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Abstract 

Continuous Delivery and Continuous Deployment approaches have seen widespread adoption 

in the software industry. To harness such techniques effectively, close monitoring and detailed 

knowledge about the state of software in production is highly desirable. 

This thesis analyzes the JDownloader Immune System, a real-time monitoring and error detec-

tion mechanism developed for the open source download manager software JDownloader. It 

describes the mathematical model for error detection based on time series analysis and Holt-

Winters-Forecasting. The thesis continues to provide insight on the architecture of the im-

mune system and shows how it provides useful information to developers and users through 

state dashboards. 

Finally, it evaluates the effectiveness of the immune system compared to manual user reports. 

The thesis finds that error detection speed for severe issues is 16 times faster than through 

manual reports and critical bugs are more than four times more likely to be detected within 

the first 24 hours after their first appearance. 

 

 

 



 

4 

Contents 

1 Introduction ............................................................................................................................................. 7 

1.1 Original Thesis Goals ..................................................................................................................... 7 

1.2 Changes to Thesis Goals ................................................................................................................. 7 

2 Research Chapter ..................................................................................................................................... 8 

2.1 Introduction .................................................................................................................................... 8 

2.2 Related Work .................................................................................................................................. 8 

2.2.1 Continuous Deployment and its impact on testing and software quality ................................... 8 

2.2.2 Immune Systems and system health monitoring ...................................................................... 10 

2.3 Research Question ........................................................................................................................ 11 

2.4 Research Approach ....................................................................................................................... 12 

2.5 Evaluation of case ......................................................................................................................... 12 

2.5.1 An Overview of the JDownloader Software ............................................................................. 12 

2.5.2 Model used for predicting anomalous behavior ....................................................................... 12 

2.5.2.1 Fitness value ..................................................................................................................... 13 

2.5.2.2 Trend Indicator Line ......................................................................................................... 14 

2.5.2.3 Perfect Level Detection .................................................................................................... 16 

2.5.2.4 Anomalous Behavior Identification ................................................................................. 16 

2.5.3 Architecture and Implementation of the JDownloader Immune System .................................. 17 

2.5.3.1 Data Sources .................................................................................................................... 17 

2.5.3.2 StatServ Collector Service (SSC) ..................................................................................... 18 

2.5.3.3 StatServ Evaluator Service (SSE) .................................................................................... 18 

2.5.4 Evaluation of the effectiveness of the JDownloader Immune System ..................................... 21 

2.6 Limitations .................................................................................................................................... 23 

2.6.1 Case unique in some aspects .................................................................................................... 23 

2.6.2 Only a single case ..................................................................................................................... 23 

2.6.3 Lack of quantitative data for comparison ................................................................................. 23 

2.7 Conclusion .................................................................................................................................... 23 

3 Elaboration ............................................................................................................................................ 24 

3.1 Additional relevant literature ........................................................................................................ 24 

3.1.1 DevOps ..................................................................................................................................... 24 

3.2 Additional Comments on the JDownloader Immune System ....................................................... 24 

3.2.1 More information on J.D. Brutlag’s Forecasting model ........................................................... 24 

3.2.2 Visualization for Perfect Level Detection and Trend Indicator Line determination ................. 25 

3.2.3 Seasonal Cycles in the data ...................................................................................................... 25 

 



 

5 

 

Equations 

Equation 1: Basic usage definition ................................................................................................................ 13 

Equation 2: Basic error definition ................................................................................................................. 13 

Equation 3: Basic fitness definition ............................................................................................................... 13 

Equation 4: Network fitness definition ......................................................................................................... 13 

Equation 5: Plugin fitness definition ............................................................................................................. 13 

Equation 6: Finished fitness definition .......................................................................................................... 13 

Equation 7: Plugin fitness factor ................................................................................................................... 14 

Equation 8: Finished fitness factor ................................................................................................................ 14 

Equation 9: Complete fitness definition ........................................................................................................ 14 

Equation 10: Moving average formula .......................................................................................................... 14 

Equation 11: Moving average dynamic model parameter ............................................................................. 14 

Equation 12: Smoothing for low usage numbers .......................................................................................... 15 

Equation 13: Exponential moving average formula ...................................................................................... 15 

