
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Harisree Radhakrishnan

MASTER THESIS

A Theory of Open Source Engineering
Processes

Submitted on 29. November 2017

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

2

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer

Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß

übernommen wurden, sind als solche gekennzeichnet.

Harisree Radhakrishnan

Nuremberg, 29. November 2017

License

This work is licensed under the Creative Commons Attribution 4.0 International license

(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Harisree Radhakrishnan

Nuremberg, 29. November 2017

https://creativecommons.org/licenses/by/4.0/

3

Acknowledgements

I would like to express my gratitude towards Prof. Dirk Riehle for his support and encourage-

ment. I am also grateful to him for connecting me with the interview partners from Open

Source Communities. I would also like to thank Andreas Kaufmann for his useful insights

throughout the course of my research. In addition, I would like to thank Michael Dorner for

helping during the initial stages of my thesis and preparing for the interviews.

I am also grateful to the interview partners who were kind enough to take time to share their

experience and knowledge.

4

Abstract

Open Source communities are largely people centric and work on customized software pro-

cesses created by people while trying to solve a problem. Hence, most Open Source projects

do not have formal processes or do not follow software engineering best practices. But at the

same time, they are successful and the processes followed are instrumental in their success.

The objective of this thesis is to build a theory of Open Source Engineering processes. This

theory can be used by Open Source communities to design their own processes and to com-

pare their processes with that of other communities. The theory is presented as categories and

sub-categories and is derived from qualitative data analysis of interviews and supplemental

materials. The model is then applied to three polar Open Source communities.

Keywords
Open Source Engineering Process, Open Source Development Process, Qualitative Research,

Decision-making in Open Source

5

Contents
1 Introduction ..6

1.1 Original Thesis Goals ...6

1.2 Changes to Thesis Goals ...6

2 Research Chapter ..7

2.1 Introduction ..7

2.2 Related Work ..9

2.3 Research Question ..9

2.4 Research Approach ... 10

2.5 Used Data Sources.. 11

2.6 Data Analysis Process ... 12

2.7 Research Results .. 13

2.7.1 The Decision-Making Category ... 13

2.7.2 The Product Management Category ... 16

2.7.3 The Engineering Management Category .. 17

2.7.4 The Software Development Category .. 18

2.7.5 The Patch Flow Category .. 18

2.7.6 The Quality Assurance Category ... 19

2.7.7 Application of the Model to the three Open Source Projects 20

2.8 Limitations ... 22

2.9 Conclusion ... 22

Appendix A Related Work ... 23

Appendix B Comparison of the 3 Open Source Communities .. 25

Appendix C Case Study Protocol ... 27

Appendix D Interview Guidelines/Questions ... 29

Appendix E Communication to Interviewees seeking consent ... 30

Appendix F Code System .. 31

6

1 Introduction

1.1 Original Thesis Goals

The goal of the thesis was to build a theory of open source engineering processes using three

very different examples. To better understand the Open Source engineering processes, three

polar examples were chosen - The Linux kernel, the PostgreSQL database, and the Tiki (Wiki

CMS) software. These communities were chosen depending on how they were organized and

how decision-making worked in these communities. Interviews with 3 to 6 practitioners from

these communities and subsequent qualitative data analysis of these interviews would be used

to develop the theory. The theory would then be cast as a multi-dimensional model and the

three processes described as instances of the model.

1.2 Changes to Thesis Goals

The initial goal was to interview 3 to 6 practitioners from all the three open source communi-

ties. During the course of the thesis, a total of 4 practitioners were interviewed in 3 interviews

as two practitioners from the last community participated in the third interview. This was due

to the difficulty in scheduling interviews with practitioners due to their busy schedules.

7

2 Research Chapter

2.1 Introduction

Open Source Software has evolved over the years and it now invites considerable commercial

interest. Once considered maverick and unconventional, Open Source now has ubiquitous

presence and acceptance. It is economically viable and there are many examples of highly

successful Open Source projects. This has led to significant corporate interest in the Open

Source topic. (Joseph Feller, 2000) Growth in infrastructure and connectivity led to the fast

dissemination of Open Source. Because of the decentralized nature of the communities, Open

Source differs from traditional software engineering processes in that there is no single, cen-

tralized software engineering setting (Scacchi, 2006).

The term “Open Source” was coined in 1998 to avoid confusion over the term “Free Soft-

ware” which was widely used before and which was promoted by the Free Software Founda-

tion. The Open Source Initiative defines Open Source as software which is free and provided

under open source licenses and which uses practices of open collaboration. (Open source

initiative, 2007). Open Source Software is usually developed by loosely organized communi-

ties who may not meet face-to face on a regular basis, but who are rather motivated by a

strong sense of community feeling.

In traditional “closed source” development approach there is always the need to develop sys-

tems which work well but which also take less time and cost to be developed. This is under-

taken by means of better processes and tools. Although engineering processes are rarely con-

sidered when Open Source is referred to, Open Source processes reflect many of the basic

tenets of software engineering (Fitzgerald, 2011). One can see that Open Source projects have

very little formal processes, very few of the projects have an explicit model for design and de-

velopment. Processes are usually restricted to issue-trackers and communication tools

(Boldyreff, 2003). Some may even argue that Open Source projects defy traditional software

engineering best practices of measurable goals, risk management, monetary incentives for

performance and formal control.

But it is also interesting to note that these practices may not, after all matter, as open source

projects function equally, if not exceedingly well producing high quality output at obvious

cost advantages (Fitzgerald, 2011). According to a survey of the European automotive indus-

try conducted by management and technology consulting firm BearingPoint, the “drivers (of

Open Source) included competitive differentiation, reduced development costs, increased cus-

tomization agility and avoidance of vendor lock-in” (Bock, 2012). The growing interest of

corporate majors in the industry like IBM and Hewlett-Packard to start open source consulting

shows that Open Source is very much mainstream. Internet giants like Google and Facebook

have used scalable infrastructure using open source technologies. The Future of Open Source

Survey received over 1300 responses out of which 67 percent of respondents report actively

encouraging developers to engage in and contribute to open source projects. The survey also

revealed an active corporate open source community that delivers value, triggers innovation

and shares camaraderie. (The Tenth Annual Future of Open Source Survey, 2016)

Early on, to solve the software crisis (which refer to problems related to time, cost and quality

of software delivered), many “silver bullet solutions” were suggested. Frederick Brooks said

that “there is no single development, in either technology or management technique” that may

increase productivity. (Frederick P Brook, 1987). Many proponents of Open Source Software

believe that Open Source can act as the silver bullet that allows improvement along cost,

schedule and features.

