases are considered: Memcached5 and Redis6.
Memcached is provided by Google as part of the App Engine Standard Environ-
ment. Since the Standard Environment is not usable for the RTCS, there is no
advantage in using Memcached. The benefit of using Redis is that for socket.io
there is a Redis-adapter7 provided by the socket.io contributors. The adapter is
needed for socket.io to broadcast messages to distributed socket.io server nodes.
As there is no official Memcached adapter for socket.io, using Memcached would
cause additional implementation effort within the scope of this thesis. The small
advantage of Redis leads to the decision, to use this in-memory database not only
for socket.io but for other shared application data as well.

3.1.5 System Architecture

Summarizing the previously depicted decisions, an overview of the architecture of
the RTCS can be drawn. Figure 3.1 shows this overview with an emphasis on the
position of the RTCS in the existing QDAcity application. Before the introduction
of the RTCS the QDAcity frontend and backend communicated solely via the
Google Cloud Endpoints8. Data that does not need to be synchronized will further
on be transferred directly between the QDAcity frontend and backend. For data
that has to be synchronized the RTCS server will act as a proxy between the
two parties. As introduced in Section 3.1.2 the communication between QDAcity
frontend and RTCS server is bidirectional and has to be implemented as WebSocket
connection, while the RTCS uses the existing endpoints at the QDAcity backend.

Google CloudWeb Browser

QDAcity
Frontend

Google 
API 

Client

RTCS
Frontend

QDAcity
Backend

RTCS
Server

Google 
Cloud 
End-

points
Web-

Socket
Server

Google 
API 

Client

Figure 3.1: RTCS system architecture

5https://www.memcached.org/
6https://redis.io/
7https://github.com/socketio/socket.io-redis
8https://cloud.google.com/endpoints/
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3.2 Architecture Details

This section elaborates on some important details of the architecture. It starts
with a description of the authentication forwarding and its included backend
configuration functionality. The second part refines the requirements and the
design for two user interface elements that are introduced with the RTCS. In the
last part a protocol enhancement is explained that optimizes the perceived system
response time and therefore the usability of the application.

3.2.1 Authentication Forwarding and Backend Configura-
tion

As defined in FR-24 (cf. Section 2.1.6) only authorized users may be able to access
QDAcity backend endpoints. In the frontend, users authenticate via their Google
account. Since the RTCS server acts like a usual client towards the backend, it
also needs to provide authentication details. In order to ensure accountability
of the single changes on application data, the RTCS has to authenticate as the
respective user that initiated the change.

To achieve this the RTCS client sends the user’s QDAcity backend authorization
token to the RTCS server, which then instantiates a new Google API client on
behalf of the user. This way the QDAcity backend can attribute every request
sent via this API client instance to the corresponding user.

As further step, the RTCS client sends backend connection details to the RTCS
server that have been preconfigured in the QDAcity client. This allows the use of
a single RTCS server instance for multiple QDAcity application instances. This
primarily benefits the QDAcity development process where every contributor runs
his own free QDAcity instance (frontend and backend) on Google App Engine.
By configuring a central RTCS server the contributors do not have to create and
manage a separated charged Google Compute Engine instance to run a separate
RTCS server.

3.2.2 User Interface Elements

The synchronization of changes happens transparent to the user, so there are no
additional user interface elements needed for the synchronization of changes. But
the user needs to know if and which other users are concurrently working on the
same project in QDAcity. To achieve that, a user interface has to be designed.
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There will be two types of lists showing other collaborators. The first will be used
exactly once to list the users that are active on the same project and have the
QDAcity editor opened. The other list type will be instantiated per document and
show, which collaborators have that document selected in their QDAcity coding
editor.

If users open multiple instances of QDAcity, e.g. in different tabs or browsers,
they should appear only once in the project collaborator list, and once in the
collaborator list of every document, they have opened in any of their QDAcity
instance. This way other collaborators can see, which documents that user might
change actively.

