
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

BACHELOR THESIS

SEBASTIAN DUDA

A METHOD TO DETERMINE THE RE-
TURN ON INVESTEMENT OF INNER
SOURCE

Submitted on 25 September 2017

Supervisors:
Prof. Dr. Dirk Riehle, M.B.A. and Maximilian Capraro
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 25 September 2017

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 25 September 2017

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Inner source is the use of open source software developing practices in proprietary
software development across organizational borders. A significant amount of
companies are adopting inner source. Some companies already utilize inner source
practices without a coordinated effort to adopt inner source.

It is unclear if the gains of inner source outweight the costs of running and
adopting it because there is no quantitative method to determine the return on
investment for inner source yet. In this paper, we develop a quantitative method
to determine the return on investment of inner source.

We followed a four phase research approach: First, we conducted a methodolog-
ical literature review to collect methods and best practices on how to create a
return on investment model. Second, we performed a exploratory literature re-
view to identify typical inner source costs and gains. Third, we hypothesized
formulas to quantify the costs and gains. Fourth, we prepared but not fully
conducted an industry case study to evaluate the method.

We provide a methode on how to determine the gains and costs induced by inner
source and on how to aggregate them to the return on investment value. We
evaluated our method at an organization already adopting inner source. As the
results were inconclusive, we suggest further research on evaluating the method.
This paper contains the first method to determine the return on investment for
inner source.

ii

Contents

1 Thesis 1
1.1 Introduction . 1
1.2 Related Work . 2

1.2.1 Inner Source . 2
1.2.2 Return on Investment . 3

1.3 Research Approach . 4
1.3.1 Analysis of Existing Return on Investment Models 5
1.3.2 Identification of Gains and Costs of Inner Source 5
1.3.3 Quantifying the Gains and Costs 5
1.3.4 Evaluation of the Method 6

1.4 Return on Investment . 6
1.5 The Qualitative Model . 7

1.5.1 Gains . 7
1.5.2 Costs . 10

1.6 The Quantitative Model . 11
1.6.1 Quantifying Quality Improvements 12
1.6.2 Quantifying Cost Savings 15
1.6.3 Quantifying Speed Improvements 20
1.6.4 Quantifying Adoption Costs 21
1.6.5 Summary of Required Values 24

1.7 The Method to Determine the Return on Investment of Inner Source 25
1.8 Validation and Limitations . 28

1.8.1 Validation of the Qualitative Model 28
1.8.2 Validation of the Quantitative Method 29
1.8.3 Limitations . 29

1.9 Future Work . 30
1.10 Conclusion . 30

2 Elaboration 31
2.1 Thesis Goals . 31

2.1.1 Original Thesis Goals . 31
2.1.2 Changes to Thesis Goals 31

iii

2.2 Model Developed in Previous Research (NYT) 31
2.2.1 Column Names . 38
2.2.2 Completion of the Preliminary Model 38
2.2.3 Deduplication . 38
2.2.4 Omit Entities . 38

2.3 Decision Making . 41
2.3.1 Gitlab Plan . 41
2.3.2 Software Complexity Measurements 42
2.3.3 Better Global Perspective or Simpler Code 42

Appendices 43
Appendix A Abbreviations . 43
Appendix B List of Tables . 44

References 45

iv

1 Thesis

1.1 Introduction

The endless need to improve the software products and services forces companies
to continuously advance their software development practices. Today, the practice
of choice to do so, is to operate with product line engineering best practices.
Inner source (IS) can be the next step in software development approaches. The
main advantages of IS are the high reuse of code and the improved detection of
bugs. The problem many companies face when considering the adoption of IS is
a lack of methods to determine the profitability of IS.
The Return on Investment (RoI) is an economical indicator, stating the ratio of
the capital spent and the profit the investment induced. In our case, the profit is
equivalent to the money saved due to the measures of IS and the investment ist
equivalent to the costs of IS. There is neither a method, nor a model to estimate
and determine the RoI of IS yet. Without a method describing how to determine
the RoI of IS many companies back off from adopting IS. Thus, many of them
miss the chance to improve their software development practices.

The overarching question is whether applying and maintaining IS is lucrative.
With this paper we take a first step in the direction with our research question:
How to determine the RoI of IS?

In detail, this paper contributs the first method to determine the RoI of IS:

• A qualitative model of the gains and costs of IS

• Formulars to quantify the gains and costs

• A method how to use the quantitative model

• An evaluation of the method

To gather the required data we conduced three independent literature reviews.
We analyze the gains and costs and compare them to determine the RoI of IS.
This method is as general as possible in order to make it adoptable for many
corporations considering the adopting of IS.

1

The paper is structured as follows: In section two, we discuss the related work
while section three states the research approach of this paper. Section four an-
alyzes existing RoI models and in section five we conduct a literature review to
collect the gains and costs of IS. In the section six, we present forumulars to
calculate each gain and cost. Section seven describes the method on how to de-
termine the RoI. In section eight we validate the method. Section nine contains
the future work on the topic of RoI of IS. The conclusion of the paper is in section
ten.

1.2 Related Work

At first, we analyze the state of the research about IS topics with a special focus
on literature addressing gains/benefits and costs/risks. Furthermore, we sight
papers about RoI. We consider papers approaching best practices, models and
methods for open source (OS) and code reuse.

1.2.1 Inner Source

“The majority of definitions in literature [. . .] are akin to this first
definition published by Dinkelacker et al. [2002] and share two
characteristics:
(1) IS leverages practices from open source development.
(2) Contrary to open source, only a limited group of developers
(employees of a specific organization) can take part in the community.”

Capraro and Riehle, 2016

The two requirements of IS shared by the majority of all defintions are required
by the gains and costs identified below.

Stol, Avgeriou, Babar, Lucas and Fitzgerald, 2014 discussed nine key factors for
adopting IS that need to be considered when implementing IS in order to prevent
the major obstacles. In a second paper, Stol and Fitzgerald, 2014 describe a
“tutorial” on how to adopt IS. Riehle, 2016 pictures an exemplary governance
structure.
These papers analyze a theoretical approach on how to adopt IS in a company.
We use said roadmaps to analyze the challenges and investments which have to
be faced. These challenges and investments are condensed in the costs of the
adoption of IS. In contrary, the method in our paper addresses already running
IS programs.

2

Opposed to this the following papers describe the adoption of IS in a company.
The introduction of IS at Phillips Healthcare was monitored by Wesselius, 2008.
He expounded the development of the IS culture in the company from an eco-
nomic perspective. Later Riehle et al., 2009 introduced IS to SAP. He described
how SAP organizes the sharing of code. Lindman, Rossi and Marttiin, 2010 an-
alyzed the changes a company is facing while adopting IS. In further research,
Lindman, Riepula, Rossi and Marttiin, 2013 show two approaches with a differing
focus.
On the contrary, we do not analyze the adoption of IS in companies. We deter-
mine the successfulness of the IS program by measuring the RoI.

Höst, Stol and Orucevic-Alagic, 2014 analyzed the characteristics of IS the man-
agement is facing. They provide a small list, which motivates to adopt IS as well.
In the paper “Inner Source Definition, Benefits, and Challenges” Capraro and
Riehle, 2016, analyze the state of the research of IS. They provide a summary
of the benefits and challenges of IS. These benefits and challenges have a causal
relationship with the gains and costs of IS. Riehle, Capraro, Kips and Horn,
2016 further researched how IS affects platform-based product engineering. The
case studies presented in the paper show additional gains and costs. Gaughan,
Fitzgerald and Shaikh, 2009 published a paper comparing IS with OS. They
state serveral benefits of IS reported by companies which already implemented
IS. Vitharana, King and Chapman, 2010 analyzed one of the main gains of IS,
namely the reuse.

The papers contain nearly all gains and costs of IS (legal costs are missing).
Nevertheless the focus of said papers are not the gains and costs, thus they don’t
provide all of them. We completed and quantified the list of gains and costs.

1.2.2 Return on Investment

The RoI or equity return is one of the main economic key indicators (Baum,
2013). The RoI is frequently used to measure the effectiveness of education
(Hansen, 1963; Elaug, 1965; Kirkpatrick, 1998; Plaza, 2006; Pine and Tart, 2007;
Phillips and Schirmer, 2008; Phillips, 2012). Pine and Tart, 2007 use the term
“benefits” and “challenges” which are related with gains and costs. Thus, we
use the terms as well in the exploratory literature review in section five. In the
IBM developerWorks O’Neill, 2009 brings the RoI into an IT context. He claims
that the IT became a main part of many companies’ infrastructures so that an
improvement of the RoI in the IT leads to a competitive advantage.

3

Best Practices

Emam, 2003 exemplary calculates the RoI for several computer science topics like
risk assessment and automated defect detection. In the paper, the models are
not derived from a standard RoI model but from scratch. Thus, the methodology
is not adoptable to our paper.
Sonnenreich, Albanese and Stout, 2006 adopt the classical RoI model to the
context of security. The model is called return on investment for a security
investment (ROSI). The gain of the RoI model is substituted with the security
gain.

