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Abstract

Modern code review enables developers to conduct light weighted inspections using tools and 
is a well-established part of the software development process. However, it is not clearly de-
fined if  current processes and methods are done efficiently.  In this paper,  we examined a 
dataset from a tool supported code review process provided by a multinational software devel-
opment  company to determine  and test  indicators  for  code  review quality.  Within an ex-
ploratory approach, inspecting data from over 250 000 entries in 5 years of reviewing prac-
tice, we checked dataset characteristics, reviewer workload, reviewer selection and social net-
work metrics. We found evidence in all revised categories that the company lacks in an effi-
cient code reviewing process. Our results prove that current code review practice needs better 
defined standards and with usage of our indicators and numbers, future studies can compare 
their observed code inspection performance.
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1 Research Chapter

1.1 Introduction

Code review is a common practice in developing industrial and open source software. The 
generally  known objective of code reviews is  to  find errors in  source code files.  But the 
process is beneficial for many other factors, such as knowledge sharing or community build-
ing as well. Fagan in 1976 introduced an inspection process conducted within a physical team 
meeting including four different roles and five phases to complete (Fagan, 1976). Since soft-
ware development became more decentralized, like many open source projects, the previous 
elaborate  code  inspections  changed  to  lighter  weighted  peer  reviews.  Replacing  physical 
meetings, a developer could send his file via E-Mail to various developers. One of the peer 
needed to review the file and depending on the guidelines accept or let other developers con-
tinue the review process (P.  C. Rigby, 2011). Nowadays modern code review is tool sup-
ported. These tools can already be automated (Balachandran, 2013), but usually still contain 
human interaction. Gerrit is an example for a platform specialized on code reviews used by 
open source projects like Qt, ITK, VTK or Android (Bosu & Carver, 2013; Hamasaki et al., 
2013). An author can submit a patch to a repository predefining a set of reviewers, who then 
revise, comment and finally agree or disagree with the change. The patch in the end gets sub-
mitted depending on a specified number of positive reviews (Bosu & Carver, 2013). In indus-
trial practice some companies develop review software based on their own wishes, such as 
CodeFlow from Microsoft (Bacchelli & Bird, 2013) and firms that use external developed 
tools, such as Cisco using CodeCollaborator (Cohen & Brown, 2012).

The importance of code review practice has been proven by several studies. According to an 
exploratory research on Open Source Software projects, unreviewed files have a two times 
higher chance to induce bugs to the software system. The same study could also verify that re-
views positively affect  the readability  of source code (Bavota & Russo,  2015).  McIntosh 
could find evidence that low code review participation leads up to 5 additional defects and 
shares a significant link with software quality (McIntosh, Kamei, Adams, & Hassan, 2014; 
Shimagaki, Kamei, McIntosh, Hassan, & Ubayashi, 2016). And beside finding bugs a qualita-
tive research at Microsoft has shown that software engineers benefit from knowledge sharing 
and community building while  reviewing code (Bosu, Carver,  Bird,  Orbeck,  & Chockley, 
2017).             

Although the high significance,  some companies still  claim problems in their  review pro-
cesses. Microsoft revealed in a conference, that current workflows are not performed efficient 
bearing in mind the high costs. Accordingly code reviews needs a better understanding and 
improved best practices (Czerwonka, Greiler, & Tilford, 2015). In this paper we will investi-
gate on indicators to determine review quality. To achieve this, we are doing a data analysis 
on code review data, which we collected from a multinational software development com-
pany. The dataset contains around 250 000 entries collected in over 5 years of industrial soft-
ware development practice. The results stand out from others, as our company is in its sector 
obligated and regulated to do code review. Hence, we have a complete dataset, where no code 
can be submitted without an inspection. 

The contributions of this paper are the following.

- Insight into the quality of a regulated industrial code review process

- Code review quality measures derived from literature and data analysis 

- Author – reviewer network dynamics and metrics from industrial practice 



The paper is structured as it follows. First, we will examine related literature and give an 
overview about quantitative and qualitative studies focused on code review performance as 
well as researches about social network analysis on code inspection dynamics. After defining 
our research question, we will describe all methods we performed and sum up the characteris-
tics of our dataset. Building up on this we will present, conclude and clarify implications of 
all findings from our research.

1.2 Related Work

The following section gives an overview about related and relevant studies. We categorized 
the work in two sections. First, we present quantitative and qualitative research about metrics 
found defining code review performance. And in the second subchapter we will introduce 
studies focusing on social network analysis on code review data. 

1.2.1 Code Review Quality

Qualitative Research

Several previous studies approached code review quality by surveying, interviewing or ob-
serving both reviewers and developers. An early investigation on technical reviews detects the 
reviewers expertise as the most relevant quality measurement (Sauer, Ross Jeffery, Land, & 
Yetton,  2000).  Two researches  surveying developers  from NASA and the  Mozilla  project 
equally  attributes  that  thoroughness  and  clarity  define  code  review  quality  (Kononenko, 
Baysal, & Godfrey, 2016; Nelson & Schumann, 2003). The latest study focusing on code re-
view at Microsoft strengthens earlier findings from Bacchelli and Bird that understanding the 
code changes are an essential  challenge for reviewers. Furthermore reviewing in a timely 
manner, review size and managing time constraints are ranked the highest challenge of devel-
opers at Microsoft (Bacchelli & Bird, 2013; MacLeod, Greiler, Storey, Bird, & Czerwonka, 
2017). All qualitative studies give valuable insights in problems and concerns of the practic-
ing developers. In contrast, we will focus within our research paper on quantitative measure-
ments building up on these findings. 