3.2.3 Optimistic Execution

For the synchronization of changes a communication round-trip takes place, i.e. the
user input triggers a message to the RTCS server, where the change is processed,
resulting in the distribution of an event to all connected clients. It became apparent
that for adding and removing codings to or from documents this round-trip takes
substantially longer than the targeted 150 milliseconds. Even the upper limit
of 1 second could not be satisfied with round-trips taking about 1.5 seconds on
average. (Cf. NFR-7, NFR-8 in Section 2.2.2).

Since this duration is not acceptable from a usability perspective, additional
actions have to be taken. A more detailed examination of the time spent per
server-side task showed that most of the tasks cannot be accelerated without
upgrading the underlying (virtual) hardware. Most time is spent for read and
write requests to the Redis server and the QDAcity backend. Upgrading these
services is not an option because of unproportionally increased costs.

A simpler approach is optimistic execution. Instead of waiting for the synchro-
nization round-trip to complete, user actions are immediately applied to the
current document state. In normal operation, the states of the local document and
the server side document state are consistent after the round-trip has succeeded.
In case of an error during the synchronization, the change to the user’s local
document state is reverted to reach consistency of the document states of client
and server. This way the perceived response time can be minimized to several
milliseconds.
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3.3 Replacement of the Editor Component

Before this project, Squire9 was used as text editor library for QDAcity. While
analyzing the existing QDAcity application it became obvious that this text editor
is not suitable for the synchronization of changes via the RTCS. Main problem is
the complex access to the editor’s data and changes in both ways, i.e. it is hard
to retrieve distinct changes that have been performed, as well as to apply changes
to update the editor state. Since Squire also does not integrate with the React
framework very well, it has to be replaced by another editor library. The decision
process and the two considered alternatives, Draft.js10 and Slate11 are described
in this section.

The first replacement option for Squire is Draft.js, a very popular text editor
library for React, published by Facebook. After first attempts to configure the
editor, it turned out to be very inflexible. Draft.js defines a fixed set of inline
styles, that can be applied to the edited text, like italic, code or strike-through.
For the use in QDAcity it is essential to apply metadata to a range of text that
defines the existence of a coding and its details, e.g. unique id, color or author,
but that can not be realized with Draft.js. Further the library does not provide
a possibility to access the single changing actions executed on the document.
Because of these two disadvantages Draft.js cannot be used for QDAcity.

Slate is the other option for replacing Squire. It is less popular than Draft.js and
not supported by a big company like Facebook. Still the number of 145 contributors
and 6,911 stars on GitHub12 make Slate a viable option for QDAcity. The author
describes it as “completely customizable framework for building rich text editors.”
(Taylor, 2018). Since it is also designed to work with React and is more easily
adaptable to the needs of QDAcity, Slate is used as the application’s new text
editor component. The Slate data types and their structure are described hereafter.

Documents in QDAcity consist of paragraphs that contain only characters, but
no further sub elements like lists, tables, images, etc. Characters can be formatted
with the basic styles bold, italic, underline and can have a specific font size and
font family. Slate supports more complex documents but since the complexity
is not needed for the QDAcity editor, the following description covers only the
objects and properties used in this project.

9http://neilj.github.io/Squire/
10https://draftjs.org/
11https://docs.slatejs.org/
12https://github.com/ianstormtaylor/slate (Accessed on 2018-03-24)
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Most Slate object types are based on types of Facebook’s library Immutable13,
i.e. every modifying method being called on an immutable object returns another
immutable copy of the previous object with the applied modifications. Top-level
objects that represent the Slate editor state as a whole are of type Value. A Value

contains a Document object and the current text selection as object of type Range.
A Document is hierarchically composed of sub elements to represent the document
that is loaded into the editor. It contains a list of Block objects, which correspond
to a document’s paragraphs. Each Block consists of one or more Text objects.
Each Text again has a list of Character objects with each Character optionally
having one or more Mark objects attached.