8

Open Source communities are not particularly interested in a software process model. This

could be due to several reasons. The first could be that the “hacker culture” and a “bazaar”

model of development is inherent to Open Source which is fundamentally against the princi-

ples of software engineering. Another reason could be that the constantly evolving processes

may not be conducive to a fixed process model. Just as closed source relies on no single pro-

cess model, neither is there one process model in the Open Source world. Nevertheless, there

exists some common features of all fully-fledged Open Source projects which can be thought

of as a generic model. (Lonchamp, 2005)

Some efforts have been made in the past to develop a process model for Open Source Soft-

ware(OSS). For instance, Mauerer and Jaeger present an engineering process with best prac-

tices, examples and comparisons with traditional methods. (Wolfgang Mauerer, 2013). The

three-layered development model proposed by Lonchamp specify OSS features as “defini-

tional”, “generic” and “specific”. (Lonchamp, 2005)

This thesis aims to provide a theory of Open Source Engineering Processes based on inputs

from three different communities, supplemental materials and existing scientific literature.

The categories of the Engineering processes are elicited in a tabular format with features and

constraints. The model is then applied to the three Open Source Software communities. The

differentiating feature of the communities is the organisation and collaboration within the

community. The model can be used by Open Source Software communities to understand,

compare, re-use and improve their processes.

The main contributions of this thesis are:

• A model to describe the open source engineering processes

• Application of the model to compare the engineering process of Linux kernel develop-

ment, Postgresql and Tiki.

The main data sources were the three interviews with 4 practitioners from the three open

source communities. Qualitative data analysis was done on these interviews where coding was

applied to bring out the concepts. Other supplemental data from the project websites and arti-

cles were also used to build the theory. The engineering processes were grouped under six

main categories “Decision-making”, “Product management”, “Engineering Management”,

“Software Development”, “Patch Flow” and “Quality Assurance”. This is also applied to the

three Open Source communities.

This Chapter presents the research in a systematic manner. It covers the Related Work which

includes the literature review done as part of the thesis in Section 2.2. The high-level research

question and the more granular question are discussed under Section 2.3. The steps within re-

search and general approach is covered in Section 2.4. The data sources are outlined in Sec-

tion 2.5 and the data analysis process is detailed in Section 2.6. The Section 2.7 finally pre-

sents the model of Open Source engineering processes in a tabular format and a descriptive

format. It also applies the model to the three communities - Linux, Postgresql and Tiki which

helps to underscore the model. Section 2.8 discusses the limitations of the research and 2.9

concludes the Research Chapter.

9

2.2 Related Work

A Software Engineering process allows the timely development of software. It also holds all

the technology layers together for the effective delivery of software. It is a framework of the

activities which lead to the development. (Pressman, 2005)

There are several accepted and popular software process models followed by traditional soft-

ware projects which are prescribed to outline a process flow. The framework may be linear or

incremental or evolutionary depending on the specific needs of the project and the software

that is being developed. For example, the Capability Maturity Model Integration (CMMI)

framework acts as an instrument for measuring performance on specific “process areas”. It is

detail-oriented and difficult to emulate. Increasingly, researchers are recognizing that the peo-

ple and their actions influences the performance of a software process. (Alfonso Fuggetta,

2014). But most of these processes were not designed with OS communities and projects in

mind.

Open Source projects are characterized by voluntary contributors and a distributed and virtual

team. There has been prior research and many scientific articles have been published on Open

Source Software Engineering Processes. As part of this thesis the existing literature was clas-

sified as (i) “community-based” where the literature largely dealt with people and community

side of the Open Source processes like decision-making, motivation of contributors and par-

ticipation and (ii) process-based where focus of the papers was process of the projects or

sometimes segments within the process. (Table 4 and Table 5 in Appendix A).

It can be noted that a number of research papers concentrate on the social mechanism which

exists within Open source software communities. How Open Source communities adjust

themselves to function effectively has been widely studied. Also of interest, is how decision-

making plays a role in the code review process and the success of Open Source projects. The

role of the “core” developers and reviewers are crucial here.

When some of the existing work compares traditional engineering process models with Open

Source process models, some others concentrate on the roles and responsibilities of individu-

als and how they fit into the process. Frame work of activities, best practices and simulation

model are proposed from studying specific Open Source projects and applying it back to

them. Case studies, previous literature and surveys are the main methods of research used.

While the existing research deals with the decision-making feature of the Open Source com-

munities as a mutually exclusive factor separate from the process model, this thesis tries to

understand the impact of decision-making in Open Source engineering processes. The scope

of this thesis is to build an engineering process model from interviews with experts from three

polar Open Source communities with respect to hierarchy and decision-making and apply the

model to these three projects.

2.3 Research Question

The fundamental research question of the thesis is:

“How to model open source engineering processes?”

The initial review of existing literature and supplemental materials helped to formulate a more

granular question: “How does decision-making work in open source engineering processes?”.

The polar sampling of cases was chosen on the dimension of maximum diversity of collabora-

tion and how decisions are taken in these communities.

10

Suggestions from literature review which included aspects of Open Source adoption of enter-

prises were not considered as the relations and exchanges of these open source communities

with commercial organizations and companies was marked as out-of-scope of the research.

2.4 Research Approach

The case study research methodology according to Yin was chosen for this research due to the

reasons stated below. The type of research question which investigates “how” to model open

source engineering processes called for a case study research method. The topic chosen was

contemporary and “allowed to maintain the holistic and meaningful characteristics of real life

events such as organizational and managerial processes”. (Yin)

A multiple-case study design was chosen for the thesis. Unit of analysis was the process in the

three open source communities that were chosen. Each open source community - Linux ker-

nel, Postgresql and Tiki CMS was chosen as a separate and contrasting/polar case.

During the designing of the case study research a case study protocol was created according to

Yin which is detailed in the Appendix C. This helped with design of units of analysis, defining

the type of case study and the procedure to be followed.

The research thesis started out with the apriori knowledge that the processes in the three Open

Source projects would be fit into the model which would be developed, although the pro-

cesses of the three projects are considered different mainly because of the difference in the

styles of collaboration. So, essentially theoretical sampling of projects on the dimension of de-

cision-making was to be done.

Three open source communities were chosen for investigating the engineering processes. The

choice was a polar sampling of cases based on the dimension of maximum diversity of collab-

oration. Hence, the three open source projects chosen were:

o Linux - single-rooted collaborative hierarchy

o PostgreSQL - core team of equals (peers) with supporting contributors

o Tiki - free for all and everyone can write

For building the theory, qualitative data analysis of interviews and supplementary materials

was chosen as the main technique. Following the case study design and protocol creation, a

systematic literature review was done on scientific articles and research papers. This helped as

background reading and also in refining the interview guidelines for practitioners. Interview

guidelines helped to organize the questions which would be used to steer the course of the in-

terviews (Appendix D). The data was primarily collected using semi-structured interviews

with practitioners from the three projects mentioned above. The Table 1 below depicts the

profiles of the practitioners interviewed.