Quantitative Research

Since the beginning of modern code review, huge amounts of data are accessible for quantita-
tive researches. In 2008 Rigby et al. revised both E-Mail discussions as well as version con-
trol repositories of the Apache project. After reviewing over 4000 contributions, they derived 
best practices considering this project as example of efficient and state of the art peer review 
technique. The reviews should be conducted early and frequent, in small but complete contri-
butions, working in small time with self-selected experts (P. C. Rigby, German, & Storey, 
2008). In a follow-up study in 2012 as well as in 2014, examining over 100 000 contributions 
from six OSS projects, they could confirm that asynchronous, frequent and incremental re-
views are the most efficient. They also stated out that experience is important and these ex-
perts need to be empowered by choosing their own files to inspect (P. C. Rigby, German, 
Cowen, & Storey, 2014; P. Rigby, Cleary, Painchaud, Storey, & German, 2012). Other quanti-
tative research on Open Source projects  found out  that  review participation and intensity 
shares a link with the quality of a completed inspection (Kononenko, Baysal, Guerrouj, Cao, 
& Godfrey, 2015; Thongtanunam, McIntosh, Hassan, & Iida, 2015). The closest approach to 
our research conducted by Izquierdo-Cortazar et al. used quantitative metrics such as activity, 
time-to-merge and patch-complexity to track review performance. This paper gives an auto-
mated methodology to inspect Linux style code review derived from their studies at the Xen 
and  Linux  Netdev  project  (Izquierdo-Cortazar,  Sekitoleko,  Gonzalez-Barahona,  &  Kurth, 
2017)
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In an industrial setting, Kemerer & Paul as well as Ferreira et al. evidence that the review rate 
is a crucial factor and by lowering them they could improve their process performance (Fer-
reira et al., 2010; Kemerer & Paulk, 2009). Microsoft investigated in a mixed qualitative and 
quantitative approach five of their own software development projects focusing on the useful-
ness of comments. The results implicate several recommendations for improving code review 
processes. First, agreeing with findings from OSS projects, they recommend choosing review-
ers carefully by experience. Still unexperienced people should be included to gain experience. 
Second the results show that the effectiveness in patches with a high number of files in the 
changeset decreases. Hence developers need to commit small changes to facilitate the review 
process. Their last recommendation is to identify the weak areas of reviews using the frame-
work they developed (Bosu, Greiler, & Bird, 2015). The most recent and relevant study from 
dos Santos and Nunes explored both technical and non-technical factors which affect code re-
view effectiveness in Distributed Software systems. The outcome was that all inspected fac-
tors influence code review performance. Increasing file sizes, more involved teams or loca-
tions are all decreasing the effectiveness of reviews. As well in contrast to findings from other 
studies they point out that more participation has a positive effect on effectiveness as the dura-
tion is shorter and more precise. Two reviewers are the perfect size for inspecting code which 
is corroborated by a previous study from Rigby and Bird (dos Santos & Nunes, 2017; P. C. 
Rigby & Bird, 2013). In our study we will build up on these factors that define review quality  
and find indicators to track them in our dataset.  

1.2.2 Social Network Analysis on Code Review Data

Preliminary work from Lopez-Fernandez in 2004 used Social network analysis on version 
systems of the Apache, GNOME and KDE project to learn more about structure and internal 
processes of the developers (Lopez-Fernandez, 2004). Ohira et al. probe cross project collabo-
ration on data from over 90 0000 projects and introduced a tool for visualizing Social Net-
works among them (Ohira, Ohsugi, Ohoka, & Matsumoto, 2005).

Hamasaki applied Social network analysis to identify different roles of a code review process 
extracted from Gerrit (Hamasaki et al., 2013). Meneely et al. developed a failure prediction 
model using Social network analysis on code review data (Meneely, Williams, Snipes, & Os-
borne, 2008). A growing body of literature has divided the reviewers in a core and a periphery 
group using Social network analysis (Bosu & Carver, 2014; Huang & Liu, 2005). A similar 
approach from Yang demonstrate a correlation between activity and importance using Social 
Network Metrics (Yang, 2014b). Another research from Yang describes finding a link between 
network position and code review quality (Yang, 2014a). The most relevant study as well 
questioned if network centrality is an indicator for inspection quality. After examining pre-
cisely four big Open Source projects, they could validate that high network centrality corre-
lates to a better bug report outcome. Based on this results they designed a bug report classifi-
cation mechanism using nine measurements including different centrality metrics (Zanetti, 
Scholtes, Tessone, & Schweitzer, 2013). Our research will in contrast track the overall inspec-
tion performance and provide results to benchmark future research.

1.3 Research Question

In this paper the general research question is:

„What are quantitative indicators to measure code review quality?”

As we want to specify our approach we breakdown this general question in several subcate-
gories. These will then be examined in an exploratory manner. We will derive our assump-
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tions from recent literature and in a best case compare our findings directly with results from 
other studies.

RQ1: What are quantitative indicators to measure code review quality?

RQ 1.1: Which general dataset characteristics determine code review quality?  

RQ 1.2: What are indicators for effective workload distribution of code reviewers?

RQ 1.3: How can we measure efficient reviewer selection?

RQ 1.4: Which social network metrics describe code review quality?

To answer the last Research Question RQ1.4. we evaluate the dataset within a Social network 
analysis and compare the results with the relevant work mentioned in chapter 2.2.

1.4 Research Approach

1.4.1 General Methodology and Approach

The research approach of this paper is divided into two methods, Exploratory Data Analysis 
and Social network analysis. To implement the exploratory data analysis, we used the method-
ology described by Tukey (Tukey, 1977). The data collection from our examined software 
company stores over 250 000 review entries. 

To start we needed to deserialize and merge the given datasets. Next, to have a dataset with 
only completed reviews, we eliminated all entries that haven’t been reviewed and accepted 
yet. Furthermore, we just considered data from 2013-2016, as 2012 and 2017 are not com-
plete. Afterwards we started exploring our data for saliences based on the points we defined 
by RQ1-3. We used mostly descriptive and statistical methods, on which we interpreted and 
compared our results.    

For the Social network analysis we took general methodology and metrics from both Freeman 
and Lopez-Fernandez (Freeman, 1978; Lopez-Fernandez, 2004). By applying those methods, 
we wanted to have a close look at the structure of the code reviewing dynamics at the soft-
ware company and compare them with similar studies. As a first step we needed to define the 
actors and their corresponding relationships to build up a network of nodes and edges. In our 
created structure the network contains two different actors:

- Reviewer: Solely reviewer of code patches 

- Author: Solely author or author and reviewer of a code patch 

Coming with the regulations of the company’s code review process, an author in a usual case 
reviews his own code before it gets committed. In our social network we didn’t consider these 
self-reviews to focus on the social dynamics to other actors.

The relationship between these actors in our approach is defined as times an author requested 
a code inspection from a reviewer. Therefore, the resulting edges are weighted and directed. 
While the direction empowers us to differentiate between requesting and conducting a review, 
the weight illustrates the total intensity of both relationships. As a second step we ultimately 
built up a directed and weighted graph showing the number of interactions from author to re-
viewer. The resulting network was a first visual description and the foundation of the further 
metric analyzation. We additionally created another undirected graph, as some metrics are bet-
ter interpretable in a bidirectional context.  

