
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

LEONARD KEIDEL

MASTER THESIS

EXPLORATORY DATA ANALYSIS ON
CODE REVIEW DATA

Submitted on [DATE]

Supervisor: Michael Dorner

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

[CITY], [DATE]

License
This work is licensed under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

[CITY], [DATE]

II

https://creativecommons.org/licenses/by/4.0/

Abstract

Modern code review enables developers to conduct light weighted inspections using tools and
is a well-established part of the software development process. However, it is not clearly de-
fined if current processes and methods are done efficiently. In this paper, we examined a
dataset from a tool supported code review process provided by a multinational software devel-
opment company to determine and test indicators for code review quality. Within an ex-
ploratory approach, inspecting data from over 250 000 entries in 5 years of reviewing prac-
tice, we checked dataset characteristics, reviewer workload, reviewer selection and social net-
work metrics. We found evidence in all revised categories that the company lacks in an effi-
cient code reviewing process. Our results prove that current code review practice needs better
defined standards and with usage of our indicators and numbers, future studies can compare
their observed code inspection performance.

III

Table of contents

1 Research Chapter .. 1

1.1 Introduction .. 1

1.2 Related Work .. 2

1.2.1 Code Review Quality .. 2

1.2.2 Social Network Analysis on Code Review Data ... 3

1.3 Research Question .. 3

1.4 Research Approach ... 4

1.4.1 General Methodology and Approach .. 4

1.4.2 Social Media Metrics .. 5

1.4.3 Used Tools and Libraries .. 6

1.5 Used Data Sources ... 6

1.5.1 General Characteristics of the Dataset .. 6

1.5.2 Attributes of the Dataset ... 7

1.6 Research Results .. 8

1.6.1 Dataset Characteristics .. 8

1.6.2 Reviewer Workload ... 9

1.6.3 Reviewer selection .. 12

1.6.4 Social Network Metrics .. 14

1.7 Discussion .. 17

1.8 Conclusion .. 17

1.9 Future Work .. 17

1.10 Acknowledgments .. 18

2 Elaboration chapter ... 19

2.1 Remarks .. 19

2.2 Safety Relevant Files .. 20

2.3 Weekday and Working Time Distribution .. 20

2.4 Social Network Core Analyzation .. 22

2.4.1 K-core Algorithm .. 22

2.4.2 Core Analyzation .. 23

IV

V

Table of figures

Figure 2-1: Files and attributes - class scheme...7
Figure 2-2: Number of review entries from 2013-2016..10
Figure 2-3: Number of review entries from 2013-2016 (with fliers)..10
Figure 2-4: Monthly reviewer workload distribution...11
Figure 2-5: Monthly reviewer workload distribution (with fliers)...11
Figure 2-6: Author - reviewer relationship...13
Figure 2-7: Share of most active reviewers (pareto chart)..14
Figure 2-8: Social network (reviewer - author)..15
Figure 3-1: Remark character length..19
Figure 3-2: Remarks wordcloud...20
Figure 3-3: Review commit workday distribution..21
Figure 3-4: Review commit daytime distribution...22
Figure 3-5: K-core algorithm (Batagelj & Zaversnik, 2003)..23
Figure 3-6: K-core network..24

VI

VII

List of tables

Table 2-1: Attributes with types and values..8
Table 2-2: Author - reviewer relationship in numbers..13
Table 2-3: Social network general characteristics...16
Table 2-4: Social network metrics..16
Table 3-1: K-core - social network general characteristics...24
Table 3-2: K-core - social network metrics...24

VIII

1 Research Chapter

1.1 Introduction

Code review is a common practice in developing industrial and open source software. The
generally known objective of code reviews is to find errors in source code files. But the
process is beneficial for many other factors, such as knowledge sharing or community build-
ing as well. Fagan in 1976 introduced an inspection process conducted within a physical team
meeting including four different roles and five phases to complete (Fagan, 1976). Since soft-
ware development became more decentralized, like many open source projects, the previous
elaborate code inspections changed to lighter weighted peer reviews. Replacing physical
meetings, a developer could send his file via E-Mail to various developers. One of the peer
needed to review the file and depending on the guidelines accept or let other developers con-
tinue the review process (P. C. Rigby, 2011). Nowadays modern code review is tool sup-
ported. These tools can already be automated (Balachandran, 2013), but usually still contain
human interaction. Gerrit is an example for a platform specialized on code reviews used by
open source projects like Qt, ITK, VTK or Android (Bosu & Carver, 2013; Hamasaki et al.,
2013). An author can submit a patch to a repository predefining a set of reviewers, who then
revise, comment and finally agree or disagree with the change. The patch in the end gets sub-
mitted depending on a specified number of positive reviews (Bosu & Carver, 2013). In indus-
trial practice some companies develop review software based on their own wishes, such as
CodeFlow from Microsoft (Bacchelli & Bird, 2013) and firms that use external developed
tools, such as Cisco using CodeCollaborator (Cohen & Brown, 2012).

The importance of code review practice has been proven by several studies. According to an
exploratory research on Open Source Software projects, unreviewed files have a two times
higher chance to induce bugs to the software system. The same study could also verify that re-
views positively affect the readability of source code (Bavota & Russo, 2015). McIntosh
could find evidence that low code review participation leads up to 5 additional defects and
shares a significant link with software quality (McIntosh, Kamei, Adams, & Hassan, 2014;
Shimagaki, Kamei, McIntosh, Hassan, & Ubayashi, 2016). And beside finding bugs a qualita-
tive research at Microsoft has shown that software engineers benefit from knowledge sharing
and community building while reviewing code (Bosu, Carver, Bird, Orbeck, & Chockley,
2017).

Although the high significance, some companies still claim problems in their review pro-
cesses. Microsoft revealed in a conference, that current workflows are not performed efficient
bearing in mind the high costs. Accordingly code reviews needs a better understanding and
improved best practices (Czerwonka, Greiler, & Tilford, 2015). In this paper we will investi-
gate on indicators to determine review quality. To achieve this, we are doing a data analysis
on code review data, which we collected from a multinational software development com-
pany. The dataset contains around 250 000 entries collected in over 5 years of industrial soft-
ware development practice. The results stand out from others, as our company is in its sector
obligated and regulated to do code review. Hence, we have a complete dataset, where no code
can be submitted without an inspection.

The contributions of this paper are the following.

- Insight into the quality of a regulated industrial code review process

- Code review quality measures derived from literature and data analysis

- Author – reviewer network dynamics and metrics from industrial practice

The paper is structured as it follows. First, we will examine related literature and give an
overview about quantitative and qualitative studies focused on code review performance as
well as researches about social network analysis on code inspection dynamics. After defining
our research question, we will describe all methods we performed and sum up the characteris-
tics of our dataset. Building up on this we will present, conclude and clarify implications of
all findings from our research.

1.2 Related Work

The following section gives an overview about related and relevant studies. We categorized
the work in two sections. First, we present quantitative and qualitative research about metrics
found defining code review performance. And in the second subchapter we will introduce
studies focusing on social network analysis on code review data.

1.2.1 Code Review Quality

Qualitative Research

Several previous studies approached code review quality by surveying, interviewing or ob-
serving both reviewers and developers. An early investigation on technical reviews detects the
reviewers expertise as the most relevant quality measurement (Sauer, Ross Jeffery, Land, &
Yetton, 2000). Two researches surveying developers from NASA and the Mozilla project
equally attributes that thoroughness and clarity define code review quality (Kononenko,
Baysal, & Godfrey, 2016; Nelson & Schumann, 2003). The latest study focusing on code re-
view at Microsoft strengthens earlier findings from Bacchelli and Bird that understanding the
code changes are an essential challenge for reviewers. Furthermore reviewing in a timely
manner, review size and managing time constraints are ranked the highest challenge of devel-
opers at Microsoft (Bacchelli & Bird, 2013; MacLeod, Greiler, Storey, Bird, & Czerwonka,
2017). All qualitative studies give valuable insights in problems and concerns of the practic-
ing developers. In contrast, we will focus within our research paper on quantitative measure-
ments building up on these findings.

