
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

MATHIAS HANSEN
MASTER THESIS

AN ACCOUNTING TOOL FOR
INNER SOURCE CONTRIBUTIONS

Submitted on March 19, 2018

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Munich, March 19, 2018

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Inner source (IS) is the application of Open Source principles to projects within
organizational boundaries. Typically, this means that the artifacts and work
items of inner source projects (ISPs) are accessible to everyone within the or-
ganization and cross-functional collaboration is encouraged. The Collaboration
Management Suite (CMSuite) developed by the Open Source Research Group
at the Friedrich-Alexander University Erlangen-Nürnberg supports the analysis
and visualization of such collaborations. CMSuite lacks features to account for
contributions to ISPs. To draw conclusions, a database engineer has to define
complex series of SQL queries or rely on simple, singular value metrics. This the-
sis elaborates a REST-based architecture that can be used to retrieve accounting
related data in the form of a timeline using Apache Lens and Java. The data sets
are visualized in an Angular 2+ frontend where the user can navigate and filter
them. Based on this visualization, a non-technical user is able to explore the
historic data of ISPs without needing to understand the underlying data schema
and without needing to define database queries. As a result, the added function-
ality will not only save time but also make the CMSuite accessible to a wider
user group.

ii

Contents

1 Accounting for inner source contributions 1
1.1 Previous work . 1

1.1.1 REA model for accounting systems 1
1.1.2 Financial management using CMSuite 3

1.2 Purpose . 4
1.3 Requirements . 4

1.3.1 Stakeholders . 4
1.3.2 Functional requirements 5
1.3.3 Non-functional requirements 6
1.3.4 Evaluation scheme . 7

2 Architecture and design 8
2.1 Design alternatives . 8

2.1.1 Native SQL or HQL . 9
2.1.2 Reuse Pentaho Data Integration 10
2.1.3 OLAP approach . 10

2.2 Apache Lens . 12

3 Implementation 16
3.1 Database . 18

3.1.1 Denormalization . 20
3.1.2 Apache Lens OLAP cubes 25

3.2 REST services . 35
3.2.1 Data serialization . 35
3.2.2 Endpoints . 40

3.3 Angular frontend . 43
3.4 Deployment and testing . 45

4 Evaluation 46

5 Future work 50

Appendices 52

iii

References 58

iv

Introduction

Inner Source (IS) is the use of open source software development practices and
the establishment of an open source-like culture within organizations (Capraro
& Riehle, 2017). With IS becoming increasingly popular, further research is
required, as noted by Riehle, Capraro, Kips, and Horn (2016). To analyze
IS collaborations within organizations the Open Source Research Group at the
Friedrich-Alexander University Erlangen-Nürnberg is developing the Collabora-
tion Management Suite (CMSuite). The basis for the analysis is information
extracted from source code repositories like Git. A crawler component is extract-
ing metadata (such as author, date etc.) and storing it in a database together
with organization context (for example, the functional structure of the organiza-
tion). Additionally, metrics for the evaluation of the collected data can be defined
and displayed.

The previous work on CMSuite focused on data extraction from repositories and
the database design. It is currently not possible to explore the data collected
without running SQL queries. The use of SQL as the sole means of access limits
the user group to software and database developers. The objective of this thesis
is to enable user groups without technical knowledge to explore CMSuite data,
and thereby allow them to see and account for contributions from organizational
units or individuals. For example, a project manager should be able to view
a timeline of code contributions from the developers who fall under his or her
responsibility.

The contributions of this thesis are:

• Service components for displaying, navigating and exploring inner source
contributions.

• Client components for showing contribution journals of individuals, inner
source projects and org. elements.

• Client-side filtering and navigating of the different journals and visualiza-
tion of contributor/receiver relationships.

• A demo dataset “SampleCorp”, containing organizational units and individ-
uals with descriptive names and two org. dimensions.

• Unit/Karma-Tests.

• A Docker development environment.

v

This document is structured as follows. Chapter 1 provides an overview of finan-
cial and management accounting. It also elaborates whether and how accounting
principles can be applied to inner source accounting. Chapter 2 discusses design
alternatives and highlights the architecture of the proposed solution. Chapter 3
covers and relevant implementation details and discusses identified issues and so-
lutions. Chapter 4 concludes with an evaluation. Finally, areas of further work
are suggested in chapter 5.

vi

1 Accounting for inner source con-
tributions

CMSuite provides data to analyze code contributions within an organization. It
extracts this information from source code repositories using a crawler mecha-
nism. The crawler works in similar way to a website search engine index. As
modern version control systems store metadata (such as the author’s name and
email address), this information can be used to link authors to their superior
units within the organization. The author’s email address as well as the affected
software repository can be used to connect both to their respective organiza-
tional units. Now that the author (source) and the receiving project (sink) of a
code contribution are identified, this information can be used to account for their
activity over time.

1.1 Previous work

The following section provides an overview of the CMSuite database schema, and
discusses inner source accounting in relation to the needs of financial management
within organizations.

1.1.1 REA model for accounting systems

The Resources, Events, Agents (REA) model by McCarthy (1982) is a generalized
accounting model, dropping double-entry bookkeeping paradigms on a database
level. Double-entry bookkeeping is based on the idea of reducing and revealing
errors during times when bookkeeping was based on paper-based ledgers. Modern
database supported accounting no longer requires such means for error detection
since account balances can be calculated when required.

Using generalization, McCarthy shows that accounting software can be modeled

1

Figure 1.1: REA accounting model by McCarthy (1982, p. 564)

using just four different entity types. See figure 1.1. The Duality Principle1 as the
basis for double-entry bookkeeping is evident. In database systems, McCarthy
states it is sufficient to store the absolute2 amount exactly once - as part of the
economic event which induced the value change (i.e. a sale transaction). In
CMSuite a code contribution represents a transaction between an individual and
an inner source project. As a contribution does not directly carry a value amount,
another means of quantification has to be used. Quantification and organizational
aspects of inner source are subject to further research, as noted by Capraro and
Riehle (2017) and are not in the scope of this thesis.

Parts of the CMSuite database schema are designed with the REA model in mind.
The entities relevant to this thesis are:

• The contributions events log, storing the metadata of a contribution event
(timestamp, receiver, contributor, etc.).

• The receiving inner source project (ISP) (sink).

• The contributing individual (source).

• The organizational hierarchy, defining the superior/subordinate reporting
relationships between organizational units, ISPs and individuals.

1Duality Principle: each transaction must involve exactly two accounts, classified as either
debit or credit. An increment on one side leads to a decrement of the same amount on the
other side.)

2Whether the amount is an increase or decrease depends on the viewer’s perspective.

2

Within CMSuite the organizational hierarchy is logically segregated into different
perspectives, called organizational dimensions. An organization can be logically
structured in different ways at the same time, i.e. grouped by functional respon-
sibilities (marketing, sales, etc.); by product lines (product A, product B, . . .);
by project teams; by geographical location and so on.

While the CMSuite database has been designed following the REA principles,
CMSuite itself made no use of it. Section 3.2.1 (p. 35) and section 3.3 (p. 43)
describe how the proposed solution takes advantage of the generalizations the
REA model provides.

1.1.2 Financial management using CMSuite

Financial management distinguishes between three forms of accounting, namely
Tax Accounting, Financial Accounting and Managerial Accounting. While the
first two are dealing mostly with costs, the latter supports planning and decision
making based on reporting and analytics. The CMSuite project is designed to
support decision making and therefore focuses on the Managerial Accounting
side.

Strategic decisions, however, are often based on reports that rely on financial in-
formation. Accounting, in general, has created various visualizations and reports
to aid not only bookkeeping but also to present statistics. Because the underly-
ing REA model originates in the accounting domain, some of these visualizations
might apply to CMSuite. The proposed solution is showing contribution events
in form of a "journal". The term was chosen deliberately as its original semantics
from the bookkeeping domain can be transferred to inner source accounting.

In accounting and bookkeeping, a journal is a record of financial trans-
actions in order by date. A journal is often defined as the book of
original entry.

(Harold Averkamp, 2017)

It is important to note that CMSuite cannot provide any form of financial ac-
counting. Financial accounting is based on a number of generally accepted princi-
ples. Most import the Monetary Unit Assumption. The assumption reads ‘finan-
cial accounting should record only those business events/transactions which are
expressed in money terms‘ (Jain & Khan, 2009, section 2.33) and further states
that ‘transactions which cannot be quantified in financial terms, irrespective of
their importance, are outside the scope of accounting records‘. A (source code)
contribution within inner source requires a certain amount of effort 3. However, it

3Expenses incurred and resources spent creating the contribution.

3

is difficult to estimate the effort spent writing source code solely based on repos-
itory metadata. While many organizations track and assign time budgets on a
project or even work item level, the results are not accurate. Even when tracked
at this level, efforts cannot be compared for a multitude of reasons, among them
different skill levels or varying complexity.

It is likely, however, that comparing and monitoring cross-functional collabora-
tion will become increasingly relevant, i.e. for resource planning. For example,
development teams who contribute to an ISP belonging to a different functional
unit could be compensated with increased budget and resources. Other units
which profit from outside contributions but do not contribute themselves could
face adjustments in the opposite direction. Even when management decides not
to take action based on finances or costs, it is reasonable to monitor ‘debt‘ and
‘credit‘ of the involved organizational units in terms of resource consumption.

1.2 Purpose

Before this thesis, a software developer had to write SQL queries in PostgreSQL
dialect to extract results from the CMSuite database. After writing and running
a query, the results had to be exported as comma-separated values (CSV) before
being post-processed using spreadsheets. Visualizations had to be configured
manually.

This thesis extends CMSuite with components to directly visualize contribution
journals. Different journals exist for inner source project, individuals, and org.
elements. The journals are designed to be used by managers and other IS stake-
holders to gain insights about the flow of contributions within their organization.

1.3 Requirements

1.3.1 Stakeholders

The stakeholders for the accountancy module are:

• An Inner Source Stakeholder, interested in gaining insights about ISPs
within an organization.

• A Developer, creating and improving CMSuite features.

• An Administrator or DevOps engineer, deploying the different CMSuite
component to staging/production environments.

4

• A Database Engineer, adapting the database to fit requirements and ex-
tracting information in the form of metrics and aggregations.

Different types of inner source stakeholders exist, such as contributors, com-
mitters and so on. These are relevant to understand inner source holistically.
However, for the scope of this thesis, the differentiation is not important. The
accountancy module is designed to provide analytical insights relevant to all inner
source stakeholders.

1.3.2 Functional requirements

Multiple workshops and discussions based on user interface mock-ups (see ap-
pendix A, figure 1) lead to the definition of relevant user stories for inner source
accounting.

The stories are grouped into two different feature clusters:

• Navigation within the organizational hierarchy and between the different
journals.

• Exploration of accounting data (journal) of the different organizational el-
ements.

In the following section, the identified requirements are listed, grouped by the
aforementioned feature clusters. Their acceptance criteria are omitted here and
instead will be elaborated as part of the conclusion.

Organizational hierachy view

Q.1 As a user, I want to select which organizational dimension is the context for
my analysis, so that I can navigate the logical hierarchy of the organization
and select a specific element.

Contribution journals

R.1 As a user, I want to see a journal of received and provided contributions of
the selected org. element and its children elements. The journal consists
of a table containing the following columns: date, project agent, receiver
agent (org. element), number of contributions and direction (see R.4). The
selection within the organizational hierarchy view defines the receiving/-
contributing org. elements I am interested in so that I get an overview of
the contributions received (and provided) by the selected org. element.