Role Open Source Community Experience

Core contributor Linux Kernel ~20 years

Major contributor and Com-

mitter

Postgresql ~9 years

Project Admin Tiki CMS ~15 years

Project Admin Tiki CMS ~15 years

Table 1: Interviewee Profiles

11

The audio files of the recorded interviews were then transcribed to text format. Qualitative

data analysis was done on the transcripts of the interviews using QDAcity - an in-house tool

developed by the Open Source Research chair at the FAU. An integrated method (Grounded

Theory as well as Deductive) was employed to do coding of the interview transcripts. This in-

volved “microanalysis” and “constant comparison” of the interview transcripts, labelling

“concepts” and grouping them into “categories”. Figure 1 depicts the research process.

Figure 1: Research Process

For formulating the model into a tabular form and applying the model to the three communi-

ties, the article “A model of open source developer foundations” (Dirk Riehle, 2012) was

taken as reference.

2.5 Used Data Sources

Semi-structured interviews with practitioners of the three open source communities were the

primary data source for the thesis. After short-listing the candidates for interview based on

compatibility of relevant experience, availability and willingness, they were reached out via e-

mail. Once the practitioners confirmed to participate in the interviews a second e-mail was

sent to them giving them more details on the goal and method of research of the thesis (Ap-

pendix E). Their permission to record the call was requested and the interview guidelines

were shared when asked for.

An initial data assimilation and comparison was done for the three projects based on infor-

mation gathered from the corresponding websites and articles on the projects. Please refer to

the Appendix B for the comparison. This helped to understand the processes specific to each

of these Open Source projects more distinctly. Some of the papers, also mentioned under the

section Related Work talked directly about the engineering process modelling in the Open

Source projects and also specifically on the decision-making mechanisms existing in the Open

Source communities. Such data was also directly used in the building of the model.

12

2.6 Data Analysis Process

Qualitative data analysis(QDA) is used to unearth phenomena by understanding the underly-

ing concepts and the connections among these concepts, thus generating a theory. This form

of research is employed when data cannot be measured. Data for research is gathered through

different means like interviews or focus groups and the collected data is iteratively analyzed.

To analyze the data in an organized manner, coding process is followed. It helps not only in

classifying data but also in understanding the relationships that lie underneath.

Different methods of coding may be used in qualitative research. The most popular Grounded

Theory approach is purely inductive and does not force code systems. The deductive method

of coding starts with an initial set of codes which may be taken from literature review or al-

ready well-known concepts. An integrated approach uses both the emerging codes as well as

the pre-determined code structure.

This thesis concerns itself with software engineering processes which is already a well-estab-

lished subject with a wealth of knowledge. Hence when coding the transcripts of interviews,

some of the pre-known concepts of software engineering processes was used for labelling. For

example, “Roles and Resource allocation”, “Coding”, “Review”, “Testing” “Version Con-

trol”, “Release Planning”. These were processes which were discussed during the interview

and hence could be easily labelled. The definitions on when to use these codes were straight-

forward and they were constantly compared within different interviews.

Other than these pre-conceived codes, some other themes or codes became apparent during

the analysis. Examples of these codes are “Patch commit”, “Patch submission”, “Philosophy

that drives the project”

The table in the Appendix F shows the QDA output of the coding done using the tool QDAc-

ity. Once these codes were labelled against the instances from the interview, they were

grouped appropriately under a code group. “Patch Submission” and “Patch commit” were

grouped under “Patch Flow”. The codes “Review”, “Testing” and “Release Management”

come under “Quality Assurance”

To build a model from this code structure, the codes and code-groups were further analyzed

and re-grouped. Some of the codes were combined and some were dropped. For example,

when coding “Product Road-mapping” and “Product Specifications” were coded separately.

But later it was combined as a sub-category “Specifications/Features” for better coherence.

The code-group “Collaboration” emerged from the codes “Communication”, “Conflict-reso-

lution” and “Decision-making”. Here, the overarching concept that reflected throughout was

the “Decision-making” and hence it emerged as a Category. Through constant comparison

and referring to the online literature of the three projects, six categories emerged very evi-

dently. These were listed down to form the resulting model.

13

2.7 Research Results

The non-linear process of literature review, interviews and the data analysis resulted in the

emergence of categories and sub-categories. The six main categories which emerged were De-

cision Making, Product Management, Engineering Management, Software development,

Patch flow and Quality Assurance. The relationship between different categories of the model

are represented in the Figure 2 below.

Figure 2: Categories in the model

In this section, the tabular form of the model is presented. It is organized in a tabular form

(Table 2) as:

Column 1: Categories,

Column 2: Sub-categories

Column 3: Possible Features

Column 4: specifies the constraints among the features of each sub-category. The model is

further explained on the basis of categories and sub-categories in the following sub-sections.

2.7.1 The Decision-Making Category

This category broadly reflects how the Open Source community functions in terms of how it

is organized, how the community collaborates and how the power dynamics work within a

community.

The Organisation sub-category: The “onion model” is used to represent the social structure

of an Open Source community. The Open Source community may choose to be hierarchical

with a definite path of escalation and a Benevolent Dictator for Life (BDFL) with users, com-

mitters, core-committers and a Project Leader. It may also have an organisation of users, con-

tributors, major contributors and a Core team. The other possibility is to have a free-for-all

model where anyone can commit and there is no defined path of escalation. There may be

other options of organisation which lie outside these three possibilities. But for sake of sim-

plicity, these alone are considered here. It may be noted that even in the BDFL model, many

duties are delegated to the core team of “lieutenants”. Similarly, in the free-for-all model,

when taking crucial decisions, an experienced contributor/committer gets to enforce more in-

fluence than the less experienced contributor.

Software

Development

Decision-Making Product Management

Engineering

Management
Quality Assurance

Patch Flow

14

Category Sub-category Possible features Constraints

Decision

Making

Organisation

Hierarchical

Single choice

Core Team

Free for all

Conflict resolution

Mostly through discussion

Multiple choice

Can be escalated

Prominent members may have more say

Collaboration

Mailing lists

Multiple choice

Other online communication (forum,
webinars)

Traditional face-to-face occasionally

Chance of a new-comer's

patch getting committed

High

Single choice Low

Product

Management
Specifications/Features

Picked by companies

Multiple choice

Picked by individuals

May arise out of external triggers

Release planning

Centralized timelines

Multiple choice
Features in each release depend on the
patches

Engineering

Management

Release management

Hierarchical- What goes in is decided by

some committers

Single choice

Release management team in place

Self-organized release management

Roles

Strict roles of committer and contributor

Single choice Contributor is also the committer

Process improvement

Ad-hoc

Multiple choice Done in isolation

Software

development
Design and coding

Done privately

Multiple choice

Done publicly

Need to confirm to coding guidelines

Version control

Distributed (like Git)

Single choice Centralized (like SVN)