ROSI =
(risk exposure ∗% risk mitigated)− solution cost

solution cost
The paper shows how the classical RoI model can be altered. In our model, we
will alter it from a single investment to a continuous investment.
Lee et al., 2012 describes the RoI model used by the Washington State Institute
for Public Policy. In this model, the gains are substituted with a non-monetary
benefit like “public health”. The paper describes the best practices defined by
the institute to grant a consistent quality of the results.

Models and Methods

Open Source J. M. Pearce, 2015 developed a method to determine the RoI
of OS hardware. The model for hardware is quite similar despite the fact that
software has no reproduction costs. Furthermore, the RoI model does not analyze
only a single return but a return over a longer time. Nevertheless, the investment
is only done once in contrast to our model.

Code Reuse Emam, 2003 exemplary calculated the RoI for code reuse. This
model includes the costs needed to search for reusable code. In our model, we
have no costs like this. There is no effort to find reusable code, this is an effect
of IS.
Poulin and Caruso, 1993 developed a metric to estimate the financial benefit of
an organizational reuse program. The authors took a look at the reuse of code.

1.3 Research Approach

We followed a four step approach to create a method to determine the RoI of
IS. First, we conducted a literature review regarding existing RoI models and
identified model presented by Schmalen and Pechtl, 2013 as a good fit for us.
Second, we searched for gains and costs of IS in the existing literature. The

4

gathered gains and costs are applied to the RoI model from step one. Third, we
provided formulas to quantify the gains and costs detected in step two. These
formulars are taken from the available literature or developed by the authors.
Furthermore, we described a method on how to use the model. The previously
developed models are a component of the method. Fourth, we took a first step
towards the validation of the method. We evaluated the method with one case.
We conducted the research in this kind of modular approach to easily extend or
substitute single modules. If the validation of the qualitative model would have
failed, we could easily substitute this part of the research work.

1.3.1 Analysis of Existing Return on Investment Models

We analyzed literature about the RoI in general, best practices on how to create
such models and available models handling similar topics like open source, open
source software, code reuse and other software development techniques. We did
this by conducting a methodological literature review (M. Pearce, 2017). In this
review, we analyzed the existing literature addressing the RoI. We extracted the
methodology depicting how to create a RoI model from the papers. We used
the papers as best practices. We expected to find a method or best practices to
create a new RoI model. We did not find the one method on how to create a
new RoI model, but instead we came across methods on how to build a model
from scratch and how to derive existing models. For our model, we will reuse the
standard model proposed by Schmalen and Pechtl, 2013 and alter it to suit our
needs.

1.3.2 Identification of Gains and Costs of Inner Source

To collect the gains and costs of IS we conducted an exploratory literature review
(Liston, 2006) by searching for literature by common terms. We used the terms:
“inner source” combined with one or more of these words: “gains”, “chances”,
“benefits”, “costs”, “risks”. We collected all gains and costs mentioned in the
found 14 papers. We applied the 16 gains and six costs of IS found in literature
to the RoI model from step one.

1.3.3 Quantifying the Gains and Costs

We continued with conducting a focused literature review (Liston, 2006) to find
ways to measure the found gains and costs. To quantify the gains and costs, we
looked into literature for forumulars to calculate each gain and each cost. We
expected to find a method to quantify each gain and cost. Instead we found that

5

the current literature does not provide methods to quantify most of the gains
and costs. The IS literature provided formulas to quantify three gains and zero
costs. However, for ten gains and four costs, the literature did not provide any
hints. Consequently, for the remaining gains and costs we propose theoretical
formulas ourselves. There are some gains and costs (e.g. G2 or C4) which were
not quantified at all.

1.3.4 Evaluation of the Method

To evaluate the model we performed case study research at an organization cur-
rently adopting IS. However, the data collection is not yet finished. Our pre-
liminary results are inconclusive about the utility of the model. In a first step,
we validated our qualitative model by comparing our model with their interests.
The second step was to apply the data provided by the company to our method.
Due to the bad quality of the data supplied by the company the validation was
inconclusive.

1.4 Return on Investment

The RoI or equity return is one of the main economic key indicators (Baum, 2013).
It states the ratio of an investment and the gain caused by the investment. A
high RoI indicates a lucrative investment. Thus, there is plenty literature about
the RoI. Schmalen and Pechtl, 2013 presented the following RoI model:

RoI =
income

costs
=

gains− costs

costs

The RoI model only requires two values: the gains and costs.
The classic RoI model uses the cost of one single investment and the gain of one
single RoI. When adopting IS, there is not only one investment and one single
payday. The costs have to be covered on a monthly basis and the gains are on a
continuous base as well. Furthermore, there is no correlation between the gains
and the costs. Higher expenses do not lead to higher gains. Thus, we have to
calculate the RoI not only for one investment, but over a time span.

RoI(time span) =
gains(time span)− costs(time span)

costs(time span)

The gains and costs analyze the difference between the software development
without IS and with IS which is said time span from above. The difference
(marked as ∆) always has to be calculated between the two dates.

6

1.5 The Qualitative Model

According to the RoI Model, we have to collect the gains and costs which come
with the adoption of IS. We collected the gains and costs in an exploratory
literature review.

1.5.1 Gains

IS has many advantages for the companies. We summarized the gains in the table
below.

Table 1.1: Qualitative List of Gains of Inner Source

ID Gains Description Source

G1 Better detection of
bugs

Peer reviews and
testing detect many
bugs

G2 Higher static code
quality

High code quality is
enforced by the
committers

G3 More innovative
development

IS improves the
research to product
transfer

Capraro and Riehle,
2016; Riehle et al.,
2016; Melian et al.,
2002; Morgan et al.,
2011

G4 Better global
perspective

Developers are able
to perceive the global
perspective by
reading the archived
informations, thus
more simple code can
be developed

Capraro and Riehle,
2016; Riehle et al.,
2016; Stol and
Fitzgerald, 2014

G5 Employee happiness The high liberty of
developers increase
the happiness

G5.1 Higher employee
satisfaction and
motivation

The higher level of
happiness motivates
employees

Capraro and Riehle,
2016; Riehle et al.,
2016; Gurbani et al.,
2006; K., 2006

G5.2 Higher employee
loyalty

Due to the happiness,
employees resign less

Continued on next page. . .

7

Table 1.1 – continued from previous page
ID Gains Description Source

G6 Development cost The overall
development costs
shrink while fostering
IS

G6.1 Increased code reuse With IS more code is
reused

Capraro and Riehle,
2016; Riehle et al.,
2016; Stol and
Fitzgerald, 2014;
Riehle and Kips,
2012; van der Linden
et al., 2009

G6.2 Reduced process
overhead

IS simplifies many
processes

Riehle, 2016

G6.3 Less time spent in
meetings

The communication
mainly takes place
via the mailing-list,
thus there are less
meetings

G7 Community-based
learning

Through openness of
information the
employees can learn
without prepared
training

Capraro and Riehle,
2016; Martin and
Hoffman, 2007; Smith
and Garber-Brown,
2007

G7.1 Less project-specific
training needed

All project-specific
knowledge is written
down and accessible

G7.2 Creation of
self-reliant learning
culture

Employees are not
dependening on
trainings but can
read the required
information
purposefully

Capraro and Riehle,
2016; Riehle et al.,
2016; Melian and
Mähring, 2008

G8 Avoidance of provider
bottlenecks

Employees don’t have
to wait for developers
of a foreign project to
fix a bug, instead
they can submit their
own solution to the
foreign project

Continued on next page. . .

8

Table 1.1 – continued from previous page
ID Gains Description Source

G9 Cost and risk sharing Due to the
collaboration across
organizational units
(OrgUnit), the costs
and risks are shared

Capraro and Riehle,
2016; Wesselius, 2008

G10 Independence of
reuser and provider

In case of an
emergency, the user is
not dependent on the
provider, and can
help himself
autonomously

Capraro and Riehle,
2016; Vitharana
et al., 2010

G11 Relief of component
providers

The issuer can
commit changes, so
that the provider can
solely adopt it

Capraro and Riehle,
2016; Vitharana
et al., 2010

In a second step, we analyzed the gains found and assign each gain to a perspective
and a group. The perspective states the affected entity:

G lobal; affects the company globally

L ocal; affects single employees or single OrgUnits

The group stated the improvement each gain causes. The improvements can be
split in three main groups (Goldin, 1999):

B etter

C heaper

F aster

The found gains are assigned to the perspective and the group in the matrix
below.

Table 1.2: Assiging Gains to Perspective and Group

ID Gains Group Perspective
B C F G L

G1 Better detection of bugs x x x
G2 Higher static code quality x x x
G3 More innovative development x x x
G4 Better global perspective x x x

Continued on next page. . .