5

R.2 As a user, I want to be able to select the time range to display events for
and to be able to aggregate the journal of contribution by time, so that I
can choose the time range and granularity for the events I am interested in.

R.3 As a user, I want to aggregate the journal of contributions by date and filter
by direction, so that I select the time granularity I’m interested in and also
whether I want cross-boundary contributions to be included or not.

R.4 As a user, I want to see whether contributions cross the boundaries of the
selected org. element4 or not, so that I can quickly identify them.

R.5 As a user, I want to select the hierarchy level to be shown for the receiver
and the contributor, so that I can choose the level of detail of the involved
org. elements.

R.6 As a user, I want to filter whether shown contributions crossed boundaries
of the selected org. element or not, so that I can quickly identify them.

R.7 As a user, I want to see whether a contribution went to a parent (ancestor)
of the selected org. element, so that I can quickly identify them.

R.8 As a user, I want to aggregate the contributor in a fish-eye fashion (those
closer to me with more detail), so that I see org. elements I am familiar
with in greater detail than unfamiliar ones.

1.3.3 Non-functional requirements

P.1 CMSuite is primarily a technology demonstrator, so the proposed solution
does not have to be ‘production-ready‘. For example, usability concerns are
not a priority for either the development process or the end-user experience,
as long as any proposal for enhancement outlines how they can be resolved
with reasonable effort.

P.2 Alterations to the current data schema should be avoided. Existing tables
and column definitions should remain unchanged whenever possible while
the definition of additional tables. columns and views is permitted.

P.3 The response time of the accounting module a should stay within one to
five seconds.

P.4 The exploration of the historical data should be possible without database
or SQL knowledge.

P.5 The analytics component should not be written from scratch. Instead,
existing solutions with a permissive license like the MIT or Apache license

4Also referred to as the direction of a contribution.

6

should be used wherever possible and reasonable.

1.3.4 Evaluation scheme

The mentioned requirements are evaluated using the following principles.

• A user story is considered to be fully implemented when the acceptance
criteria are met (listed as part of the conclusion).

• The total number of the implemented user stories are put into relation of
the total number of stories collected (realization rate).

7

2 Architecture and design

Prior to this thesis, the CMSuite project consisted of a database schema designed
to hold historical data extracted from version control systems using a crawler
mechanism. Additionally, it was possible to define metrics (singular value results
and tuple based time series) using Pentaho Kettle. A simple CRUD1 based persis-
tence layer combined with a REST2 service allowed for the creation and ID-based
querying of most entity types. There was a simple frontend based on the Angular
2+ web application platform consisting mainly out of a metrics dashboard (see
Daeubler (2017)). The frontend also contained a stub for the accounting module,
listing contributions in a table. Navigation of the organizational hierarchy was
implemented only partially, i.e. organizational dimensions were ignored. Little
of the existing code of the accountancy module was re-used for this thesis. The
implemenation chapter 3 will elaborate why.

The fundamental design question is how the information required can be ex-
tracted from the existing database. Most user stories listed in section 1.3 suggest
a list or table-style visualization. The remaining stories are defining means of
aggregation and filtering - typical analytical use cases. Multiple possible alterna-
tives are discussed in the following section.

For better readability, database related terms are formatted LIKE THIS.

2.1 Design alternatives

The following sections discuss the design alternatives for realizing the collected
requirements.

1create, read, update, and delete
2REpresentational State Transfer (REST) web services provide interoperability between

computer systems on the Internet (Wikipedia, 2018b)

8

2.1.1 Native SQL or HQL

One obvious solution for exploring data stored in a relational database is using
SQL. While the existing requirements do not permit the use of SQL specified
during runtime, it seems feasible to use SQL queries during design-time which
then have to be parameterized. There are, however, a number of arguments
against this approach.

The current database schema is normalized to reduce duplication and ensure
referential integrity. This has the effect that INSERTs,UPDATEs and DELETEs are
usually simple. On the other hand SELECT queries become more complex as
they have to span multiple tables using JOINs. Additionally, the structure of an
organization is stored as a finite graph using parent/child IDs. As an organization
is possibly structured in more than one way, for example i.e. in the case of a
matrix organization, multiples of the aforementioned finite graphs exist. These
points combined result in a difficult to query database schema that is difficult
to query. These issues are further elaborated in the implementation section (see
section 3.1).

As the CMSuite persistence layer is based on Hibernate, the named query feature
could be used to execute and fetch the result from the database. Usually named
queries are stored using annotations on the database entities itself (see listing 2.1
for an example).

Listing 2.1: JPA @NamedQuery example
1 // package/imports omitted
2

3 @NamedQueries({
4 @NamedQuery(
5 name = "findAllAgentsOrderedByName",
6 query = "SELECT DISTINCT a FROM Agent AS a ORDER BY a.name")
7 })
8 @Entity
9 public class Agent {

10 // class body omitted
11 }

The use of named queries has the disadvantage that the application would have
to be re-compiled to change queries. While the Java Persistence API (JPA) 2.1+
added support for named queries defined during runtime, this leaves the problem
of where to store them. One option would be to store them in the database itself,
but this solution would make editing more difficult. Storing them within XML
files which are loaded during runtime would be preferable, however this would

9

require additional effort for specifying a XML schema and the logic to read them.
Additionally, such a solution might be limited in terms of scalability and usability.

2.1.2 Reuse Pentaho Data Integration

Daeubler (2017) introduced Pentaho Data Integration ETL (previously named
Kettle) to the CMSuite project as part of his work of creating a metrics dash-
board. Re-evaluation for the use-cases of this thesis revealed a number of prob-
lems, the most significant being the batch-oriented processing of Pentaho. As
the full name implies, it is a ETL3 engine which works based on a three-step
approach. First the required data is extracted from a source (in this case the
CMSuite database), then it is transformed by the Pentaho engine (i.e. aggre-
gates are built). Finally, the result is loaded back into the database. During the
ETL process, Pentaho has to execute multiple queries for each transformation,
each of which increases the response time. While the ETL approach is valid
for computing metrics and time series4, it does not work well with data that is
logically segregated (by the org. dimensions). Pre-computing all possible com-
binations would be possible in theory, but hardly justifiable given the expected
CMSuite database size.

Pentaho Data Integration stores transformations as XML files using a proprietary
schema. They are designed to be edited using the supplied GUI application called
‘Spoon‘. Manual editing of the XML files using a text editor is not feasible.
Relying on an external GUI application for making changes on the other side is
also adding complexity.

2.1.3 OLAP approach

A recurring requirement of the many of the user stories is the ability to both
query the contributions database and aggregate it on different levels of detail.
Most prominently, the stories require the data to be aggregated by time, receiver
and contributor. Together, these requirements would be best served by a data
structure like a data cube. The online analytical processing (OLAP) domain, for
example, deals with this problem.

Often OLAP systems are compared with online transaction processing (OLTP)
systems. OLTP systems are a popular choice for operational data processing,
where their transactional implementation provides guarantees for data consis-
tency (ACID5). OLTP systems are optimized for concurrent INSERT, UPDATE sce-

3Extract, transform, load.
4This was the problem Daeubler was solving.
5Atomicity, Consistency, Isolation, Durability.

10

narios usually involving negligible data volumes per transaction. OLAP systems
however are optimized for READ, covering considerable amounts of data. There
are different perceptions on whether a transaction in the OLTP realm is limited
to a technical level (database transaction) or on a business level (business trans-
action). Regardless of which one is true, the comparison becomes increasingly
irrelevant when distributed systems are relying on eventual consistency and sen-
sor data from the Internet of Things (IoT) sphere being fed into OLAP systems.

OLAP systems are typically batch-oriented (ETL principle). Data is read from
operation databases in intervals, transformed to optimize it for analytical queries,
and then stored again. This has the disadvantage that results are not available
until the transformation is finished. Additionally, the data is duplicated within
the operational systems and the OLAP system. Lastly, the data is also stored
using at least two different schemata, one for the operational system and another
one for the OLAP system. In practice, the relation is closer to m:1 because there
are usually many operational systems within an organization that converge their
data into a single OLAP system6.

In recent years, OLAP engines are evolving towards real-time data processing.
The aim is to close the gap between operational and analytical systems. For
example, Apache Kylin, an analytics engine, supports real-time data streams
provided by a stream processing software such as Apache Kafka.

Nevertheless, there are arguments against the integration of a full-blown OLAP
system into the CMSuite project. CMSuite is a technology demonstrator and still
in early development which means the architecture is likely evolving. Changes to
the persistence layer would almost always require the ETL jobs to be migrated.
This migration is already an issue today as the patch crawler and the Pentaho
integration depend on the database schema. More importantly, the current data
sets are small and do not justify the deployment of an OLAP system. It is also
unclear how the analytics use cases will continue to evolve, making it difficult to
determine whether an OLAP system will be a good fit in the wake of these future
changes. The additional effort of maintaining an OLAP data schema and the
learning curve required to deploy and operate it would strain the already limited
development resources.

This thesis outlines an alternative solution to a full-blown OLAP system. The
implementation discussed in this thesis is based on Apache Lens as it fulfills the
requirements and provides additional short and long-term benefits for the CM-
Suite project’s scalability, migration and learning curve. The following chapter
will explain why Apache Lens was selected and how it is used.

6Of course it is also feasible that an organization operates multiple OLAP systems.

11

2.2 Apache Lens

Apache Lens acts as a ‘Unified Analytics Interface‘; it provides an abstraction
layer to bridge the (transitional) gap between operational live data and ETL
processing. As such, it does not aim to provide OLAP functionality itself, but
rather provides integration with common components used in data warehouse
(DWH) systems.

Apache Lens provides a metadata layer that acts as an abstraction for the un-
derlying execution engines and data sources. Lens can be queried using an SQL
dialect. Lens decides how to answer the query based on configuration and data
availability. A data source can be everything from a CSV file, a connection
provided using JDBC7, or any data storage supported by Apache Hive.

The metadata used to answer Lens queries is stored using the Apache Hive8

metastore. In this case, the metadata are the table definitions consisting of
columns names, data types, and comments additional to the data source. As
shown in figure 2.1, Apache Lens consists of the following key components:

• The Lens clients, i.e. the Java client or the command-line interface (CLI).
The clients communicate with the Lens server using a REST API.

• The Lens server, providing the mentioned REST service allowing to define
OLAP cubes (which are stored in the Hive metastore) and query them using
CubeQL.

• Lens internally provides a driver API and a set of implementations for
common execution engines, i.e. Hive Map Reduce or JDBC.

Lens itself is very lightweight as it builds on existing solutions with a proven track
record inside the data warehousing domain. Hive itself is the part of a DWH
ecosystem. Many widely used components like the cluster computing framework
Spark and the data analyzation tool Pig are compatible with Hive. Also, a
component called Hiveserver2 can be used to visualize the metadata using tools
like Tableau or PowerBi.

Why Apache Lens is used

Common OLAP solutions are designed to operate based on de-normalized data
schemas like the star schema or the snowflake schema. Data has to be extracted

7Java Database Connectivity.
8Apache Hive is a data warehouse software by itself, however, Lens mostly makes use of its

metastore component.