Mark objects are distinguished by their type property and are used to represent
the basic styles mentioned above. E.g. when a user selects a word and sets it
to bold, each Character object in the selection gets a mark with type='bold'

attached. A Mark can store arbitrary metadata, so this type of objects will also
be used to attach font size and font family information to a text ranges. The
most essential information that must be stored in QDAcity documents are codings
attached to ranges of characters. With Mark objects any number of different
codings can be attached to each character of the document.

Other relevant Slate object types are Range, Change and Operation. The Range

type is used to describe a range of characters in the document, e.g. the user’s
current text selection as described above. A Change is Slate’s representation for a
set of modifications based on a specific Value. After getting a new Change object
from an immutable Value, actions like insertTextAtRange(Range, string),
removeMarkAtRange(Range, Mark) or selectAll() can be applied to the
Change. Change objects are the only Slate type that are mutable, i.e. execut-
ing any actions like the ones mentioned above alters the Change object directly.
In the end a new immutable Value can be obtained from the Change object and
be applied to the editor. Operation objects represent a single change in the Slate
environment, like the addition of a mark to a range or the insertion of a single
character. They are mainly used internally in the Slate library but may also
be created and read from outside. For that purposes the Change type offers the
method applyOperation(Operation) and the property operations.

13https://facebook.github.io/immutable-js/
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4 Implementation

This chapter describes the implementation of the most important classes and
components of the RTCS, starting with the client side parts, followed by the
server side. The last section describes the shared library that is used on both the
client and server side.

4.1 RTCS Client

In this section the client side components are described. First an outline of the
SyncService class is given, followed by a distinction of the UI components that
display the collaborators per project or document. In the end an overview of the
React components, that had to be adapted during the implementation of the
RTCS client, is given.

4.1.1 SyncService Class

The main entry point to the RTCS client module is a class called SyncService. As
the WebSocket communication is bidirectional, also the communication between
the RTCS module and the other frontend components has to be bidirectional.
Messages from other components to the RTCS module are sent by calling methods
of the SyncService. To receive data in the other direction, frontend components
can listen to events being fired by the SyncService.

When a user triggers an action that has to be synchronized, the processing React
component calls a method on the SyncService which sends the corresponding
message to the RTCS server. Optional acknowledgments to the message are then
returned to the calling React component. When an event is received by the RTCS
server, the SyncService calls all event listeners that were registered by calling
on(String, Function) on the SyncService.
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The SyncService class has two sub components, each handling the communication
for a single logical group of changes. The CodesService handles messages and
events regarding changes on codes, while the DocumentService handles the com-
munication about adding and removing codings to or from documents. Messages
and events regarding updates of user data is handled directly by the SyncService,
since these data are strongly connected to the lifetime of the WebSocket connec-
tion, e.g. the data has to be sent as soon as possible but not before the WebSocket
connection has been established or when the connection has been reestablished
after a connection abort. Table 4.1 gives an overview of all messages and events
and the handling classes on both client and server side. The corresponding server
side classes are described in Section 4.2.

Message Event Client Class Server Class

user.update user.updated SyncService Socket

code.insert code.inserted CodesService CodesHandler

code.relocate code.relocated CodesService CodesHandler

code.remove code.removed CodesService CodesHandler

code.update code.updated CodesService CodesHandler

coding.add coding.added DocumentService DocumentHandler

coding.remove coding.removed DocumentService DocumentHandler

Table 4.1: Messages and events used in the RTCS

When the user enters the coding editor of the QDAcity application the
SyncService is initialized, connects to the RTCS server and starts to listen
for incoming events. As soon as the user leaves the coding editor or the whole
QDAcity application the WebSocket connection is closed.