9

Table 1.2 – continued from previous page
ID Gains Group Perspective

B C F G L

G5 Employee happiness x x x
G5.1 Higher employee satisfaction and motivation x x x
G5.2 Higher employee loyalty x x
G6 Development cost x x
G6.1 Increased code reuse x x x x
G6.2 Reduced process overhead x x x x
G6.3 Less time spent in meetings x x x
G7 Community-based learning x x x
G7.1 Less project-specific training needed x x x
G7.2 Creation of self-reliant learning culture x x x
G8 Avoidance of provider bottlenecks x x
G9 Cost and risk sharing x x
G10 Independence of reuser and provider x x
G11 Relief of component providers x x

The gains affecting only the local perspective are written in gray because they
are ignored within the following model. These gains do not affect the company,
but only single employees or OrgUnits. Thus, the gains have no effect on the RoI,
but can be used for convincing employees of the advantages of IS. Gain 11 “Cost
and risk sharing” is not quantifiable. Its effect is to share the risks and costs of
projects over multiple OrgUnits. Thus, many OrgUnits can deal with risks of one
project. In return one OrgUnit has to partly face the risks of multiple projects.
Nevertheless, these gains are listed for the sake of completeness.

1.5.2 Costs

It costs money to adopt and maintain IS. The following five groups of costs
are considerd by the literature we looked into. Unlike the gains, there are no
categories nor perspectives. All costs always exist.

Table 1.3: Qualitative List of Costs of Inner Source

ID Costs Description Source

C1 Infrastructure A company has to
maintain the
infrastructure to use
IS (Hardware and
Software)

Continued on next page. . .

10

Table 1.3 – continued from previous page
ID Costs Description Source

C2 Training for
employees

The company has to
provide training for
its employees on how
to use the tools and
how to collaborate
successfully

Capraro and Riehle,
2016; Melian et al.,
2002

C3 Committees The committees
maintain and develop
IS all times

Riehle, 2016

C3.1 Program board The program board
subserves all
management
questions of IS topics
like wether to
outsource the hosting
of the tools required
by IS

Riehle, 2016

C3.2 Program office The program office is
responsible for
operational tasks like
marketing

Riehle, 2016

C4 Legal issues Depending on the
company, legal costs
like taxes cannot be
avoided when
adoping IS

1.6 The Quantitative Model

We now use the previously found gains and costs and provide formulas to quantify
them. The gains will be split into the three categories. Thus, there are four sub-
models.

Better Gains of IS improving the quality of the software product

Cheaper Gains of IS shrinking the costs of the product

Faster Gains of IS improving the time to market

Costs Costs of IS

11

This segmentation enables users of the method to focus on the RoI suiting their
needs. The user can select up to three sub-models of gains and compare them
with the costs sub-model. Consequently, he receives a well-tailored RoI of IS.
Furthermore, we will ignore all gains and costs operating only as a collection of
gains and costs. For example, G6 (Development cost) is an aggregation of the
gains G6.1 to G6.3.

For describing how to quantify gains and costs, we use the following notations:

The pound sign states the cardinality of a set. For example, #Bugs refers
to the total amount of bugs.

foo The overline states the average of a set. For example, Bugs in project
describes the average amount of bugs in all projects.

1.6.1 Quantifying Quality Improvements

Software quality is a well researched topic. According to the product quality
model from ISO25010, software quality is based on the following dimensions:

• Functional Suitability

• Performance Efficiency

• Compatibility

• Usability

• Reliability

• Security

• Maintainability

• Portability

The following gains will each improve one or more of these dimensions. The
improvements of multiple dimensions is not summarizeable to one value. Thereby,
we will only state the improvement of single dimensions.

12

G1 Better Detection of Bugs

Explanation Linus law says:

“Given enough eyeballs, all bugs are shallow”

Raymond, 1999

In IS, no developer can simply publish the developed code. Before code can
be published has to pass the peer review. This peer review is conducted by a
committer and detects the majority of bugs. Wiegers, 2002 says 60% of the bugs
in software can be detected by peer review.
This gain improves the reliability.

Formula
QR,1 = ∆#bugs, crashes reported by users

G2 Higher Static Code Quality

The commiter enforces code quality. As a result of the peer review the code is
orderly, and easy to maintain. Developers can easily work with the code because
they are used to the style of code and naming of the variables. The strict com-
pliance of standards (e.g POSIX) or certain versions of coding languages (e.g.
C++-14) additionally increases the static code quality. A merge request without
appropriate static code quality will simply be rejected. This encourages develop-
ers to instantly foster the quality standards.
This gain improves the maintainability.

The effects of the high static code quality are hard to measure. Many effects
overlap with other gains of IS. Consequently, the effects of this gain will not be
measured to prevent imbrication.

G3 More Innovative Development

Explanation With IS, there is more innovation due to a great diversity of
developers. Research by Melian et al., 2002 shows an improvement of the research
to product transfer.
This gain improves functional suitability, performance efficiency and usability.

13

Formula An innovation does not affect any special quality dimension, but can
affect all the quality dimensions presented by ISO25010. As a result, we cannot
measure the improvement of any quality dimension directly. However we will
measure the changes in innovativeness.

QG3 = ∆#research components first used in customer products

G4 Better Global Perspective

Explanation The improved global perspective is caused by the all-inclusive
archiving of communication. All information, decisions, goals, requirements and
code are archived in the mailing list, the discussion board or within a wiki.
With all this information, each developer knows what the code is for. Further-
more, developers know what is going on outside their project. This enables
developers to design much simpler code than before. The development will de-
velop from a sweeping blow facing many possibilities to a well structured, simple
and aligned development. The developer can now write simple code serving the
single necessary purpose.
Additionally, the developers know code which can be reused in their current task
and the developers are encouraged to write understandable, well documented
code. Contributions containing sections with some “magical code” (unintelligible
code) will be rejected by the committer.
The improved global perspective is not quantifiable with a justified effort. How-
ever the complexity of code is easily measurable. Consequently, we will only
measure the complexity of the code. This represents the major influence of the
gain.
This gain improves maintainability.

Formula
QM,G4 = ∆complexity

Estimation Aid

complexity To measure the complexity of the code we recommend a method
compliant to ISO 14143. The method used can be substituted by the method
of the company’s choice. A further discussion of the measures can be found in
section 2.3.2.

14

G5.1 Higher Employee Satisfaction and Motivation

Explanation The liberties, IS grants a developer leads to a higher employee
satisfaction and motivation. There is a high correlation between employee sat-
isfaction and customer satisfaction (Chi and Gursoy, 2009). As a result, not a
single dimension of the quality model improves, but the total quality of services
increases significantly.

Formula
QG5.1 = 0.32 ∗∆employee happiness

Estimation Aid

0.32 Chi and Gursoy, 2009 state the correlation value of employee satisfaction
and customer satisfaction with 0.32.

employee happiness To measure the employee’s happiness, we suggest com-
pany’s own survey or the Gallup Workplace Audit method (Harter, Schmidt and
Keyes, 2003).

1.6.2 Quantifying Cost Savings

G5.2 Higher Employee Loyalty

Explanation Due to the higher employee motivation and satisfaction, less em-
ployees will resign. There are less people with know-how leaving the company,
and no new employees are needed. Bliss, 2004 states the costs of an employee
leaving and hiring a new with 150% to 250% of the annual salery depending on
the employee’s position. Bliss presents five groups of costs:

• Costs Due to a Person Leaving

• Recruitment Costs

• New Hire Costs

• Training Costs

• Lost Productivity Costs

15

Formula
SG5.2 = costemployee turnover

Estimation Aid

costemployee turnover Bliss, 2004 presents a checklist of the costs in his paper “Cost
of employee turnover”.

G6.1 Increased Code Reuse

Explanation When fostering IS, the developed code will be accessible within
the company. Furthermore, developers will be used to the foreign code they
may worked on. Due to good documentation and awareness of the code it can
be reused. The reuse of code is favorable because reused code has no need to
be developed and maintained additionally. The maintenance will take place on
the original code. (Soora, 2014; Mohagheghi, Conradi, Killi and Schwarz, 2004;
Devanbu, Karstu, Melo and Thomas, 1996; Emam, 2003)

Formula
SG6.1 = #loctotal ∗ costLoC ∗ ratioreusable code

Estimation Aid

#loctotal The total number of lines of code (LoC) has to be calculated. We
recommend to count logical LoCs (LLoC). LLoCs ignore the lines containing
only whitespace characters or braces. To get a better idea of LLoCs take a look
at the paper “A SLOC Counting Standard” by Nguyen, Deeds-Rubin, Tan and
Boehm, 2007.

costLoC If a standard value for this cost already exists within the analyzed
company this value has to be used. Otherwise, Poulin and Caruso, 1993 state
the cost of developing a new line of code with 200$/loc (without maintenance).

ratioreusable code To measure the amount of code averted, the methodology sug-
gested by Frakes and Terry, 1996 is used.