12

Figure 2.1: Apache Lens Architecture (Apache Lens project, 2017)

from operational systems and transformed to fit the OLAP schema. This pro-
cess is known as ETL. Apache Lens, however, allows the definition of a schema
to specify OLAP metadata and at the same time use JDBC data sources and
therefore RDBMS9 instead of a data store. As a result, ETL becomes optional.
In a case where there are no precomputed aggregates available, Lens will fallback
to the live database.

Lens distinguishes between database tables on a conceptional and logical level.

Conceptional tables are a set of fields10. A field can either be a simple attribute
(i.e. referring to a database column), an expression like NOW()+10 days or an
aggregate measure like SUM() or AVG(). A conceptional table also can have one
or more JOIN chains, whereas a join chain connecting two conceptual tables by
specifying a list of join fields i.e. table1.field1=table2.field2. Two different types of
conceptional tables exist, dimension and cube. A cube can contain all field types
mentioned above including join chains, while a dimension table cannot contain
measures.

9Relational database management systems.
10A field consists of a name, a type and optionally a comment.

13

On a higher level, logical tables consist of columns that are referring to fields of the
underlying conceptional table. A column, however, only consists of a name and a
data type; the distinction between the different fields is discarded. There are also
two different types of logical tables, dimension tables, and fact tables. Fact tables
contain business facts – in case of CMSuite, the list of contributions. Dimension
tables contain descriptive information used to constrain a query result, so its
columns are typically used as part of theWHERE condition. Fact data is typically
aggregated by time (i.e. by year, month, . . .) and contains columns used to join
the actual dimension tables. For further information refer to the official Apache
Lens website https://lens.apache.org/.

After defining the OLAP data cubes, they can be queried using CubeQL (see
listing 2.2), which is a subset of HiveQL.

1 [CUBE] SELECT [DISTINCT] se lect_expr , se lect_expr , . . .
2 FROM cube_table_reference
3 [WHERE [where_condition AND] [TIME_RANGE_IN(colName , from , to)]]
4 [GROUP BY co l_ l i s t]
5 [HAVING having_expr]
6 [ORDER BY co l L i s t]
7 [LIMIT number]
8

9 cube_table_reference :
10 cube_table_factor
11 | j o in_tab l e
12 j o in_tab l e :
13 cube_table_reference JOIN cube_table_factor [j o in_cond i t i on]
14 | cube_table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN

cube_table_reference [j o in_cond i t i on]
15 cube_table_factor :
16 cube_name or dimension_name [a l i a s]
17 | (cube_table_reference)
18 j o in_cond i t i on :
19 ON equa l i ty_expre s s i on (AND equa l i ty_expre s s i on) ∗
20 equa l i ty_expre s s i on :
21 exp r e s s i on = expr e s s i on
22 co lOrder : (ASC | DESC)
23 c o l L i s t : colName colOrder ? (’ , ’ colName colOrder ?) ∗
24

25 TIME_RANGE_IN(colName , from , to) : The time range i n c l u s i v e o f
’ from ’ and ex c l u s i v e o f ’ to ’ .

26 time range c l au s e i s app l i c ab l e only i f cube_table_reference has
cube_name .

27 Format o f the time range i s <yyyy−MM−dd−HH:mm: ss , SSS>

Listing 2.2: CubeQL grammar

CubeQL is very similar to SQL. Developers familiar with SQL should be able to

14

https://lens.apache.org/

understand and write queries based on CubeQL immediately. On account of the
Lens abstraction layer, queries become very simple. In the case of CMSuite, no
precomputed aggregates exist so Lens will automatically translate the CubeQL
queries into a single native SQL query.

One of the main features of Lens is the ability to automatically determine which
JOINs are necessary to compute the result. This is possible because the join
chains are declared in the Lens configuration. In a case where there are multiple
join chains available, Lens will determine the best chain to use. This is typically
the shortest chain or the one with the smallest number of join tables. This also
works for bridge tables, join tables holding 1:n relationships (i.e. like PersonLink).
Bridge tables can be configured to be transparent to the user, using bridge table
flattening. Additionally GROUP BY clauses are automatically inserted by Lens i.e.
in the case aWHERE clause is referring to a many-column as part of a one-to-many
cardinality.

As Lens is able to automatically insert join conditions and GROUP BY Clauses,
they do not have to be specified as part of the CubeQL query. Queries therefore
become very concise. Refer to section 3.1.2 for a comparison between a CubeQL
query and the PostgreSQL equivalent.

As mentioned before, it is unclear whether the development of the CMSuite
project will make greater use of OLAP features or not. Apache Lens is a good
fit for such scenarios as it scales very well. For example, precomputed aggregates
can be integrated seamlessly without the need to change either the database or
the Lens schema. Lens queries by themselves can be used to build the aggregates.
Queries can be scheduled to run at fixed intervals to build aggregates and store
them (in CSV files for example), improving query response times.

Exit strategy

It is the author’s belief introducing an additional dependency to a software project
should also include a strategy of how to remove it again. In the case of Apache
Lens, this is possible because Lens is generating SQL queries to fetch the data
from the live database. This means that Lens can be used a tool to build such
SQL queries by running a CubeQL query and observing the SQL query fired
against the database. While the resulting queries are complex, it is possible to
convert them to named queries (see listing 2.1 (p. 9)) and to parameterize them.
This provides flexibility if the CMSuite team decides either that there will not
be a need for additional queries or that Lens does not need to run in production
environments. Lens could then solely be used to ease development. Of course,
this option would still come with the disadvantages as outlined in section 2.1.1.

15

3 Implementation

The CMSuite software is split into a server and a client part. For an overview of
the involved components, refer to figure 3.1.

Figure 3.1: CMSuite deployment diagram1

The relevant components of CMSuite are:

• An Angular 2+ frontend consisting of an accountancy module (the dash-
board module existed prior to this thesis and is only shown for complete-
ness).

• The accountancy services, deployed using a Jersey server which provides
the REST functionality.

• The Apache Lens OLAP configuration.

• The views for denormalization of the org. hierarchy have been added to the
existing CMSuite database schema.

During the following sections, the components contributed or extended by this
thesis are described in a bottom-up order. The elaboration starts at the database
layer, continuing with the OLAP configuration, the REST services, and finally the

1Some components like the PatchCrawler were omitted. Components marked with an
asterisk existed prior to this thesis.

16

Angular user interface. Please note that figure 3.1 omits certain components, such
as the crawler mechanism, as they are not relevant for this thesis. Components
that existed before (see section section 1.1) like the Dashboard, the Datamanager
services, and the Database schema are marked with an asterisk. The subsequent
sections will outline whenever the solution built on previous work and to what
extent.

Note that none of the previously existing accountancy services were re-used as
they were written based on a CRUD approach. Additionally, the REST services
were incomplete and many features are broken or stubs. However, some parts of
the basic Angular 2+ frontend components could be re-used.

17

3.1 Database

The CMSuite database schema is difficult to query using SQL
for two main reasons:

• It contains finite graphs stored as adjacency lists (parent/child relations).

• It is optimized for INSERT/UPDATE/DELETE consistency. In other words, the
schema is normalized.

The following section will elaborate why these points are problematic for analytic
use-cases.

There are multiple levels of database normalization, differing in their level of
strictness. For example, the first normal form (1NF) states that there should be
no columns storing duplicated data. The second normal form (2NF), among other
things, moves data that applies to multiple rows to dedicated tables. The CM-
Suite is using the 3NF where no transitive functional dependencies are permitted
between the columns of table.

While normalization provides many benefits like the prevention of insert and
deletion anomalies, the request often lacks relativization. As Kimball and Ross
(2013, p. 107) state “[. . .] designers must resist the normalization urges caused
by years of operational database designs [. . .]”. While the statement is originally
addressing designers of dimensional databases and OLAP systems, it also applies
for general database design, including greenfield projects. Databases should not
be normalized without considering the use cases of the software which builds on
top.

A set of guide lines for OLAP systems can be derived from Kimball and Ross
(2013, p. 107):

• Simplicity should be the primary objective of a database model. A high
number of tables will cause users (including developers) to struggle with
complexity.

• Normalization of dimension tables should be avoided, as this will make con-
straints on a dimension table based on dimensional attributes more difficult.

• Numerous tables inevitably lead to a high number of joins, reducing query
performance. While joins are typically optimized by the database engine,
increasing complexity might lead to the optimizer choosing a poor strategy.

• The space used up by duplicated data is usually insignificant2.

2So is the additional effort of maintaining INSERT/UPDATE integrity when those are rare.

18

Many modern software projects, including CMSuite, are built with the separation
of concerns (SoC) principle in mind, where among other things the used data
storage mechanism is abstracted using a persistence layer 3. In theory, this should
allow the persistence components to evolve independently of the layers building
on top of it. In practice, however, it is very difficult to achieve true separation.
Spolsky (2002) states for example that all non-trivial abstractions are “leaky”
to some degree, and therefore problematic. Even when the database layer is
carefully abstracted, it is likely that certain implications (such as the availability
or navigability of result sets) will eventually leak to higher levels.

For this reason, some engineers claim that it might be better to get rid of this
abstraction. The underlying question is if a persistence layer abstraction almost
inevitably leaks internals, why pursue it at all? The fact is that very few projects
will switch persistence mechanisms during their lifetime. Even the ones that do
probably are not doing so without extensive effort. A field where the paradigm
of eliminating persistence abstraction is more widespread is the microservices
domain. Software is structured as fine-grained independent services that are
deployed independently and communicate using lightweight mechanisms. While
there are various implementations of this pattern conceivable, the most radical do
not even share a common database. Instead every service maintains its state in
a form that suits its purpose best. Persistence abstractions consequently become
irrelevant in such cases4.

As previously stated, Apache Lens is a ‘Unified Analytics Interface‘. This means
that Lens is optimized for data sources providing fact and dimension tables. This
is also why Lens does not require an ETL setup; it builds on the assumption that
the extract and transform steps have already happened.

The CMSuite data schema, however, is not designed for analytical purposes.
Changing the data schema would break existing code and tools developed. Ad-
ditionally, Requirement P.2 does not permit extensive schema modifications. As
changing the database schema is not a viable option, this thesis uses database
views to mitigate some of the problems.

3This is elaborated in more detail in the following section 3.2.1 (p. 35).
4Some of the concerns might be shifted to the inter-service communication level, however.

19

3.1.1 Denormalization

Figure 3.2: Matrix organization
scheme (Wikipedia, 2018a)

Within CMSuite the hierarchy of an
organization is modeled using three
different types of elements:

• Organizational units (orgelement
table)

• Individuals (person table)

• Inner source projects (innersour-
ceproject table)

Refer to the figure 2 (p. 53) for the
relevant schema elements.

Together the three element types are used to store a org. hierarchy in form a
finite graph (tree). However, an organization is often logically structured in more
than one way. Within CMSuite we call each distinct structure an organizational
dimension.

For example, a matrix organization has at least two different organizational di-
mensions with different reporting relationships. Figure 3.2 shows a functional
dimension and a product-based dimension. An individual has multiple organiza-
tional units it formally belongs to; for example, an engineer can be assigned to
the “Research” division while at the same time belonging to “Product Line A”.

The generalizations provided by the REA model (figure 1.1 (p. 2)) can help
clarify the reasoning for such structures. In REA terms individuals are classified
as Economic Agents. Technically, organizational units (such as a “Marketing
Department”) and inner source projects are classified as Economic Units within
REA because they are means to declare and control responsibility but do not act
on themselves. Instead, they have to rely on their subordinate individuals. For
the sake of simplicity, and for the reason that there are no immediate benefits
for CMSuite of splitting them further, this thesis treats all three as Economic
Agents.