Patch flow

Patch submission

Via mailing list

Single choice Direct commit

Patch commit

Follows review

Multiple choice

Done by a committer

Done by contributor

Commit at regular intervals

Quality

Assurance
Review

According to review checklist/tool

Multiple choice

Done by a non-contributor of the patch

No specific review process

Testing

Regression testing is done

Multiple choice

Use of testing tools

Prioritized according to use of feature

Table 2: Model – tabular representation

15

Some of the excerpts from the interviews on the hierarchy are listed below. “..all the discus-

sion will also be done on the mailing lists as a reply or follow up to the patch you sent…. with

that everyone reading the mailing lists can infer the status of the patch. So, if there is an

agreement on that patch and you got the reviewers, then yes it will be applied. If there is not

an agreement then this patch will typically not be applied. There is only very, very, very rare

cases when a patch will be applied despite being, haven’t reached an agreement... very infre-

quently.” Linux

 “I think having multiple people involved rather than a single leader whose decisions can't be

challenged is probably a good thing because it does leave room for Debate and disagreement

particularly on a small Project. But you have a project which one committer... and that per-

son is the only authority figure in the community, then, you know if that person makes a bad

decision...there is nobody to come back and say... whoa...whoa…whoa...And by having multi-

ple people involved you kind of avoid that. At the same time, by limiting it to a core team

of people, rather than a very large group, you know, you retain some control as long as we

have a group of committers who broadly agree among themselves about what the, eh. . the

goals are” Postgresql

“So basically, some people could think that’s ok, let us say we are 7 people on the board of

directors or admin group in this case, if we add up an 8th one, like I am losing part of my

power. but that’s not the way to look at.. the way is that we have someone that we feel is at

least as good as everybody else that’s on the group. so, we are having more wisdom and more

people that can play that role, and if some more people come along we take them and even if

some people are bit less active, we still trust their judgements.” Tiki

Figure 3: The simplified Onion Model

The Conflict Resolution Sub-category: Open Source communities are more informal com-

pared to the traditional closed source software development and the developers have a high

degree of autonomy. But invariably, conflict situations do arise. As the Linux practitioner

pointed out “conflicts are resolved through discussion and more discussion”. This is rightly

the case with all three communities. The difference primarily arises if an issue can be possibly

escalated to a “higher” authority in a hierarchical community. In others, there may be very

less chance of a conflict because everyone has their way and there is no waiting for approval.

But in all communities, it is noted that in case of an issue the experienced developer gets their

way almost always. The Linux example quote says:

Core team

Committer

Contributor

User

16

“If you fall out with a maintainer or whatever, maybe on a completely unrelated issue and the

maintainer does not apply your patch, there is nothing you can do about it. You can try to ap-

ply to a higher authority but a higher authority in this case will be Linus, so it's not something

that you do lightly or virtually impossible for a typical contributor”

“.. we kind of count the votes... So, we say, you know, 6 people weighed in on this issue 5 of

them wanted one thing and one of them wanted the other thing so we're going to go with 5

people wanted. ...em ...some people's voice carries more weight than others..” Postgresql

“.. the wiki way is that we are building something together… and in the wiki culture it is very

acceptable for someone else to say oh let’s clean that up, organize and together we build a

plan. and that changes the philosophy vs people that object to something. like in a discussion

forum, someone could say, I disagree. ok. but in the wiki way it’s like ok what do you pro-

pose? you don’t like my proposal, rewrite it, rewrite it” Tiki.

The Collaboration Sub-category: Different channels of communication are used by Open

Source communities to work in a distributed environment. The most widely used platform for

communication is the mailing list. Other online communication like forums and webinars are

also preferred for discussion and knowledge sharing. Occasionally community members get

together for real-life meetings. These communication events help to bring in a personal con-

text to the exchanges.

The Chance of a new-comer's patch getting committed Sub-category: In a hierarchical

Open Source community as well as in an Open Source community with a core group, the only

chance for a new code getting submitted is by a committer picking up the code change

(patch). This is relatively easier if it is submitted by an established developer within the com-

munity. New-comers’ code is subjected to stricter reviews and is usually picked up, if at all,

after a lot of back and forth communication. In a Free-for-all model, this problem does not

arise as the developer is by default, a committer too.

2.7.2 The Product Management Category

This category concerns itself with the requirements engineering, product road-mapping and

the feature-wise implementation.

“there is an, well, overall roadmap where the communities/the most active developers agree

how the development should progress. But there is typically no time limit attached to it when

certain features will be or should be ready or should be incorporated” Linux

“Individual companies sometimes post things about what they intend to work on in the coming

year. We are on a 1-year release cycle and sometimes people who work for particular com-

pany will say that they're going to work on this topic. But that's, you know something which is

done by the individual companies not by the project” Postgresql

“So, someone comes and say hey we think you should do this and we want to do it well there

is nobody there to say oh no we shouldn't. that's like Tiki has grown to having tons of fea-

tures, and it is actually the free open source web application with most built-in fea-

tures and scope is very large.” Tiki

17

The Specifications/Features Sub-category: Open Source communities do not have a formal

specifications document. What they do have is a bug-tracker or a wish-list. The features of the

product depend on the contributions that are submitted. Organizations may push for their de-

sired features by submitting patches through their developers. Users or developers themselves

may submit changes while “scratching their personal itch”. Changes in the ecosystem may

sometimes trigger some changes to the features.

The Release Planning Sub-category: It is noted that as open Source communities evolve and

grow, they find the right interval and schedule for major releases. The release timelines are

planned centrally by the core or admin group. The features or changes which go into each re-

lease depend on the contributions submitted by developers in that interval.

2.7.3 The Engineering Management Category

This category talks about the project management, resource allocation and release planning

activities.

The Release Management Sub-category: In a hierarchical community, the leaders make the

decision on which contributions or patches actually go in to the actual code-base for each re-

lease. The contributors - especially the less experienced ones - may not have much influence

on this decision other than requesting for reviews and hoping that their code gets “pulled in”.

Some communities have a release management team in place to make decisions on last-mi-

nute submissions and to oversee the releases. Certain Open Source communities also have a

more informal and self-organized release management.

 “at the end of each release cycle we choose a 3-person release management team and

that group of three people is allowed after the feature freeze date to you know, basically by

fiat, by a vote of those three people, are allowed to make whatever decisions they need to

make in order to get the release out on time” Postgresql

The Roles Sub-category: Although Open Source communities do not have strict roles as-

signed, the two most important roles played by practitioners are that of Contributor and Com-

mitter (elite team of capable developers who have write access). The committer can also be a

contributor. The committer role is either explicitly assigned for experienced contributors or

the community may decide that any contributor can also be a committer.

The Process Improvement Sub-category: Process improvement initiatives are done in an ad

hoc manner and in isolation. It is done more as a better way of doing things or as a solution to

a problem encountered. It is not a formal process which carried out and earmarked as “process

improvement”.

“We try to have a yearly conference for the... for the subsystem. ..where those issues will and

should be discussed but again, there is no real process enforced for that” Linux

“there is no centralized command and control and therefore there is nothing like you know, a

continuous process improvement plan or anything like that because that would require a cen-

tral office control which we do not have and we do not want.” Postgresql

“every year or two especially when we get together there's a huge plan to move to git. and

there is a road map for that. and we definitely need to do that at some point but it is just a

question when and because so much stuff will break” Tiki

18

2.7.4 The Software Development Category

All activities and processes related to the development are included here.