16

G6.2 Reduced Process Overhead

Explanation

“[. . .] inner source [. . .] enables collaboration across intra-organizational
boundaries”

Riehle et al., 2016

This collaboration enables developers to fix their issues directly without initiating
a complicated process.
Without IS, a developer facing a bug has to file an issue. The issue has to
be prioritized, stated (bug, feature or wont fix) and allocated to a responsible
developer. This developer will work on the issue some days later. The developer
will have to ask the issue’s initiator to fully understand the issue. Finally, the
bug is fixed.
With IS, a competent developer can branch the affected project, fix the bug
himself and create a merge request. The responsible committer only has to accept
the request and the bug is fixed.
There are many processes which can be simplified or omitted using IS.

Formula
SG6.2 =

∑
simplified processes

∆Cprocesses

Estimation Aid

Cprocesses Several processes will get easier, like the bug fixing process. In a first
step, all simplified processes have to be collected. Second, the difference of costs
for each process have to be calculated. The process can get cheaper because the
process is less used or the process became simplified.

17

G6.3 Less Time Spent in Meetings

Explanation While fostering IS, the communication mainly runs via open com-
munication medium like mailing lists or discussion boards. This has multiple
effects:

• Archiving of communication by default

• Discussions made on mailing list don’t use up time in a meeting.

• The geographical distance between developers doesn’t matter.

We will only take a look at the second point. Due to IS, the time of meetings
can be scaled-down or meetings even become obsolete.

Formula

SG6.3 = hourly wage ∗ (∆tshorter meetings + tdropped meetings)

∆tshorter meetings =
∑

∆tmeetingshorter

tdropped meetings =
∑

tmeetingsdropped

Estimation Aid To measure the time saved due to more efficient meetings all
types of meetings within a software project have to be gathered. The second step
is to detect the difference between the time in meetings with and without IS.

∆tmeetingsshorter This states the amount of time saved due to shorter meetings.
For example, the sprint planning meeting, in which the product owner describes
the project and developers discuss their workloads, might become shorter because
the product owner shared the information earlier in the mailing list. The first part
becomes obsolete and developers can better prepare themselves for the meeting.

tmeetingsless This states the amount of time saved due to omitted meetings.
For example, the daily scrum meeting, in which the developers discuss experi-
enced problems, becomes obsolete because these problems will be discussed via
mailing list.

18

G7.1 Less Project-Specific Training Needed

Explanation IS communities and open information allows self-reliant learning.
On account of the availability of information about the project there is no need
to create training sessions about these topics. The time used by employees to
attend the training can now be used to read the mailing list purposefully.

Formula
SG7.1 =

∑
costtraining design

Estimation Aid With IS, information regarding problems, decisions, discus-
sions and documentation are archived on the mailing list. At first, the saved
training has to be identified. All training teaching project-specific information
and skills have to be analyzed.

costtraining design The costs of each identified training have to be gathered.

G7.2 Creation of Self-Reliant Learning Culture

Explanation With time a self-reliant teaching culture will be established. The
carefully created documentation of decisions, problems and experience will allow
new programmers to solve issues by themselves without the help of an experienced
programmer.

Formula
SG7.2 = hourly wage ∗ tMentoring

Estimation Aid

tMentoring This states the amount of time saved due to self-reliant learning of
new programmers. To measure the time used by experienced developers to help
newcomers an interview with the experienced ones is recommended.

19

1.6.3 Quantifying Speed Improvements

The effect of the gains mentioned below does not affect the Time-to-Market (TtM)
directly, however it affects the duration of some tasks in a project. Consequently,
the following gains indirectly influences the TtM.

G6.1 Increased Code Reuse

Explanation One of the advantages of code reuse is that the reused code al-
ready exists. Furthermore, the code doesn’t have to be developed seperately. Due
to the time saved by omitting the reproduction, the product can be published
earlier.
The omitted time for maintenance is mainly no gain for the TtM but saves costs.

Formula
TTMG6.1 =

∑
reused code

tcoding

Estimation Aid

tcoding Time used to develop the observed code.

G6.2 Reduced Process Overhead

Explanation In some scenarios (for example software product line engineer-
ing (Riehle et al., 2016)), IS can significantly reduce the process overhead. By
simplifying processes, the time span between start and end will become smaller.
This leads to lower latency until the effect of the process takes place.

Formula
TTMG6.2 =

∑
#process iterations ∗∆delayprocess

20

Estimation Aid At first, the affected processes has to be analyzed.

#process iterations Number of times a process was used.

∆delayprocess The difference of delay caused by the process.

G8 Avoidance of Provider Bottlenecks

Explanation IS can avoid provider bottlenecks because individual parties are
empowered to perform own contributions instead of depending on component
providers’ schedules.

Formula
TTMG8 = #issues ∗ time until fix

Estimation Aid

#issues Amount of issues stating bug fixes and feature requests.

time until fix The average time needed to close a bug report. Additionally
issues stating feature requests have to be included. While fostering IS, each de-
veloper can implement the necessary code himself. The latency between creating
the issue and publishing the code converges towards zero. To pinpoint this value,
the time needed to code the fix has to be subtracted. The coding itself still has
to be done.

1.6.4 Quantifying Adoption Costs

C1 Infrastructure

Explanation Nowadays, companies often use a publicly managed cloud for
the tools needed. Thereby, they outsource the risk of self-hosting the service. To
adopt IS within a company, a mailinglist/discussion board, a central repository
and an issue tracking system are required. We recommend using services like
GitLab, because they combine all required tools.

21

Formula The service can be self-hosted or outsourced. Depending on the com-
pany’s choice, the measurement of the costs differ.

Self-Hosted Self-hosting the service causes several different costs. These result
in the costs of the hardware and software.

C1 = CHardware + CSoftware

CHardware = write downHardware + maintenanceHardware

CSoftware = write downSoftware + maintenanceSoftware + development

Managed Cloud The costs of hosting the service is easier to calculate. There
are only the costs stated by the contract with the hosting company.

C1 = CRenting

Estimation Aid

write downHardware The cost of the hardware is split over a certain time span
(differs between countries).

maintenanceHardware Hardware needs maintenance, power and cooling.

write downSoftware The cost of the software is split over a certain time span
(differs between countries).

maintenanceSoftware Similar to the hardware, software needs maintenance as
well, for example the user management.

development To integrate the service in the IT infrastructure of the company,
some development effort is necessary. Moreover, GitLab is open source, so missing
functionality can be developed by the company itself.

CRenting There will be an individual contract for big companies. GitLab states
its price with $199/year∗user for enterprises (Effective at 2017-09-02, Enterprise
Edition Premium).

22

C2 Training

Explanation Adopting IS will change many processes in the company. The
developers have to use a new tool chain. To inform the employees, training is
required.

Formula At first, the training has to be developed. Second, the training has
to be attended by all affected employees.

C2 = Cdevelopment + Cattendance

Cattendance =
∑

#employees

(
∑

ttraining) ∗ hourly wage

Estimation Aid

Cdevelopment The cost of the development of the training saved.

C3.1 Program Board

Explanation The program board is responsible for management questions like
self hosting vs managed cloud. The main costs are the labor costs. There might
be costs for rooms or material, but those are marginal.

Formula
C3.1 = hourly wage ∗ timeprogram board

C3.2 Program Office

Explanation The program office is responsible for operational tasks, like mar-
keting or preparation of training. Analogously to the program board, the main
costs are labor costs. In the beginning of the IS program marketing is necessary.
The IS adoption comes with many changes for the developers. An other task of
the program office are the modifications of the processes during the adoption of
IS (see G6.2). This development of new processes is work of the program office.

23

Formula
C3.2 = hourly wage ∗ timeprogram office

C4 Legal Issues

Despite the research by Stol, Babar, Avgeriou and Fitzgerald, 2011, we think
there are legal costs and challenges. There can be issues with the following topics
which have to be faced:

• Taxation

• Internal licensing 1

• Intellectual property 1

• Export control

This list is not reliable and might not cover all legal issues. We do not provide
any formulas here. They will significantly differ between companies. The legal
department in the company will know the costs.

1.6.5 Summary of Required Values

• hourly wage

• #bugs, crashes reported by users

• #research components first used in customer products

• complexitycode

• employee happiness

• costemployee turnover

• #loctotal

• costLoC

• ratioreusable code

• Cprocesssimplified

• tmeetingsshorter

• tmeetingsdropped

• costtrainingdesign

• tmentoring

• tcoding

• #process iterations

• delayprocess

• #issues

• time unitl fix

• write downhardware

• maintenancehardware

• write downsoftware

1These challenges were identified by Stol et al., 2011 for OS. We think they are adoptable
to IS.

24

• maintenancesoftware

• developmentsoftware

• renting

• developmenttraining

• attendancetraining

• tprogram board

• tprogram office

1.7 The Method to Determine the Return on

Investment of Inner Source

To summarize the previous steps we will now apply the found gains and costs
(1.5) with their measurements (1.6) to the RoI model (1.4).

RoI(time span) =
gains(time span)− costs(time span)

costs(time span)

The analyzed gains and costs below state the difference between before IS and
afterwards - this is the time span. The differences (marked as ∆) always have to
be calculated between the two dates.