Quantitative Research

Since the beginning of modern code review, huge amounts of data are accessible for quantita-
tive researches. In 2008 Rigby et al. revised both E-Mail discussions as well as version con-
trol repositories of the Apache project. After reviewing over 4000 contributions, they derived
best practices considering this project as example of efficient and state of the art peer review
technique. The reviews should be conducted early and frequent, in small but complete contri-
butions, working in small time with self-selected experts (P. C. Rigby, German, & Storey,
2008). In a follow-up study in 2012 as well as in 2014, examining over 100 000 contributions
from six OSS projects, they could confirm that asynchronous, frequent and incremental re-
views are the most efficient. They also stated out that experience is important and these ex-
perts need to be empowered by choosing their own files to inspect (P. C. Rigby, German,
Cowen, & Storey, 2014; P. Rigby, Cleary, Painchaud, Storey, & German, 2012). Other quanti-
tative research on Open Source projects found out that review participation and intensity
shares a link with the quality of a completed inspection (Kononenko, Baysal, Guerrouj, Cao,
& Godfrey, 2015; Thongtanunam, McIntosh, Hassan, & Iida, 2015). The closest approach to
our research conducted by Izquierdo-Cortazar et al. used quantitative metrics such as activity,
time-to-merge and patch-complexity to track review performance. This paper gives an auto-
mated methodology to inspect Linux style code review derived from their studies at the Xen
and Linux Netdev project (Izquierdo-Cortazar, Sekitoleko, Gonzalez-Barahona, & Kurth,
2017)

2

In an industrial setting, Kemerer & Paul as well as Ferreira et al. evidence that the review rate
is a crucial factor and by lowering them they could improve their process performance (Fer-
reira et al., 2010; Kemerer & Paulk, 2009). Microsoft investigated in a mixed qualitative and
quantitative approach five of their own software development projects focusing on the useful-
ness of comments. The results implicate several recommendations for improving code review
processes. First, agreeing with findings from OSS projects, they recommend choosing review-
ers carefully by experience. Still unexperienced people should be included to gain experience.
Second the results show that the effectiveness in patches with a high number of files in the
changeset decreases. Hence developers need to commit small changes to facilitate the review
process. Their last recommendation is to identify the weak areas of reviews using the frame-
work they developed (Bosu, Greiler, & Bird, 2015). The most recent and relevant study from
dos Santos and Nunes explored both technical and non-technical factors which affect code re-
view effectiveness in Distributed Software systems. The outcome was that all inspected fac-
tors influence code review performance. Increasing file sizes, more involved teams or loca-
tions are all decreasing the effectiveness of reviews. As well in contrast to findings from other
studies they point out that more participation has a positive effect on effectiveness as the dura-
tion is shorter and more precise. Two reviewers are the perfect size for inspecting code which
is corroborated by a previous study from Rigby and Bird (dos Santos & Nunes, 2017; P. C.
Rigby & Bird, 2013). In our study we will build up on these factors that define review quality
and find indicators to track them in our dataset.

1.2.2 Social Network Analysis on Code Review Data

Preliminary work from Lopez-Fernandez in 2004 used Social network analysis on version
systems of the Apache, GNOME and KDE project to learn more about structure and internal
processes of the developers (Lopez-Fernandez, 2004). Ohira et al. probe cross project collabo-
ration on data from over 90 0000 projects and introduced a tool for visualizing Social Net-
works among them (Ohira, Ohsugi, Ohoka, & Matsumoto, 2005).

Hamasaki applied Social network analysis to identify different roles of a code review process
extracted from Gerrit (Hamasaki et al., 2013). Meneely et al. developed a failure prediction
model using Social network analysis on code review data (Meneely, Williams, Snipes, & Os-
borne, 2008). A growing body of literature has divided the reviewers in a core and a periphery
group using Social network analysis (Bosu & Carver, 2014; Huang & Liu, 2005). A similar
approach from Yang demonstrate a correlation between activity and importance using Social
Network Metrics (Yang, 2014b). Another research from Yang describes finding a link between
network position and code review quality (Yang, 2014a). The most relevant study as well
questioned if network centrality is an indicator for inspection quality. After examining pre-
cisely four big Open Source projects, they could validate that high network centrality corre-
lates to a better bug report outcome. Based on this results they designed a bug report classifi-
cation mechanism using nine measurements including different centrality metrics (Zanetti,
Scholtes, Tessone, & Schweitzer, 2013). Our research will in contrast track the overall inspec-
tion performance and provide results to benchmark future research.

1.3 Research Question

In this paper the general research question is:

„What are quantitative indicators to measure code review quality?”

As we want to specify our approach we breakdown this general question in several subcate-
gories. These will then be examined in an exploratory manner. We will derive our assump-

3

tions from recent literature and in a best case compare our findings directly with results from
other studies.

RQ1: What are quantitative indicators to measure code review quality?

RQ 1.1: Which general dataset characteristics determine code review quality?

RQ 1.2: What are indicators for effective workload distribution of code reviewers?

RQ 1.3: How can we measure efficient reviewer selection?

RQ 1.4: Which social network metrics describe code review quality?

To answer the last Research Question RQ1.4. we evaluate the dataset within a Social network
analysis and compare the results with the relevant work mentioned in chapter 2.2.

1.4 Research Approach

1.4.1 General Methodology and Approach

The research approach of this paper is divided into two methods, Exploratory Data Analysis
and Social network analysis. To implement the exploratory data analysis, we used the method-
ology described by Tukey (Tukey, 1977). The data collection from our examined software
company stores over 250 000 review entries.

To start we needed to deserialize and merge the given datasets. Next, to have a dataset with
only completed reviews, we eliminated all entries that haven’t been reviewed and accepted
yet. Furthermore, we just considered data from 2013-2016, as 2012 and 2017 are not com-
plete. Afterwards we started exploring our data for saliences based on the points we defined
by RQ1-3. We used mostly descriptive and statistical methods, on which we interpreted and
compared our results.

For the Social network analysis we took general methodology and metrics from both Freeman
and Lopez-Fernandez (Freeman, 1978; Lopez-Fernandez, 2004). By applying those methods,
we wanted to have a close look at the structure of the code reviewing dynamics at the soft-
ware company and compare them with similar studies. As a first step we needed to define the
actors and their corresponding relationships to build up a network of nodes and edges. In our
created structure the network contains two different actors:

- Reviewer: Solely reviewer of code patches

- Author: Solely author or author and reviewer of a code patch

Coming with the regulations of the company’s code review process, an author in a usual case
reviews his own code before it gets committed. In our social network we didn’t consider these
self-reviews to focus on the social dynamics to other actors.

The relationship between these actors in our approach is defined as times an author requested
a code inspection from a reviewer. Therefore, the resulting edges are weighted and directed.
While the direction empowers us to differentiate between requesting and conducting a review,
the weight illustrates the total intensity of both relationships. As a second step we ultimately
built up a directed and weighted graph showing the number of interactions from author to re-
viewer. The resulting network was a first visual description and the foundation of the further
metric analyzation. We additionally created another undirected graph, as some metrics are bet-
ter interpretable in a bidirectional context.

Third we used several metrics to look at individual and average performances inside the net-
work. And last, we compared the numbers and structure with other projects using literature re-

4

view. In conclusion we aimed to understand the social dynamics of industrial code review
processes and find more indicators to track down code review success or failure.

The metrics we used were in- and out-degree, degree centrality, closeness centrality, be-
tweenness centrality and graph density. We will explain the significance and meaning of the
social network measurements in the following subchapter. We added some additional metrics
(page rank, eigenvector centrality) for further references, without focusing and interpreting
them inside our study.

1.4.2 Social Media Metrics

In the following chapter we will describe metrics based on a graph with n nodes calculated
from pk an undefined vertices in the graph.