The Design and Coding Sub-category: The development activities can be done privately by

a person, but the preferred method is to do it openly involving a larger audience. Projects may

enforce a strict adherence to a coding style or direct the contributors to follow some specific

programming language guideline. As a best practice of respecting the environment, commit-

ting early and frequently is encouraged as opposed to working in isolation.

“first thing you do is checking …Alright maybe someone else did a similar thing. So, you look

at other drivers, other subsystems, alright how did they fix it..and then you, more often than

not you find.. ah yeah that sounds similar, that looks similar to what I need. You copy it over,

adapt it to your needs and there you go which means that you really have some sort of fashion

how things are coded.. into... in the kernel itself” Linux

“that's really again up to individual developers. Generally, we do encourage people to

post designs or ideas on the mailing list before they go and write the code because if they

don't then they may find that they spend a lot of work developing a feature which is not some-

thing that people feel is a good idea.” Postgresql

“so, it was deliberately very declarative and simple so that people could get stuff done and

write new stuff and add new features without having to know object oriented programming

and hierarchies and inheritance and so on and then gradually as times got on, there's been a

need because things got more and more complex and there has been a need for a proper, you

know structured code design” Tiki

The Version Control Sub-category: Distributed or centralized version control tools may be

used in Open Source development. There is a tendency to move towards distributed version

control.

2.7.5 The Patch Flow Category

This category may be the most important process in an Open Source project. The planning,

creation and submission of source code is done by the contributor, whereas review and com-

mit to code-base is the responsibility of the Committer.

“the official workflow is that, you...actually the developer submits your patch with proper de-

scription. Then, this patch will be getting reviewed and if it's being reviewed then the main-

tainer will be picking up the patch and it will be, then merged in first with the maintainer sub-

tree and then subsequently with the next pull request into the Linux kernel proper” Linux

“someone will create a patch and they will post it to the mailing list...eh and they will add it

to our patch tracker which is commitfest.postgresql.org. and hopefully someone will take an

interest in it and review it. If it's a simple patch, then a committer such as me may take a quick

look at it….. if it's a more complex patch, then typically couple of committers will, not neces-

sarily look at it right away, although they may, in some cases if they happen to be particu-

larly interested in what the patch does, eh, hopefully but other people will come along and

help with, with code reviews, with testing…when at least one non-committer reviewer thinks

that the patch is ready for the committer to look at it then the status in the patch tracker gets

set to "ready for committer" and then hopefully a committer will look at it and often provide

19

more review feedback but sometimes not, sometimes they will just commit it directly” Post-

gresql

“Most of the time people just get commit access. We don't have any kind of commit team or

really any appraisal system” Tiki

The Patch Submission Sub-category: Contributors can submit their code changes to a mail-

ing list where they will be picked up for review and feedback is provided which may lead to a

possible commit or more discussion.

The Patch Commit Sub-category: The submitted changes or patches undergo a review and

feedback process. The guidelines for review and the process may vary according to the sub-

system within a project. The contributor can request another contributor or committer for re-

view or wait for the patch to be picked up for review and submission. When the contributor

also has commit access, the patch can be directly committed by the contributor

2.7.6 The Quality Assurance Category

Reviews and different types of testing which ensures the quality of the product fall under this

category.

“best practices are supposed to be caught by the reviewers” Linux

“We do have a checklist of things to review and that's very often used especially by new re-

viewers, to kind of help them understand what the expectations are” Postgresql

“We have unit tests which are mainly for the backend parts of the system. ……. we have got

plans for a continuous integration testing system.” Postgresql

The Review Sub-category: Review of contributions may be done as per a review checklist.

Code review is implicitly done in every Open Source project. This checklist may depend on

the project or the sub-system. Reviews are carried out by anyone other than the person who

submitted the code. That said, some projects do not have a formal or specific review process

and it depends on the type of change that is submitted

The Testing Sub-category: Other than the unit tests done, regression testing is part of the

Open Source development process and is usually automated. Use of testing tools are common.

Testing is largely proportionate to the complexity and priority of the feature.

In addition to the categories mentioned above, one other factor that emerged throughout the

course of the research was the overarching “Philosophy of the Open Source communities”

which cannot perhaps be categorized under the processes but is more abstract and defines the

purpose which binds the communities together and helps them grow.

20

2.7.7 Application of the Model to the three Open Source Projects

The derived model could be applied to the three Open Source communities as shown Table 3.

The possible features could be appropriately mapped to the projects as the model itself was

derived from data concerning the three projects.

Category Sub-category Linux Kernel Postgresql Tiki

Decision Making Organisation Hierarchical Core Team Free for all

Conflict resolution

Mostly through dis-

cussion

Mostly

through dis-

cussion

Mostly through dis-

cussion

Can be escalated

Prominent

members may

have more say

Prominent members

may have more say

Prominent members

may have more say

 Collaboration Mailing lists Mailing lists Mailing lists

 Other online com-

munication (forum,

webinars, chats)

Other online

communica-

tion (forum,

webinars,

chats)

Other online com-

munication (forum,

webinars, chats)

Traditional face-to-

face occasionally

Traditional

face-to-face

occasionally

Traditional face-to-

face occasionally

 Chance of a new-

comer's patch get-

ting committed

Low Low High

Product Manage-

ment

Specifications/Fea-

tures

Picked by compa-

nies

Picked by

companies

Picked by compa-

nies

Picked by individu-

als

Picked by in-

dividuals

Picked by individu-

als

 May arise out of ex-

ternal triggers

May arise out

of external

triggers

May arise out of

external triggers

Release planning

Centralized time-

lines

Centralized

timelines

Centralized time-

lines

Features in each re-

lease depend on the

patches

Features in

each release

depend on the

patches

Features in each re-

lease depend on the

patches

Engineering

Management
Release manage-

ment

Hierarchical- What

goes in is decided by

some committers

Release man-

agement team

in place

Self-organized re-

lease management

21

Roles

Strict roles of com-

mitter and contribu-

tor

Strict roles of

committer and

contributor

Contributor is also

the committer

 Process improve-

ment Ad-hoc Ad-hoc Ad-hoc

Done in isolation

Done in isola-

tion Done in isolation

Software Devel-

opment
Design and Coding

May be done pri-

vately

May be done

privately

May be done pri-

vately

 Done publicly Done publicly Done publicly

Need to confirm to

coding guidelines

Version control

Distributed (like Git)

Distributed

(like Git)

Centralized (like

SVN)

Patch flow
Patch submission

Via mailing list

Via mailing

list Direct commit

Patch commit

Follows review

Follows re-

view

May be done by

contributor

 May be done by a

committer

May be done

by a commit-

ter

Commit at regular

intervals

Quality Assur-

ance Review According to review

checklist/tool

According to

review check-

list/tool

No specific review

process

Done by a non-con-

tributor of the patch

Done by a

non-contribu-

tor of the

patch

Testing

Regression testing is

done

Regression

testing is done Use of testing tools

Use of testing tools

Use of testing

tools

Prioritized accord-

ing to use of feature

 Prioritized according

to use of feature

Prioritized ac-

cording to use

of feature

Table 3: Application of the model to three open source communities

22

2.8 Limitations

The three case studies chosen are polar in terms of hierarchy which is why they were chosen

but they were also totally different in terms of the application domains or the products offered.