At first, one can decide which sub-mod els ought to be used. Up to two sub-
models can be skipped, depending on the focus of the measurement. Second, the
selected models and the cost model have to be applied to the company. Finally,
the calculated values have to be applied to the formula calculating the RoI. Gains
not affecting the analyzed company can be skipped.

Better To determine the quality improvement triggered by IS the following
gains have to be calculated:

Table 1.4: List of Gains Improving the Quality

ID Gains Formula

G1 Better detection of bugs QR,G1 = ∆#bugs, crashes reported by users

G3 More innovative
development

QG3 =
∆#research components first used in customer products

G4 Better global
perspective

QM,G4 = ∆complexity

G5.1 Higher employee
satisfaction and
motivation

QG5.1 = 0.32 ∗∆employee happiness

25

It’s not easy to unify the effects of the quality gains. Consequently, the effects
will be merged into a set of improvements.

Better = {G1, G3, G4, G5.1}

Cheaper To determine the savings triggered by IS, the following gains have to
be calculated:

Table 1.5: List of Gains Omitting Costs

ID Gains Formula

G5.2 Higher employee loyalty SG5.2 = costemployee turnover

G6.1 Increased code reuse SG6.1 = #loctotal ∗ costLoC ∗ ratioreusable code

G6.2 Reduced process
overhead

SG6.2 =
∑

simplified processes ∆Cprocesses

G6.3 Less time spent in
meetings

SG6.3 = hourly wage ∗ (∆tshorter meetings +
tdropped meetings)

∆tshorter meetings =
∑

∆tmeetingshorter

tdropped meetings =
∑

tmeetingsdropped

G7.1 Less project-specific
training needed

SG7.1 =
∑

costtraining design

G7.2 Creation of self-reliant
learning culture

SG7.2 = hourly wage ∗ tMentoring

The saving due to IS can be unified by adding the result of each gain. Conse-
quently, the total saving due to IS can be determined.

Cheaper = G5.2 + G6.1 + G6.2 + G6.3 + G7.1 + G7.2

Faster To determine the improvement of the Time-to-Market triggered by IS,
the following gains have to be calculated:

Table 1.6: List of Gains Improving the Time-to-Market

ID Gains Formula

G6.1 Increased code reuse TTMG6.1 =
∑

reused code tcoding
G6.2 Reduced process

overhead
TTMG6.2 =∑

#process iterations ∗∆delayprocess
G8 Avoidance of provider

bottlenecks
TTMG8 = #issues ∗ time until fix

26

The Time-to-Market improvements due to IS can be unified by adding the result
of each gain. Consequently, the total improvement due to IS can be determined.

Faster = G6.1 + G6.2 + G8

Costs To calculate the costs of IS, the following costs have to be calculated:

Table 1.7: List of the Costs of Inner Source

ID Costs Formula

C1 Infrastructure C1 = CHardware + CSoftware

CHardware =
write downHardware + maintenanceHardware

CSoftware = write downSoftware +
maintenanceSoftware + development

or
C1 = CRenting

C2 Training for employees C2 = Cdevelopment + Cattendance

C3.1 Program board C3.1 = hourly wage ∗ timeprogram board

C3.2 Program office C3.2 = hourly wage ∗ timeprogram office

C4 Legal issues

The costs of adopting and maintaining IS can be unified by adding the result of
each cost. Consequently, the total cost of IS can be determined.

Costs = C1 + C2 + C3.1 + C3.1 + C4

RoI The RoI of IS can now easily be calculated with the formula from section
five.

RoI =
Gains− Costs

Costs

=
(Better + Cheaper + Faster)− Costs

Costs

The values of the ignored sub-models will be set to 0.
Finally, the RoI of IS was determined and calculated.

27

1.8 Validation and Limitations

We conducted a case study research to validate the method at a company adopt-
ing IS. A two-step approach to validate the method was used. First, we validated
our qualitative model. Second, we validated the method. Both steps were con-
duced with different data provided by said company.

1.8.1 Validation of the Qualitative Model

In a first step we validated our qualitative model, stating the gains and costs, by
comparing our model with the company’s interests. We discussed our model and
checked the importance of each gain and cost for the company. The company
expressed the importance of each gain and cost on a scale from 1 (unimportant)
to 3 (very important). The results are shown below.

Table 1.8: Validation of Qualitative Gains

ID Gains Importance

G1 Better detection of bugs 3
G2 Higher static code quality 1
G3 More innovative development 2
G4 Better global perspective 1
G5 Employee happiness 1
G5.1 Higher employee satisfaction and motivation 1
G5.2 Higher employee loyalty 1
G6 Development cost 1
G6.1 Increased code reuse 1
G6.2 Reduced process overhead 1
G6.3 Less time spent in meetings 2
G7 Community-based learning 2
G7.1 Less project-specific training needed 2
G7.2 Coreation of self-reliant learning culture 2
G8 Avoidance of provider bottlenecks 1

28

Table 1.9: Validation of Qualitative Costs

ID Costs Importance

C1 Infrastructure 1 (software development 2)
C2 Training for employees 2
C3 Committees 1
C3.1 Program board 2
C3.2 Program office 3
C4 Legal issues 1

The table shows that the company has very precise expectations of the gains.
In this case, the precision of the qualitative model is low. With the separation
of the model into the three sub-models, the precision increases. The company
didn’t have any other gain or cost in mind. As a result, the model seems to be
complete. The recall is zero. As we only validated the model with one case, the
validation is not generalizable. We suggest further case studies to validate the
model.

1.8.2 Validation of the Quantitative Method

To validate our method, the company provided company-internal measurements
of the projects. Unfortunately this data was of no use for the validation of the
quantiative method. Accordingly, we weren’t able to validate the quantitative
method.

1.8.3 Limitations

In this paper, we only validated the qualitative model with one case. The case
resulted in our model being complete. One successful case doesn’t imply that our
model is complete, but indicates it. Further case studies are required to better
evaluate the qualitative model.
The validation of the method using the quantitative model had no result due to
insufficient data provided by the company. Further case studies are required as
well. For the evaluation of both - the qualitative and the quantitative model - a
case with a company maintaining IS for quite some time is helpful.
Future research might address the question whether the RoI method provided in
this paper is applicable to all categories of IS presented by Capraro and Riehle,
2016 and Stol et al., 2014. To validate the method, one could apply historical
data to the method and analyze the outcome. The data published by a company
which had already adopted IS could be used as historical data.

29

Moreover, some of the formulas used to measure a certain gain or cost could not
be taken out of common literature, but carefully were developed by the authors.
These formulas have to be utilized with caution. They were not supplied by the
literature, but were obviously to the authors (and approved by the case study).

1.9 Future Work

In future research, one can conduct further validation of the method as described
in the limitation section. Especially formulas which were not found in literature
have to be validated in future research work. In this paper, the legal costs are
not pinpoint. To determine the legal costs, research focused on one country
is necessary. In future research the gain better global perspective has to be
refactored to precisely name the simplification of the code not only as effect but
as gain. A collection of best practices assists companies considering an adoption
in the question of how much of the projects costs have to be spent on marketing.
Further work on how to quantify and unify the quality gains is desirable. Finally,
the model could be extended by an analysis of the initial costs of the IS adoption,
if existing.

1.10 Conclusion

In this paper, we described the first method to determine the RoI for IS. At first,
we analyzed existing RoI models in literature. Second, we collected the gains and
costs of IS. We applied the gains and costs to the model from step one. Third, we
quantified all gains and costs by supplying forumlas to calculate each gain and
cost. Fourth, we described an easy-to-use method on how to use the quantified
model.
The validation of the qualitative model exemplary indicates that the model is
complete. The validation of the method to determine the RoI of IS was incon-
clusive.
With the method described in the paper, companies considering the adoption
of IS can now determine the RoI. As a result, companies might hesitate less to
adopt IS.

30

2 Elaboration

2.1 Thesis Goals

2.1.1 Original Thesis Goals

The main goal of the thesis was to develop a generic, quantitative and scientifically
well-grounded return on investment model for inner source on literature research.
The validation in the end is based on a workshop in a cooperating company.
During the research, the following results should be elaborated:

• Identified generic costs and gains of IS

• Identified formulas or metrics to quantify costs and gains

• Evaluation of the method

2.1.2 Changes to Thesis Goals

The goals have not been changed.

2.2 Model Developed in Previous Research (NYT)

We started with the preliminary RoI of IS model, developed in a previous research
project. The model lists most of the gains and costs of IS. Unfortunately, the
preliminary model is a qualitative model, only listing the gains and costs. Fur-
thermore, the model is not fully consistent as for example the effects of some gains
are overlapping (G2, G4: efficient development leads to faster Time-to-Market).
The column names “Category” and “Perspective” were renamed to “Cat” and
“Per” due to reasons of space.

31

Table 2.1: Preliminary Model of the Gains of IS

ID Gains Description Source Cat Per Indicator

G1 Reuse of
code

Marketplace
to share
well doc-
umented
code.
Up to
85% can be
reusedJones,
1984.