Third we used several metrics to look at individual and average performances inside the net-
work. And last, we compared the numbers and structure with other projects using literature re-
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view. In conclusion we aimed to understand the social dynamics of industrial code review 
processes and find more indicators to track down code review success or failure. 

The metrics  we used were  in- and  out-degree,  degree centrality,  closeness centrality,  be-
tweenness centrality and graph density. We will explain the significance and meaning of the 
social network measurements in the following subchapter. We added some additional metrics 
(page rank, eigenvector centrality) for further references, without focusing and interpreting 
them inside our study.

1.4.2 Social Media Metrics

In the following chapter we will describe metrics based on a graph with n nodes calculated 
from pk  an undefined vertices in the graph.

Degree and Degree Centrality

The degree CD of a network node pk is the number of different connections to other nodes. 
The calculation is done by simply counting the edges at a given node, see formula below 
(Freeman, 1978).

CD( pk )= ∑
i=1

n

a (pi , pk)  

wher e   a ( pi , pk )=1   i f   pi   and   pk   a r e   c onnec t ed   b y  a  l in e ;e l se=  0

Within a directed graph we need to distinguish between in-degree and out-degree. In-degree is 
defined as the number of edges pointing to the node, while out-degree determines the number 
of edges going from the node to other nodes (Newman, 2014). In our example the in-degree 
counts from the reviewer angle the number of different authors who were requesting a code 
inspection. The out-degree in contrast is from the authors perspective the number of different 
reviewers he had. Therefore, it enables distinguishing between reviewer and author impor-
tance.

The mean degree or degree centrality C’D puts the degree into a proportion to the network by 
showing how many percent of the network a node is connected to. The calculation for a node 
is done by dividing the degree with the total number of actors in the network (Freeman, 1978; 
Newman, 2014).

CD
'

( pk )= 
∑
i=1

n

a ( pi , pk )

n−1

wher e   a ( pi , pk )=1   i f   pi   a nd   pk   a r e   c onnec t ed  b y  a  l in e−e l se= 0

The degree centrality has high importance to track down individual performances and com-
pare them with other networks of different sizes and conditions.

Closeness Centrality

The closeness centrality C’C of a node pk measures the mean distance to reach any other node 
in the network. It is calculated by first summing all shortest path distances to all reachable ac-
tors and is then normalized by the number of nodes n in the network (Freeman, 1978).

C 'C ( pk )= 
n−1

∑
v=1

n

d ( pi , pk )

w it h  d (p i , pk )=sho r t e s t   pat h   d i s t ance   b e t w ee n   pi   a nd   pk   in  t he  g r a ph  

The higher the resulting value is, the more central is his position inside the network. An actor 
with a high closeness in our network indicates that he can reach people of different expertise 
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easily and fast. In many cases the closeness centrality is shown as the actual average distance 
without the normalization from the formula above. This makes the value easier to interpret, 
but also more difficult to compare. To have both advantages, we will work with both values.

Betweenness Centrality

Betweenness centrality CB implies how many times a node pk is a broker between two net-
works and is defined as the fraction of all shortest paths that pass node pk. The value is usu-

ally normalized by the formula  2
(n−1)(n−2)

  with  n as number of nodes in the graph 

(Brandes, 2001; Freeman, 1977).

CB ( pk )=  
∑

s ,t  ∈  V

σ (s ,t|pk )

σ (s , t )

wher e  V   is   s e t   o f   no d e s ;σ ( s , t ) i s   numbe r   o f   sh o r t e s t   (s ,t ) pa t h s

and  σ ( s , t , pk )  i s  number   o f  t ho se   p a t h s   p a s s ing   t hr ough   some  node   pk   o t h e r  t han   s ,t

The betweenness is a useful complement to  degree and closeness centrality, as it shows an-
other angle evaluating how often an actor connects certain subnetworks or persons with other 
components. In our reviewer network, the betweenness shows actors who might connect be-
tween departments and different knowledge areas, hence have a high importance even without 
having a high degree or closeness. 

1.4.3 Used Tools and Libraries

To perform both Exploratory Data Analysis and Social network analysis on the code review 
data we used Jupyter Notebooks as primary development environment. The Jupyter Notebook 
App is an open source server-client program to edit and execute live code, equations, visual-
izations or text elements via a web browser. Taking advantage of these specifications, we 
could structure, execute, visualize and comment every step in one document to share and dis-
cuss it easily1.

The programming language we chose to write and execute our code inside the Jupyter note-
book is python 3.6. The widely usage, easy notation and powerful libraries made it possible to 
implement an easy readable code to perform all our desired methods.

We imported several libraries to undertake our operations. First, we used  pandas2 for data 
structure and data analysis. This open source library supports high-performance tools for e.g. 
deserialization,  grouping  or  selecting  attributes.  The  statistics,  numpy3 and  collections li-
braries empower the execution of mathematical and statistical operations. To visualize the de-
scriptive methods, we used matplotlib4 a 2-D plotting library. Ultimately the networkx5 library 
enables our Social network analysis with built in methods to visualize our graph as well as 
calculate metrics.

1 http://jupyter.org/
2 https://pandas.pydata.org/
3 http://www.numpy.org/
4 https://matplotlib.org/
5 https://networkx.github.io/
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1.5 Used Data Sources

1.5.1 General Characteristics of the Dataset

In our study we got the code review data of a multinational software development company. 
They supplied us with their complete recordings from 5 years of industrial code review prac-
tice. As the data is confidential all included personal data, such as names, are anonymized.  

The dataset we used for our study is divided in three different files: Reviews, review_entries 
and files. To have a better understanding of the files and attributes, we shortly summarize the 
inspection process. We need to state out that every single code commit needs to be reviewed. 
This must be proven and is regulated by as central entity. 

Before the reviewing starts an author submits a code patch. With the submission the corre-
sponding information gets saved in the  file table. Afterwards the file gets reviewed by as-
signed reviewers until the author got all electronic signatures including sometimes his own. 
When the file got all needed signatures, it changes the status from Unreviewed to Accepted in 
reviews with the current timestamp. In a special case scenario, it can already have skipped the 
previous steps when no review was needed. The exact numbers of the dataset are the follow-
ing.