Degree and Degree Centrality

The degree CD of a network node pk is the number of different connections to other nodes.
The calculation is done by simply counting the edges at a given node, see formula below
(Freeman, 1978).

CD(pk)= ∑
i=1

n

a (pi , pk)

wher e a (pi , pk)=1 i f pi and pk a r e c onnec t ed b y a l in e ;e l se= 0

Within a directed graph we need to distinguish between in-degree and out-degree. In-degree is
defined as the number of edges pointing to the node, while out-degree determines the number
of edges going from the node to other nodes (Newman, 2014). In our example the in-degree
counts from the reviewer angle the number of different authors who were requesting a code
inspection. The out-degree in contrast is from the authors perspective the number of different
reviewers he had. Therefore, it enables distinguishing between reviewer and author impor-
tance.

The mean degree or degree centrality C’D puts the degree into a proportion to the network by
showing how many percent of the network a node is connected to. The calculation for a node
is done by dividing the degree with the total number of actors in the network (Freeman, 1978;
Newman, 2014).

CD
'

(pk)=
∑
i=1

n

a (pi , pk)

n−1

wher e a (pi , pk)=1 i f pi a nd pk a r e c onnec t ed b y a l in e−e l se= 0

The degree centrality has high importance to track down individual performances and com-
pare them with other networks of different sizes and conditions.

Closeness Centrality

The closeness centrality C’C of a node pk measures the mean distance to reach any other node
in the network. It is calculated by first summing all shortest path distances to all reachable ac-
tors and is then normalized by the number of nodes n in the network (Freeman, 1978).

C 'C (pk)=
n−1

∑
v=1

n

d (pi , pk)

w it h d (p i , pk)=sho r t e s t pat h d i s t ance b e t w ee n pi a nd pk in t he g r a ph

The higher the resulting value is, the more central is his position inside the network. An actor
with a high closeness in our network indicates that he can reach people of different expertise

5

easily and fast. In many cases the closeness centrality is shown as the actual average distance
without the normalization from the formula above. This makes the value easier to interpret,
but also more difficult to compare. To have both advantages, we will work with both values.

Betweenness Centrality

Betweenness centrality CB implies how many times a node pk is a broker between two net-
works and is defined as the fraction of all shortest paths that pass node pk. The value is usu-

ally normalized by the formula 2
(n−1)(n−2)

 with n as number of nodes in the graph

(Brandes, 2001; Freeman, 1977).

CB (pk)=
∑

s ,t ∈ V

σ (s ,t|pk)

σ (s , t)

wher e V is s e t o f no d e s ;σ (s , t) i s numbe r o f sh o r t e s t (s ,t) pa t h s

and σ (s , t , pk) i s number o f t ho se p a t h s p a s s ing t hr ough some node pk o t h e r t han s ,t

The betweenness is a useful complement to degree and closeness centrality, as it shows an-
other angle evaluating how often an actor connects certain subnetworks or persons with other
components. In our reviewer network, the betweenness shows actors who might connect be-
tween departments and different knowledge areas, hence have a high importance even without
having a high degree or closeness.

1.4.3 Used Tools and Libraries

To perform both Exploratory Data Analysis and Social network analysis on the code review
data we used Jupyter Notebooks as primary development environment. The Jupyter Notebook
App is an open source server-client program to edit and execute live code, equations, visual-
izations or text elements via a web browser. Taking advantage of these specifications, we
could structure, execute, visualize and comment every step in one document to share and dis-
cuss it easily1.

The programming language we chose to write and execute our code inside the Jupyter note-
book is python 3.6. The widely usage, easy notation and powerful libraries made it possible to
implement an easy readable code to perform all our desired methods.

We imported several libraries to undertake our operations. First, we used pandas2 for data
structure and data analysis. This open source library supports high-performance tools for e.g.
deserialization, grouping or selecting attributes. The statistics, numpy3 and collections li-
braries empower the execution of mathematical and statistical operations. To visualize the de-
scriptive methods, we used matplotlib4 a 2-D plotting library. Ultimately the networkx5 library
enables our Social network analysis with built in methods to visualize our graph as well as
calculate metrics.

1 http://jupyter.org/
2 https://pandas.pydata.org/
3 http://www.numpy.org/
4 https://matplotlib.org/
5 https://networkx.github.io/

6

1.5 Used Data Sources

1.5.1 General Characteristics of the Dataset

In our study we got the code review data of a multinational software development company.
They supplied us with their complete recordings from 5 years of industrial code review prac-
tice. As the data is confidential all included personal data, such as names, are anonymized.

The dataset we used for our study is divided in three different files: Reviews, review_entries
and files. To have a better understanding of the files and attributes, we shortly summarize the
inspection process. We need to state out that every single code commit needs to be reviewed.
This must be proven and is regulated by as central entity.

Before the reviewing starts an author submits a code patch. With the submission the corre-
sponding information gets saved in the file table. Afterwards the file gets reviewed by as-
signed reviewers until the author got all electronic signatures including sometimes his own.
When the file got all needed signatures, it changes the status from Unreviewed to Accepted in
reviews with the current timestamp. In a special case scenario, it can already have skipped the
previous steps when no review was needed. The exact numbers of the dataset are the follow-
ing.

- reviews: 118166 entries with 10 attributes

- review_entries: 254212 entries with 3 attributes

- files: 98761 entries with 8 attributes

After merging all files to review_entries and applying all filters described in 2.4 we have a re-
sulting table of 210697 entries with all 21 attributes. A more precise explanation of the differ-
ent attributes and the ones we focused on will be topic in the following subchapter.

1.5.2 Attributes of the Dataset

Figure 2-1 and Table 2-1 give an overview about all attributes and the referencing tables. As
told in the previous chapter variable first_name and last_name from class Person in Figure 2-1
got deleted and anonymized by identifiers.

To have a better understanding of our research results, we will explain all attributes we fo-
cused on during our research. All not mentioned attributes we either haven’t considered be-
cause they were to company specific, for example branch or bundle. Or we didn’t need them
answering our research question. Some additional statistics and analysis will be part of 3.
Elaboration chapter, e.g. is_safety_relevant.

The main attributes we focused on in our research were reviewer, author, date, state, and re-
sult. The person’s IDs with counting workloads and interactions played the mayor role in our
study represented by reviewer and author. The date of the reviews helped us to evaluate cer-
tain results and put it into a better context by having an exact timestamp. To organize our data,
state and result were essential attributes to separate the data we wanted to focus on. Further
statements about the quality of the dataset and attributes is topic of RQ1.1 and will be ex-
plained in the following chapter.

7

Figure 2-1: Files and attributes - class scheme

Attribute Type Values From table Study-relevant
Reviewer float anonymized person ID reviews Yes
role string reviewer role (e.g. DEV) review_entries No
orgunit string organization of reviewer review_entries No
date timestamp time & date at acceptance reviews Yes
file integer file ID files, reviews Yes
type string FourEyes or Walkthrough reviews No
state string Reviewed, Unreviewed,

NoReviewNeeded
reviews Yes

result string accepted or empty reviews Yes
remark string remark (e.g. none) reviews Yes
work_item_id integer files No
is_safety_relevant boolean true or False reviews Yes
is_changed_in_range boolean true or False reviews No
organization string organization of review reviews No
hash string unique hash value file No
name string filename file No
bundle string bundle name file No
classification string file classification (e.g. Source

code)
file No

author integer anonymized person ID file Yes
changeset_id integer ID of changeset file No
source_control_project string name of module file No
branch string file branch file No

Table 2-1: Attributes with types and values

1.6 Research Results

1.6.1 Dataset Characteristics

Which general dataset characteristics determine code review quality?

8

In our first research question we want to clarify if we can find dataset characteristics, which
expose code review quality. As a guideline we adhered to the six dimensions of dataset quality
defined by Askham et al. These are completeness, uniqueness, timeliness, validity, accuracy
and consistency (Askham et al., 2013). We applied every dimension to our dataset and in the
end concluded which are characteristics to determine code review quality.