Capraro and
Riehle, 2016;
Riehle et al.,
2016; Stol
and
Fitzgerald,
2014

AQS GUP]man-days
needed to
code and
test the
reused code

G2 Faster time-
to-market

Due to the
reuse of
code and
experience
from other
software
projects a
new
product
can be
deployed
faster.

Dinkelacker
et al., 2002;
Stol and
Fitzgerald,
2014

A G]man-days
from
project
beginning
to
deployment

G3 More
innovative
develop-
ment

Capraro and
Riehle, 2016;
Riehle et al.,
2016; Melian
et al., 2002;
Morgan
et al., 2011

Q G

G4 More
efficient de-
velopment

Neus and
Scherf, 2005

S GU

G5 More
efficient use
of resources

During his
spare time
a program-
mer can
work on
other
projects.

Stol and
Fitzgerald,
2014

P G]man-days
in spare
time

Continued on next page. . .

32

Table 2.1 – continued from previous page
ID Gains Description Source Cat Per Indicator

G6 Simplified
developer
deployment

Due to the
good docu-
mentation
of the code
new
developers
can be
easily
deployed
to new
projects.

Capraro and
Riehle, 2016;
Stol and
Fitzgerald,
2014; Melian
et al., 2002;
Dinkelacker
et al., 2002

S G Compare
time to
familiariza-
tion with
and
without IS

G7 Collabora-
tion of
detached
developers

Collabora-
tion of
developers
working in
different
locations

Capraro and
Riehle, 2016;
Riehle et al.,
2016;
Lindman
et al., 2013

P G

G8 Higher
employee
motivation

Voluntari-
ness
increases
motivation.

Capraro and
Riehle, 2016;
Riehle et al.,
2016;
Gurbani
et al., 2006;
K., 2006

PS GPU Compare
quality and
speed with
and
without IS

G9 Cost and
risk sharing

Capraro and
Riehle, 2016;
Wesselius,
2008

P G

G10 Internal
information
exchange

Capraro and
Riehle, 2016;
Riehle et al.,
2016

Q (G)P

G11 Communi-
ty-Based
learning

Capraro and
Riehle, 2016;
Martin and
Hoffman,
2007; Smith
and Garber-
Brown,
2007

QS (G)P

Continued on next page. . .

33

Table 2.1 – continued from previous page
ID Gains Description Source Cat Per Indicator

G12 Openness of
knowledge

Company
wide
sharing of
experience
in Wikis
and Mail-
inglists.

Capraro and
Riehle, 2016;
Melian and
Mähring,
2008

Q (G)P

G13 Improved
global
perspective

To
implement
a
component
suiting
multiple
projects
the global
perspective
has to be
known.

Capraro and
Riehle, 2016;
Riehle et al.,
2016; Stol
and
Fitzgerald,
2014

Q PU

G14 Indepen-
dence
between
reuser and
provider

Capraro and
Riehle, 2016;
Vitharana
et al., 2010

S U

G15 Relief of
component
providers

The issuer
can
commit the
changes so
that the
provider
can solely
adopt it.

Capraro and
Riehle, 2016;
Vitharana
et al., 2010

Q P

Continued on next page. . .

34

Table 2.1 – continued from previous page
ID Gains Description Source Cat Per Indicator

G16 Increase
code
quality

Capraro and
Riehle, 2016;
Riehle et al.,
2016; Stol
and
Fitzgerald,
2014; Riehle
et al., 2009;
Raymond,
1999;
Dinkelacker
et al., 2002;
Smith and
Garber-
Brown,
2007

Q GPU

G17 Decrease of
mainte-
nance
costs

Reused
code is
already
tested.

P GU

G18 Less build
breaks

Raymond,
1999

AQS GU]Less build
breaks *
costs per
build

G19 Faster
implemen-
tation of
bug fixes

Multiple
users can
fix the bug.
Further-
more,
fixing a
bug in a
shared
component
has a
higher
priority.

S GPU

G20 Less bugs
shipped to
customer

Raymond,
1999

Q GU]less bugs
shipped *
price per
bug shipped

35

Table 2.2: Preliminary Model of the Costs of IS

ID Costs Description Source

C1 Infrastructure A company has to maintain the
infrastructure to use IS.

C1.1 Hardware The server where e.g. the
repositories and wikis are hosted.

C1.2 Software The software required to share
code and knowledge.

C1.2.1 Repository A central space to share code;
Preferred a version control system
(e.g.git, svn).

Stol et al.,
2014;
Capraro and
Riehle, 2016;
Smith and
Garber-
Brown,
2007

C1.2.2 Wiki A central space to share
knowledge.

Capraro and
Riehle, 2016;
Smith and
Garber-
Brown, 2007;
Martin and
Hoffman,
2007

C1.2.3 Bugtracker A global platform for task
accumulation is needed to present
tasks to foreign developers.

Capraro and
Riehle, 2016;
Vitharana
et al., 2010

C1.2.4 Mailinglists,
message boards

To achieve the decision making
process; Enhances global view for
developers.

Stol et al.,
2014;
Lindman
et al., 2013;
Lindman
et al., 2010;
Riehle, 2016

C1.2.5 Tools The developers need tools for
developing in teams and for
foreign code exploration.

C2 Employees IS requires additional personal for
maintenance

Continued on next page. . .

36

Table 2.2 – continued from previous page
ID Costs Description Source

C2.1 Committer Each project needs one or more
committers who decide if a patch
is accepted and included to the
project or not. Maybe this task
can be done from active
developers inside the project.

Capraro and
Riehle, 2016

C2.2 Hard- and
software
administrator

The hard- and software have to be
maintained. If the company buys
the software as a service no
personal is required.

C3 Training for
employees

The company has to provide
training for the employees on how
to use the tools and how to
collaborate successfully.

Capraro and
Riehle, 2016;
Melian et al.,
2002

C3.1 Foreign code
exploration

When a company uses IS
processes the developers often
have to work on different projects.
A special training to simplify the
familiarization process is required.

Capraro and
Riehle, 2016

C3.2 Tools The developer have to be trained
on how to use the new tools
(Wiki, IDE, VCS).

Gurbani
et al., 2010

C4 Coordination of
resources

With IS processes the developers
can be deployed easier. This
flexibility has to be controlled.

C5 Documentation
of code and
knowledge

To simplify the reuse of code and
sharing of knowledge the
developers have to invest more
time e.g. to enhance the
documentation of the code or to
write a new entry in a wiki.

We did a multiple step approach to improve the model.

37

2.2.1 Column Names

At first we changed the columns. We dropped the indicator column. The data
presented in this column was partly used to create the formulas in the quantitative
model. The columns “Category” and “Perspective” were dropped as well. In
table 1.2 the information is used again.

2.2.2 Completion of the Preliminary Model

In a second step, the model was extended by missing gains and costs. The gains
missing were the “reduced process overhead” and “less time spent in meetings”.
The costs missing were the committee related costs and the legal costs.

2.2.3 Deduplication

In the next step, some entities were removed or merged due to duplicates. The
duplicates occurred because of some points overlapping with others.

2.2.4 Omit Entities

Finally, we decided to omit several entities. We omitted mainly the local gains,
affecting each employee on its own. These gains are irrelevant for company-wide
decisions. The local gains serve as arguments to win unpersuaded employees over.
Therefore, no quantitative analysis is needed.

We developed the model by retracing these steps. The new model is the model
presented in the section “The Qualitative Model”. The step “Column Names”
was already applied to the table below in order to increase the readability.

Table 2.3: Changes of Preliminary Model

ID Gains/Costs

G1 Reuse of code
The gain was only renamed and renumbered
G6.1 Increased code reuse
G2 Faster time-to-market
This gain is a collection of the gains contained in the quality model; To prevent
the overlapping of gains this gain is omitted

Continued on next page. . .

38

Table 2.3 – continued from previous page
ID Gains/Costs

G3 More innovative development
The gain was only renamed
G3 More innovative development
G4 More efficient development
This gain is a result of a majority of other gains; To prevent the overlapping of
gains this gain is omitted
G5 More efficient use of resources
This gain is a result of a majority of other gains; To prevent the overlapping of
gains this gain is omitted
G6 Simplified developer deployment
The gain is an effect of G2 and G4; to prevent imbrication the gain is omitted
G7 Collaboration of detached developers
The gain partly induces G3; to prevent imbrication the gain is omitted
G8 Higher employee motivation
This gain was split into two gains, because the increased motivation has two
different effects; Furthermore the gain was renamed and renumbered
G5 Employee Happiness
G5.1 Higher employee satisfaction and motivation
G5.2 Higher employee loyalty
G9 Cost and risk sharing
This gain is no monitary gain of IS; The gain was renumbered
G11 Cost and risk sharing
G10 Internal information exchange
This gain is summarized in G11
G11 Community-Based learning
This gain became a collection for G10; Furthermore the gain was renumbered
G7 Community-Based learning
G12 Openness of knowledge
This gain overlaps with G11; Thus it is omitted
G13 Improved global perspective
This gain was renumbered
G4 Improved global perspective
G14 Independence between reuser and provider
This gain was renumbered
G12 Independence between reuser and provider
G15 Relief of component providers
This gain was renumbered
G13 Relief of component providers

Continued on next page. . .