While the Linux Kernel development concerns with an operating system kernel, Postgresql is

a relational database and Tiki is a web application platform which makes it hard to compare

the development processes followed within these communities. The size of the communities

compared are also varied with Linux having thousands of contributors, Postgresql and Tiki in

the hundreds range. The research does not claim to be applicable to all Open Source Commu-

nities but rather depicts the types of communities that were studied. The fact that only four

practitioners were interviewed as part of the research is another limitation of the research.

2.9 Conclusion

This Master thesis proposes a theory of Open Source Engineering Processes. Using Qualita-

tive Data Analysis, it provides a tabular model with Categories, Sub-categories and Possible

values of the engineering processes followed in the open source communities. In order to vali-

date the model and to establish its effectiveness, it was applied to three Open Source commu-

nities. This theory aims to help Open Source communities in designing and developing their

own processes.

23

Appendix A Related Work

Literature Focus

(MRÓWKA, 2012) Outlines the specific nature of decision-making in open

source projects, the probability of success of an Open

Source project and the advantages and disadvantages of

a group decision-making model.

(Gläser, 2012) Discusses the social mechanism creating social order in

Open Source communities. Compares Open Source

communities to scientific communities in that both work

on common product and are self-adjusting communities

(Yan Li, 2012) Proposes a model to assess the relationship between

leadership style and developer’s motivation to contribute

in Open Source communities.

(O’Mahony, 2007) Main principles critical to community-managed govern-

ance are identified with respect to open source commu-

nities.

(Toshiki Hirao, 2015) Studies the collective decision-making in code review

process. Majority method of voting is only used as a ref-

erence by the core reviewer who makes the final deci-

sion.

(Christopher Oezbek, 2010) The “onion model” of gradually varying degrees of par-

ticipation is validated against participation in OSS pro-

ject mailing list traffic

Table 4 Category: Community-based

(Han Lai, 2012) Establishes a framework to define the metamodel of Re-

quirements Elicitation process. Creates a template for

the process

(I. P. Antoniades, 2002) Proposes a dynamic simulation model for the develop-

ment processes of Open Source software projects. The

model is applied to an Apache case study to produce in-

dicative simulation results

(Keng Siau, 2013) Uses Grounded Theory Approach to propose a Phase-

Role-Skill-Responsibility Open Source Software Devel-

opment Process Model. Different roles in the Open

Source community are required to have certain skills and

responsibilities which correspond to phases of the Open

Source development process.

(Tiwari, 2011) Studies existing literature on Open Source models, com-

pares traditional software engineering development

model with Open Source model.

(Wolfgang Mauerer, 2013) Compares traditional approaches to software engineering

and Open Source methods. Proposes best practices with

examples.

24

(Timo Koponen, 2005) Proposes a framework for open source maintenance pro-

cess. Four activities within Open Source maintenance

were found similar to ISO/IEC framework.

(Mehrdad Nurolahzade,

2009)

By studying the development process of the Mozilla

foundation, how different roles involved affect the

patch-review process are analyzed.

(Audris Mockus, 2002) Data from two major Open Source projects are used to

quantify several aspects of Open Source software devel-

opment process. A hybrid model is then proposed.

(Lua Marcelo Muriana,

2014)

Uses a survey to study how Knowledge Management

stimulates Quality Assurance in developing Open Source

settings.

(Kevin Crowston, 2003) Success of Open Source and range of measures to assess

the success are identified considering the Open Source

development process.

(Bahamdain, 2015) Quality assurance and quality control within Open

Source - stakeholders, Quality Assurance frameworks,

problems affecting quality of Open Source software de-

velopment, comparison to closed source software

Table 5 Category: Process-based

25

Appendix B Comparison of the 3 Open Source
Communities

The Linux Kernel Development project

The Linux Kernel is an operating system kernel. The open source community is hierarchical

with Linus Torvalds at the top and subsystem maintainers or his trusted lieutenants. Working

with the community, especially for a beginner, involves being able to take criticism, requests

for changes or even silence. The development process involves a major release every 2 or 3

months with the timelines being managed by Linus. It has a merge window, fixes to problems

window and then a final stable release. The patches merged are tested and staged before the

merge window. Coding guidelines are strictly followed. Patches are submitted to the mailing

lists and may receive feedback. Once reviewed, it may be taken up the subsystem maintainer.

Here, it receives more feedback. Maintainers ask Linus to pull their changes. Mailing Lists

and the Internet relay chats are preferred form of communication.

The Postgresql project

Postgresql is a relational database system. The development process of Postgresql is not elab-

orated or illustrated as that of the Linux Kernel Development. The general work flow for a

patch is explained in the Postgresql website as follows

Postgresql has a core team which co-ordinate releases and act as an Admin team for website.

It follows coding guidelines and uses some checklists for review and testing. Patches are sub-

mitted to mailing list and follows review and commit by a committer.

26

The Tiki project

Tiki is a web application platform with the most built-in features. Any reasonable person can

get commit access. It follows respecting the environment by committing early and often and

making the features optional. So, there is no plug-in architecture. The project believes in re-

cruiting collaborative people as contributors and eliminating the initial hostility. Testing is

based on priority of features.

27

Appendix C Case Study Protocol

1. Background

a) identify previous research on the topic - Literature review to be done as two parts - Prior

art w directly related to the thesis and which will help in creating the model. Related work

which is literature related to the thesis and help as background reading. Some of the key-

words to be used for searching are “open source” “engineering process models in open

source” “decision-making in open source communities”

b) define the main research question being addressed by this study - How to model open

source engineering processes?

c) identify any additional research questions that will be addressed - How does decision mak-

ing work in open source engineering processes?

2. Design

a) identify whether single-case or multiple-case and embedded or holistic designs will be

used, and show the logical links between these and the research questions - multi-case holistic

as three different open source communities are chosen to study their engineering processes.

b) describe the object of study - To create a model of engineering processes in open source

communities

c) identify any propositions or sub-questions derived from each research question and the

measures to be used to investigate the propositions - From the initial literature review and in-

formation obtained from the community websites, software engineering practices of product

development will be used for creating the interview guideline and subsequent qualitative data

analysis of interviews.

3. Case Selection

a) Criteria for case selection -3 polar cases selected based on the dimension of collaboration.