Treating the org. hierarchy as a tree of economic agents makes it easier to identify
common features and reason about differences. The assumption is that all agents
have an ID, a name, and potential children agents to form a finite graph. Note
that in CMSuite individuals and inner source projects are always leaf nodes as
they cannot have further children. As a contribution is inherently created by
an individual and the receiver is always an inner source project, contributions
affect only leaf nodes directly. Requirement R.1 effectively states, however, that
receivers and contributors are to be shown based on the selection of an arbitrary

20

hierarchy element.

Figure 3.3: Organizational dimensions
example

This means that indirect contributions
need to be determined (see also fig-
ure 3.3). For example, when the
user selects “Marketing Department”
he wants to see all contributions either
contributed by the individuals work-
ing for the marketing department or
by any project belonging to it.

While the org. hierarchy graph is fi-
nite, it is not fixed in depth because
an organization can have an arbitrary
number of hierarchy levels. The list of
agents is stored as an adjacency list,
where each row resembles a parent-
child relation (link). In case of CM-

Suite the (direct) links are stored using a join table for each agent type. To be
able to answer queries about indirect reporting links like the mentioned market-
ing example, the adjacency list needs to be flattened. This flattening is a form
of denormalization as some information will now be redundant.

1 cmsuite=# SELECT parent_orgelement_id , chi ld_orgelement_id FROM
org l i nk WHERE orgdimension_id=2;

2 parent_orgelement_id | chi ld_orgelement_id
3 −−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−
4 0 | 80
5 0 | 81
6 0 | 82
7 80 | 900
8 80 | 901
9 81 | 902

10 82 | 903
11 900 | 800
12 901 | 801
13 902 | 802
14 902 | 803
15 (11 rows)

Listing 3.1: Sample query5

In the normalized form it is difficult to determine the indirect descendants for a
given parent agent (see listing 3.1). To be able to query them efficiently using

5The following queries have been simplified for demonstration purposes. For example, the
org. dimensions have been omitted.

21

Lens,6 this adjacency list has to be denormalized first. In SQL this problem can
be solved using Common Table Expressions (CTEs). CTEs are used to realize
recursive queries. See listing 3.2 for a simplified query.

1 WITH RECURSIVE t r e e (chi ld_orgelement_id , parents) AS (
2 SELECT
3 parent_orgelement_id ,
4 ARRAY[] : : i n t e g e r []
5 FROM org l i nk o
6 WHERE parent_orgelement_id NOT IN
7 (SELECT DISTINCT chi ld_orgelement_id FROM org l i nk)
8 UNION
9 SELECT DISTINCT

10 o . chi ld_orgelement_id ,
11 parents parent_orgelement_id
12 FROM org l i nk o
13 JOIN t r e e n ON n . chi ld_orgelement_id = o . parent_orgelement_id
14)

Listing 3.2: CTE example7

The query works like this.

• WITH RECURSIVE t r e e (chi ld_orgelement_id , parents)
Specifies what the result set of the query looks like, in this case it has two
output columns, one listing a child ID and another containing all parent
IDs.

• SELECT (line 2). Selects the initial set on which the recursion is based on.
The query selects all root nodes exploiting the fact that they do not have
any ancestors themselves.

• UNION discards duplicate rows, uses the remaining rows for the recursive
expression.

• SELECT (line 9). The recursive expression, referring to the queries own
output (tree). Concatenating to a list of parents.

The query is operating on a working table (queue) and repeats the recursion as
long as its result is not empty. In other words, it completes after the recursive
expression does not return any data. Technically, this is an iterative process, not
recursion.

Listing 3.3 shows the output of the previously specified CTE; the first column
contains every node of the org. element graph, while the second column contains
the list of ancestors. CTEs can be materialized as database views. Using a

6For example, to use the hierarchy as a dimension table.
7The final view for the denormalized org. hiearchy is shown in appendix C (p. 54), listing 1.

22

materialized view, it is possible to query all direct and indirect successors with
low effort (listing 3.4).

Note that the execution time of views is exactly the same as running the under-
lying SQL statement8.

1 cmsuite=# SELECT child_orgelement_id , parents FROM tr e e ;
2 chi ld_orgelement_id | parents
3 −−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−
4 0 | {}
5 80 | {0}
6 81 | {0}
7 82 | {0}
8 900 | {0 ,80}
9 901 | {0 ,80}

10 902 | {0 ,81}
11 903 | {0 ,82}
12 800 | {0 ,80 ,900}
13 801 | {0 ,80 ,901}
14 802 | {0 ,81 ,902}
15 803 | {0 ,81 ,902}
16 (12 rows)

Listing 3.3: Query output using CTE and view

1 cmsuite=# SELECT child_orgelement_id , parents FROM tr e e WHERE 80 =
ANY(parents) ;

2 chi ld_orgelement_id | parents
3 −−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−
4 900 | {0 ,80}
5 901 | {0 ,80}
6 800 | {0 ,80 ,900}
7 801 | {0 ,80 ,901}
8 (4 rows)

Listing 3.4: Query all successors of a certain parent node

Each node of the org. graph can have further successors. Currently two different
descendant node types are defined; ISPs and individuals. These are stored in two
separate join tables similar to the orglink table (see listing 3.5).

8In PostgreSQL this can be verified using EXPLAIN ANALYSE.

23

1 cmsuite=# SELECT orgelement_id , i nne r s ou r c ep ro j e c t_ id FROM
inn e r s o u r c e p r o j e c t l i n k ;

2 orgelement_id | i nne r s ou r c ep ro j e c t_ id
3 −−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−
4 900 | 7001
5 901 | 7000
6 902 | 7002
7 902 | 7003
8 902 | 7009
9 (5 rows)

Listing 3.5: Query links between org. element and ISPs

Additional views have been defined to be able to query ISP/individual leaf nodes
based on their ancestors. Listing 3.6 shows the flattened hierarchy view for inner
source projects. A similar view has been created for individuals.

1 SELECT DISTINCT
2 unnest (array_append (parents , chi ld_orgelement_id)) AS

orgelement_id ,
3 i nne r s ou r c ep ro j e c t_ id AS pro ject_id
4 FROM inn e r s o u r c e p r o j e c t l i n k p l
5 JOIN orgh i e ra r chy
6 ON pl . orgelement_id=chi ld_orgelement_id

Listing 3.6: ISP hierarchy view

Listing 3.7 shows the result, a denormalized adjacency list containing every direct
and indirect link between an ISP and and org. element9.

9The final version of this query has been extended to explicitly mark indirect links. Refer
to appendix C (p. 54) for complete version.

24

1 orgelement_id | pro jec t_id
2 −−−−−−−−−−−−−−−+−−−−−−−−−−−−
3 0 | 7000
4 0 | 7001
5 0 | 7002
6 0 | 7003
7 0 | 7009
8 80 | 7000
9 80 | 7001

10 81 | 7002
11 81 | 7003
12 81 | 7009
13 900 | 7001
14 901 | 7000
15 902 | 7002
16 902 | 7003
17 902 | 7009
18 (15 rows)

Listing 3.7: Query links between org. element and ISPs using view

With the introduced views the org. element hierarchy can now be easily queried,
for example, to get a list of direct or indirect descendants for given agent. By using
views instead of modifying the schema directly, all pre-existing code continues to
work. The following section will outline how Apache Lens is used to build on top
of this.

The metadata extracted by the patch crawler is stored in the “Patch” (contribu-
tion) table (see appendix B (p. 53)). In REA terms contributions are economic
events. A contribution links two economic agents. The source of the contribution
is called the ‘contributor’ and the sink of the patch is called the ‘receiver’. More
specifically the contribution links an individual (contributor) to an inner source
project (ISP), the receiver. Both are specific instances of an economic agent.
They are also leaf nodes in the org. tree.

Currently, there is no economic resource (REA) modeled. Future extensions to
CMSuite could introduce resources like ‘Capacity‘ or ‘Cost‘, however.

3.1.2 Apache Lens OLAP cubes

The solution proposed by this thesis relies on Apache Lens and its OLAP cube
interface to fetch data from the underlying CMSuite database. Most of the effort
for integrating Apache Lens into a software project is required for setting up the
declarative configuration. This section will describe how Lens is configured to fit
CMSuite requirements.

25

Lens can be configured using its command-line interface (CLI) which is started
by executing “lens-client”. The CLI provides various commands which can be
displayed by entering “help”. A description for each command including its argu-
ments can be displayed with “help [command]” (see listing 3.8). Many commands
require a spec file as an argument, which is an XML containing the actual con-
figuration.

Listing 3.8: Help output for create cube command
lens -shell >help create cube
Keyword: create cube
Description: Create a new Cube , taking

spec from <path -to -cube -spec -file >
Keyword: ** default **
Keyword: path

Help: <path -to-cube -spec -file >
Mandatory: true
Default if unspecified: ’__NULL__ ’

Listing 3.9: CMSuite storage spec configuration
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<x_storage xmlns="uri:lens:cube:0.1" name="cmsuite"

classname="org.apache.lens.storage.db.DBStorage">
<properties>

<property name="lens.storage.db.url"
value="jdbc:postgresql://cmsuite−postgres−db/cmsuite"/>

</properties>
</x_storage>

A minimal Lens configuration consists of a Lens database with at least one stor-
age10. For CMSuite this configuration can be achieved by entering the command
sequence shown in listing listing 3.10 and a storage spec like in listing 3.9. The
sequence shown creates a new database called cmsuite and configures a JDBC
storage specified in cmsuite_storage.xml.

10Lens uses the term “storage” for a data source i.e. a JDBC connection.

26

Listing 3.10: Command sequence to achieve a minimal Lens configuration
lens -shell >create database cmsuite
lens -shell >use cmsuite
lens -shell >create storage --path cmsuite_storage.xml

Apache Lens can be queried using OLAP CubeQL (listing 2.2), a subset of
HiveQL which is based on SQL. CubeQL is designed for analytical purposes and
as such is limited to SELECT queries. After configuring a storage, Lens will try
to fall back to it whenever a query cannot be answered by any other means. In
other words, CMSuite tables including the introduced views previously described
in section 3.1 can already be queried by typing and executing the SQL query
within Lens CLI. As long as the queries do not make use of any special keywords
or dialect, they do not have to be modified11. For example, the query shown in
listing 3.7 will work unchanged. Please note, however, that in Lens CLI queries
are not terminated using a semi-colon unlike in an interactive PostgreSQL shell.

11The restriction to SELECT queries still applies.

27

Dimensional modeling

The process of creating OLAP data cubes is called dimensional modeling.

Dimensional modeling is widely accepted as the preferred technique
for presenting analytic data because it addresses two simultaneous
requirements:

• Delivering data that is understandable to the business users.

• Delivering fast query performance.

(Kimball & Ross, 2013)

Dimensional modeling treats data either as facts or dimensions. Usually, tables
containing facts can easily be identified because they tend to grow by multiple
orders of magnitude, compared to dimension tables. The CMSuite patch table is
a fact table because it collects an ever-growing time series of contribution events.
On the other hand, dimension tables are usually of descriptive nature and often
represent hierarchical relationships, like the CMSuite org. hierarchy.

Dimensions are modeled by answering the question “how are the facts logically
segregated?” or “what are the discriminators of the facts?”.

In CMSuite code contributions (patches) are directly segregated by

• The contribution date.