Equation 14: Decay rate for old values ......................................................................................................... 15 

Equation 15: Exponential moving average with decay rate .......................................................................... 15 

Equation 16: Dynamic model parameter for exponential moving average ................................................... 15 

Equation 17: Allowed deviation from the trend line ..................................................................................... 15 

Equation 18: Moving variability formula ...................................................................................................... 15 

Equation 19: Distribution function for values of the time series ................................................................... 16 

Equation 20: Reports fitness formula ............................................................................................................ 19 

 



 

6 

 

Figures 

Figure 1: Exemplary Fitness Line, Trend Indicator Line and Perfect Level Line from the zippyshare.com 

plugin............................................................................................................................................................. 13 

Figure 2: Fitness value distribution and perfect level band detection ........................................................... 16 

Figure 3: Anomalous behavior detection through the JDownloader Immune System .................................. 17 

Figure 4: Architecture of the JDownloader Immune System ........................................................................ 17 

Figure 5: StatServ processing sequence ........................................................................................................ 18 

Figure 6: Exemplary PASC dashboard for the zippyshare.com - Free PASC ............................................... 20 

Figure 7: Overview fitness dashboard ........................................................................................................... 21 

Figure 8: Trend Indicator Line (TIL) calculation .......................................................................................... 25 

Figure 9: Perfect Level Line (PLL) calculation ............................................................................................ 25 

Figure 10: Seasonal cycles in the data ........................................................................................................... 25 

 

Tables 

Table 1: Approaches in self-healing systems ................................................................................................. 10 

Table 2: Manual user report data ................................................................................................................... 17 

Table 3: Additional automated report data .................................................................................................... 17 

Table 4: Plugin-Account-Source-Collection (PASC) state overview ............................................................ 19 

Table 5: Error record data .............................................................................................................................. 20 

 



 

7 

1  Introduction 

1.1  Original Thesis Goals 

The original goal of this thesis is to exemplify the benefits of Continuous Deployment tech-

niques by presenting the JDownloader software and specifically what is called the “JDown-

loader Immune System” as a single outstanding example for such practices.  

The thesis aims to provide a sound literature review on how continuous deployment tech-

niques are used in similar scenarios and more specifically how the ability to release software 

more frequently impacts testing and software quality. The second part of the literature exam-

ines existing techniques for gathering post-deployment data (also known as software teleme-

try, software monitoring or application health monitoring) and identify research on systems 

that automatically act on the gathered data (e.g. self-healing systems). 

It then tries to answer this research question: 

- How can software quality be improved when the complexity of the surrounding envi-

ronment does not allow for comprehensive pre-release testing? 

The answer to this question is a description of the implementation of the Immune System at 

JDownloader. The thesis first describes the necessary software architecture for effectively col-

lecting post-deployment data and then describes the mathematical model used for identifying 

abnormal application states. 

In a last step, current defect data from JDownloader is analyzed according to quality metrics 

and recommendations for the implementation of such systems are presented. 

1.2  Changes to Thesis Goals  

The status of error tracking and monitoring at JDownloader before the introduction of the Im-

mune System does not allow for the extraction and separation of meaningful data for compari-

son. As such, this thesis remains merely descriptive in extended parts of the research chapter. 

The second change refers to measuring current JDownloader performance. Since the Immune 

System is currently extended, current data could not be extracted and it was agreed to use leg-

acy data. 
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2  Research Chapter 

2.1  Introduction 

Continuous Integration, Continuous Delivery and Continuous Deployment have become ubiq-

uitous terms among software practitioners and have changed the way software is delivered to-

day. The ability to rapidly deploy software into production systems has profound impact on 

software quality. Practices to rapidly fix software bugs require effective monitoring tools to 

timely detect potential issues. Progress in the research regarding such tools has mainly been 

made in the self-healing systems domain. 

In this paper, we describe the implications of such practices and tools by analyzing the 

JDownloader (JD) software, an Open Source Download Manager application. We focus on 

what is called the JDownloader Immune System, describe the implementation of the system 

and provide an insight on how adopting this approach impacted error detection rates and 

speed at JDownloader. 