4. Case Study Procedures and Roles

a) Procedures governing field procedures - Interviews of 2 practitioners each from each com-

munity is planned. Interview questions to guide and steer the interview to be prepared

b) Roles of case study research team members - not applicable

5. Data Collection

a) identify the data to be collected - Data concerning the three open source communities se-

lected from semi-structured interview with practitioners and from their websites as well as

from articles.

b) define a data collection plan - interviews to be recorded as audio files and later to be tran-

scribed as text files. Other relevant data to be collected from websites and online publications

c) define how the data will be stored - interviews to be stored as audio (.m4a) files. Tran-

scripts to be stored as .rtf files.

28

6. Analysis

a) identify the criteria for interpreting case study findings - Qualitative data analysis using

coding. Ordering the data in concepts, categories and subcategories.

b) identify which data elements are used to address which research question/sub ques-

tion/proposition and how the data elements will be combined to answer the question-Answers

of specific questions guide the analysis in the direction of the research question. Also, con-

stant comparison of coding each interview and refining the coding results help to identify the

emerging theory.

7. Plan Validity

a) construct validity - show that the correct operational measures are planned for the concepts

being studied. Tactics for ensuring this include using multiple sources of evidence, establish-

ing chains of evidence, expert reviews of draft protocols and reports - Data from interviews as

well as supplementary sources will be used to build the theory. The developed model will be

sent to the interviewees for feedback

c) external validity – identify the domain to which study finding can be generalized. Tactics

include using theory for single-case studies and using multiple-case studies to investigate out-

comes in different contexts - Multiple case study method is used to predict contrasting results.

8. Study Limitations

Specify residual validity issues including potential conflicts of interest (i.e. that are inherent in

the problem, rather than arising from the plan). - The open source communities although are

similar in the sense that they are “open source”, vary in the technical solutions they offer and

therefore the processes may vary leading to difficulties in forming correlations.

9. Reporting

Identify target audience, relationship to larger studies (Yin, 2003) - Practitioners in the open

source communities especially the leaders and steering groups can use the model to compare

with their own processes and help them create or improve their processes.

10. Schedule

Give time estimates for all of the major steps: Planning, Data Collection, Data Analysis, Re-

porting. - Six months are allocated for the project and will be used in the planning, data col-

lection and analysis as well as reporting.

11. Appendices

a) Validation: Review by supervisor, member checking,

b) Divergences: update while conducting the study by noting any divergences from the above

steps. Divergences are updated in the thesis goals

29

Appendix D Interview Guidelines/Questions

Interview guideline for semi-structured interview about open source processes.

Introduction

This interview is part of my research on “A theory of three open source engineering

processes”. The multidimensional model of the theory will be derived using qualitative data

analysis applied to the interviews of practitioners from three very different examples - The

Linux kernel, the PostgreSQL database, and the Tiki (Wiki CMS) software. The three

examples are then described as instances of this model.

Could you please provide permission to record this interview? Thanks.

Main questions

General

 Could you please tell me what your main role in the project is?

 Who are the key players involved in the process and what are their responsibilities?

 Let’s assume, a developer created a patch. How should they submit it and what will

 happen until the patch makes it into the final codebase?

Product management

 How are the requirements picked for a particular release?

 How is feedback from user community integrated into the feature list/ bug tracker?

 Is there a roadmap for new features triggered by changes in the ecosystem?

 Who makes the decisions about the release features?

Engineering management

 What are the development processes (design, coding, testing) followed?

 Which activities/processes make the development better or more efficient?

 Which processes need improvement?

 What is the version control process within the project?

 Is there some kind of a resource planning (especially for contributors)?

 Are there continuous process improvement initiatives? Are processes updated (lessons

 learned)?

Software Development

 Adherence to coding philosophy - How is it enforced?

 What is the process for creating and maintaining user documentation (how-tos)?

 Who creates the coding guidelines? How is it maintained?

Quality Assurance

 How important is testing in the process? What testing methods are used?

 How is regression testing ensured? Who decides the test cases?

 How are code reviews enforced?

Collaboration

 How do the contributors/committers collaborate?

 How are conflicts resolved?

 How transparent and open is the decision-making process?

 What is the influence of contributors in the decision-making process?

Conclusions

According to you, how does this process of "hierarchical/peer group/free-for-all" method

affect the overall functioning?

Thank you for your time and agreeing to co-operate for my research.

30

Appendix E Communication to Interviewees
seeking consent

Thank you for agreeing to let us interview you as part of our research.

My name is Harisree Radhakrishnan and I am doing my master thesis under Prof. Dr. Dirk

Riehle’s chair of Open Source Research at the Friedrich-Alexander University, Erlangen-Nu-

remberg.

This interview is part of my research thesis on open source engineering processes. Three very

different open source communities are chosen for this research - The Linux kernel, the Post-

greSQL database, and the Tiki (Wiki CMS) software. We are interviewing practitioners from

these three communities. Using qualitative data analysis applied to the interviews and addi-

tional materials, we are aiming to build a theory of open source processes. The dimension

which is of most interest to us in the theory building is how the decision-making process

works in open source engineering process.

Please also find attached the interview prep questionnaire for your reference. The interviews

will take about 40-50 min.

Since we would like to do qualitative data analysis on the interviews and are focused on high

quality input material, we just wanted to check with you if it would be ok that we record the

interview. The recordings and later the transcriptions are confidential and will never be pub-

lished.

Please let us know which communication mode is convenient for you. I would suggest a

Skype audio call.

To proceed further, could you please let us know what date(s) and time(s) would be conven-

ient to you for the interview.

Please let me know if you would like to have any further information.

Thank You.

31

Appendix F Code System

Code group Code When to use Coding instances

Product Manage-

ment

Product road

mapping

This code is associated with processes which help de-

fine how the project should progress or evolve 15

Product specifi-

cations

This code is used for practices related to the require-

ments gathering and definition of specifications of the

product 23

Release plan-

ning

This code is used for processes which plan the feature

wise implementation 11

Engineering Man-

agement

Roles and Re-

source Alloca-

tion

This code is used for practices of how work gets done

by contributors and how a task gets picked up 11

Process im-
provement

This code is used for practices which improve the pro-

ject, product or the processes itself or shows potential
for improvement 27

Software develop-
ment

 Coding This code is used for the programming practices 14

Coding guide-

lines

This code is used for processes which describe the

coding guidelines, how it is imposed and its benefits 11

 Version control

This code is associated with the configuration man-

agement of source code and other configurable items 4

Quality Assurance

 Review

This code is associated with the practices of reviewing

the code and related changes that are submitted 14

 Testing

This code is related to all the testing practices em-

ployed within the project. It encompasses manual and

automated testing and also the pre-requisites for a suc-
cessful testing 12

Release man-
agement

This code is associated with the processes of deploy-
ing the product across releases. 10

Collaboration

 Communication

This code is used for describing how the people work-

ing on the project communicate among themselves 31

Conflict resolu-

tion

This code is used to describe the possible causes of

conflicts and how they are resolved 20

Decision mak-

ing

This code is used for practices of decision-making, es-

calation of conflicts, overrides and final decision. It
also is used to describe the openness and transparency

of decisions 26

Patch flow

32

Patch submis-
sion

This code is used for the processes of planning, crea-
tion of source code and submission by a contributor 18

 Patch commit
This code is used for the processes of picking up, re-
viewing and committing code 19

Barrier to enter the
project

This code is used where references are made about the
ease or difficulty to be part of the community 10

Philosophy that
drives the project

This code is used where references to the larger goal
of the community is made 12

Table 6: The Code System

References

Alfonso Fuggetta, E. D. (2014). Software Process. Proceedings of the on Future of Software

Engineering (pp. 1-12). Hyderabad: ACM.