We started with checking the completeness, defined as the absence of empty values. The first
simple step was checking for all missing values in our dataset. As a result, we could spot
empty values for the two attributes orgunit and organization. In numbers, orgunit is missing
95.4% and organization 96,6% of its values. Consequently, due to this high number of per-
centage we can’t consider these attributes for further research and they don’t give visibility for
the companies’ reviewing process. To be more precise we also checked all strings for empti-
ness and numbers for zero values. Within that approach we found out that the remark attribute
has 192 times an empty string. Even though it makes only a very small percentage (0.17%), it
is an indicator that the remarks need further investigation.

Looking at the uniqueness we could verify that all entries in the reviews and files table are
unique. Although review_entries has 5 entries that are duplicated, it just means that a person
reviewed a file twice and shouldn’t be concerned.

The timeliness dimension describes if the data reflects the reality for the point of time. In our
dataset we are only able to see the date and time, when the review gets finally accepted. Ac-
cordingly, we have mayor limitations in observing the time and we can’t compare our data
with studies that investigated about time performing a review as a quality indicator (Izquier-
do-Cortazar et al., 2017; Jiang, Adams, & German, 2013; Kononenko et al., 2016; P. C. Rigby
et al., 2008).

As a fourth dimension a dataset meets validity, when it conforms to the syntax of its defini-
tion. Not considering the empty values all attributes are valid to format, type and range.

The accuracy of a dataset is the degree the values describe the actual event being captured.
Looking at the dataset, we could already find out that the timeliness has missing accuracy.
Other attributes that our dataset doesn’t contain compared to other studies are change sizes
(dos Santos & Nunes, 2017; Kononenko et al., 2016; Laitenberger, Leszak, Stoll, & Emam,
1999; P. C. Rigby & Bird, 2013) or a possibility to leave comments after every review entry
(Bacchelli & Bird, 2013; Bosu et al., 2015; Rahman, Roy, & Kula, 2017). While elaborating
the completeness we could already assume that the remarks aren’t accurate. Further examina-
tion of the remark structure showed that the median length of a remark is only 5 characters
long and is therefore both incomplete and inaccurate.

Last, we checked our data on consistency, the absence of differences. An interesting finding
showed us that one file has occurred 1 time marked as safety relevant and in contrary 765
cases it hasn’t. Since the characteristics of the file shouldn’t change for different reviews, we
consequently found inconsistency in the important attribute of safety relevance. Apart from
that issue haven’t found further inconsistent values in our dataset.

Based on our findings we want to determine which dimensions are indicators for code review
quality. The inspection for missing values was a first indicator about the quality of the code
reviews. It showed that two attributes are not usable for review retrospectives. Transferring
the observation to practice, we can’t ensure that missing fields in organization and orgunit are
due to bad review practice, as it might also result from missing information from the system.
In contrast the missing fields for remarks showed us that it was surely indicating to lax code
review practice in general. Building up on this we could see that the missing accuracy of the
data was also affected by code review practice. First the already mentioned inaccurate usage
of the remarks. And second the missing timeliness concluding from insufficient recording of

9

valuable information. Especially when important factors like review-entry comments, review-
entry timestamps or file size are not covered in the dataset, the company can’t ensure adequate
code review quality. As the timeliness in code reviews is always connected to recorded time-
stamps, we don’t separate it as observation and rather include it in accuracy as a characteris-
tic. Moreover, we observed that our dataset has inconsistencies. And accordingly, consistency
is a useful characteristic to measure code review quality. The reason is that if a dataset con-
tains inconsistencies it is highly probable it is cause by an imprecise review.

In comparison we conclude from our findings that neither uniqueness nor validation are good
indicators for code review quality. Both are very important dimensions for data quality but
aren’t strongly connected to the inspections. Ensuring these are more related to the quality of
the review tool than the actual reviewing process.

1.6.2 Reviewer Workload

What are indicators for effective workload distribution of code reviewers?

For our next research question, we wanted to examine how reviewer workload affects code re-
view quality. Several studies have covered the topic about reviewing time and rate. The results
conclude that code review rate highly influence their performance (Ferreira et al., 2010; Ke-
merer & Paulk, 2009). Kemerer & Paul additionally suggest that a code review should be pre-
pared and not exceed 2 hours of inspection time. Bosu revealed in a study that developers at
OSS systems spend in average 6 hours per week on reviews and only 12% more than 10
hours (Bosu & Carver, 2013). A subsequent recent research compared OSS with Microsoft.
The results were that the average workload for developers were 4 hours at OSS projects and 5
hours at Microsoft. That makes 10-12% in an average 40-hour working week.

Building up on these results, we want to discuss whether our data indicates an effective work-
load distribution of the reviewers. The fact that every timestamp included several review en-
tries, makes it unprecise to say when the review entry was performed exactly. Thus, we re-
vised in a first place the general workload distribution over the years 2013-2016. Figure 2-2
and Figure 2-3 are boxplots showing the number of entries from all participated reviewers.
Both illustrate the median, lower and upper quartile and Figure 2-3 additionally shows the
outliers. In numbers, 50% of all reviewers conducted between 18 and 284 reviews with an av-
erage of 61 entries in this 4 years. The widespread values and the closeness from median to
lower quartile indicate that the workload is focused on a small set of reviewers with high
workload. Especially by seeing the outliers from Figure 2-3 we can infer to high workload
concentration. According to our results three reviewers recorded more than 5000 entries.

Figure 2-2: Number of review entries from 2013-2016

10

Figure 2-3: Number of review entries from 2013-2016 (with fliers)

In order to get our results into the important time or review rate context and compare it with
former research we broke down the numbers in all 48 months of our recordings. We didn’t
choose a weekly overview, concerning the inaccurate timestamps. While Figure 2-4 describes
how the median and quartiles change from month to month, Figure 2-5 shows the widespread
outliers for certain reviewers. The median number shows that developers conduct around 6 re-
views per month without a wide spread. Assuming that an average review lasts about 60 min-
utes, they would spend around 1.5 hours on reviews each week. Based on our assumptions
and compared to the results from Bosu & Carver, where at Microsoft developers spend 5
hours on average, we can observe significant differences. More noticeable are the extreme
outliers in Figure 2-5. Keeping in mind that the inaccuracy of the time might affect some val-
ues, we can still see obvious patterns that prove too high workloads for many reviewers. The
numbers indicate for example that 217 times a reviewer conducted 160 reviews in just one
month. In a from our company 35-hour week this would be a more than 1 review per hour
rate. Our highest values show review rates from 7 up to 12 reviews per hour, which would be
out of any realistic effort. We would need further investigation to find the causes for this
widespread numbers. But it is highly probable that it is in the consequence of lax code review
practice.

11

Figure 2-4: Monthly reviewer workload distribution

Figure 2-5: Monthly reviewer workload distribution (with fliers)

As a conclusion, we could find various indicators for ineffective workload distribution at our
company’s dataset. For the scrutiny of an effective workload we recommend using boxplots,
as it shows various measurements to analyze your data. Looking at our results we suggest that
the median value needs to be well centered between the two quartiles. This would mean the
workload is equally distributed. A good median review rate usually depends on the company’s
structure but should be not more than around 15-20 reviews per month. Moreover, the dis-
tance of the two quartiles show the spread of the workload and is another indicator for code
review quality. In an efficient process the quartiles should have a low distance which would

12

mean very good distributed reviewing. Last the outliers or fliers might signalize lax code re-
view or even fraud, e.g. a person just signs code reviews to accelerate submissions. In any
case a low number of closely spread outliers would indicate an effective workload distribution
of code reviewers.

1.6.3 Reviewer selection

How can we measure efficient reviewer selection?