JD heavily relies on frequently changing external interfaces (e.g. download URLs from 

filesharing websites) and faces unique challenges in this regard. We nevertheless believe that 

the solutions proposed at JDownloader are applicable in a variety of different contexts and 

thus a valid research subject. 

2.2  Related Work 

2.2.1  Continuous Deployment and its impact on testing and software quality 

One argument for the introduction of an immune system at JDownloader was the capability to 

deliver bug-fixes more rapidly. The increased frequency of software releases enabled by Con-

tinuous Deployment methods has sparked vivid interest in the academic community and sev-

eral systematic literature reviews have been published on the topic (Mäntylä et al., 2015; 

Laukkanen et al., 2017; Rodriguez et al., 2017; Karvonen et al, 2017). Regarding software 

quality, these reviews report mixed results. 

Browsers 

Browsers are an interesting subject for comparison as they face similar issues to JDownloader. 

Both are desktop applications having to deal with high variation of system configurations and 

must ensure compatibility with many interacting plugins. Firefox1 and Chromium2 are large 

Open Source projects and have been subject to prior academic research. The Firefox browser 

alone has been subject to 10 individual studies focusing on software quality after changing re-

lease cycles from 12-18 months to 6 weeks (Karvonen, et al., 2017). In the case of Firefox, 

shorter release cycles have not had a significant impact on the number of bugs produced 

(Khom et al., 2012) and the software has not become less secure (Clark et al., 2014). Souza et 

al. (2015) find that the quicker release cycles increased re-opened bugs by 7%. Bug-fix time is 

significantly shorter using rapid releases according to Khom et al., 2015, however Da Costa et 

al (2014) report that only 2% of error fixes are integrated in the next release while 8% were 

fixed after one cycle, 89% after two cycles and 1% after three or more release cycles. The me-

dian delay for an error fix is 42 days, a relatively short response time compared to other open 

source projects (Eclipse: 112 days, ArgoUML: 180 days (Da Costa et al., 2014)).  

                                                        
1 https://www.mozilla.org/en-US/firefox/  
2 https://www.chromium.org/Home  

https://www.mozilla.org/en-US/firefox/
https://www.chromium.org/Home
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While Firefox is different from JDownloader in many aspects (larger user base, drastically 

more complex, large manual testing efforts before each release), the metrics used for evaluat-

ing software quality are largely identical and will serve as a basis for our evaluation of 

JDownloader.  

Mobile Applications 

Another area facing similar challenges to JDownloader are mobile applications. Especially 

Android applications deal with differing hardware, multiple operating system versions, geo-

graphic differences, multiple network providers and inexplicable network failures. The appli-

cation testing scenario is comparably complex. In contrast to web- or cloud-based solutions, 

updates cannot be deployed without the user’s explicit permission leading to multiple versions 

installed at customer devices that must continue to work as intended. Also, updates can only 

be distributed via the OS provider’s tools (iOS App Store, Android Play store). This makes the 

update frequency not only dependent on user acceptance but also on the due diligence by 

those providers. In a case study of mobile software deployment at Facebook, Rossi et al. 

(2016) confirm that Continuous Delivery practices do not negatively impact software quality. 

Crash rates, the number of identified critical issues and the number of fixes necessary after the 

creation of a release branch have remained constant or decreasing despite shortening release 

cycles from four weeks down to two (iOS) weeks or one (Android) week. Other studies (McI-

lory et al., 2015) suggest that more frequently updated apps correlate with higher ratings in 

Google’s Play store. 

Web based applications 

Continuous Deployment practices emerged in the web applications domain. Changes can be 

made without any user interaction and companies like Amazon measure time between deploy-

ments in seconds (Vogler, 2014). The impact of Continuous Delivery on web based applica-

tions has been analyzed at Rally Software (Neely & Stolt, 2013), Facebook and OANDA (Sa-

vor et al., 2016). One extraordinary case is presented by the Guardian news organization 

(Goble, 2016). The Guardian claims to have abolished all but 4 automated regression tests as 

they deploy 400 times to production per day and fixing errors as they occur is more economi-

cally sound than running more extended tests prior to each deployment. While not yet sub-

jected to academic rigor, the case is interesting because it is the first time we hear about re-

ducing pre-release quality assurance for economic reasons. 