• The author of the contribution (contributing individual).

• The inner source project the contribution has been submitted to (receiving
ISP).

As mentioned before, discriminators are usually part of hierarchy or turn into
one when reducing or increasing their level of granularity. For example, the
contribution date can be specified as:

• The entire timestamp, i.e. 2018-01-01-14:36:58,421

• The date only, 2018-01-01

• The calendar week, week 1

• The month, January

• The quarter of the year, 1. Quarter

• The year only, 2018

• etc.

28

The org. element hierarchy has no direct influence on the segregation; it merely
structures and groups authors and inner source projects. As such, it only indi-
rectly segregates the patch table. Therefore the org. hierarchy can also be referred
to as a hyper-dimension. Based on the previously mentioned observations, the
following dimensions have been identified for CMSuite:

• The contributor dimension (author).

• The receiver dimension (inner source project).

• The org. hierarchy (hyperdimension for contributor/receiver).

Together they form the journal data cube. Refer to figure 3.4 for a visual repre-
sentation.

Figure 3.4: CMSuite journal cube

Friggens, G.

Kent, Lena
Rylan, Leonie

Contributor(Individual)

IS Project I

IS Project III

IS Project II

Receiver(ISP)

Q1
20

17

Q3
20

17

Q2
20

17

Contribution date

Org.
Hierarchy

Based on the data cube abstraction, a number of operations are possible:

• The OLAP user can constrain the values of each dimension to restrict the
returned dataset, which is called “dicing”.

• When the value for one dimension is restricted to a single value, effectively
reducing the cube to a table, the operation is called “slicing”.

• The navigation of the receiver/contributor hierarchy is called “drill down/up”,
depending on whether the user traverses from the entire organization down

29

to org. units or vice-versa.

• The fact dimension (labeled “Contribution date” in figure 3.4) is often ag-
gregated (summarized), i.e. by year, which is called “roll-up”.

Listing 3.11 shows the configuration for the contributor dimension (conceptional
level). Note that despite the fact that Lens relies on XML, the spec files are
well readable and can be edited manually using any XML editor, unlike Pentaho
configurations. As mentioned in section 2.2, the Lens configuration knows two
different abstraction levels, each conceptional configuration (such as the contrib-
utor dimension) has at least one logical configuration. Listing 3.12 shows the
logical table of the contributor dimension. Note that join chains (listing 3.11,
line 11) are specified at the conceptional level whereas the storage configuration
(listing 3.12, line 14) takes place at the logical level.

Listing 3.11: CMSuite contributor dimension specification
1 <x_dimension name="contributor" xmlns="uri:lens:cube:0.1"
2 /∗ omitted ∗/>
3 <attributes>
4 <dim_attribute name="orgelement_id" _type="INT"/>
5 <dim_attribute name="individual_id" _type="INT"/>
6 <dim_attribute name="direct" _type="BOOLEAN"/>
7 <dim_attribute name="contributor_depth" _type="INT"/>
8 <dim_attribute name="dimension_id" _type="INT"/>
9 </attributes>

10

11 <join_chains>
12 <join_chain name="journal_chain">
13 <paths>
14 <path>
15 <edges>
16 <edge>
17 <from table="contributor" column="individual_id" />
18 <to table="journal" column="individual_id" />
19 </edge>
20 </edges>
21 </path>
22 /* contributor/orgelement path omitted */
23 </paths>
24 </join_chain>
25 </join_chains>
26 </x_dimension>

30

Listing 3.12: CMSuite contributor dimension table specification
1 <x_dimension_table dimension_name="contributor"

table_name="contributor_table" /∗ omitted ∗/>
2

3 <columns>
4 <column name="orgelement_id" _type="INT"/>
5 <column name="individual_id" _type="INT"/>
6 <column name="direct" _type="BOOLEAN"/>
7 <column name="contributor_depth" comment="Hierarchy␣level␣of␣

contributor" _type="INT"/>
8 </columns>
9

10 <properties>
11 <property name="dimtable.contributor_table.part.cols"

value="dimension_id"/>
12 </properties>
13

14 <storage_tables>
15 <storage_table>
16 <storage_name>cmsuite</storage_name>
17 <table_desc external="true" /∗ omitted ∗/>
18 <part_cols>
19 <column comment="Org.␣Dimension"

name="dimension_id" _type="STRING"/>
20 </part_cols>
21 <table_parameters>
22 <property name="lens.metastore.native.db.name"

value="public"/>
23 <property name="lens.metastore.native.table.name"

value="contributor"/>
24 <property

name="lens.metastore.native.table.column.mapping"
value="contributor_depth=depth"/>

25 </table_parameters>
26 </table_desc>
27 </storage_table>
28 </storage_tables>
29

30 </x_dimension_table>

The receiver dimension is similarly configured.

31

Listing 3.13: CMSuite contributor fact table specification
1 <x_fact_table cube_name="journal" name="contribution_fact"
2 /∗ omitted ∗/>
3

4 <columns>
5 <column name="id" comment="ID" _type="INT"/>
6 <column name="commit_date" _type="TIMESTAMP"/>
7 <column name="commit_message" _type="STRING"/>
8 <column name="individual_id" _type="INT"/>
9 <column name="receiving_innersourceproject_id" _type="INT"/>

10 </columns>
11

12 <properties>
13 <property name="cube.fact.is.aggregated" value="false"/>
14 <property name="dimension.journal.timed.dimension" value="ct"/>
15 </properties>
16

17 <storage_tables>
18 <storage_table>
19 <update_periods>
20 <update_period>CONTINUOUS</update_period>
21 </update_periods>
22 <storage_name>cmsuite</storage_name>
23 <table_desc external="true" /∗ omitted ∗/ >
24 <part_cols>
25 <column comment="Commit␣time␣partition"

name="ct" _type="STRING"/>
26 </part_cols>
27 <table_parameters>
28 <property name="lens.metastore.native.db.name"

value="public"/>
29 <property name="lens.metastore.native.table.name"

value="patch"/>
30 <property

name="lens.metastore.native.table.column.mapping"
value="individual_id=author_id"/>

31 </table_parameters>
32 <time_part_cols>ct</time_part_cols>
33 </table_desc>
34 </storage_table>
35 </storage_tables>
36 </x_fact_table>

32

As the determination of the “value” of a contribution is out of the scope of this
thesis (see debt/credit discussion section 1.1.2), the number of contributions is
used as a method to quantify them.

Writing CubeQL queries requires no learning effort from developers already fa-
miliar with SQL other than using TIME_RANGE_IN() for constraining the time
dimension.

1 CUBE SELECT c_quarter AS per iod ,
2 r e c e i v e r_d e t a i l s . orgelement_id AS receiver_orgelement_agent ,
3 c on t r i bu t o r_de ta i l s . orgelement_id AS

contributor_orgelement_agent ,
4 p r o j e c t_de t a i l s . id AS project_agent ,
5 COUNT(∗) AS amount
6 FROM journa l
7 WHERE TIME_RANGE_IN(commit_date , ’ 2017−01−01 ’ , ’ 2018−01−01 ’)
8 AND r e c e i v e r_d e t a i l s . dimension_id = 2
9 AND con t r i bu to r_de ta i l s . dimension_id =

r e c e i v e r_d e t a i l s . dimension_id
10 AND ind i v i dua l_de t a i l s . id = 302
11 AND r e c e i v e r_d e t a i l s . d i r e c t = true
12 AND con t r i bu to r_de ta i l s . d i r e c t = true

Listing 3.14: CubeQL sample query12

When comparing a Lens CubeQL query (listing 3.14) to its PostgreSQL equiv-
alent (listing 3.16), it becomes clear Lens queries are much shorter and easier
to understand. Also, note that the PostgreSQL query already makes use of the
introduced database views, so the actual native query is about twice as long as
shown. Both produce the same output as shown in listing 3.15.

1 per iod rece iver_orge lement_agent contr ibutor_orgelement_agent
project_agent amount

2 Result a v a i l a b l e in memory , a t tach ing here :
3

4 4 900 801 7001 11
5 4 901 801 7000 5
6 4 902 801 7002 23
7 3 rows proces sed in (0) seconds .

Listing 3.15: Lens shell output for listing 3.14

12Note that the CUBE keyword in listing 3.14 (line 1) is is optional.

33

1 SELECT CAST(EXTRACT(quarte r FROM date (con t r i bu t i on . commit_date)) AS
in t) AS per iod ,

2 r e c e i v e r_d e t a i l s . orgelement_id AS receiver_orgelement_agent ,
3 c on t r i bu t o r_de ta i l s . orgelement_id AS

contributor_orgelement_agent ,
4 p r o j e c t_de t a i l s . id AS project_agent ,
5 COUNT(∗) AS amount
6 FROM patch con t r i bu t i on
7 INNER JOIN (SELECT project_id , orgelement_id , dimension_id FROM

r e c e i v e r) r e c e i v e r_d e t a i l s
8 ON (con t r i bu t i on . r e c e i v ing_ inne r sou r c ep ro j e c t_ id =

r e c e i v e r_d e t a i l s . pro j ec t_id)
9 INNER JOIN (SELECT id FROM person) i nd i v i dua l

10 ON (con t r i bu t i on . author_id = ind i v i dua l . id)
11 INNER JOIN (SELECT indiv idua l_id , orgelement_id , d i r e c t , dimension_id

FROM cont r i bu to r) c on t r i bu to r_de ta i l s
12 ON (con t r i bu t i on . author_id =

con t r i bu t o r_de ta i l s . i nd iv idua l_ id)
13 INNER JOIN (SELECT id FROM inne r s ou r c ep r o j e c t) p r o j e c t_de t a i l s
14 ON (con t r i bu t i on . r e c e i v ing_ inne r sou r c ep ro j e c t_ id =

pro j e c t_de t a i l s . id)
15 WHERE (con t r i bu t i on . commit_date BETWEEN ’2017−01−01␣ 00 : 00 : 00 ’ AND

’2018−01−01␣ 00 : 00 : 00 ’)
16 AND r e c e i v e r_d e t a i l s . dimension_id) = 2
17 AND con t r i bu to r_de ta i l s . dimension_id =

r e c e i v e r_d e t a i l s . dimension_id)
18 AND ind i v i dua l . id = 302
19 AND r e c e i v e r_d e t a i l s . d i r e c t = true
20 AND con t r i bu to r_de ta i l s . d i r e c t = true
21 GROUP BY CAST(EXTRACT(quarte r FROM

DATE((con t r i bu t i on . commit_date))) AS in t) ,
22 r e c e i v e r_d e t a i l s . orgelement_id ,
23 c on t r i bu t o r_de ta i l s . orgelement_id ,
24 p r o j e c t_de t a i l s . id

Listing 3.16: PostgreSQL equivalent to listing 3.14

Running OLAP CubeQL from Java

Running a OLAP CubeQL query is simple. See listing 3.17 for an example. The
result will contain the Lens Query result set consisting of columns and metadata
like the column names.