39

Table 2.3 – continued from previous page
ID Gains/Costs

G16 Increase code quality
This gain was renamed and renumbered
G2 Higher static code quality
G17 Decrease of maintenance costs
This gain is an effect of gain G1; Thus the gain is omitted
G18 Less build breaks
This gain is an effect of gain G20; Thus the gain is omitted
G19 Faster implementation of bug fixes
This gain is summarized in G20
G20 Less bugs shipped to customer
This gain was put together in summary G19; Furthermore the gain was renamed
and renumbered
G1 Better detection of bugs
The collaboration across OrgUnits enables developers to omit the use of complex
processes by providing the desired changes in a foreign source code of the project
themselves
G6.2 Reduced process overhead
The all-inclusive archiving enables developers to discuss things via mailing list
before the meeting starts, thus the meeting is shorter
C6.3 Less time spent in meetings

C1 Infrastructure
This cost summarizes all subordinate costs
C1 Infrastructure
C1.1 Hardware
This cost is summarized in C1; Thus it is omitted
C1.2 Software
This cost is summarized in C1; Thus it is omitted
C1.2.1 Repository
This cost is summarized in C1.2; Thus it is omitted
C1.2.2 Wiki
This cost is summarized in C1.2; Thus it is omitted
C1.2.3 Bugtracker
This cost is summarized in C1.2; Thus it is omitted
C1.2.4 Mailinglists, message boards
This cost is summarized in C1.2; Thus it is omitted
C1.2.5 Tools
This cost is summarized in C1.2; Thus it is omitted
C2 Employees
Contrary to the previous opinion, no additional employees are required to conduct
the subordinated tasks; Thus the cost is omitted

Continued on next page. . .

40

Table 2.3 – continued from previous page
ID Gains/Costs

C2.1 Committer
This task is conducted by developers assigned to each project
C2.2 Hard- and software administrator
This cost is overlapping with C1; Thus it is omitted
C3 Training for employees
The subordinate costs are summarized; Furthermore the cost was renumbered
C2 Training for employees
C3.1 Foreign code exploration
This cost is included in C3; Thus it is omitted
C3.2 Tools
This cost is included in C3; Thus it is omitted
C4 Coordination of resources
This cost is included in the costs “program office”; Thus it is omitted
C5 Documentation of code and knowledge
The documentation is done autonomously; Thus it is omitted
The preliminary model doesn’t include the costs for the committees; Thus they
are added (Riehle, 2016)
C3 Committees
C3.1 Program Board
C3.2 Program Office
The preliminary model doesn’t include the costs for legal issues; Thus they are
added
C4 Legal Issues

2.3 Decision Making

2.3.1 Gitlab Plan

Gitlab offers two different plans for enterprises. Enterprise Edition Starter (EES)
and Enterprise Edition Premium (EEP) 1. In the qualitative model (1.6.4) we
stated the costs of Gitlab with $199/year∗user. This is the price of the model EEP.
EES is much cheaper (around 39$/year∗user).
The reasons for choosing the EEP plan were its features. Companies considering
the adoption of IS are mostly relying on being able to develop software. With
EES, a company cannot rely on this ability. If a problem occurs, the Gitlab
support will start to handle the issue not until the next business day. With EEP,
the support has to react within four hours.

1https://about.gitlab.com/products/, effective at 2017-09-02

41

https://about.gitlab.com/products/

Appendix : Decision Making

This is assumed to be essential for companies adopting IS. Thus, the EEP plan
was used.

2.3.2 Software Complexity Measurements

In section 1.6.1, we recommended one of the functional size measurements de-
scribed in ISO 14143 to measure the complexity of software. We suggested this
metric based on the result of a short, exploratory literature review were the fol-
lowing metrics (Yu and Zhou, 2010 ISO14143-6):

• Halstead complexity measures

• Cyclomatic complexity measures

• Object-oriented class metrics

• Software package metrics

• Functional size measurements (ISO 14143-6:2012)

– ISO 19761 (COSMIC method)

– ISO 20926 (IFPUG method)

– ISO 20968 (MkII method)

– ISO 24570 (NESMA method)

– ISO 29881 (FiSMA method)

A well funded comparison of these methods is not in the scope of this paper.
We suggest the measurements defined by the ISO, as the publication via ISO
implicates a continuously high quality. The method to measure the complex-
ity of the software might be substituted by the company’s favorite complexity
measurements.

2.3.3 Better Global Perspective or Simpler Code

During the elaboration of the paper we recognized the main benefit of an im-
proved global perspective is a simplification of the code. Some effects of the gain
“Higher Static Code Quality” affect the simplicity of the code as well. It was not
possible for us to validate this development enough to mention it in the paper.
Further validation is necessary to add the gain “Simpler Code” to the model or
to substitute the gain “Better Global Perspective”.

42

Appendix A Abbreviations

IS Inner Source
RoI Return on Investment
OS Open Source
ROSI Return on Investment for a security

investment
OrgUnit Organizational Unit
LoC Line of Code
LLoC Logical Line of Code
TtM Time-to-Market
EES Enterprise Edition Starter
EEP Enterprise Edition Premium

43

List of Tables

Appendix B List of Tables

1.1 Qualitative List of Gains of Inner Source 7
1.2 Assiging Gains to Perspective and Group 9
1.3 Qualitative List of Costs of Inner Source 10
1.4 List of Gains Improving the Quality 25
1.5 List of Gains Omitting Costs . 26
1.6 List of Gains Improving the Time-to-Market 26
1.7 List of the Costs of Inner Source 27
1.8 Validation of Qualitative Gains 28
1.9 Validation of Qualitative Costs 29

2.1 Preliminary Model of the Gains of IS 32
2.2 Preliminary Model of the Costs of IS 36
2.3 Changes of Preliminary Model . 38

44

References

Baum, H.-G. (2013). Strategisches controlling (5., überarb. und erg. Aufl.). Elek-
tronische Ressource. Stuttgart: Schäffer-Poeschel.

Bliss, W. G. (2004). Cost of employee turnover. The Advisor.
Capraro, M. & Riehle. (2016). Inner source definition, benefits, and challenges.

ACM Computing Surveys (CSUR), 49 (4), 67.
Chi, C. G. & Gursoy, D. (2009). Employee satisfaction, customer satisfaction, and

financial performance: an empirical examination. International Journal of
Hospitality Management, 28 (2), 245–253.

Devanbu, P., Karstu, S., Melo, W. & Thomas, W. (1996). Analytical and empiri-
cal evaluation of software reuse metrics. In Proceedings of the 18th interna-
tional conference on software engineering (pp. 189–199). IEEE Computer
Society.

Dinkelacker, J., Garg, P. K., Miller, R. & Nelson, D. (2002). Progressive open
source. In Proceedings of the 24th international conference on software en-
gineering (pp. 177–184). ICSE ’02. Orlando, Florida: ACM. doi:10.1145/
581339.581363

Elaug, M. (1965). The rate of return on investment in education in great britain.
The Manchester School, 33 (3), 205–251.

Emam, K. (2003). Return on investment models.
Frakes, W. & Terry, C. (1996). Software reuse: metrics and models. ACM Com-

puting Surveys (CSUR), 28 (2), 415–435.
Gaughan, G., Fitzgerald, B. & Shaikh, M. (2009). An examination of the use of

open source software processes as a global software development solution for
commercial software engineering. In Software engineering and advanced ap-
plications, 2009. seaa’09. 35th euromicro conference on (pp. 20–27). IEEE.

Goldin, D. (1999). Goldin stands by ’faster, better, cheaper’ credo. https : / /
web.archive .org/web/20080723151633/http ://www.space .com/news/
goldin nasa 991214.html. Accessed: 2017-09-09.

Gurbani, V. K., Garvert, A. & Herbsleb, J. D. (2006). A case study of a corporate
open source development model. In Proceedings of the 28th international
conference on software engineering (pp. 472–481). ACM.

45

https://dx.doi.org/10.1145/581339.581363
https://dx.doi.org/10.1145/581339.581363
https://web.archive.org/web/20080723151633/http://www.space.com/news/goldin_nasa_991214.html
https://web.archive.org/web/20080723151633/http://www.space.com/news/goldin_nasa_991214.html
https://web.archive.org/web/20080723151633/http://www.space.com/news/goldin_nasa_991214.html

REFERENCES

Gurbani, V. K., Garvert, A. & Herbsleb, J. D. (2010). Managing a corporate open
source software asset. Communications of the ACM, 53 (2), 155–159.

Hansen, W. L. (1963). Total and private rates of return to investment in schooling.
Journal of Political Economy, 71 (2), 128–140.

Harter, J. K., Schmidt, F. L. & Keyes, C. L. (2003). Well-being in the workplace
and its relationship to business outcomes: a review of the gallup studies.
Flourishing: Positive psychology and the life well-lived, 2, 205–224.