Testing with users 

Most analyzed examples strongly emphasize the importance of extensive pre-release testing 

through automated pipelines and manual tests. Facebook contracts a manual test team of 

roughly 100 people (Rossi et al., 2016) and Firefox recruits manual testers from its Open 

Source contributor base as well as paying teams for testing (Mäntylä et al., 2015). This ap-

proach is not feasible for all types of projects and companies. Some thus apply methods to test 

applications with real users either through opt-in alpha and beta programs or by using tech-

niques like canary releases or dark launches (Savor, 2016; Feitelson, Frachtenberg, Beck, 

2014). Jiang et al.’s work (2016) on the economics of public beta testing shows beta tests have 

a positive impact on software quality as well as market success through word-of-mouth ef-

fects. Rodriguez et al. (2017) identify user involvement through canary releases and dark 

launches as an area with a distinct lack of research. For JDownloader, this is especially rele-

vant because automated or manual testing is neither always economically viable nor techni-

cally possible. 
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2.2.2  Immune Systems and system health monitoring 

Self-Healing Systems 

The term self-healing system is significantly more common than “Software Immune System” 

in the academic literature. Ghosh et al. (2007) define self-healing as  

“[…] the property that enables a system to perceive that it is not operating correctly 

and, without (or with) human intervention, make the necessary adjustments to restore 

itself to normalcy. Healing systems that require human intervention or intervention of 

an agent external to the system can be categorized as assisted-healing systems.” 

Following this definition, we consider the JDownloader Immune System to be an assisted 

self-healing system. They identify three main aspects for analysis in self-healing systems:  

 

- Maintenance of System Health 

- Detection of System Failure 

- System Recovery 

 

For JDownloader, system recovery requires human intervention and no automatic mechanism 

for system health maintenance to be in place, which is why we focus on literature regarding 

failure detection. Early research includes a statistical model for predictive failure detection 

(Hellerstein et al., 2001) and a proposal for automatic anomaly detection through gradually 

relaxing invariants (Hangal & Lam, 2002). Gross et al (2006) provide a framework for 

detecting software anomalies and identify four crucial aspects for such a system: data 

management libraries, statistic modeling tools, corrective action strategy support tools and an 

adequate software architecture. Ivan et al. (2012) describe a self-healing system for a mobile 

application where the architecture is similar to the one we propose for JDownloader, while 

Kumar & Naik (2014) extend the model towards autonomic computing. Fukuda et al. (2016) 

and Moran et al. (2016) continue the research on self-healing for mobile systems and provide 

strategies for monitoring Android applications to discover and report application crashes. 

Sahasrabudhe et al. (2013) describe application performance monitoring as a sequence of four 

steps: monitor, analysis, recommendations, action. They present a case study of their model 

showcasing the use of dashboards showing information to application developers. Their 

notion of availability as a metric corresponds well to the notion of “application fitness” we 

apply at the JDownloader example. Chen et al. (2013) and Ye at al. (2016) provide a more 

recent application of self-healing techniques in cloud software. Table 1 shows how data 

collection, fault detection, and reactive measures are handled in systems analyzed by current 

research. 

 

Topic: Approach: 

Data collection • System data: Ye et al. (2016), Gross et al. (2006), Fukuda et 

al. (2016) 

• Application data: Gross et al. (2006), Sahasrabudhe (2013), 

• Experimental Inputs:  Moran et al. (2016) 

 

Fault detection • Log errors: Ye et al. (2016),  

• Connection threshold prediction: Hellerstein (2001),  

• Relaxing Invariants: Hangal & Lam (2002), 

• Performance time-series analysis (Hellerstein (2001), 

Sahasrabudhe (2013), Brutlag (2000), Miller, (2007) 

• Artificial Neural Networks: Sharifi et al. (2012) 

• Cluster-based: Wang et al. (2013) 
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Reactive measures • Retry/Restart: Ye et. al. (2016), Ivan et al. (2012)  

• Rollback: Ye et al. (2016), Chen et al. (2013) 

• Re-route: Chen et al. (2013) 

• Disable non-functional components: Gross et al. (2006) 