34

Listing 3.17: Running a lens CubeQL query from Java
1 LensClientConfig clientConfig = new LensClientConfig();
2 clientConfig.setLensDatabase("cmsuite");
3 LensClient lensClient = new LensClient(clientConfig);
4

5 String query = "SELECT ...";
6 LensStatement statement = lensClient.getStatement();
7 QueryHandleWithResultSet result = statement.executeQuery(query,

name, QUERY_TIMEOUT);

3.2 REST services

3.2.1 Data serialization

Currently, the CMSuite project is using the data access object (DAO) pattern to
provide a layer of abstraction from the used persistence mechanism. For example,
an AgentService would provide a getAll() method, returning all known agents.
This way the consumer of the AgentService does not need to know how the
AgentService is storing the data or where it is getting it from. In the case of
CMSuite the callers of AgentService do not know it is relying on Hibernate ORM
for storing and loading data from a PostgreSQL database. This works especially
well in CRUD scenarios where the service API always returns a model instance
(i.e. one or more domain model instances13 of type “Agent”). As soon as queries
have analytical aspects and involve aggregation, i.e. in form of MAX() , COUNT()
in conjunction with GROUP, this pattern breaks. The service can no longer return
an instance of a domain model as its interface does not fit the query. This
leads to another pattern which is also used in the CMSuite project – the data
transfer object (DTO) pattern. The DTO pattern introduces dedicated classes
for each distinctive type to be transferred using REST. DTOs are also often
used to return composite data which would otherwise require multiple calls to a
service. Additionally, DTOs can be used to hide information when not all fields in
a domain model instance should be leaked to the user of the DAO. For example,
when returning an instance of a “User”, a DTO could contain its name and email
from the domain model, but not the hash of the user’s password.

The main reasons for using DTOs can be summarized as:

1. Information hiding

13Domain model classes are designed to persist data, i.e. in a database.

35

• Hide the used persistence mechanism (Hibernate ORM) and the database
schema structure.

• Hide specific information of the domain model (i.e. password hashes).

2. Return data composed from different domain model instances.

• For example, return a “UserInformation” DTO containing both an ad-
dress and email, although they are stored in two different domain
objects in the database.

3. Provide different level of details.

• For example, when returning a “Customer” DTO, the response could
contain the number of open orders. If the number is zero, the caller of
the service would not have to fetch the “CustomerWithOrders” DTO.
This is also used for performance optimization when returning all or-
ders is a costly call.

The main disadvantage of using the DTO pattern is that the created DTOs are
leading to duplicated code. For each entity on the persistence layer, there has
to be at least one DTO. In practice there is more than just one DTO; one for
the entity and one for each distinct query involving aggregation or composition.
Additionally, there might be more DTOs in case not all fields of the entity are
desired, especially where it would be too costly to transfer all of them.

For analytic scenarios DTOs are not just duplicated code, they are also wasteful
because they are used for unidirectional SELECT operations only, not CRUD.
DTOs are designed to serialize results provided by a service, i.e. to transfer data
using REST. DTOs are most useful for bidirectional communication, where they
aid the deserialization14 of received data while also providing isolation from the
persistence mechanism. This is the case when DTOs are modified by the caller
and then passed back to the DAO layer for updating the domain model.

Java 7 in conjunction with JAX-RS15 can make DTOs obsolete, especially when
combined with REST. REST services can directly return domain model instances
or any other Java object which are serialized (and deserialized) transparently.

The proposed solution in this thesis does not involve using DTOs. Instead, cus-
tom serializers and mix-ins are used. The following sections describe how they
work and the benefits they provide.

14Deserialization is sometimes also called unmarshalling.
15Java API for RESTful Web Services (JAX-RS).

36

Serialization of Lens queries

CMSuite previously provided a module called “datamanager”, which supports
CRUD use cases based on model entities using both the DAO and DTO pattern.
The module covered by this thesis is called “accountancy”, which addresses an-
alytical scenarios. The distinctive use cases of CRUD vs. analytics (read) are
visible already at an artifact level.

As has been established, DTOs are not a good fit for unidirectional (read-only)
use cases such as REST endpoints solely returning analytical data. Instead the
data can be serialized using other means, i.e. by using a serializer directly.

For analytics use cases, none of the mentioned reasons for using DTOs is a concern
because:

1. Information hiding is happening explicitly as only columns to be returned
to the caller are queried.

2. Composition is a inherit feature of SQL (SELECT/JOIN). The result set is
therefore almost always a composite.

3. The same is true for information hiding in the form of aggregates
(i.e. using SUM() or GROUP BY).

The accountancy module mostly displays tables along with options to aggregate
and filter the data displayed. As such, the data returned from the underlying
REST service is very uniform. The service endpoints respond with a number of
rows extracted from the database. Introducing DTOs to transform the database
results would not provide additional benefits. Instead the accountancy REST
endpoints can directly return the database result. A generic Lens query serializer
implemented using Jackson is ensuring a standard format for the JSON output,
acting as a layer of abstraction. Listing 3.18 shows an example JSON string
returned by the Journal REST endpoint. It consists of three main elements:

• The type property, providing the means to distinguish different result for-
mats on the client side.

• The rows property, containing the result row data from the Lens query.

• The meta property, describing the columns configuration of the rows result
set including the queried columns and their data type.

Using this technique, any Lens query can be serialized in a standardized form
and query changes are reflected automatically. This approach provides all the
benefits of a DTO approach, i.e. the abstraction from the data source, while
not involving any of the disadvantages such as duplicated code. Additionally,
it is possible to replace Apache Lens with a different product without breaking

37

the compatibility to the client side, by simply maintaining the same serialization
format.

Listing 3.18: Uniform query result example
1 {
2 "type" : "de.fau.cmsuite.accountancy.QueryResult",
3 "rows" : [
4 /* row data omitted */
5],
6 "meta" : [{
7 "name" : "period",
8 "type" : "INT"
9 }, {

10 "name" : "receiver_orgelement_agent",
11 "type" : "INT"
12 }, {
13 "name" : "contributor_orgelement_agent",
14 "type" : "INT"
15 }, {
16 "name" : "project_agent",
17 "type" : "INT"
18 }, {
19 "name" : "direct",
20 "type" : "TINYINT"
21 }, {
22 "name" : "amount",
23 "type" : "BIGINT"
24 }]

This approach works well for uni-directional serialization of uniform data. How-
ever, there is a supplementary solution for bi-directional use cases when a REST
service is also used to update or save data.

Serialization of org. element hierarchy

Prior to this thesis, the OrgElementResource provided by the datamanager com-
ponent would be used to return the serialized JSON org. element hierarchy. This
hierarchy was used by the Angular UI to render a navigation tree.

However, the existing implementation had no support for dimensions; the output
would contain elements from all dimensions. Also, it was using a OrgElementDto

38

containing links to its parent and children elements, members and inner source
projects. Each link was stored in an individual LinkDto, i.e. the PersonLinkDto,
which then referenced the instance it linked to, i.e a PersonDto.

There are multiple problems with this implementation:

• It provides no abstraction from the database schema as it closely resembles
the entity structure, including the join tables. Structural database changes
would almost certainly require changes in the DTO structure.

• There is no information hiding, all database columns are leaking into the
DTOs.

• The DTO structure uses deep nesting. For example, an OrgElement would
contain numerous LinkDTOs, which would then contain a number of Per-
sonDTOs and so on.

• The nested DTO structure lead to nested JSON, which was then difficult
to work with on the client side.

• Because of the nested DTOs, information would be serialized redundantly.
Each root node of the org. element hierarchy would be serialized including
all its ancestors. The same serialization, however, would be repeated for
each ancestor node.

As mentioned in section 1.1.1, the implementation of this thesis makes use of
the generalization the REA model provides. Instead of using DTOs, the re-
implementation uses Jackson mix-ins. Jackson serialization is usually customized
by adding Jackson annotation to the class to be serialized. Listing 3.19 shows
a usage example where a property is renamed (line 2) and another property is
ignored (line 5) during serialization. While this approach is flexible, it has the
disadvantage of polluting the code with serialization information16.

Listing 3.19: Jackson annotation example (Github, 2018)
1 public class Name {
2 @JsonProperty("firstName")
3 public String _first_name;
4

5 @JsonIgnore
6 public int internalValue;
7 }

Starting with version 1.2 Jackson provides a feature called “Mix-in Annotations”
which addresses this issue. Instead of having to annotate the class to be serialized,

16Technically the annotations also conflict with the separation of concerns principle.

39

a separate mix-in class is used to describe how a class (target) is to be serialized
and deserialized.

The mix-in class does not have to be a concrete class; it can be an abstract class
or an interface instead. Additionally, the mix-in target does not have to extend or
implement the mix-in. This is especially useful for serializing third-party classes
that cannot be changed easily. However, it still recommended that the target
class extends or implements the mix-in, as this adds the benefits of compile-time
checks (@Override) to ensure the mix-in does actually fit the target (FasterXML
Wiki, 2018).

The benefits of using Jackson mix-ins are:

• Elimination of DTOs, instead mix-ins take their place. This leads to a
substantial code reduction, as mix-ins can be abstract.

• Multiple mix-ins for the same target class can exist, and one mix-in can be
used for multiple targets. This provides flexibility and eases information
hiding.

For CMSuite, a EconomicAgentMixIn has been defined for the purpose of seri-
alizing the org. element hierarchy in a homogenous way. See figure 3.5 for an
example class diagram. Similarly, a EconomicReferenceMixIn is used to serialize
the different link instances. Using this approach, the finite graph is serialized as
a flat list of JSON objects.

Figure 3.5: Jackson mix-in example class diagram

�interface�
EconomicAgentMixIn

+ getId() : int
+ getName() : string
+ getType() : java.lang.Class

InnerSourceProject

+ getId() : int
+ getProjectName() : string
+ getProjectLead() : Individual

OrgElement

+ getId() : int
+ getName() : string

Individual

+ getId() : int
+ getLastName() : string
+ getEmail() : string

3.2.2 Endpoints

The URIs defined for the journal resource are shown in figure 3.6. All path pa-
rameters marked wrapped with curly braces are mandatory. The HTTP method

40

used for all following resources is GET. All endpoints return data in the JSON
format.

Figure 3.6: URIs of journal REST resource

URI Description
/journal/{dimensionId}/orgelementtypes Returns all known org.

element types i.e. De-
partment, Team, etc.

/journal/{dimensionId}/orgelement/{orgelementId} Returns the journal
for the given org. el-
ement.

/journal/{dimensionId}/project/{projectId} Returns the journal
for the given ISP.

/journal/{dimensionId}/individual/{individualId} Returns the journal
for the given individ-
ual.

Additionally, each of the journals listed in figure 3.6 can be further parameterized
using query parameters. The query parameters and their valid values are listed
in figure 3.7.

The URIs defined for the agent resource are shown in figure 3.8.

41

Figure 3.7: Query parameters for journal REST resource endpoints

URI Type Format/Values Description
timeRangeFrom string yyyy-MM-dd-

HH:mm:ss,SSS
Start of the time
range.

timeRangeUntil string yyyy-MM-dd-
HH:mm:ss,SSS

End of the time range.

timeAggregation string disabled, day,
weekofyear,
month, year,
quarter, overall

Sets the aggregation
of the time dimension.

receiverAncestors int 0=indirect,
1=direct,
-1=both

Whether direct or in-
direct receivers should
be included.

receiverLevel int positive integer
or -1=match
selection

The receiver level to
show.

contributorAncestors int 0=indirect,
1=direct,
-1=both

Whether direct or
indirect contributors
should be included.

contributorLevel int positive integer
or -1=match
selection

The contributor level
to show.

Figure 3.8: URIs of agent REST resource

Parameter Description
/agent/{dimensionId}/supported Returns list of supported

agents, i.e. orgelement,
project, individual.

/agent/{dimensionId}/all Returns all agents for the
given dimension.