Höst, M., Stol, K.-J. & Orucevic-Alagic, A. (2014). Inner source project manage-
ment. In Software project management in a changing world (pp. 343–369).
Springer.

Jones, T. C. (1984). Reusability in programming: a survey of the state of the art.
IEEE Transactions on Software Engineering, SE-10 (5), 488–494. doi:10 .
1109/TSE.1984.5010271

K., A. (2006). Google’s ”20 percent time”in action. https://googleblog.blogspot.
de/2006/05/googles-20-percent-time-in-action.html. Accessed: 2017-01-28.

Kirkpatrick, D. L. (1998). Another look at evaluating training programs: fifty ar-
ticles from training & development and technical training: magazines cover
the essentials of evaluation and return-on-investment. American Society for
Training & Development Alexandria, VA.

Lee, S., Aos, S., Drake, E., Pennucci, A., Miller, M. & Anderson, L. (2012). Re-
turn on investment: evidence-based options to improve statewide outcomes.
Olympia: Washington State Institute for Public Policy.

Lindman, J., Riepula, M., Rossi, M. & Marttiin, P. (2013). Open source technol-
ogy in intra-organisational software development—private markets or local
libraries. In J. S. Z. Eriksson Lundström, M. Wiberg, S. Hrastinski, M.
Edenius & P. J. Ågerfalk (Eds.), Managing open innovation technologies
(pp. 107–121). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/
978-3-642-31650-0 7

Lindman, J., Rossi, M. & Marttiin, P. (2010). Open source technology changes
intra-organizational systems development - a tale of two companies. (151ff).
EICS.

Liston, K. (2006). Literature review methods: point of departure. Retrieved July,
31, 2012.

Martin, K. & Hoffman, B. (2007). An open source approach to developing software
in a small organization. Ieee Software, 24 (1).

Melian, C., Ammirati, C. B., Garg, P. & Sevon, G. (2002). Building networks of
software communities in a large corporation. Citeseer.

Melian, C. & Mähring, M. (2008). Lost and gained in translation: adoption of
open source software development at hewlett-packard. In Ifip international
conference on open source systems (pp. 93–104). Springer.

Mohagheghi, P., Conradi, R., Killi, O. M. & Schwarz, H. (2004). An empirical
study of software reuse vs. defect-density and stability. In Proceedings of

46

https://dx.doi.org/10.1109/TSE.1984.5010271
https://dx.doi.org/10.1109/TSE.1984.5010271
https://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html
https://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html
https://dx.doi.org/10.1007/978-3-642-31650-0_7
https://dx.doi.org/10.1007/978-3-642-31650-0_7

the 26th international conference on software engineering (pp. 282–292).
IEEE Computer Society.

Morgan, L., Feller, J. & Finnegan, P. (2011). Exploring inner source as a form of
intra-organisational open innovation.

Neus, A. & Scherf, P. (2005). Opening minds: cultural change with the introduc-
tion of open-source collaboration methods. IBM Systems Journal, 44 (2),
215–225.

Nguyen, V., Deeds-Rubin, S., Tan, T. & Boehm, B. (2007). A sloc counting
standard. In Cocomo ii forum (Vol. 2007, pp. 1–16).

O’Neill, C. (2009). Calculating roi for process improvement. https://www.ibm.
com/developerworks/rational/library/edge/09/mar09/oneill/. Accessed:
2017-01-28.

Pearce, J. M. (2015). Return on investment for open source scientific hardware
development. Science and Public Policy, 43 (2), 192–195.

Pearce, M. (2017). How to conduct a literature review: types of literature reviews.
http://guides.lib.ua.edu/literaturereview. Accessed: 2017-09-03.

Phillips, J. J. (2012). Return on investment in training and performance improve-
ment programs. Routledge.

Phillips, J. J. & Schirmer, F. C. (2008). Return on investment in der personalen-
twicklung: der 5-stufen-evaluationsprozess. Springer-Verlag.

Pine, R. & Tart, K. (2007). Return on investment: benefits and challenges of a
baccalaureate nurse residency program. Nursing Economics, 25 (1), 13.

Plaza, B. (2006). The return on investment of the guggenheim museum bilbao.
International journal of urban and regional research, 30 (2), 452–467.

Poulin, J. S. & Caruso, J. M. (1993). A reuse metrics and return on invest-
ment model. In [1993] proceedings advances in software reuse (pp. 152–
166). doi:10.1109/ASR.1993.291707

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology &
Policy, 12 (3), 23–49.

Riehle. (2016). An example charter for inner source programs (tech. rep. No. CS-
2016-05). Technische Fakultät.

Riehle, Capraro, M., Kips, D. & Horn, L. (2016). Inner source in platform-based
product engineering. IEEE Transactions on Software Engineering, PP(99),
1–1. doi:10.1109/TSE.2016.2554553

Riehle, Ellenberger, J., Menahem, T., Mikhailovski, B., Natchetoi, Y., Naveh,
B. & Odenwald, T. (2009). Open collaboration within corporations using
software forges. IEEE software, 26 (2), 52–58.

Riehle & Kips, D. (2012). Geplanter inner source: ein weg zur profit-center-
übergreifenden wiederverwendung.

Schmalen, H. & Pechtl, H. (2013). Grundlagen und probleme der betriebswirtschaft.
Schäffer-Poeschel.

47

https://www.ibm.com/developerworks/rational/library/edge/09/mar09/oneill/
https://www.ibm.com/developerworks/rational/library/edge/09/mar09/oneill/
http://guides.lib.ua.edu/literaturereview
https://dx.doi.org/10.1109/ASR.1993.291707
https://dx.doi.org/10.1109/TSE.2016.2554553

REFERENCES

Smith, P. & Garber-Brown, C. (2007). Traveling the open road: using open source
practices to transform our organization. In Agile conference (agile), 2007
(pp. 156–161). IEEE.

Sonnenreich, W., Albanese, J. & Stout, B. (2006). Return on security investment
(rosi)-a practical quantitative model. Journal of Research and practice in
Information Technology, 38 (1), 45–56.

Soora, S. K. (2014). A framework for software reuse and research challenges. Int
J Adv Res Comput Sci Softw Eng, 4 (10).

Stol, K.-J., Avgeriou, P., Babar, M. A., Lucas, Y. & Fitzgerald, B. (2014). Key
factors for adopting inner source. ACM Trans. Softw. Eng. Methodol. 23 (2),
18:1–18:35. doi:10.1145/2533685

Stol, K.-J., Babar, M. A., Avgeriou, P. & Fitzgerald, B. (2011). A comparative
study of challenges in integrating open source software and inner source
software. Information and Software Technology, 53 (12), 1319–1336.

Stol, K.-J. & Fitzgerald, B. (2014). Inner source—adopting open source develop-
ment practices within organizations: a tutorial.

van der Linden, F., Lundell, B. & Marttiin, P. (2009). Commodification of indus-
trial software: a case for open source. IEEE software, 26 (4).

Vitharana, P., King, J. & Chapman, H. (2010). Impact of internal open source
development on reuse: participatory reuse in action. J. Manage. Inf. Syst.
27 (2), 277–304. doi:10.2753/MIS0742-1222270209

Wesselius, J. (2008). The bazaar inside the cathedral: business models for internal
markets. IEEE Software, 25 (3), 60–66. doi:10.1109/MS.2008.79

Wiegers, K. E. (2002). Seven truths about peer reviews. Cutter IT Journal, 15 (7),
31–37.

Yu, S. & Zhou, S. (2010). A survey on metric of software complexity. In Informa-
tion management and engineering (icime), 2010 the 2nd ieee international
conference on (pp. 352–356). IEEE.

48

https://dx.doi.org/10.1145/2533685
https://dx.doi.org/10.2753/MIS0742-1222270209
https://dx.doi.org/10.1109/MS.2008.79

	Thesis
	Introduction
	Related Work
	Inner Source
	Return on Investment

	Research Approach
	Analysis of Existing Return on Investment Models
	Identification of Gains and Costs of Inner Source
	Quantifying the Gains and Costs
	Evaluation of the Method

	Return on Investment
	The Qualitative Model
	Gains
	Costs

	The Quantitative Model
	Quantifying Quality Improvements
	Quantifying Cost Savings
	Quantifying Speed Improvements
	Quantifying Adoption Costs
	Summary of Required Values

	The Method to Determine the Return on Investment of Inner Source
	Validation and Limitations
	Validation of the Qualitative Model
	Validation of the Quantitative Method
	Limitations

	Future Work
	Conclusion

	Elaboration
	Thesis Goals
	Original Thesis Goals
	Changes to Thesis Goals

	Model Developed in Previous Research (NYT)
	Column Names
	Completion of the Preliminary Model
	Deduplication
	Omit Entities

	Decision Making
	Gitlab Plan
	Software Complexity Measurements
	Better Global Perspective or Simpler Code
	Appendices
	Appendix Abbreviations
	Appendix List of Tables

	References