Table 1: Approaches in self-healing systems 

Holmström & Olson (2013) and Suonsyrjä et al. (2016) correctly point out that collected post-

deployment data can not only be used for error detection but also for creating a feedback loop 

regarding customer satisfaction with the software. Apart from academic research, several 

practitioner’s tools have been developed and marketed to facilitate application monitoring, 

post-deployment analytics and creating dashboards. These include Nagios3, Splunk4, Prome-

theus5, Zabbix6 or Crashlytics7. Little research exists on the viability of such tools, especially 

in a self-healing systems scenario. Interestingly, no connection between the goal of self-heal-

ing systems and the relatively new possibility of continuously and automatically deployed 

software has been analyzed in academic research so far.  

Mechanisms for error detection and prediction 

Silva (2008) describes four approaches to detect errors in deployed software systems. Sys-

tems-level monitoring, failure detection at the application layer, error detection by log analy-

sis, and remote detection of user failures. However, no consistent explanation what behavior 

is defined as abnormal is given.  In this paper, we build on techniques originally developed for 

network monitoring by J.D. Brutlag (2000) and Evan Miller (2007) using the Holt-Winters 

Forecasting algorithm. Szmit & Szmit (2012) summarize more applications of this algorithm 

for anomaly detection in network monitoring. Sharifi et al. (2012) show how neural networks 

can be used to predict failures in web applications. Wang & Wan (2014) develop a self-heal-

ing model for systems of systems using stochastic differential equations and Brownian Mo-

tion. General information on statistical forecasting and error detection techniques are pre-

sented by Box et al. (2015). 

2.3  Research Question 

The related work indicates that there currently is a lack of material drawing a connection be-

tween the possibilities offered by (assisted) self-healing systems and software quality as per-

ceived by the user. We thus aim to provide insight into the practical use of such systems in 

combination with Continuous Deployment practices to demonstrate the impact on software 

quality by answering the following research question: 

- How can software quality be improved when the complexity of the surrounding envi-

ronment does not allow for comprehensive pre-release testing? 

We see that the impact of rapid releases on software quality has been applied in practice and 

analyzed thoroughly, while the concept of self-healing software has remained mostly aca-

demic. 

                                                        
3 https://www.nagios.org/ 
4 https://www.splunk.com/ 
5 https://prometheus.io/ 
6 http://www.zabbix.com/ 
7 https://try.crashlytics.com/ 
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2.4  Research Approach 

Our research subject, the JDownloader software, is a single outstanding case (Shaw, 2003) for 

a real-world application of an assisted self-healing system. We mainly draw from an earlier 

description of the implementation by Rechenmacher (2014). 

We first provide a description of the mathematical model applied for detecting anomalous be-

havior of the system. We describe how the Holt-Winters Forecasting algorithm is applied to 

analyze time-series data for each individual plugin. 

Afterwards, we describe the architecture of the JDownloader Immune System. We show the 

interaction between data collection modules and data evaluation modules in a plugin based 

system. 

Finally, we analyze two distinct metrics to describe the effectiveness of the JDownloader Im-

mune System: 

• Number and severity of errors detected by the immune system compared to manual 

user reports 

• Time between first error occurrence of the issue and reporting by the immune system 

compared with user report speed for severe errors 

Unfortunately, there is innsufficient data for the behavior of JDownloader before the introduc-

tion of the Immune System. As such, these statistics remain merely descriptive and cannot be 

tested against a null hypothesis describing the status before the introduction.  

2.5  Evaluation of case 

2.5.1  An Overview of the JDownloader Software 

JDownloader is an open source software used for downloading content from various sources. 

It consists of a JDCore application maintained by a team of core developers and 1,230 plugins 

for different hosting websites developed and maintained by the Open Source community. It 

uses crawler plugins to scan the URL of hosting providers for downloadable content and 

hoster plugins for downloading. As many hosting sites change their URL structures or access 

models frequently, testing each plugin in advance is neither technically possible nor economi-

cally feasible. This sparked the need for a mechanism to quickly and automatically detect 

non-functional plugins and led to the development of the JDownloader Immune System. 