4.1.2 Collaborator Lists

There are two React components to display collaborator lists in the user interface
of the QDAcity coding editor. The CollaboratorList component renders the list
of collaborators on the same project, while the CollaboratorBubbles component
is used to list the collaborators that have a specific document opened. Both
components are quite similar but differ in small details. They share the general
design of small circles containing the profile picture of the respective user, with
an appended white area for the user’s full name that is shown when the interface
is hovered.
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Figure 4.1: Screenshot of the CollaboratorList, on the left in normal state, on
the right while hovering with the mouse.

The CollaboratorList component (cf. Figure 4.1) is adjusted to utilize the space
of the sidebar’s project panel, showing all user circles aligned in rows. When
hovering the rows, the CollaboratorList transforms into a vertical one-column
list showing all users and their full names.

Figure 4.2: Screenshot of the CollaboratorBubbles, on the left in normal state,
on the right while hovering with the mouse.

The CollaboratorBubbles component (cf. Figure 4.2) in contrast has a more
condensed style with slightly overlapping horizontally aligned circles, to occupy
as few space of the document title area as possible. It only shows the first three
users on the document on first sight. If there are more than three users actively
working on the document, the first two are displayed directly with the third circle
displaying the remaining count of document collaborators. When hovering the
circles, they transform into a vertical list, showing all users for that document
and their full names.
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4.1.3 Adapted React Components

Some of the already existing React components have to be adapted during the
implementation of the RTCS. In particular the CodingEditor and DocumentsView

experience some changes while the TextEditor is completely rewritten. To use
the CodingBrackets component further on, a wrapper component is introduced
to convert the data.

CodingEditor Class

Since the coding editor delimits the scope of components that might connect
to the SyncService and thereby the RTCS, some managing tasks are added
to the responsibility of the CodingEditor component. It initializes the single
SyncService instance that is used in all child components and sends updates
about the basic user data to the SyncService.

DocumentsView Class

Before the introduction of the RTCS the DocumentsView was responsible for
sending changed documents to the backend when a coding was applied or removed.
This functionality has to be adapted, so the information about the actions of
applying and removing is sent to the RTCS server instead.

When applying a coding, the DocumentsView computes the necessary Slate
Operation, applies it to the local document state and passes the same Operation

to the RTCS. In the RTCS server that Operation is also applied to the server’s
document copy and on success distributed to all other clients in the same project.
If the application of the Operation fails in the server, the server sends an error
back to the initiating client. The DocumentsView then does a rollback, removing
the optimistically applied coding and notifies the user that the coding could not
be applied due to a server error.

When removing a coding from the document the tasks performed in the
DocumentsView are similar, with a small difference. The Slate Operation ob-
jects are also computed for optimistic local application, but instead of those
objects, information about the code to be removed and the Range where to re-
move the code is sent to the RTCS. This raw information is needed, because the
RTCS server also takes care of coding splitting, i.e. the assignment of new coding
IDs, if a coding is split into two parts by removing the coding form a sub-range
in the middle of the coding.
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Codesystem Class

Similar to the DocumentsView for coding changes, the Codesystem component
manages the backend communication for changes regarding codes. With the
introduction of the RTCS the Codesystem is adapted to call methods of the
SyncService instead of the Google API client.

Possible user actions that will be synchronized are adding and removing a code,
relocating a code in the code system hierarchy and updating a code’s properties.
The synchronization round-trip for these tasks is much faster and therefore no
optimistic execution is needed. The Codesystem component is also responsible
for accepting events coming in from the RTCS and applying them to the local
code system state.

TextEditor Class

The TextEditor class has to be completely rewritten, since the existing version was
designed to work with the previously used Squire editor. The new implementation
acts as a wrapper around the Slate Editor component of the slate-react

module1. It manages the Slate Value used by the Editor component, handling
updates from the Editor and actions triggered via the editor toolbar. Furthermore
it provides rendering methods for Block and Mark objects. Facing the other React
components of QDAcity, the new TextEditor offers the same methods as its
previous version. To be able to keep the existing CodingBrackets component,
the wrapper component SlateCodingBracketAdapter is introduced. Its purpose
is to transform the data from the Slate Value of the TextEditor into the format
required by the CodingBrackets component.