After having the close look on the reviewer workload, we now want to inspect the author re-
viewer relationship. The question we want to clarify is how to measure an efficient reviewer
selection process. Two recent studies addressed the problem of how to select a reviewer. Both
developed an automated tool and chose reviewers based on their experience and expertise
(Balachandran, 2013; Ouni, Kula, & Inoue, 2017). Other studies support the hypothesis to
rather chose experienced developers to guarantee higher code review quality (Kononenko et
al., 2015; P. Rigby et al., 2012; Sauer et al., 2000). Taking these results into consideration we
needed to find quantitative measurements if authors choose experienced reviewers for inspect-
ing their files.

Since our data doesn’t reveal information neither about fields of expertise nor experience, we
needed to work on several assumptions. We assumed first that an author usually works on
projects that need similar fields of expertise and second that a reviewer is building up exper-
tise and experience every time reviewing a code. Our resulting hypothesis is the following. If
a reviewer has already been revised a file of an author, the author should tend to select this re-
viewer again, as he already has familiarity and expertise with his code. Accordingly, we want
to examine the distribution of the reviewer count for each author depending on the general
number of reviews the author requested. Based on our hypothesis an author should have a
variation but small pool of experts revising his code.

To measure this, we checked the proportion between number of requested reviews and num-
ber of different reviewers an author had. We used a scatterplot to evaluate the distribution and
calculated a regression line for a general observation (Figure 2-6). It is important to mention
that proportion in our figure is 1:10 between number of different reviewers and number of re-
quested reviews. Table 2-2 shows in numbers how the relationship is distributed.

To check our hypothesis, we first want to examine the general distribution of the reviewer
number per author, represented by the linear regression. It denotes a line with the minimal dis-
tance to all data points, hence shows how the number of different reviewers grows in relation
to the number of requested reviews. The resulting lines’ slope of 1,23% indicates a small
growth and we interpreted the result as an efficient and good ratio for author-reviewer distri-
bution. Our results can be used for future studies in this subject. Another observation is that
with increasing number of requested reviews the number of different reviewers is close and
mostly below the regression line. Consequently, we can suggest that the very active authors
stick to our quality premise and choose only experienced reviewers. Nevertheless, it is to con-
sider that several examples have a concerningly very low number of different reviewers while
having requested many inspections. We think these very low numbers of different authors can
result to a very unilateral perspective and be negatively for your inspection quality and as well
might be an indicator for possible fraud. Generally, the dispersion should be low in a perfect
setting. But looking at the numbers from Table 2-2 we can see that variation in our review
data is high. First, the high difference of the arithmetic-means and medians demonstrate that
we have high outliers, since the median is less affected the extreme values. Second the stan-
dard deviation depicts the dispersion from the mean. According to our value of 23.9 we can
see that the values are widespread and especially influenced by the outliers. Our last observa-

13

tion is focusing on the density of the distribution. We can see that most authors seem to only
request very few reviews, since the density is the highest in the left bottom corner.

Summing up our observations the companies’ authors generally tends to choose reviewers on
experience following our premise. The relation is generally good but wide spread. Again, the
extreme outliers need to be further investigated.

Figure 2-6: Author - reviewer relationship

Different reviewer per author Requested reviews per author

Median 8 61

Arithmetic mean 14.4 507.7

Standard deviation 23.9 1 356.1

Outlier 240 142 206

Other information

General distribution 682 reviewers - 415 authors

Linear regression slope 1,226 %

Table 2-2: Author - reviewer relationship in numbers

In a second a approach motivated by the density observation from Figure 2-6, we wanted to
look from the angle of the reviewer. Rigby et al. defined within their study on the Apache
server that an effective reviewing environment consists of a small group of self selected ex-
perts (P. C. Rigby et al., 2008). To investiagte this we sorted all 682 reviewers by the number
of reviews they conducted in descending order. Afterwards we separated them into 14 groups
from the 50 most active to the 50 least active reviewers. Figure 2-7 shows our result repre-
sented by a pareto chart. It first shows by barchart the totalized number of the group con-
ducted reviews and by linechart the percentage of share from all reviewers. We can see that
the first 50 have a share of over 50% of all reviews and the first 150 over 80% of all reviews.
Accordingly our data shows that 80% of all work is done by only 20% of the reviewers.
Therefore this is by the definition of having a small group of expertised and experienced re-
viewers an efficient reviewing process.

14

Figure 2-7: Share of most active reviewers (pareto chart)

Comparing our results with the reviewer workload (RQ2), the criterious seem contrary. First
we critized the intense workload for various reviewers and next we looked for a small group
of experts conducting reviews. Hence it is important to explain that we don’t look at the time
axis within our observations for the reviewer selection. Consequently we separated this two
approaches. Nevertheless, the two criterious are not contrary as we can both have a small pool
of experts having a managable monthly review rate.

In conclusion we can measure efficient reviewer selection by putting number of requested re-
views and number of different reviewers per author into relation. The resulting numbers of
different reviewers should slowly rise by increasing requested reviews and be low spread
along an regression line with a small slope. Our pareto chart indicates the share of how many
reviews gets conducted by the most active reviewers. According to former research a small
group of experts conducted more efficient reviews.

1.6.4 Social Network Metrics

Which social network metrics describe code review quality?

In this section we analyze our dataset using a social network analysis. In our network we use
the metrics described in chapter Research Approachto analyze which describe code review
quality. First, we have a look at the resulting network from Figure 2-8. It shows all authors
and reviewers connected by weighted undirected edges containing all data we have. The graph
is hardly interpretable, because of its’ high density and big number of nodes and edges. But
the formation shows that many authors are strongly connected requesting and reviewing code
while many reviewers in contrast just have just one-time connections mostly reviewing code.

15

Figure 2-8: Social network (reviewer - author)

To compare our results, we will use the study from Meneely et al. as he revealed several met-
rics we also inspected. Their research focus on failure prediction using a Social network anal-
ysis on developers from a network product (Meneely et al., 2008). Still we will need to inter-
pret several numbers without references, as current research is missing comparable measure-
ments in this field. Our numbers will be useful benchmarks for further studies on code review
networks.

For the calculation of our metrics we differentiated between two types of graphs, undirected
and directed. The directed graph is meant to distinguish between authors and reviewer impor-
tance. But looking at centrality and some other measurements we interpreted every review re-
quest as bidirectional interaction. The reason is that in a directed network an actor who is only
reviewer wouldn’t have influence at all, since he has no outgoing edges. All metrics we mea-
sured within the directed graph we marked with “directed” in the Tables below.

Table 2-3 shows general characteristics from the network of Figure 2-8. The companies’ au-
thor-reviewer Network consists of in total 777 different actors with 5477 edges. The density,
or proportion of all edges to all possible edges, is 1,81%. Compared to the dataset from Me-

16

neely et al., which consists of 161 developers, our network is comparable big. The fact that
our density is around 1-2%, indicates that we have a widespread network with a low level of
exchange between the actors.

Table 2-4 shows centrality measures applied on our network. In contrast to the results from
Meneely, where the training data is from a development of one network product, we could ex-
pect lower average centrality values by the higher diversity of our company’s products. Usu-
ally most metrics are normalized to compare networks easier. Since our paper from Meneely
hasn’t normalized its values, we appended them in brackets if necessary.

To analyze the general code review performance, we first want to focus on the average values.
The average degree is 14 for our author-reviewer network. In comparison the developer graph
from Meneely has an average degree of 19, even while having fewer nodes. In contrast the av-
erage not-normalized closeness of our network is comparably strong with an average distance
of 2.90 in contrast to the smaller network from Meneely with a value of 2.77. Looking at our
last centrality measurement, the betweenness centrality, we don’t have comparable data. But
we can see that the betweenness centrality is with an average of 736 comparably high consid-
ering all the outlying actors from Figure 2-8 with very low betweenness.

As a second step we compare our outlying values with the average values to evaluate single
performances. When having a closer look at the individuals with the best values from our ta-
ble, we found out that all metrics beside out-degree is dominated by the same person. With its
extremely high out degree it controls around one third of the whole network with direct con-
nections. As well, the person is very fast connected to all other actors and connects many sub
networks and single persons to the main component. Especially by comparing the average
with these values, we can see an impressive influence.