- reviews: 118166 entries with 10 attributes

- review_entries: 254212 entries with 3 attributes

- files: 98761 entries with 8 attributes

After merging all files to review_entries and applying all filters described in 2.4 we have a re-
sulting table of 210697 entries with all 21 attributes. A more precise explanation of the differ-
ent attributes and the ones we focused on will be topic in the following subchapter.           

1.5.2 Attributes of the Dataset

Figure 2-1 and Table 2-1 give an overview about all attributes and the referencing tables. As 
told in the previous chapter variable first_name and last_name from class Person in Figure 2-1 
got deleted and anonymized by identifiers.

To have a better understanding of our research results, we will explain all attributes we fo-
cused on during our research. All not mentioned attributes we either haven’t considered be-
cause they were to company specific, for example branch or bundle. Or we didn’t need them 
answering our research question. Some additional statistics and analysis will be part of 3. 
Elaboration chapter, e.g. is_safety_relevant.

The main attributes we focused on in our research were reviewer, author, date, state, and re-
sult. The person’s IDs with counting workloads and interactions played the mayor role in our 
study represented by reviewer and author. The date of the reviews helped us to evaluate cer-
tain results and put it into a better context by having an exact timestamp. To organize our data, 
state and result were essential attributes to separate the data we wanted to focus on. Further 
statements about the quality of the dataset and attributes is topic of RQ1.1 and will be ex-
plained in the following chapter.         
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Figure 2-1: Files and attributes - class scheme

Attribute Type Values From table Study-relevant
Reviewer float anonymized person ID reviews Yes
role string reviewer role (e.g. DEV) review_entries No
orgunit string organization of reviewer review_entries No
date timestamp time & date at acceptance reviews Yes
file integer file ID files, reviews Yes
type string FourEyes or Walkthrough reviews No
state string Reviewed, Unreviewed, 

NoReviewNeeded
reviews Yes

result string accepted or empty reviews Yes
remark string remark (e.g. none) reviews Yes
work_item_id integer files No
is_safety_relevant boolean true or False reviews Yes
is_changed_in_range boolean true or False reviews No
organization string organization of review reviews No
hash string unique hash value file No
name string filename file No
bundle string bundle name file No
classification string file  classification  (e.g.  Source  

code)
file No

author integer anonymized person ID file Yes
changeset_id integer ID of changeset file No
source_control_project string name of module file No
branch string file branch file No

Table 2-1: Attributes with types and values

1.6 Research Results

1.6.1 Dataset Characteristics

Which general dataset characteristics determine code review quality?

8



In our first research question we want to clarify if we can find dataset characteristics, which 
expose code review quality. As a guideline we adhered to the six dimensions of dataset quality 
defined by Askham et al. These are  completeness,  uniqueness,  timeliness,  validity,  accuracy 
and consistency (Askham et al., 2013).  We applied every dimension to our dataset and in the 
end concluded which are characteristics to determine code review quality.

We started with checking the completeness, defined as the absence of empty values. The first 
simple step was checking for all missing values in our dataset. As a result, we could spot 
empty values for the two attributes orgunit and organization. In numbers, orgunit is missing 
95.4% and organization 96,6% of its values. Consequently, due to this high number of per-
centage we can’t consider these attributes for further research and they don’t give visibility for 
the companies’ reviewing process. To be more precise we also checked all strings for empti-
ness and numbers for zero values. Within that approach we found out that the remark attribute 
has 192 times an empty string. Even though it makes only a very small percentage (0.17%), it 
is an indicator that the remarks need further investigation. 

Looking at the  uniqueness we could verify that all entries in the  reviews and  files table are 
unique. Although review_entries has 5 entries that are duplicated, it just means that a person 
reviewed a file twice and shouldn’t be concerned.

The timeliness dimension describes if the data reflects the reality for the point of time. In our 
dataset we are only able to see the date and time, when the review gets finally accepted. Ac-
cordingly, we have mayor limitations in observing the time and we can’t compare our data 
with studies that investigated about time performing a review as a quality indicator (Izquier-
do-Cortazar et al., 2017; Jiang, Adams, & German, 2013; Kononenko et al., 2016; P. C. Rigby 
et al., 2008).

As a fourth dimension a dataset meets validity, when it conforms to the syntax of its defini-
tion. Not considering the empty values all attributes are valid to format, type and range.

The accuracy of a dataset is the degree the values describe the actual event being captured. 
Looking at the dataset, we could already find out that the timeliness has missing accuracy. 
Other attributes that our dataset doesn’t contain compared to other studies are change sizes 
(dos Santos & Nunes, 2017; Kononenko et al., 2016; Laitenberger, Leszak, Stoll, & Emam, 
1999; P. C. Rigby & Bird, 2013) or a possibility to leave comments after every review entry  
(Bacchelli & Bird, 2013; Bosu et al., 2015; Rahman, Roy, & Kula, 2017). While elaborating 
the completeness we could already assume that the remarks aren’t accurate. Further examina-
tion of the remark structure showed that the median length of a remark is only 5 characters 
long and is therefore both incomplete and inaccurate.

Last, we checked our data on consistency, the absence of differences. An interesting finding 
showed us that one file has occurred  1 time marked as  safety relevant and in contrary  765 
cases it hasn’t. Since the characteristics of the file shouldn’t change for different reviews, we 
consequently found inconsistency in the important attribute of safety relevance. Apart from 
that issue haven’t found further inconsistent values in our dataset.

Based on our findings we want to determine which dimensions are indicators for code review 
quality. The inspection for missing values was a first indicator about the quality of the code 
reviews. It showed that two attributes are not usable for review retrospectives. Transferring 
the observation to practice, we can’t ensure that missing fields in organization and orgunit are 
due to bad review practice, as it might also result from missing information from the system. 
In contrast the missing fields for remarks showed us that it was surely indicating to lax code 
review practice in general. Building up on this we could see that the missing accuracy of the 
data was also affected by code review practice. First the already mentioned inaccurate usage 
of the remarks. And second the missing timeliness concluding from insufficient recording of 
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valuable information. Especially when important factors like review-entry comments, review-
entry timestamps or file size are not covered in the dataset, the company can’t ensure adequate 
code review quality. As the timeliness in code reviews is always connected to recorded time-
stamps, we don’t separate it as observation and rather include it in accuracy as a characteris-
tic. Moreover, we observed that our dataset has inconsistencies. And accordingly, consistency 
is a useful characteristic to measure code review quality. The reason is that if a dataset con-
tains inconsistencies it is highly probable it is cause by an imprecise review. 