4.2 RTCS Server

The server-side component of the RTCS is a completely new software, without
existing code to build upon. The following sections describe its most important
parts and their purpose. They are grouped into three parts: The first group consists
of application parts involved in the initialization of the server node. Helper classes
form the second group and the third group contains classes that are responsible
for the processing of synchronization messages.

1https://www.npmjs.com/package/slate-react
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4.2.1 Server Initialization

The RTCS server’s entry point is a file named server.js. On startup it loads
the configuration and initializes all other modules. First it creates a new express2

application and a new socket.io instance. The express application is used as
HTTP server and will forward requests to the /socket.io/ route to the socket.io
instance.

Next step is the Redis initialization which is bundled in the redis.js file. Three
Redis connections are established. The socket.io instance requires two connections
to communicate with socket.io instances on other RTCS server nodes via Redis
Pub/Sub3. The third connection is used to store and retrieve RTCS application
data. Further a keep-alive mechanism is initialized to clean up Redis data. Every
server node periodically sends a keep-alive message by updating a unique Redis
entry identifying that node. If the server node fails to update the entry because it
lost the connection to Redis or completely broke down, the entry expires and is
processed in the next cleanup. All server nodes periodically perform such a cleanup,
i.e. they search for application data that was written by a failed server node and
delete that data entry.

The last step in server startup is the initialization of the sync service module. The
only task performed here is to attach a listener to the socket.io instance that binds
incoming WebSocket connections to a new instance of the RTCS Socket class.
More details about the Socket class and its periphery are given in Section 4.2.3.

4.2.2 Helper Classes

This section describes the most important helper classes, that support the syn-
chronization process on the RTCS server.

Endpoint Class

For the communication to the QDAcity backend the Endpoint class provides two
methods: updateParameters(String, String, String) is used by the Socket

class to configure a distinct backend connection for each connected client. The three
parameters (API URL, API version, authorization token) are defined by the RTCS
client, so the connection can be established on behalf of the respective user (cf. Sec-
tion 3.2.1). To send a request to the backend the request(String, Object)

method can be used. It requires an endpoint name as first and the payload as
second parameter. An important feature of the Endpoint is request queuing. Since

2https://expressjs.com/
3https://redis.io/topics/pubsub
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the backend connection is not configured until the user authorization has been
completed in the frontend, it might occur that the request(String, Object)

method is called before the connection configuration is completed. In this case the
request is added to a queue and processed as soon as the connection is configured.

DocumentLock Class

Originally the synchronization of concurrent changes was planned to be imple-
mented with use of the differential synchronization algorithm (cf. Section 1.3.4).
This could not be implemented for time reasons. Instead a simpler locking ap-
proach is implemented in the DocumentLock class. Locks are set as data entries
in Redis, utilizing two optional parameters on the Redis SET command that save
a lot of implementation effort for the RTCS. If the parameter flag NX is set, the
SET command only writes the data entry, if no data entry with the same key exists.
This way it is ensured, that an already acquired lock can not be acquired a second
time. The other helpful parameter is PX <milliseconds> that sets a time-to-live
on the data entry, so a lock is released after a defined amount of time at the
latest. A DocumentLock is instantiated for a specific document, whereas multiple
instances may work on the same document. It provides methods for acquiring,
refreshing and releasing a lock.

DocumentCache Class

To speed up the synchronization of documents and avoid unnecessary backend
requests, a DocumentCache class is introduced. It provides methods to store and
retrieve JSON representations of documents in or from Redis.

Logger Class

The Logger class provides an abstraction for logging. Instead of only writing to
standard output stream via the global JavaScript console object, the Logger

uses the winston4 library. Winston provides the possibility to define multiple log
targets. In case of the RTCS, logs are written to the standard output stream,
which are redirected to local files, and Google Stackdriver5. The latter is chosen to
have a single location for all logs regarding QDAcity, since the QDAcity backend
log messages are also sent to Stackdriver.