Characteristics Value

Number of nodes 777

Number of edges 5477

Density 1.81%

Table 2-3: Social network general characteristics

Metric Average value Best value

Degree 14.09 265

In-degree (directed) 7.38 55

Out-degree (directed) 7.38 239

Degree centrality 1.90% 34,14%

In-degree centrality (directed) 0,95% 7,09%

Out-degree centrality (directed) 0,95% 30,79%

Closeness centrality 0.35 (2.90) 0.56 (1.79)

Betweenness centrality 0.0025 (736) 0.2288 (68792)

Eigenvector centrality 0.0223 0.0283

Pagerank 0.0012 0.0214

Table 2-4: Social network metrics

We concluded that a social network analysis enables to identify important actors inside the
companies’ reviewer network. By degree it is easily possible to spot important authors and re-

17

viewers and the other centrality measures indicate hubs and generally important actors. To de-
termine the review quality, we used average values and compared them with another study.
Even though it was a good indication about the quality of the structure, we would need more
comparable data to make more precise statements.

1.7 Discussion

Discussing our research result we want to have a first look at our mayor limitations. As de-
scribed in chapter Dataset Characteristicswe found several limitations throughout inaccuracy
and missing fields in our dataset. This made several approaches impossible or led to restric-
tions. Another limitation in our study was the missing of comparable data for a precise evalua-
tion. Even though the strong research on the field of code reviews, relevant studies doesn’t re-
veal equivalent precise numbers in order to validate our results.

These limitations decrease the general internal validity of our study. The missing time accu-
racy leads to biasing our results for the reviewer workload. Moreover, the missing information
about patch sizes minimizes the precision in the workload observations. This makes it as well
more difficult for external transferability. Nevertheless, the fact that the code review data is
regulated and complete raises the internal validity, as we can ensure that all code review activ-
ities are documented. This fact makes it as well externally transferable to industrial practice
that can confidentially ensure a fully documented inspecting process. Our results within the
social network analysis can be due to its normalized values, easily be transferred to further re-
viewer author dynamics. The general methodology about analyzing the dataset, reviewer se-
lection and reviewer workload is applicable for further studies in this field. As most projects
document date as well as author and reviewer with IDs, it is external valid when considering
the possible differences in patch sizes throughout the reviews.

1.8 Conclusion

In this paper, we have proven that the current code review standards in industrial practice
needs improvements and more precise standards. On the investigation of a multinational com-
pany conducting governmental controlled code review process, we could find several indica-
tors to measure code review quality. We examined dataset characteristics, reviewer workloads,
reviewer selection and an author-reviewer network in an exploratory approach. Our results
have high significance as we could find outliers in all categories we inspected. Based on this
findings companies can compare their code review practice using our approaches and results.
As an implication companies conducting code review, should be aware that current practice
still needs careful observation and reconsideration.

1.9 Future Work

While we had a quantitative approach for our research paper, as a part of future work we plan
a qualitative method to investigate further on the dataset we have. It would be interesting to
interview several persons who are involved in the center of the reviewing network to investi-
gate further on reasons for our outlying values. Another approach for future research is to
compare our results to a similar sized open source project using the same methods. This
would empower us to have a face to face evaluation of our findings.

18

1.10 Acknowledgments

Finishing this study, I want to acknowledge all responsible persons of the software company
who shared their confidential data with us and gave us a unique insight in recent code review
standards.

I want to acknowledge my supervisor, Michael Dorner, who contacted the company, pro-
cessed all data and supported me with feedback and ideas in the quickest and most supportive
possible manner.

Last, I want to acknowledge all the personnel of the Open-Source-Software chair from Prof.
Dr. Dirk Riehle, who established a well-organized thesis process with helpful guidelines and
high standards.

19

2 Elaboration chapter

2.1 Remarks

In a relevant study at Microsoft, Bosu et al. measured code review quality building up on in-
terviewing developers on code review comment usefulness. Regarding to their outcome, com-
ments perceived as useful are identification of functional issues, validation issues, API sug-
gestions, software design to follow or comments about team coding conventions. As a result,
they created a classifier evaluating the usefulness of code review comments (Bosu et al.,
2015).

Based on this study, we checked if we can find similar observations inside the code review re-
marks. In chapter Dataset Characteristicswe already could shortly prove that the remarks are
very unprecise due to its shortness and incompleteness. In this chapter we want to have a
closer look at the length and content of the remarks.

Figure 3-1 shows a boxplot representing median, upper- and lower quartile of the remarks in
character length. It shows that 50% of the remarks are between 4 and 18 characters long with
a median of 5. The antennas show that comments with 0 strings and comments upon the
length of 35 appear in the dataset as well. We can conclude that within that range of character
length the reviewers hardly give useful comments, such as defined from Bosu et al. above.

Figure 3-1: Remark character length

To complement our findings, we want to inspect the content of the remarks. With only looking
at the length of the comments, we can’t ensure if the company isn’t using special codes or ab-
breviations. Therefore, we created a wordcloud, showed below in Figure 3-2. This graphic
groups all terms or phrases and represents the number of appearances as size of the word in-
side the graphic. The resulting figure states out that we can’t find evidence for any form of
codes or abbreviation that justify the average short length of the comments. Most of the re-
marks don’t have any content and use either default terms, very few additional information,
small hints or some state out the review type.

20

Figure 3-2: Remarks wordcloud

The code review remarks from our company’s dataset is a hardly used medium for actual
comments on their inspections. Most of comments are short and without content. We can con-
clude that the company needs to define a useful commentary function and give the reviewers
incentives for using it. In the meantime, their process lacks in effective code reviewing.

2.2 Safety Relevant Files

The data we got from our company has several company specific attributes we haven’t con-
sidered due to difficult transferability. Still we want to take advantage of one special token,
the safety relevant of a file.

Within our exploratory research we checked if the safety relevance has influence on the com-
pany’s code review process. We expected more review entries for files that have set their to-
ken is_safety_relevant to true, as safety relevant files have a lower error tolerance and need
more precise inspections. Hence, we wanted to check if safety relevant files have a higher
number of entries because of probable higher standards and less tolerance. The result was that
the arithmetic mean for entry-number per file is 2.63 for safety relevant and 2.66 for not
safety relevant files with a median of 2 in both cases. Accordingly, the findings are contrary to
what we assumed before and safety relevant files have an average lower number of entries.
Even though the difference is low and with 0.28% we have a low share of safety relevant
files, the results are concerning for the companies’ code review process. We can recommend
that the company defines its standards for safety relevant files or have a more accurate defini-
tion of this attribute in general.

2.3 Weekday and Working Time Distribution

Another additional approach was to examine the distribution of time and workdays. Therefore
we checked the timestamps a review recievews when it gets accepted. As discussed in chapter
Dataset Characteristics the date has missing accuracy, since review entries don’t have any
form of time documentary. Still we checked if the review acceptance timestamps have pat-
terns that indicate to issues in their review practice.

21

Figure 3-3 shows the distribution of the weekdays when the code review got commited. As we
can observe, the distribtuion is normal and with low differences between the usual working
days, Monday to Friday. As expected at Saturday and Sunday the number is very low due to
the fact that these two days are out of the working hours for our company. Concludingly the
reviews are well distributed within the working week and don’t have any atypical behaviour.

Figure 3-3: Review commit workday distribution

The distribution of time is illustrated by Figure 3-4. According to the usual office hours, we
were expecting the main activity from 8am to 5pm with a slow rise before and a decrease af-
terwards. Looking at our findings, we can see that the activiy rises as expected through the
morning with a small valley during the lunch time from 12am to 1pm and then slowly de-
crease by the finishing of the day. Hence we have can observe the anticipated results during
the working hours. On the contrary, the very first hour of the day has an high peak at midnight
from 12pm to 1am. Since we can’t expect people working at midnight and especially as it is
the only peak during the night, the result needed further investagtion. Within a closer exami-
nation of the exact times when the reviews got commited, we could find out that almost all
values (3824) in this timeframe are submitted at exactly 00:00:00 o’clock. Thus it is evident,
that the findings are due to either an system error or a manual manipulation. We can suggest
that these manipulated timestamps are the result of a late data import, which was mentioned
from the software company. However, as we don’t have further information about reasons for
that import, it would be an interesting question for future research.