In comparison we conclude from our findings that neither uniqueness nor validation are good 
indicators for code review quality. Both are very important dimensions for data quality but 
aren’t strongly connected to the inspections. Ensuring these are more related to the quality of 
the review tool than the actual reviewing process.

1.6.2 Reviewer Workload

What are indicators for effective workload distribution of code reviewers?

For our next research question, we wanted to examine how reviewer workload affects code re-
view quality. Several studies have covered the topic about reviewing time and rate. The results 
conclude that code review rate highly influence their performance (Ferreira et al., 2010; Ke-
merer & Paulk, 2009). Kemerer & Paul additionally suggest that a code review should be pre-
pared and not exceed 2 hours of inspection time. Bosu revealed in a study that developers at 
OSS systems spend in average  6 hours per week on reviews and only  12% more than  10 
hours (Bosu & Carver, 2013). A subsequent recent research compared OSS with Microsoft. 
The results were that the average workload for developers were 4 hours at OSS projects and 5 
hours at Microsoft. That makes 10-12% in an average 40-hour working week.  

Building up on these results, we want to discuss whether our data indicates an effective work-
load distribution of the reviewers. The fact that every timestamp included several review en-
tries, makes it unprecise to say when the review entry was performed exactly. Thus, we re-
vised in a first place the general workload distribution over the years 2013-2016. Figure 2-2 
and  Figure 2-3 are boxplots showing the number of entries from all participated reviewers. 
Both illustrate the median, lower and upper quartile and  Figure 2-3 additionally shows the 
outliers. In numbers, 50% of all reviewers conducted between 18 and 284 reviews with an av-
erage of 61 entries in this 4 years. The widespread values and the closeness from median to 
lower quartile indicate that the workload is focused on a small set of reviewers with high 
workload. Especially by seeing the outliers from Figure 2-3 we can infer to high workload 
concentration.  According to  our  results  three  reviewers  recorded  more  than  5000 entries. 

Figure 2-2: Number of review entries from 2013-2016
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Figure 2-3: Number of review entries from 2013-2016 (with fliers)

In order to get our results into the important time or review rate context and compare it with 
former research we broke down the numbers in all  48 months of our recordings. We didn’t 
choose a weekly overview, concerning the inaccurate timestamps. While Figure 2-4 describes 
how the median and quartiles change from month to month, Figure 2-5 shows the widespread 
outliers for certain reviewers. The median number shows that developers conduct around 6 re-
views per month without a wide spread. Assuming that an average review lasts about 60 min-
utes, they would spend around  1.5 hours on reviews each week. Based on our assumptions 
and compared to the results from Bosu & Carver, where at Microsoft developers spend  5 
hours on average, we can observe significant differences. More noticeable are the extreme 
outliers in Figure 2-5. Keeping in mind that the inaccuracy of the time might affect some val-
ues, we can still see obvious patterns that prove too high workloads for many reviewers. The 
numbers indicate for example that  217 times a reviewer conducted  160 reviews in just one 
month. In a from our company 35-hour week this would be a more than  1 review per hour 
rate. Our highest values show review rates from 7 up to 12 reviews per hour, which would be 
out of any realistic effort.  We would need further investigation to find the causes for this 
widespread numbers. But it is highly probable that it is in the consequence of lax code review 
practice. 
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Figure 2-4: Monthly reviewer workload distribution

Figure 2-5: Monthly reviewer workload distribution (with fliers)

As a conclusion, we could find various indicators for ineffective workload distribution at our 
company’s dataset. For the scrutiny of an effective workload we recommend using boxplots, 
as it shows various measurements to analyze your data. Looking at our results we suggest that 
the median value needs to be well centered between the two quartiles. This would mean the 
workload is equally distributed. A good median review rate usually depends on the company’s 
structure but should be not more than around  15-20 reviews per month. Moreover, the dis-
tance of the two quartiles show the spread of the workload and is another indicator for code 
review quality. In an efficient process the quartiles should have a low distance which would 
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mean very good distributed reviewing. Last the outliers or fliers might signalize lax code re-
view or even fraud, e.g. a person just signs code reviews to accelerate submissions. In any 
case a low number of closely spread outliers would indicate an effective workload distribution 
of code reviewers.

1.6.3 Reviewer selection

How can we measure efficient reviewer selection?

After having the close look on the reviewer workload, we now want to inspect the author re-
viewer relationship. The question we want to clarify is how to measure an efficient reviewer 
selection process. Two recent studies addressed the problem of how to select a reviewer. Both 
developed an automated tool and chose reviewers based on their experience and expertise 
(Balachandran, 2013; Ouni, Kula, & Inoue, 2017). Other studies support the hypothesis to 
rather chose experienced developers to guarantee higher code review quality (Kononenko et 
al., 2015; P. Rigby et al., 2012; Sauer et al., 2000). Taking these results into consideration we 
needed to find quantitative measurements if authors choose experienced reviewers for inspect-
ing their files.

Since our data doesn’t reveal information neither about fields of expertise nor experience, we 
needed to work on several assumptions. We assumed first that an author usually works on 
projects that need similar fields of expertise and second that a reviewer is building up exper-
tise and experience every time reviewing a code. Our resulting hypothesis is the following. If 
a reviewer has already been revised a file of an author, the author should tend to select this re-
viewer again, as he already has familiarity and expertise with his code. Accordingly, we want 
to examine the distribution of the reviewer count for each author depending on the general 
number of reviews the author requested. Based on our hypothesis an author should have a 
variation but small pool of experts revising his code.

To measure this, we checked the proportion between number of requested reviews and num-
ber of different reviewers an author had. We used a scatterplot to evaluate the distribution and 
calculated a regression line for a general observation (Figure 2-6). It is important to mention 
that proportion in our figure is 1:10 between number of different reviewers and number of re-
quested reviews. Table 2-2 shows in numbers how the relationship is distributed. 