4https://github.com/winstonjs/winston
5https://cloud.google.com/stackdriver/
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4.2.3 Server-Side Synchronization Classes

The RTCS server’s main task of synchronizing changes is performed by the Socket
class and its two sub components CodesHandler and DocumentHandler. These
classes are described in this section.

Socket Class

The Socket class is the server-side counterpart to the RTCS client’s SyncService.
It manages a single client connection, processes incoming messages of that con-
nected client and emits events to the connected and all other clients. Like the
SyncService, the Socket has also sub classes to handle specific sets of messages.
Code changes are handled by the CodesHandler class while the DocumentHandler
handles the application and removal of codings to or from documents. Updates of
user data are handled by the Socket instance directly.

CodesHandler Class

The processing of code changes does not require additional tasks, therefore the
CodesHandler is very simple. Incoming messages are translated to the correspond-
ing backend request and executed via a call to the request(String, Object)

method of the Endpoint class. If the request is successful, the response is emitted
to all clients on the same QDAcity project. If the request fails, the backend
response is forward to the client that caused the request.

DocumentHandler Class

The implementation of the DocumentHandler is more complex because conflicting
changes on documents are much more probable than on the code system. When
a message from a client is received, the first step is to acquire a lock on that
document. This is retried every 100 milliseconds for up to 5 seconds, in case the
lock is already set. If the lock cannot be acquired in 5 seconds at maximum, a
failure messages is sent back to the initiating client. After successfully acquiring
the lock, an attempt is made to read the document from the document cache,
falling back to a backend request, if no cache entry was found. If the document
has been loaded from the backend, it has to be deserialized from an HTML string
to a Slate value.

The document is then altered according to the message type and data received by
the client. When adding a coding, the Slate operations are applied directly to the
document. The removal of a coding requires an additional check, if the removal
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leads to a coding split, i.e. removing the coding from the given range results in
a total of two ranges (one before, one behind the given range) with the same
coding and the same unique coding ID. In that case a new unique ID has to be
assigned to the latter of the two ranges. The operations for removing the coding
and, if needed, assigning a new ID to the remaining coding, are then applied to
the document.

If the document change was performed without failures, the Slate value is serialized
back to HTML. The document including the deserialized Slate value is sent to the
document cache and a copy of the document without the Slate value is uploaded
to the backend. The lock on the document is released and the applied operations
are distributed to all clients on the same project. If any error occurred while
processing the message, an error is sent back to the initiating client.

4.3 Shared Library

The choice of a single programming language for both client and server leads to
the advantage that a shared library can be implemented with code that is required
on both the client and the server. It turned out to be not as much shared code
as expected, but there are still two essential parts that are implemented in the
shared library. For both parts it is very important, that the functionality works
identical on client and server.

One part is the SlateUtils.js file, a library of pure functions
that operate on Slate objects. It provides convenience functions like
findCodingStart(String, Immutable.List) to search a list of characters for
the first occurrence of a specific coding identified by its ID string. The library also
contains essential functions like deserialize(String) and serialize(Value)

to convert HTML strings to Slate Value objects and vice versa.

The other part is the constants.js file, that contains constant definitions for the
message and event types. For each action that can be performed collaboratively in
QDAcity a message and an event are defined pairwise: The message is sent from
the executing client to the RTCS server. After all necessary server side actions are
performed, the server emits the matching event to all clients in the same QDAcity
project. All clients, including the initiating client, then apply the action to their
local application state. An exemplary pair would be the code.insert message
and the code.inserted event, that is sent or emitted when a user adds a new
code to the project’s code system. A full list of messages and events can be found
in Table 4.1.
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5 Evaluation

This chapter reviews the requirements from Chapter 2 and compares them to
the implementation described in Chapter 4. It is grouped by functional and
non-functional requirements.