/agent/{dimensionId}/orgelement Returns all org. elements
for the given dimension.

/agent/{dimensionId}/project Returns all ISPs for the
given dimension.

/agent/{dimensionId}/individual Returns all individuals for
the given dimension.

42

3.3 Angular frontend

Figure 3.9: Screenshot of CMSuite Accountancy user interface17

Handling of economic agents

As mentioned in the previous section, the REST service that provides the Eco-
momicAgents has been re-written to return a flat list of agents and their child-
references instead of returning a tree. It is easier to find an agent by its ID in a
list than a tree. The agent list is not only used for displaying the org. hierarchy
but also to link result entries within the journals. A user can jump to the journal
of a giving agent by clicking on its name within the journal.

Additionally, as the agent hierarchy now consists of generic agents instead of
concrete instances of individuals, org. elements and ISPs there is less code needed
to deal with the different agent types. The previously implemented navigation
used classes for the individual subtypes, which is not necessary.

The generic agent handling also provides the benefit of being able to introduce
new agent types without having to change the UI. The only thing left to do when
adding a new agent type would be defining the icon to be displayed.

Previously org. elements would be serialized redundantly, making it impossible
to provide convenience features like unfolding the org. element hierarchy to the
currently selected node. Automatic unfolding is necessary because otherwise the

17Screenshot has been edited to fit the page.

43

development process would be very cumbersome. Typescript projects were typi-
cally re-compiled on file save, after which a browser reload is triggered to reflect
the changes in the code. This process would cause the org. hierachy to collapse
every time a code change is performed. After introducing org. dimension support,
the correct dimension also had to be selected again. The re-written implementa-
tion automatically selects the currently viewed dimension, and unfolds the org.
hierarchy to the selected element by extracting this information from the URL.

Semantic URLs

While the user is navigating the accountancy module, its URL always reflects
the currently selected element. See Listing 3.20 for an example URL that con-
tains the currently selected dimension (dim/[dimensionId]), and the viewed agent
(agent/[agentType]/[agentId]). Also, semantic URLs allow the sending of links
to certain journals to other CMSuite users.

Listing 3.20: Accountancy client URL example
http :// cmsuite . com/#/accountancy/dim/1/ agent / orge lement /100

Filtering and aggregation options

Each accountancy journal can be aggregated by time, as outlined in section 3.1.2.
Additionally, the two sides of a contribution – its receiver and its contributor –
can be filtered. The user can choose whether only direct or indirect contribu-
tors/receivers are to be shown (or both). Moreover, the user can choose whether
displayed org. element level of the receiver/contributor matches the selection or
if it should be fixed, for example, to show teams only.

Journal icon legend

The contribution journal displays a number of icons next to the contribution
count to provide information about the receiver/contributor relationship of the
selected element. See figure 3.10 for a description of the meaning of each icon.
Additionally, contributions crossing org. units are marked in orange, and indirect
contributions use an italic font type.

18Icons provided by Glyphicons.com (Glyphicons project, 2017).

44

Figure 3.10: Journal icon18legend

Icon Description

Contribution is self-contained i.e. a team contributing to
itself.

Contribution to a ancestor org. element.

Contribution to a descendant org. element.

Contribution to a sibling, an org. element on the same
hierarchy level.

Contribution is indirect.

Contribution is crossing org. units. The contribution re-
ceiver and contributor share no common ancestors.

3.4 Deployment and testing

To ease the development process and also to provide documentation of how
Apache Lens is configured, a Docker environment has been defined. CMSuite
previously made use of Docker before, so adding another setup was the logical
choice. See appendix D (p. 56) for the Dockerfile.

Most of the functionality of this thesis can be traced to the database and Apache
Lens. Considering that CMSuite is primarily a technology demonstrator a smoke
test has been added to verify that all server components work together as ex-
pected. An integration test verifies the result of the introduced REST API fetched
by Lens.

As the most complex client component, the AgentService was developed using a
test-driven approach. Its Karma test has a statement, branch, and line coverage
between 90-97%.

45

4 Evaluation

This section evaluates whether the requirements defined at beginning of this
thesis have been met. Together with the requirements described in section 1.3,
acceptance criteria have been defined. The criteria are listed below, marked with
a 2� when fulfilled, and with 2 otherwise. Features which exceed the specified
requirements are marked with B.

Functional requirements

Requirement Q.1 asks for the possibility of selecting the org. dimension as the
basis of the exploration. This was achieved by introducing a tab group containing
the org. hierarchy navigation tree. However, the entire navigation code has been
rewritten to address other concerns, like the linking of agents in other parts of
the accountancy module.

2� An org. dimension can be selected.

2� Upon selection, the navigation tree shows the specific org. dimension.

B The navigation tree automatically unfolds and scrolls to the selected item. If
the user follows links between agents within the journal view, the navigation
tree will update its selection as well.

The organizational journals introduced for all current agent types (ISP, individual
and org. element) fulfill requirement R.1.

2� Based on the selection within the org. hierarchy (Q.1), a journal of contri-
butions is shown.

B All agents displayed in a journal are links that can be used to jump to the
journal of the specific agent.

Several filtering and aggregation options have been implemented so the user can
select the entries displayed and their level of detail within the journal view. To-
gether the implemented functionality satisfy the requirements R.2, R.3, and R.5.

46

2� The time range of the journal and time aggregations (per day, week, month,
. . .) can be selected.

2� The hierarchy level to be shown for the contributor/receiver side can be
selected independently.

2 Contributions that cross org. unit boundaries can be filtered.

2� An icon is shown when a contribution goes to an ancestor or a descendant.

2� Contributions that cross boundaries of org. units are marked by a specific
icon.

2� The entries of the journal are updated when filter options are changed and
applied.

B Indirect contributions can be filtered and are marked with an icon.

Non-Functional requirements

P.1 states that CMSuite is a technology demonstrator and the solution does
not have to be production ready. The concern behind this requirement is that
effort spent in fine-tuning might be lost when the solution is heavily altered or
even discarded later on. The requested features have been implemented with
these concerns in mind. Excess features like the automatic unfolding of the org.
hierarchy were developed to ease the development process, rather than providing a
production-ready solution. The available filter options are also not optimized yet.
Some filter combinations or options probably do not make sense in a production
version, however, they help the user gain a better understanding of the data.
In the beginning of a software project, it is often unclear what functionality is
actually needed to provide a service. A technology demonstrator or prototype
can help identify those needs.

As there are no database schema changes required, other than introducing an
insignificant number of views, requirement P.2 is fulfilled.

Requirement P.3 states that the response time of the accountancy module should
stay within a few seconds. This is the case as the solution proposed by this thesis
has a typical response time around 250ms on an average dual-core development
machine, without any optimizations.

The exploration of the CMSuite data is now possible without database or SQL
knowledge. Thereby P.4 is fulfilled as well.

The architecture and implementation is built based on Apache Lens. Lens is
released under the Apache Software License, Version 2.0. P.5 asks the developer

47

to consider and build on existing solutions with a permissive license and is thereby
also fulfilled.

The fisheye based aggregation R.8 was not implemented due to the lack of time.
Refer to chapter 5 for a possible solution.

Conclusion

From the nine functional requirements formalized, seven have been implemented
completely, one partially (item R.4) and one not at all (item R.8). All non-
functional requirements have been met. Ultimately, the goal for this thesis has
been achieved. Non-technical users are now able to explore and account for inner
source contributions within an organization. The introduced web-interface and
the journals provided help them to gain a better understanding of inner source
contributions within an organization.

During the implementation, a number of issues (see DAO/DTO and serialization
discussion) were identified and solutions were found. However, the non-functional
requirements required possible solutions to be compatible with the existing CM-
Suite database, thereby restricting their design.

On an architectural level, it is not known whether the current CMSuite database
design provides a good fit for analytics use cases. As mentioned before in sec-
tion 3.1, the schema is optimized (denormalized) to fit CRUD use cases, although
the requirements collected by this thesis suggest CMSuite might be used primarily
for analytics. In this case, INSERT and UPDATE operations are rare in comparison
to select operations and therefore optimization of insert/update do not seem to be
justified. It is reasonable to sacrifice ease of insert and update operations1 when
SELECT operations become much simpler in return. This might have further im-
plications, for example, if INSERT and UPDATEs are rare, the use of a OR-mapper
like Hibernate might not be necessary.

The proposed solution relies on Apache Lens to provide the analytics based on
OLAP data cubes. It is not known how big the community behind Apache Lens
is. A number of related companies rely on it, however, it is uncertain what will
happen if they decide to abandon the project. There are alternatives to Lens,
although each of these comes with their own drawbacks. For example, some of
them are not written in Java, while others do not support relational queries.
At the time of the writing, only Apache Kylin seemed a viable alternative, as
it introduced support for relational data sources with version 2.12, released in
October 2017. To date, however, this feature is not documented and lacks testing.

1For example consistency might be more difficult to achieve.
2https://issues.apache.org/jira/browse/KYLIN-1351.

48

The proposed solution has different impacts on the previously collected stake-
holders (section 1.3.1):

• Developers of CMSuite have to learn about the Apache Lens OLAP cube
configuration when changes to the data cubes are required. The core archi-
tecture has been documented in section 2.2 and section 3.1.2. However, the
introduced Jackson mix-ins potentially save substantial effort compared to
the DTO approach.

• As the usage of Apache Lens introduces an additional run-time dependency,
Administrators and DevOps engineers have to learn how to install and
configure Apache Lens. The created Dockerfile (see appendix D (p. 56))
provides the necessary documentation.

• The introduced database views make the Lens cube configuration more ro-
bust as they provide an additional abstraction. However, database changes
might break the view queries. The used common table expression (CTEs)
have been elaborated in section 3.1, as they might be difficult to under-
stand. This thesis also provides guidelines for a database schema re-design
should the developers come to the conclusion that analytics are indeed the
main use-case for CMSuite.

• The remaining inner source stakeholders profit from the new accountancy
UI, which can be used intuitively. It hides the complexity of the data schema
and enables the exploration of the data collected by the patch crawler.

The implementation elaborated in this thesis also introduces technical debt. For
example, the CubeQL queries are currently embedded as strings in data access
objects3. While this is not ideal, it is justifiable given the technology demon-
strator character of CMSuite. Lens supports prepared queries, however, they
currently cannot be parameterized. As the queries can require up 10 parame-
ters, the method signatures of the REST resources can be confusing. To mitigate
this problem, the parameters have been grouped logically and the groups are
commented.

While the Lens CLI proved useful during development by allowing new queries
to be easily tested, it also came with its quirks. For example, error messages are
sometimes not useful and the cause of a problem often has to be traced using
the log file of the Lens server. Also, queries have to be executed using “select” in
lowercase letters, as this is the name of the shell command. No uppercase alias
exists; this is why “SELECT” fails.

3The implications and possible solutions have been elaborated in section 2.1.1.

49

5 Future work

As mentioned before, the user story R.8 has not yet been implemented. The
fisheye view shows and aggregates org. elements based on their distance to the
selected element in the org. element graph. The assumption is that a user tends
to select org. elements he is familiar with (and therefore most interested in). At
the same time the user’s knowledge about other organizational units typically
decreases with their distance to the org. element he or she is assigned to.

The architecture proposed by this thesis can be used to design a journal aggregat-
ing entries based on distance. To implement the architecture, the graph distance
for each receiver/contributor must be known. This can be achieved by introduc-
ing an CTE view (see section 3.1) which consists of two columns. The first column
would contain every existing agent ID, whereas the second column would contain
every agent within distance one1. The solution assumes that indirect ancestors
are not shown. The created view can then be used as a further dimension table.
Using this approach, journal records can be aggregated by graph distance.