To check our hypothesis, we first want to examine the general distribution of the reviewer 
number per author, represented by the linear regression. It denotes a line with the minimal dis-
tance to all data points, hence shows how the number of different reviewers grows in relation 
to the  number of requested reviews.  The resulting lines’ slope of 1,23% indicates a small 
growth and we interpreted the result as an efficient and good ratio for author-reviewer distri-
bution. Our results can be used for future studies in this subject. Another observation is that 
with increasing number of requested reviews the number of different reviewers is close and 
mostly below the regression line. Consequently, we can suggest that the very active authors 
stick to our quality premise and choose only experienced reviewers. Nevertheless, it is to con-
sider that several examples have a concerningly very low number of different reviewers while 
having requested many inspections. We think these very low numbers of different authors can 
result to a very unilateral perspective and be negatively for your inspection quality and as well 
might be an indicator for possible fraud. Generally, the dispersion should be low in a perfect 
setting. But looking at the numbers from Table 2-2 we can see that variation in our review 
data is high. First, the high difference of the arithmetic-means and medians demonstrate that 
we have high outliers, since the median is less affected the extreme values. Second the stan-
dard deviation depicts the dispersion from the mean. According to our value of 23.9 we can 
see that the values are widespread and especially influenced by the outliers.  Our last observa-
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tion is focusing on the density of the distribution. We can see that most authors seem to only 
request very few reviews, since the density is the highest in the left bottom corner.     

Summing up our observations the companies’ authors generally tends to choose reviewers on 
experience following our premise. The relation is generally good but wide spread. Again, the 
extreme outliers need to be further investigated.               

Figure 2-6: Author - reviewer relationship

Different reviewer per author Requested reviews per author

Median 8 61

Arithmetic mean 14.4 507.7

Standard deviation 23.9 1 356.1

Outlier 240 142 206

Other information

General distribution 682 reviewers - 415 authors

Linear regression slope 1,226 %

Table 2-2: Author - reviewer relationship in numbers

In a second a approach motivated by the density observation from Figure 2-6,  we wanted to 
look from the angle of the reviewer. Rigby et al. defined within their study on the Apache 
server that an effective reviewing environment consists of a small group of self selected ex-
perts (P. C. Rigby et al., 2008). To investiagte this we sorted all 682 reviewers by the number 
of reviews they conducted in descending order. Afterwards we separated them into 14 groups 
from the 50 most active to the 50 least active reviewers.  Figure 2-7 shows our result repre-
sented by a  pareto chart. It first shows by barchart the totalized number of the group con-
ducted reviews and by linechart the percentage of share from all reviewers. We can see that 
the first 50 have a share of over 50% of all reviews and the first 150 over 80% of all reviews. 
Accordingly our data shows that  80% of all work is done by only  20%  of the reviewers. 
Therefore this is by the definition of having a small group of expertised and experienced re-
viewers an efficient reviewing process.
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Figure 2-7: Share of most active reviewers (pareto chart)

Comparing our results with the reviewer workload (RQ2), the criterious seem contrary. First 
we critized the intense workload for various reviewers and next we looked for a small group 
of experts conducting reviews. Hence it is important to explain that we don’t look at the time 
axis within our observations for the reviewer selection. Consequently we separated this two 
approaches. Nevertheless, the two criterious are not contrary as we can both have a small pool 
of experts having a managable monthly review rate.  

In conclusion we can measure efficient reviewer selection by putting number of requested re-
views and number of different reviewers per author into relation. The resulting numbers of 
different reviewers should slowly rise by increasing requested reviews and be low spread 
along an regression line with a  small slope. Our pareto chart indicates the share of how many 
reviews gets conducted by the most active reviewers. According to former research a small 
group of experts conducted more efficient reviews.    

1.6.4 Social Network Metrics

Which social network metrics describe code review quality?

In this section we analyze our dataset using a social network analysis. In our network we use 
the metrics described in chapter  Research Approachto analyze which describe code review 
quality. First, we have a look at the resulting network from Figure 2-8. It shows all authors 
and reviewers connected by weighted undirected edges containing all data we have. The graph 
is hardly interpretable, because of its’ high density and big number of nodes and edges. But 
the formation shows that many authors are strongly connected requesting and reviewing code 
while many reviewers in contrast just have just one-time connections mostly reviewing code.
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Figure 2-8: Social network (reviewer - author)

To compare our results, we will use the study from Meneely et al. as he revealed several met-
rics we also inspected. Their research focus on failure prediction using a Social network anal-
ysis on developers from a network product (Meneely et al., 2008). Still we will need to inter-
pret several numbers without references, as current research is missing comparable measure-
ments in this field. Our numbers will be useful benchmarks for further studies on code review 
networks.

For the calculation of our metrics we differentiated between two types of graphs, undirected 
and directed. The directed graph is meant to distinguish between authors and reviewer impor-
tance. But looking at centrality and some other measurements we interpreted every review re-
quest as bidirectional interaction. The reason is that in a directed network an actor who is only 
reviewer wouldn’t have influence at all, since he has no outgoing edges. All metrics we mea-
sured within the directed graph we marked with “directed” in the Tables below.

Table 2-3 shows general characteristics from the network of Figure 2-8. The companies’ au-
thor-reviewer Network consists of in total 777 different actors with 5477 edges. The density, 
or proportion of all edges to all possible edges, is 1,81%. Compared to the dataset from Me-
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neely et al., which consists of 161 developers, our network is comparable big. The fact that 
our density is around 1-2%, indicates that we have a widespread network with a low level of 
exchange between the actors. 

Table 2-4 shows centrality measures applied on our network. In contrast to the results from 
Meneely, where the training data is from a development of one network product, we could ex-
pect lower average centrality values by the higher diversity of our company’s products. Usu-
ally most metrics are normalized to compare networks easier. Since our paper from Meneely 
hasn’t normalized its values, we appended them in brackets if necessary. 

To analyze the general code review performance, we first want to focus on the average values. 
The average degree is 14 for our author-reviewer network. In comparison the developer graph 
from Meneely has an average degree of 19, even while having fewer nodes. In contrast the av-
erage not-normalized closeness of our network is comparably strong with an average distance 
of 2.90 in contrast to the smaller network from Meneely with a value of 2.77. Looking at our 
last centrality measurement, the betweenness centrality, we don’t have comparable data. But 
we can see that the betweenness centrality is with an average of 736 comparably high consid-
ering all the outlying actors from Figure 2-8 with very low betweenness.  

As a second step we compare our outlying values with the average values to evaluate single 
performances. When having a closer look at the individuals with the best values from our ta-
ble, we found out that all metrics beside out-degree is dominated by the same person. With its  
extremely high out degree it controls around one third of the whole network with direct con-
nections. As well, the person is very fast connected to all other actors and connects many sub 
networks and single persons to the main component. Especially by comparing the average 
with these values, we can see an impressive influence. 