22

Figure 3-4: Review commit daytime distribution

2.4 Social Network Core Analyzation

In our findings from chapter Reviewer selectionwe found out that 80% of the work is done by
only 20% of our reviewers. We could verify that with our social metrics and graphs, which
consist of reviewers and authors with very strong connections inside the network. Conse-
quently, we extracted the main core of our network and analyzed the corresponding metrics.
To get our network center, we used the k-core algorithm defined by Batagelj and Zaversnik.
This algorithm is implemented in networkx6 and determines the core as described in the fol-
lowing chapter.

2.4.1 K-core Algorithm

The k-core algorithm is based on the idea of creating a subgraph of all nodes that have a de-
gree higher than k. Its implemented by recursively deleting all vertices and line incident with
them of degree less than k from a given graph. The logic of the algorithm is simply illustrated
in Figure 3-5. As a first step we calculate the degree of all vertices and ordered them increas-
ingly according to its degree. Afterwards we created the k-core by starting from the vertices
with the smallest degree and deleting all that have a neighbor with a higher degree. While
deleting we updated all connected nodes by lowering the degree and resorting all vertices af-
ter. The resulting list of nodes is an approximated core of our network and consist of updated
degrees only considering the vertices inside this subgraph (Batagelj & Zaversnik, 2003).

6 https://networkx.github.io/documentation/networkx-1.7/reference/generated/
networkx.algorithms.core.k_core.html

23

1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v ∈ V in the order do begin
 2.1 core[v] := degree[v];
 2.2 for each u ∈ Neighbours(v) do
 2.2.1 if degree[u] > degree[v] then begin
 2 2.2.1.1 degree[u] := degree[u] − 1;
 2.2.1.2 reorder V accordingly
 end
end;

Figure 3-5: K-core algorithm (Batagelj & Zaversnik, 2003)

2.4.2 Core Analyzation

After applying the k-core algorithm to our network we have a resulting graph of the 35 nodes
with the highest degree showed in Figure 3-6. The graph is helpful to see how the main re-
viewers and authors are connected. In this network all actors are both reviewer and authors
and are represented by an undirected and unweighted graph.

By having a first look at the graph, we can already see a dense connection between all actors.
There is no abnormality to observe and every node is well linked to all others. This impres-
sion is supported by examining the network metrics from Table 3-1 and Table 3-2. The net-
work has 56.4% of all possible edges and connects all vertices fast and easily with an average
closeness of 1.4 steps to all other nodes. Another observation is that in contrast to our full net-
work, inside the core a different person has the highest values, such as a degree centrality
with 94.11%. This give an interesting insight, that we can differentiate between core impor-
tance and total network importance.

24

Figure 3-6: K-core author-reviewer network

.

Characteristics Value

Number of nodes 35

Number of edges 336

Density 56.4%

Table 3-1: K-core - social network general characteristics

Metric Average value Best value

Degree 19.20 32

Degree centrality 56.4% 94.11%

Closeness centrality 0.70 (1.44) 0.94 (1.06)

Betweenness centrality 0.0132 (7.4) 0.0481 (27.0)

Eigenvector centrality 0.1652 0.2578

Pagerank 0.0286 0.0452

25

Table 3-2: K-core - social network metrics

As a conclusion the core network gives an interesting angle to our network. We can see that
the author – reviewer main core is well connected and shares knowledge and work actively.
As well we found out that inside our core, the individual importance is different distributed.
The core implementation shows us a generally good overview about the most important actors
in the network based on their connectivity to other people.

26

Appendix ADataset Statistics and Metrics - Summary

Statistic/ Metric Result

Number of entries 254 212

Number of reviewers 682

Number of authors 415

Entries per reviewer – median 61

Entries per reviewer – lower quartile 18

Entries per reviewer – upper quartile 284

Monthly entries per reviewer – median 6

Monthly entries per reviewer – lower quartile 2

Monthly entries per reviewer – upper quartile 22

Number of requested reviews vs. number of different re-
viewers – linear regression slope

1.29%

Different reviewers per author – median 8

Different reviewers per author – arithmetic mean 14.4

Different reviewers per author – standard deviation 23.9

Requested reviews per author – median 61

Requested reviews per author – arithmetic mean 507.7

Requested reviews per author – standard deviation 1 356.1

Social network – number of nodes 777

Social network – number of edges 5 477

Social network – density 1.81%

Social network – average degree 14.09

Social network – average in-/ out-degree 7.38

Social network – average degree centrality 1.90%

Social network – average in-/ out-degree centrality 0,95%

Social network – average closeness centrality 0.35 (2.90)

Social network – average betweenness centrality 0.0025 (736)

Social network – average eigenvector centrality 0.223

Social network – average pagerank 0.0012

References

Askham, N., Cook, D., Doyle, M., Fereday, H., Gibson, M., Landbeck, U., …
Schwarzenbach, J. (2013). The Six Primary Dimensions for Data Quality Assessment.
Group, DAMA UK Working. Retrieved from
https://www.dqglobal.com/wp-content/uploads/2013/11/DAMA-UK-DQ-Dimensions-
White-Paper-R37.pdf

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and challenges of modern code
review. Proceedings - International Conference on Software Engineering, 712–721.
https://doi.org/10.1109/ICSE.2013.6606617

Balachandran, V. (2013). Reducing Human Effort and Improving Quality in Peer Code
Reviews using Automatic Static Analysis and Reviewer Recommendation, 931–940.

Batagelj, V., & Zaversnik, M. (2003). An O(m) Algorithm for Cores Decomposition of
Networks, 1–9. Retrieved from http://arxiv.org/abs/cs/0310049

Bavota, G., & Russo, B. (2015). Four eyes are better than two: On the impact of code reviews
on software quality. 2015 IEEE 31st International Conference on Software Maintenance
and Evolution, ICSME 2015 - Proceedings, (i), 81–90.
https://doi.org/10.1109/ICSM.2015.7332454

Bosu, A., & Carver, J. C. (2013). Impact of peer code review on peer impression formation: A
survey. International Symposium on Empirical Software Engineering and Measurement,
133–142. https://doi.org/10.1109/ESEM.2013.23

Bosu, A., & Carver, J. C. (2014). Impact of developer reputation on code review outcomes in
OSS projects. Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’14, 1–10.
https://doi.org/10.1145/2652524.2652544

Bosu, A., Carver, J. C., Bird, C., Orbeck, J., & Chockley, C. (2017). Process Aspects and
Social Dynamics of Contemporary Code Review: Insights from Open Source
Development and Industrial Practice at Microsoft. IEEE Transactions on Software
Engineering, 43(1), 56–75. https://doi.org/10.1109/TSE.2016.2576451

Bosu, A., Greiler, M., & Bird, C. (2015). Characteristics of useful code reviews: An empirical
study at Microsoft. IEEE International Working Conference on Mining Software
Repositories, 2015–Augus, 146–156. https://doi.org/10.1109/MSR.2015.21

Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of
Mathematical Sociology, 25(2), 163–177.
https://doi.org/10.1080/0022250X.2001.9990249

Cohen, J., & Brown, E. (2012). Best Kept Secrets of Peer Code Review Authors, 159.