5.1 Functional Requirements

In this section the functional requirements are evaluated. These requirements
target the synchronization of codings, codes, collaborators, text changes, text
selections and the authentication and authorization of users.

5.1.1 Synchronization of Codings

Being the central functionality of QDAcity, the synchronization of codings was also
the most important requirement. As defined in FR-1 to FR-4 (cf. Section 2.1.1),
when adding or removing a coding, the change should be persisted in the QDAcity
backend and distributed to all collaborating users.

With the RTCS, both adding and removing codings to and from QDAcity text
documents are now synchronized within a narrow time frame to all collaborators
that concurrently view the same project as the acting user. As it already was
the case before this project, both types of changes are persisted in the QDAcity
backend data store. Difference is, that now the QDAcity frontend application does
not directly communicate to the QDAcity backend in order to achieve this, but
the persisting backend API call is performed by the RTCS server. Even though
the synchronization does not work as fast as anticipated, it is adequately usable.
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5.1.2 Synchronization of Codes

The next group of requirements approaches the synchronization of codes. All
actions regarding codes have been considered, adding and removing a code as well
as any modifying action regarding codes. All these actions had to be persisted in the
backend and synchronized to all collaborators (cf. FR-5 to FR-10 in Section 2.1.2).

The adding and removing of codes to and from the code system are synchronized
and persisted by the CodesHandler module that has been implemented within
the scope of this thesis. The same applies to the actions of relocating a code and
changing its properties like name, color and author. Because of time reasons the
synchronization of the remaining modifying actions could not be implemented.
These include changing a code’s code book entry, as well as adding, changing and
removing the relation between two codes. These features can still be used and
any changes are persisted via a direct call to the QDAcity backend as it was the
case before this thesis.

5.1.3 Synchronization of Collaborators

Within this thesis only few user interface elements had to be implemented. As
defined in FR-11 to FR-15 (cf. Section 2.1.3) users should be able to see if and
which other users are actively working on the same project or document.

The project panel of the QDAcity coding editor has been augmented by a col-
laborator list, that shows the number of collaborators and the profile picture
of each collaborator. When hovering the list, additionally the full names of the
collaborators are shown. Accordingly a list of users that are active on a specific
document is shown at the corresponding document’s entry in the document list.
Users are added to all collaborators’ user lists, as soon as they enter the coding
editor. When they leave the coding editor or the whole application, they are
removed from all collaborating users’ lists. With these two interface elements, the
defined requirements have been fulfilled, as users can always see which other users
are active on the same project and document.
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5.1.4 Synchronization of Text Changes and Selections

The requirements for synchronizing text changes are defined in FR-16 to FR-21
of Section 2.1.4. They include changes on the content, i.e. adding and removing
characters, and changing their styling, i.e. marking characters bold or italic. FR-22
and FR-23 define requirements for the synchronization of the users’ text selections.

These requirements are defined as optional, since text editing is not a common task
inside the QDAcity application and the absence of the selection synchronization
does not limit the tasks that can be achieved with QDAcity.

The implementation of the synchronization of text changes and text selections
has been left out, since the extent of these features would have gone beyond the
constraints of this thesis. Still the current version of the RTCS provides a solid
foundation to synchronize text changes and selections in the future.

5.1.5 Authentication and Authorization

One functional requirement regarding authentication and authorization has been
defined in FR-24 (cf. Section 2.1.6). It states that only authenticated users may
be able to apply changes to a document.

The existing frontend and backend of QDAcity already implement authentica-
tion and authorization. Users can only enter the QDAcity frontend after they
authenticated using their Google account. The backend endpoints are secured and
can only be accessed if an authentication token is provided in the request. The
authorization of the authenticated user is checked within the backend endpoint
methods.