Characteristics Value

Number of nodes 777

Number of edges 5477

Density 1.81%

Table 2-3: Social network general characteristics

Metric Average value Best value

Degree 14.09 265

In-degree (directed) 7.38 55

Out-degree (directed) 7.38 239 

Degree centrality 1.90% 34,14%

In-degree centrality (directed) 0,95% 7,09%

Out-degree centrality (directed) 0,95% 30,79%

Closeness centrality 0.35 (2.90) 0.56 (1.79)

Betweenness centrality 0.0025 (736) 0.2288 (68792) 

Eigenvector centrality 0.0223 0.0283 

Pagerank 0.0012 0.0214 

Table 2-4: Social network metrics

We concluded that a social network analysis enables to identify important actors inside the 
companies’ reviewer network. By degree it is easily possible to spot important authors and re-
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viewers and the other centrality measures indicate hubs and generally important actors. To de-
termine the review quality, we used average values and compared them with another study. 
Even though it was a good indication about the quality of the structure, we would need more 
comparable data to make more precise statements.   

1.7 Discussion

Discussing our research result we want to have a first look at our mayor limitations. As de-
scribed in chapter Dataset Characteristicswe found several limitations throughout inaccuracy 
and missing fields in our dataset. This made several approaches impossible or led to restric-
tions. Another limitation in our study was the missing of comparable data for a precise evalua-
tion. Even though the strong research on the field of code reviews, relevant studies doesn’t re-
veal equivalent precise numbers in order to validate our results.

These limitations decrease the general internal validity of our study. The missing time accu-
racy leads to biasing our results for the reviewer workload. Moreover, the missing information 
about patch sizes minimizes the precision in the workload observations. This makes it as well 
more difficult for external transferability. Nevertheless, the fact that the code review data is 
regulated and complete raises the internal validity, as we can ensure that all code review activ-
ities are documented. This fact makes it as well externally transferable to industrial practice 
that can confidentially ensure a fully documented inspecting process. Our results within the 
social network analysis can be due to its normalized values, easily be transferred to further re-
viewer author dynamics. The general methodology about analyzing the dataset, reviewer se-
lection and reviewer workload is applicable for further studies in this field. As most projects 
document date as well as author and reviewer with IDs, it is external valid when considering 
the possible differences in patch sizes throughout the reviews. 

1.8 Conclusion

In this paper, we have proven that the current code review standards in industrial practice 
needs improvements and more precise standards. On the investigation of a multinational com-
pany conducting governmental controlled code review process, we could find several indica-
tors to measure code review quality. We examined dataset characteristics, reviewer workloads, 
reviewer selection and an author-reviewer network in an exploratory approach. Our results 
have high significance as we could find outliers in all categories we inspected. Based on this 
findings companies can compare their code review practice using our approaches and results. 
As an implication companies conducting code review, should be aware that current practice 
still needs careful observation and reconsideration.

1.9 Future Work

While we had a quantitative approach for our research paper, as a part of future work we plan 
a qualitative method to investigate further on the dataset we have. It would be interesting to 
interview several persons who are involved in the center of the reviewing network to investi-
gate further on reasons for our outlying values. Another approach for future research is to 
compare our  results  to a  similar  sized open source project  using the same methods.  This 
would empower us to have a face to face evaluation of our findings. 
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2 Elaboration chapter

2.1 Remarks

In a relevant study at Microsoft, Bosu et al. measured code review quality building up on in-
terviewing developers on code review comment usefulness. Regarding to their outcome, com-
ments perceived as useful are identification of functional issues, validation issues, API sug-
gestions, software design to follow or comments about team coding conventions. As a result, 
they created a classifier evaluating the usefulness of code review comments (Bosu et al., 
2015).

Based on this study, we checked if we can find similar observations inside the code review re-
marks. In chapter Dataset Characteristicswe already could shortly prove that the remarks are 
very unprecise due to its shortness and incompleteness. In this chapter we want to have a 
closer look at the length and content of the remarks.

Figure 3-1 shows a boxplot representing median, upper- and lower quartile of the remarks in 
character length. It shows that 50% of the remarks are between 4 and 18 characters long with 
a median of 5. The antennas show that comments with 0 strings and comments upon the 
length of 35 appear in the dataset as well. We can conclude that within that range of character 
length the reviewers hardly give useful comments, such as defined from Bosu et al. above.  

Figure 3-1: Remark character length

To complement our findings, we want to inspect the content of the remarks. With only looking 
at the length of the comments, we can’t ensure if the company isn’t using special codes or ab-
breviations. Therefore, we created a wordcloud, showed below in Figure 3-2. This graphic 
groups all terms or phrases and represents the number of appearances as size of the word in-
side the graphic. The resulting figure states out that we can’t find evidence for any form of 
codes or abbreviation that justify the average short length of the comments. Most of the re-
marks don’t have any content and use either default terms, very few additional information, 
small hints or some state out the review type.     
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Figure 3-2: Remarks wordcloud

The code review remarks from our company’s dataset is a hardly used medium for actual 
comments on their inspections. Most of comments are short and without content. We can con-
clude that the company needs to define a useful commentary function and give the reviewers 
incentives for using it. In the meantime, their process lacks in effective code reviewing.  

2.2 Safety Relevant Files

The data we got from our company has several company specific attributes we haven’t con-
sidered due to difficult transferability. Still we want to take advantage of one special token, 
the safety relevant of a file.

Within our exploratory research we checked if the safety relevance has influence on the com-
pany’s code review process. We expected more review entries for files that have set their to-
ken is_safety_relevant to true, as safety relevant files have a lower error tolerance and need 
more precise inspections. Hence, we wanted to check if safety relevant files have a higher 
number of entries because of probable higher standards and less tolerance. The result was that 
the arithmetic mean for entry-number per file is 2.63 for safety relevant and 2.66 for not 
safety relevant files with a median of 2 in both cases. Accordingly, the findings are contrary to 
what we assumed before and safety relevant files have an average lower number of entries. 
Even though the difference is low and with 0.28% we have a low share of safety relevant 
files, the results are concerning for the companies’ code review process. We can recommend 
that the company defines its standards for safety relevant files or have a more accurate defini-
tion of this attribute in general. 