Czerwonka, J., Greiler, M., & Tilford, J. (2015). Code Reviews Do Not Find Bugs. How the
Current Code Review Best Practice Slows Us Down. Proceedings - International
Conference on Software Engineering, 2, 27–28. https://doi.org/10.1109/ICSE.2015.131

dos Santos, E. W., & Nunes, I. (2017). Investigating the Effectiveness of Peer Code Review in
Distributed Software Development. Proceedings of the 31st Brazilian Symposium on
Software Engineering - SBES’17, 84–93. https://doi.org/10.1145/3131151.3131161

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development.
IBM Systems Journal, 15(3), 182–211. https://doi.org/10.1147/sj.153.0182

VIII

Ferreira, A. L., MacHado, R. J., Silva, J. G., Batista, R. F., Costa, L., & Paulk, M. C. (2010).
An apporach to improving software inspections performance. IEEE International
Conference on Software Maintenance, ICSM.
https://doi.org/10.1109/ICSM.2010.5609700

Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry.
https://doi.org/10.2307/3033543

Freeman, L. C. (1978). Centrality in Social Networks. Social Networks, 1(1968), 215–239.
https://doi.org/10.1016/0378-8733(78)90021-7

Hamasaki, K., Kula, R. G., Yoshida, N., Erika, C. C. A., Fujiwara, K., & Iida, H. (2013). Who
does what during a Code Review ? An extraction of an OSS Peer Review Repository.
Proceedings of the 10th Working Conference on Mining Software Repositories (MSR’
13), 49–52. https://doi.org/10.1109/MSR.2013.6624003

Huang, S.-K., & Liu, K. (2005). Mining version histories to verify the learning process of
Legitimate Peripheral Participants. ACM SIGSOFT Software Engineering Notes, 30(4),
1. https://doi.org/10.1145/1082983.1083158

Izquierdo-Cortazar, D., Sekitoleko, N., Gonzalez-Barahona, J. M., & Kurth, L. (2017). Using
Metrics to Track Code Review Performance. Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering - EASE’17, 214–
223. https://doi.org/10.1145/3084226.3084247

Jiang, Y., Adams, B., & German, D. M. (2013). Will my patch make it? And how fast?: Case
study on the linux kernel. IEEE International Working Conference on Mining Software
Repositories, (Section II), 101–110. https://doi.org/10.1109/MSR.2013.6624016

Kemerer, C. F., & Paulk, M. C. (2009). The impact of design and code reviews on software
quality: An empirical study based on PSP data. IEEE Transactions on Software
Engineering, 35(4), 534–550. https://doi.org/10.1109/TSE.2009.27

Kononenko, O., Baysal, O., & Godfrey, M. W. (2016). Code review quality. Proceedings of
the 38th International Conference on Software Engineering - ICSE ’16, 1028–1038.
https://doi.org/10.1145/2884781.2884840

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., & Godfrey, M. W. (2015). Investigating
code review quality: Do people and participation matter? 2015 IEEE 31st International
Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, 111–
120. https://doi.org/10.1109/ICSM.2015.7332457

Laitenberger, O., Leszak, M., Stoll, D., & Emam, K. El. (1999). Quantitative Modeling of
Software Reviews in an Industrial Setting. METRICS ’99: Proceedings of the 6th
International Symposium on Software Metrics, 312.
https://doi.org/10.1109/METRIC.1999.809752

Lopez-Fernandez, L. (2004). Applying social network analysis to the information in CVS
repositories. International Workshop on Mining Software Repositories MSR 2004 W17S
Workshop 26th International Conference on Software Engineering, 2004(May), 101–105.
https://doi.org/10.1.1.2.477

MacLeod, L., Greiler, M., Storey, M. A., Bird, C., & Czerwonka, J. (2017). Code Reviewing
in the Trenches: Understanding Challenges and Best Practices. IEEE Software.
https://doi.org/10.1109/MS.2017.265100500

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review
coverage and code review participation on software quality: a case study of the qt, VTK,

IX

and ITK projects. Proceedings of the 11th Working Conference on Mining Software
Repositories - MSR 2014, 192–201. https://doi.org/10.1145/2597073.2597076

Meneely, A., Williams, L., Snipes, W., & Osborne, J. (2008). Predicting failures with
developer networks and social network analysis. Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering - SIGSOFT ’08/FSE-
16, 13. https://doi.org/10.1145/1453101.1453106

Nelson, S., & Schumann, J. (2003). What makes a code review trustworthy? System Sciences,
2004. Proceedings of the 37th Annual Hawaii International Conference on, 0(Section 3),
10. https://doi.org/10.1109/HICSS.2004.1265711

Newman, M. E. J. (2014). Networks: An Introduction. Cambridge Quarterly of Healthcare
Ethics (Vol. 23). https://doi.org/10.1017/S0963180113000479

Ohira, M., Ohsugi, N., Ohoka, T., & Matsumoto, K. (2005). Accelerating cross-project
knowledge collaboration using collaborative filtering and social networks. ACM
SIGSOFT Software Engineering Notes, 30(4), 1.
https://doi.org/10.1145/1082983.1083163

Ouni, A., Kula, R. G., & Inoue, K. (2017). Search-based peer reviewers recommendation in
modern code review. Proceedings - 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2016, 367–377.
https://doi.org/10.1109/ICSME.2016.65

Rahman, M. M., Roy, C. K., & Kula, R. G. (2017). Predicting Usefulness of Code Review
Comments Using Textual Features and Developer Experience. IEEE International
Working Conference on Mining Software Repositories, (1), 215–226.
https://doi.org/10.1109/MSR.2017.17

Rigby, P. C. (2011). Understanding Open Source Software Peer Review : Review Processes ,
Parameters and Statistical Models , and Underlying Behaviours and Mechanisms by.

Rigby, P. C., & Bird, C. (2013). Convergent contemporary software peer review practices.
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2013, 202. https://doi.org/10.1145/2491411.2491444

Rigby, P. C., German, D. M., Cowen, L., & Storey, M.-A. (2014). Peer Review on Open-
Source Software Projects. ACM Transactions on Software Engineering and
Methodology, 23(4), 1–33. https://doi.org/10.1145/2594458

Rigby, P. C., German, D. M., & Storey, M.-A. (2008). Open source software peer review
practices: a case study of the apache server. Proceedings of the 30th International
Conference on Software Engineering, 541–550.
https://doi.org/10.1145/1368088.1368162

Rigby, P., Cleary, B., Painchaud, F., Storey, M. A., & German, D. (2012). Contemporary peer
review in action: Lessons from open source development. IEEE Software, 29(6), 56–61.
https://doi.org/10.1109/MS.2012.24

Sauer, C., Ross Jeffery, D., Land, L., & Yetton, P. (2000). The effectiveness of software
development technical reviews: A behaviorally motivated program of research. IEEE
Transactions on Software Engineering, 26(1), 1–14. https://doi.org/10.1109/32.825763

Shimagaki, J., Kamei, Y., McIntosh, S., Hassan, A. E., & Ubayashi, N. (2016). A study of the
quality-impacting practices of modern code review at Sony mobile. Proceedings of the
38th International Conference on Software Engineering Companion - ICSE ’16, 212–
221. https://doi.org/10.1145/2889160.2889243

X

Thongtanunam, P., McIntosh, S., Hassan, A. E., & Iida, H. (2015). Investigating code review
practices in defective files: An empirical study of the Qt system. IEEE International
Working Conference on Mining Software Repositories, 2015–Augus, 168–179.
https://doi.org/10.1109/MSR.2015.23

Tukey, J. W. (1977). Exploratory Data Analysis. Analysis (Vol. 2).
https://doi.org/10.1007/978-1-4419-7976-6

Yang, X. (2014a). Categorizing Code Review Result with Social Networks Analysis : A Case
Study on Three OSS Projects, 200–201.

Yang, X. (2014b). Social network analysis in open source software peer review. Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014, 820–822. https://doi.org/10.1145/2635868.2661682

Zanetti, M. S., Scholtes, I., Tessone, C. J., & Schweitzer, F. (2013). Categorizing bugs with
social networks: A case study on four open source software communities. ICSE ’13
Proceedings of the 2013 International Conference on Software Engineering, 1032–1041.
https://doi.org/10.1109/ICSE.2013.6606653

XI