The authentication forwarding of the RTCS (cf. Section 3.2.1) ensures that requests
to the backend are always performed with the authorization level of the initiating
user. The authentication token, that is received by the RTCS client and forwarded
to the QDAcity backend, certifies the authentication and the authorization of the
user at the same time.
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5.2 Non-Functional Requirements

The evaluation of non-functional requirements is performed in this section. Non-
functional requirements are grouped in technological and user interface require-
ments.

5.2.1 Technological Requirements

Section 2.2.1 defines four requirements of technological nature (NFR-1 to NFR-4).

In NFR-1 a client-server architecture is required for the RTCS. The RTCS has
been designed as a client-server application as described in Chapter 3 and therefore
this requirement is satisfied.

NFR-2 requires the inclusion of the RTCS client into the existing QDAcity frontend.
As shown in Section 3.1.5 this is fulfilled, since the RTCS client is a module inside
the QDAcity frontend.

The RTCS has to be manageable via the Google Cloud Console (cf. NFR-3).
The Google Compute Engine has been selected as runtime for the RTCS server
(cf. Section 3.1.3) and like all Google Compute Engine instances, the RTCS server
is also manageable via the Google Cloud Console.

As last technological requirement, the RTCS should be designed for operation
in a distributed way on multiple instances. The choice of the Google Compute
Engine ensures that multiple RTCS instances can be grouped behind a load
balancer. Further all application data of the RTCS that is relevant across the
whole application and not only to a single instance is stored inside the Redis
in-memory database. With these two aspects, NFR-4 has been fulfilled.

5.2.2 User Interface Requirements

For the user interface and user experience regarding RTCS features, the require-
ments NFR-5 to NFR-8 have been defined in Section 2.2.2.

The first of these four requirements states that the RTCS should be able to
continue operation if the synchronization of a single change has failed. All failures
that can occur while synchronizing a change are handled within the RTCS server
or client. Still possible are errors caused by a complete node outage or software
errors outside the RTCS application.

According to NFR-6 the synchronization of changes should be transparent to the
user. This has been achieved partially, since no additional action is required from
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the user to enable or perform synchronization. The interface elements that are
used to trigger an action are placed at the same location and work the same as
before. Transparency breaks if errors occur, since the RTCS has to inform the
user that a synchronization task failed and therefore the intended change could
not be applied to the server nor the local version.

Requirements NFR-7 and NFR-8 define two limits for the time that may pass
while changes are synchronized via the RTCS. The optimum is at 150 milliseconds
(cf. NFR-7) and the upper limit is at 1 second (cf. NFR-8). Both limits could not
be observed and the optimization would have exceeded the scope of this thesis. At
least the perceived synchronization time could be reduced to several milliseconds
by performing optimistic execution (cf. Section 3.2.3), so the application is already
usable without interruptions.
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6 Conclusion

Motivation for this thesis was the need for a software tool to support real-time
collaboration in qualitative data analysis. QDAcity provides a solid base for
comprehensive software support in qualitative data analysis. By introducing the
real-time collaboration service implemented in this thesis, QDAcity could be
augmented with real-time collaboration capabilities.

This thesis started with the description of the problem, especially the possible
conflicts when editing data concurrently. Different algorithms were then discussed
that address the avoidance or resolution of conflicts. The functional and non-
functional requirements for the real-time collaboration service have been defined
within this thesis and were used as foundation to develop an architecture for the
resulting software. In the implementation many features could be realized, first of
all the base functionalities to provide support for synchronizing different kinds of
data across the QDAcity application. On top of this basis the synchronization of
codes and codings has been implemented, as well as the synchronization of active
collaborators.

Some aspects have not been accomplished in their entirety (cf. Chapter 5) but still
the RTCS lays a solid foundation to build upon and further improve the real-time
collaboration in QDAcity. Researchers can use QDAcity already today to work
concurrently on the coding of documents. This reduces the need of communication
and coordination outside of QDAcity and is a great benefit that supports real-time
collaboration in qualitative data analysis.
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