2.3 Weekday and Working Time Distribution

Another additional approach was to examine the distribution of time and workdays. Therefore 
we checked the timestamps a review recievews when it gets accepted. As discussed in chapter 
Dataset Characteristics the date has missing accuracy, since review entries don’t have any 
form of time documentary. Still we checked if the review acceptance timestamps have pat-
terns that indicate to issues in their review practice. 
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Figure 3-3 shows the distribution of the weekdays when the code review got commited. As we 
can observe, the distribtuion is normal and with low differences between the usual working 
days, Monday to Friday. As expected at Saturday and Sunday the number is very low due to 
the fact that these two days are out of the working hours for our company. Concludingly the 
reviews are well distributed within the working week and don’t have any atypical behaviour. 

Figure 3-3: Review commit workday distribution

The distribution of time is illustrated by Figure 3-4. According to the usual office hours, we 
were expecting the main activity from 8am to 5pm with a slow rise before and a decrease af-
terwards. Looking at our findings, we can see that the activiy rises as expected through the 
morning with a small valley during the lunch time from 12am to 1pm and then slowly de-
crease by the finishing of the day. Hence we have can observe the anticipated results during 
the working hours. On the contrary, the very first hour of the day has an high peak at midnight 
from 12pm to 1am. Since we can’t expect people working at midnight and especially as it is 
the only peak during the night, the result needed further investagtion. Within a closer exami-
nation of the exact times when the reviews got commited, we could find out that almost all 
values (3824) in this timeframe are submitted at exactly 00:00:00 o’clock. Thus it is evident, 
that the findings are due to either an system error or a manual manipulation. We can suggest 
that these manipulated timestamps are the result of a late data import, which was mentioned 
from the software company. However, as we don’t have further information about reasons for 
that import, it would be an interesting question for future research.
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Figure 3-4: Review commit daytime distribution

2.4 Social Network Core Analyzation

In our findings from chapter Reviewer selectionwe found out that 80% of the work is done by 
only 20% of our reviewers. We could verify that with our social metrics and graphs, which 
consist of reviewers and authors with very strong connections inside the network. Conse-
quently, we extracted the main core of our network and analyzed the corresponding metrics. 
To get our network center, we used the k-core algorithm defined by Batagelj and Zaversnik. 
This algorithm is implemented in networkx6 and determines the core as described in the fol-
lowing chapter.

2.4.1 K-core Algorithm

The k-core algorithm is based on the idea of creating a subgraph of all nodes that have a de-
gree higher than k. Its implemented by recursively deleting all vertices and line incident with 
them of degree less than k from a given graph. The logic of the algorithm is simply illustrated 
in Figure 3-5. As a first step we calculate the degree of all vertices and ordered them increas-
ingly according to its degree. Afterwards we created the k-core by starting from the vertices 
with the smallest degree and deleting all that have a neighbor with a higher degree. While 
deleting we updated all connected nodes by lowering the degree and resorting all vertices af-
ter. The resulting list of nodes is an approximated core of our network and consist of updated 
degrees only considering the vertices inside this subgraph (Batagelj & Zaversnik, 2003).

6 https://networkx.github.io/documentation/networkx-1.7/reference/generated/
networkx.algorithms.core.k_core.html
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1.1 compute the degrees of vertices; 
1.2 order the set of vertices V in increasing order of their degrees; 
2 for each v ∈ V in the order do begin  
    2.1 core[v] := degree[v];  
    2.2 for each u ∈ Neighbours(v) do  
        2.2.1 if degree[u] > degree[v] then begin  
            2 2.2.1.1 degree[u] := degree[u] − 1; 
            2.2.1.2 reorder V accordingly  
    end  
end; 

Figure 3-5: K-core algorithm (Batagelj & Zaversnik, 2003) 

2.4.2 Core Analyzation

After applying the k-core algorithm to our network we have a resulting graph of the 35 nodes 
with the highest degree showed in Figure 3-6. The graph is helpful to see how the main re-
viewers and authors are connected. In this network all actors are both reviewer and authors 
and are represented by an undirected and unweighted graph.

By having a first look at the graph, we can already see a dense connection between all actors. 
There is no abnormality to observe and every node is well linked to all others. This impres-
sion is supported by examining the network metrics from Table 3-1 and Table 3-2. The net-
work has 56.4% of all possible edges and connects all vertices fast and easily with an average 
closeness of 1.4 steps to all other nodes. Another observation is that in contrast to our full net-
work, inside the core a different person has the highest values, such as a degree centrality 
with 94.11%. This give an interesting insight, that we can differentiate between core impor-
tance and total network importance.
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Figure 3-6: K-core author-reviewer network

. 

Characteristics Value

Number of nodes 35

Number of edges 336

Density 56.4%

Table 3-1: K-core - social network general characteristics

Metric Average value Best value

Degree 19.20 32 

Degree centrality 56.4% 94.11% 

Closeness centrality 0.70 (1.44) 0.94 (1.06) 

Betweenness centrality 0.0132 (7.4) 0.0481 (27.0) 

Eigenvector centrality 0.1652 0.2578 

Pagerank 0.0286 0.0452
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Table 3-2: K-core - social network metrics

As a conclusion the core network gives an interesting angle to our network. We can see that 
the author – reviewer main core is well connected and shares knowledge and work actively. 
As well we found out that inside our core, the individual importance is different distributed. 
The core implementation shows us a generally good overview about the most important actors 
in the network based on their connectivity to other people.
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Appendix ADataset Statistics and Metrics - Summary 

Statistic/ Metric Result

Number of entries 254 212

Number of reviewers 682

Number of authors 415

Entries per reviewer – median 61

Entries per reviewer – lower quartile 18

Entries per reviewer – upper quartile 284

Monthly entries per reviewer – median 6

Monthly entries per reviewer – lower quartile 2

Monthly entries per reviewer – upper quartile 22

Number of requested reviews vs. number of different re-
viewers – linear regression slope 

1.29%

Different reviewers per author – median 8

Different reviewers per author – arithmetic mean 14.4

Different reviewers per author – standard deviation 23.9

Requested reviews per author – median 61

Requested reviews per author – arithmetic mean 507.7

Requested reviews per author – standard deviation 1 356.1

Social network – number of nodes 777

Social network – number of edges 5 477

Social network – density 1.81%

Social network – average degree 14.09

Social network – average in-/ out-degree 7.38

Social network – average degree centrality 1.90%

Social network – average in-/ out-degree centrality 0,95%

Social network – average closeness centrality 0.35 (2.90)

Social network – average betweenness centrality 0.0025 (736)

Social network – average eigenvector centrality 0.223

Social network – average pagerank 0.0012
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