Contributions which cross org. unit boundaries cannot be filtered (R.6). However,
an icon is shown in the journal UI whenever a contribution crosses boundaries (see
figure 3.10 (p. 45)). To be able to filter the corresponding journal, another view
has to be introduced. This view requires three columns. The first two together
list every possible contributor/receiver combination, while the third column states
whether receiver and contributor share a common ancestor other than the root
node (boolean). This view can then also be used as a dimension table, filtering
and aggregating journal entries based on the value of column three.

Org. hierarchy branch validity

The current CMSuite database schema contains valid_since and valid_until
columns for each link type (see appendix B). These columns were introduced

1This solution could also be extended to contain the distance of all nodes. However, it
would require a third column containing the distance.

50

to be able to model structural changes of an organization over time. For ex-
ample, individuals might move from one org. unit to another (i.e. in case of
a promotion) or management might re-structure the organization. While there
were no user stories specified to address this issue, the proposed solution using
Apache Lens can be used to solve it.

On a database level, the validity timestamps need to be included in the denormal-
ized view, marked as a time partition like in listing 3.13 (p. 32), line 32. The time
partition can then be used within a TIME_RANGE_IN() clause. On the UI level,
both the org. hierarchy navigation and the journal are affected. A change in the
time range should also update the org. tree. For this Jackson EconomicAgen-
tReference mix-ins need to be extended to include the validity field. Afterwards,
the tree and journal should work as expected.

51

Appendix A: User interface mockup

Appendix A User interface mockup

Figure 1: Early accountancy mockup for individual contributions

52

Appendix B CMSuite database schema

Figure 2: CMSuite database schema2

2Schema has been modified to exclude entities and columns not relevant for this thesis.

53

Appendix C: Full database views

Appendix C Full database views

1 CREATE RECURSIVE VIEW orgh i e ra r chy (dimension_id ,
chi ld_orgelement_id , parents , depth , orgelementtype_id) AS (

2 SELECT DISTINCT orgdimension_id ,
3 parent_orgelement_id ,
4 ARRAY[] : : i n t e g e r [] ,
5 0 ,
6 e . orgelementtype_id
7 FROM org l i nk o
8 JOIN orgelement e ON e . id = o . parent_orgelement_id
9 WHERE parent_orgelement_id NOT IN

10 (SELECT DISTINCT chi ld_orgelement_id FROM org l i nk)
11

12 UNION
13 −− r e c u r s i v e exp r e s s i on −−
14 SELECT DISTINCT orgdimension_id ,
15 o . chi ld_orgelement_id ,
16 parents | | parent_orgelement_id ,
17 depth + 1 ,
18 e . orgelementtype_id
19 FROM org l i nk o
20 JOIN orgelement e ON e . id = o . chi ld_orgelement_id
21 JOIN orgh i e ra r chy n ON n . chi ld_orgelement_id =

o . parent_orgelement_id
22) ;

Listing 1: View for org. element hierarchy

Listing 1 shows the final view for the denormalized org. hierarchy, containing
the depth (hierarchy level) and the type of the org. element from the orgelement
table.

1 CREATE VIEW orge l ementtypeh ie rarchy (dimension_id ,
orgelementtype_id , name , depth) AS (

2 SELECT DISTINCT dimension_id , orgelementtype_id , name , depth
from orgh i e ra r chy

3 JOIN orge lementtype
4 ON orgelementtype_id=id
5 ORDER BY dimension_id , depth
6) ;

Listing 2: View for org. element type hierarchy

Listing 2 shows the view for the org. element type hierarchy (like Organization→
Product line→Team).

54

1 CREATE VIEW r e c e i v e r AS (
2 SELECT DISTINCT
3 a . elem AS orgelement_id ,
4 i nne r s ou r c ep ro j e c t_ id AS project_id ,
5 a . elem = pl . orgelement_id AS d i r e c t ,
6 a . index AS depth ,
7 dimension_id
8 FROM inn e r s o u r c e p r o j e c t l i n k p l
9 JOIN orgh i e ra r chy

10 ON pl . orgelement_id=chi ld_orgelement_id
11 JOIN LATERAL unnest (array_append (parents , chi ld_orgelement_id))
12 WITH ORDINALITY AS a (elem , index) ON TRUE
13 ORDER BY dimension_id , orgelement_id , pro jec t_id
14) ;

Listing 3: View for receiver hierarchy (inner source projects)

Listing 3 shows the entire receiver hierarchy view elaborated in listing 3.6, in-
cluding the receivers’ depth within the org. hierarchy and its dimension. Refer
to listing 4 for the contributors’ side equivalent.

1 CREATE VIEW cont r i bu to r AS (
2 SELECT DISTINCT
3 a . elem AS orgelement_id ,
4 person_id as ind iv idua l_id ,
5 a . elem = pl . orgelement_id AS d i r e c t ,
6 a . index AS depth ,
7 dimension_id
8 FROM per son l i nk p l
9 JOIN orgh i e ra r chy

10 ON pl . orgelement_id=chi ld_orgelement_id
11 JOIN LATERAL unnest (array_append (parents , chi ld_orgelement_id))
12 WITH ORDINALITY AS a (elem , index) ON TRUE
13 ORDER BY dimension_id , orgelement_id , person_id
14) ;

Listing 4: View for contributor hierarchy (individuals)

55

Appendix D: Docker environment

Appendix D Docker environment

Listing 5: Self-contained Lens environment
FROM mojo -docker.cs.fau.de/osrg/cmsuite -java8 :1.0
RUN apt -get update && apt -get install -y wget tar vim

postgresql -client net -tools && apt -get clean

ENV LENS_USER=lens

ENV HADOOP_VERSION =2.6.0
ENV HIVE_VERSION =2.1.0
ENV LENS_VERSION =2.6.1

ENV HADOOP_HOME =/opt/hadoop -$HADOOP_VERSION
ENV HIVE_HOME =/opt/hive -$HIVE_VERSION
ENV LENS_HOME =/opt/lens -$LENS_VERSION

ENV APACHE_DIST=https :// archive.apache.org/dist
RUN mkdir $HADOOP_HOME \

&& wget -qO - $APACHE_DIST/hadoop/common/hadoop -
$HADOOP_VERSION/hadoop -$HADOOP_VERSION.tar.gz \

| tar xz --strip 1 -C $HADOOP_HOME
RUN mkdir $HIVE_HOME && \

wget -qO - $APACHE_DIST/hive/hive -2.1.0/ apache -hive
-2.1.0 - bin.tar.gz \

| tar xz --strip 1 -C $HIVE_HOME
RUN mkdir $LENS_HOME \

&& wget -qO - $APACHE_DIST/lens /2.6.1/ apache -lens
-2.6.1 - bin.tar.gz \

| tar xz --strip 1 -C $LENS_HOME

configure Hive
RUN mv $HIVE_HOME/conf/hive -env.sh.template $HIVE_HOME/

conf/hive -env.sh && \
mkdir -p /var/log/hive/query mkdir -p /tmp/hive &&

chmod 1777 /var/log/hive /tmp/hive
ADD assets/hive/hive -site.xml $HIVE_HOME/conf/
RUN wget -q https :// jdbc.postgresql.org/download/

postgresql -42.2.0. jar -P $HIVE_HOME/lib/

56

configure Lens
ADD assets/lens/lens -site.xml $LENS_HOME/server/conf/
ADD assets/lens/lens -client -site.xml $LENS_HOME/client/

conf/
RUN mkdir $LENS_HOME/server/conf/drivers/jdbc/jdbc2 &&

\
mkdir /var/log/lens && chmod 1777 /var/log/lens && \
ln -s $LENS_HOME/client/bin/lens -cli.sh /usr/bin/lens

-client
ADD assets/lens/jdbcdriver -site.xml $LENS_HOME/server/

conf/drivers/jdbc/jdbc2/

set entrypoint
RUN mkdir /opt/util
ADD assets/util/* /opt/util/
ADD assets/entrypoint.sh /
RUN rm -fR /entrypoint && chmod +x /entrypoint.sh
CMD /entrypoint.sh && /bin/bash
ENV PATH="$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HIVE_HOME

/bin:${PATH}"

add lens user
RUN useradd -m -d /home/$LENS_USER -s /bin/bash

$LENS_USER && \
chown -R $LENS_USER:$LENS_USER /var/log/hive /var/log

/lens /tmp/hive $LENS_HOME/server/webapp/
ENV HOME /home/$LENS_USER
WORKDIR $HOME
USER $LENS_USER

57

References

Apache Lens project. (2017). Apache Lens website. Retrieved November 6, 2017,
from https://lens.apache.org/

Capraro, M. & Riehle, D. (2017). Inner source definition, benefits, and challenges.
ACM Computing Surveys, 49 (4).

Daeubler, A. (2017). Design and implementation of an adaptable metrics dash-
board (Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg).

FasterXML Wiki. (2018). Jackson mix-in annotations. Retrieved March 2, 2018,
from https://github.com/FasterXML/jackson-docs/wiki/JacksonMixInAn
notations

Github, F. J. (2018). Jackson usage examples. Retrieved March 2, 2018, from
https://github.com/FasterXML/jackson-annotations

Glyphicons project. (2017). Glyphicons. Retrieved December 22, 2017, from http:
//glyphicons.com

Harold Averkamp, L., AccountingCoach. (2017). What is a journal? Retrieved
December 3, 2017, from https://www.accountingcoach.com/blog/what-is-
a-journal

Jain, P. K. & Khan, M. (2009). Management accounting (5th ed.). McGraw-Hill
Education - Europe.

Kimball, R. & Ross, M. (2013). The data warehouse lifecycle toolkit (3rd ed.).
John Wiley & Sons, Inc.

McCarthy, E. W. (1982). The REA accounting model: A generalized framework
for accounting systems in a shared data environment. The Accounting Re-
view, 554–78.

Riehle, D., Capraro, M., Kips, D., & Horn, L. (2016). Inner source in platform-
based product engineering. ACM Computing Surveys, 42 (12).

Spolsky, J. (2002). The law of leaky abstractions. Private Blog. Retrieved Febru-
ary 6, 2018, from http://www.joelonsoftware.com/articles/LeakyAbstract
ions.html

Wikipedia. (2018a). Matrix management. Retrieved February 19, 2018, from htt
ps://en.wikipedia.org/wiki/Matrix_management

Wikipedia. (2018b). Representational state transfer. Retrieved February 19, 2018,
from https://en.wikipedia.org/wiki/Representational_state_transfer

58

https://lens.apache.org/
https://github.com/FasterXML/jackson-docs/wiki/JacksonMixInAnnotations
https://github.com/FasterXML/jackson-docs/wiki/JacksonMixInAnnotations
https://github.com/FasterXML/jackson-annotations
http://glyphicons.com
http://glyphicons.com
https://www.accountingcoach.com/blog/what-is-a-journal
https://www.accountingcoach.com/blog/what-is-a-journal
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
https://en.wikipedia.org/wiki/Matrix_management
https://en.wikipedia.org/wiki/Matrix_management
https://en.wikipedia.org/wiki/Representational_state_transfer

	Accounting for inner source contributions
	Architecture and design
	Implementation
	Evaluation
	Future work
	Appendices
	References