Audris Mockus, R. T. (2002). Two case studies of open source software development: Apache

and Mozilla. ACM Transactions on Software Engineering and Methodology, Vol. 11,

No. 3, 309-346.

Bahamdain, S. S. (2015). Open Source Software (OSS) Quality Assurance: A Survey Paper.

Procedia Computer Science, Vol 56, 459 – 464.

Bock, A. (2012, March 26). BearingPoint Study Reveals Broad Use of Free and Open Source

Software in Automotive Industry . Retrieved from BearingPoint :

https://www.bearingpoint.com/en/about-us/news-and-media/press-

releases/bearingpoint-study-reveals-broad-use-of-free-and-open-source-software-in-

automotive-industry-need-to-improve-compliance-across-software-supply-chains/

Boldyreff, C. L. (2003). Open-Source Development Processes and Tools. Taking Stock of the

Bazaar: Proceedings of the 3rd Workshop on Open Source Software Engineering

ICSE’03 International Conference on Software Engineering , (pp. 15-18). Portland,

Oregon.

Christopher Oezbek, L. P. (2010). The onion has cancer: some social network analysis

visualizations of open source project communication. Proceedings of the 3rd

International Workshop on Emerging Trends in Free/Libre/Open Source Software

Research and Development (pp. 5-10). Cape Town: ACM.

Dirk Riehle, S. B. (2012). A Model of Open Source Developer Foundations. Proceedings of

the 8th International Conference on Open Source Systems. Springer.

Fitzgerald, B. (2011, October). Open Source Software: Lessons from and for Software

Engineering . IEEE Computer Society, pp. 25-30.

Frederick P Brook, J. (1987). No Silver Bullet : Essence and Accidents of Software

Engineering. IEEE Computer Society.

Gläser, J. (2012). The Social Order of Open Source Software Production. International

Journal of Open Source Software and Processes, 1-15.

Han Lai, R. P. (2012). A Lightweight Forum-based Distributed Requirement Elicitation

Process for open source community. International Journal of Advancements in

Computing Technology(IJACT), 138-145.

I. P. Antoniades, I. S. (2002). A Novel SimulationModel for the Development Process of Open

Source Software Projects. SOFTWARE PROCESS IMPROVEMENT AND PRACTICE,

173-188.

Joseph Feller, B. F. (2000). A Framework Analysis of the Open Source Software Development

Paradigm. W. Orlikowski et al (Eds) Proc. of 21st International Conference on

Information Systems. Australia.

Keng Siau, Y. T. (2013). Open Source Software Development Process Model:A Grounded

Theory Approach. Journal of Global Information Management, 21(4),, 103-120.

Kevin Crowston, H. A. (2003). Defining Open Source Software project success. Proceedings

of the 24th International Conference on Information Systems (ICIS). Seattle.

Lonchamp, J. (2005). Open Source Software Development Process Modeling. In J.

Lonchamp, Software Process Modeling (pp. 29-64). Boston: Springer.

Lua Marcelo Muriana, C. M. (2014). Development of Open Source Software, a Qualitative

View in a Knowledge Management Approach. Proceedings of the 16th International

Conference on Enterprise Information Systems (pp. 391-399). Lisbon: Scitepress.

Mehrdad Nurolahzade, S. M. (2009). The role of patch review in software evolution: an

analysis of the mozilla firefox. Proceedings of the joint international and annual

ERCIM workshops on Principles of software evolution (IWPSE) and software

34

evolution (Evol) (pp. 9-18). Amsterdam: ACM.

Morkel Theunissen, D. K. (2007). Corporate-, Agile- and Open Source

SoftwareDevelopment: A Witch’s Brew or An Elixirof Life? Balancing Agility and

Formalism in Software Engineering, Second IFIP TC 2 Central and East European

Conference on Software Engineering Techniques, CEE-SET (pp. 84-95). IFIP.

MRÓWKA, R. (2012). Decision-making in the process of implementation of open source

projects. ISSN 2029-8234 , Business Systems and Economics.

O’Mahony, S. (2007). The governance of open source initiatives: what does it mean to be

community managed? Journal of Management and Governance, 139-150.

Odence, P. (2013). It’s No Myth: Compliance Is Good Business, Linux Collaboration Summit.

Black Duck.

Open source initiative. (2007, 3 22). Retrieved from Open source definition:

https://opensource.org/osd

Pearl Brereton, B. K. (2008). Using a Protocol Template for Case Study Planning. 12th

International Conference on Evaluation and Assessment in Software Engineering

(EASE). University of Bari, Italy: Electronic Workshops in Computing eWiC.

Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach Sixth Edition.

McGraw Hill.

Scacchi, W. (2006). Understanding Open Source Software Evolution. In J. F.-R. Nazim H.

Madhavji, Software Evolution and Feedback: Theory and Practice (pp. 181-202).

Wiley Publishers.

Strauss, A., & Corbin, J. (1998). Basics of Qualitative Research : Techniques and Procedures

for Developing Grounded Theory. Sage Publications, Inc.

The Tenth Annual Future of Open Source Survey. (2016). Retrieved from Blackduck software:

https://www.blackducksoftware.com/2016-future-of-open-source

Timo Koponen, V. H. (2005). Open source software maintenance process framework. 5-

WOSSE Proceedings of the fifth workshop on Open source software engineering (pp.

1-5). Missouri: ACM.

Tiwari, V. (2011). Software Engineering Issues in Development Models of Open Source

Software. International Journal of Computer Sci ence and Technology Vo 2, Issue 2,

38-44.

Toshiki Hirao, A. I.-i. (2015). Pilot study of collective decision-making in the code review

process. CASCON '15 Proceedings of the 25th Annual International Conference on

Computer Science and Software Engineering, (pp. 248-251). Markham, Canada.

Wolfgang Mauerer, M. J. (2013). Open Source Engineering Processes. it - Information

Technology. 55. . 10.1515/itit.2013.1008, 196-203.

Yan Li, C.-H. T.-H. (2012). Leadership characteristics and developers’ motivation in open

source software development. Information & Management, 257-267.

Yin, R. K. (2009). Case Study Research: Design and Methods (4th Edition). Sage

Publications.