2.5.2  Model used for predicting anomalous behavior 

In this section, we describe the mathematical models used for analyzing the state of each indi-

vidual hoster plugin. First, the JDownloader Immune System continuously calculates a fitness 

value for each individual plugin and from this fitness time-series generates two trend lines for 

evaluating the current plugin fitness: The Trend Indicator Line (TIL) and Perfect Level Detec-

tion (PLL).  

Figure 1 provides an example for this behavior. The blue graph represents raw fitness data, the 

green graph shows the smoothed time series after calculating exponential moving averages 

(EMA). The red line (labeled “Error Trigger #1”) indicates the Trend Indicator Line (TIL), 

while the light red line (“Error Trigger #2) represents the long-term trend shown by the Per-

fect Level Detection (PLL). 

 



 

13 

 

Figure 1: Exemplary Fitness Line, Trend Indicator Line and Perfect Level Line from the 

zippyshare.com plugin (Rechenmacher, 2014) 

 

2.5.2.1  Fitness value 

Application fitness is the fundamental metric for describing the current state of an individual 

JDownloader plugin. To calculate the fitness value, we track the number of download at-

tempts in each period 

Equation 1: Basic usage definition 

𝑢𝑠𝑎𝑔𝑒 = ∑ 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡

1 ℎ𝑜𝑢𝑟

𝑡=0

 

and the number of failed download attempts (errors). 

Equation 2: Basic error definition 

𝑒𝑟𝑟𝑜𝑟𝑠 = ∑ 𝐹𝑎𝑖𝑙𝑒𝑑 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡

1 ℎ𝑜𝑢𝑟

𝑡=0

 

  

We then divide the number of failed download attempts within a given period (typically one 

hour) by the total number of download attempts in the same period to get a basic fitness value.  

Equation 3: Basic fitness definition 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) = 1 −
𝑒𝑟𝑟𝑜𝑟𝑠(𝑡)

𝑢𝑠𝑎𝑔𝑒(𝑡)
 

Since errors can have different causes unrelated to the functionality of a plugin, we differenti-

ate between network errors and plugin errors represented by corresponding error codes. For 

visualization purposes, each value is multiplied by 10,000. A value of 10,000 thus represents 

perfect fitness while 0 represents no functionality at all. 

Equation 4: Network fitness definition 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  10,000 ∗
𝑢𝑠𝑎𝑔𝑒−(𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁_𝐼𝑆𝑆𝑈𝐸𝑆+ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁_𝑈𝑁𝐴𝑉𝐴𝐼𝐿𝐴𝐵𝐿𝐸)

𝑢𝑠𝑎𝑔𝑒
  

To correctly calculate the overall fitness value, we look at plugin fitness, defined by plugin us-

age without error codes, and finished fitness, the ratio between all successfully finished down-

loads and the total usage. Plugin fitness is defined as 
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Equation 5: Plugin fitness definition 

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 ∗  
𝑢𝑠𝑎𝑔𝑒 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑃𝐿𝑈𝐺𝐼𝑁_𝐷𝐸𝐹𝐸𝐶𝑇

𝑢𝑠𝑎𝑔𝑒
 

Finished fitness correspondingly is 

Equation 6: Finished fitness definition 

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 ∗  
𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐹𝐼𝑁𝐼𝑆𝐻𝐸𝐷

𝑢𝑠𝑎𝑔𝑒
 

The two values are then weighted and merged into the overall fitness indicator. Since plugin 

fitness directly relates to plugin defects compared to overall successful downloads, it is a sig-

nificantly better indicator. It is thus weighted with a factor of nine, compared to one for the 

finished fitness factor. This leads to the following fitness factors: 

Equation 7: Plugin fitness factor 

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 =  
9

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠
2,500

+ 0.5
 

 

Equation 8: Finished fitness factor 

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 =  
1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠
2,500

+ 0.5
 

 

With these factors in place, overall fitness can be calculated. 

Equation 9: Complete fitness definition 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠

=  
𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 + 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟
 

 

The next step is to determine whether the calculated fitness for a plugin is acceptable or re-

quires intervention by a developer. As acceptable fitness levels can vary depending on the 

plugin, we dynamically calculate two indicator lines: the Trend Indicator Line (TIL) and the 

Perfect Level Detection (PLL). Should the fitness value be above both indicator lines, a 

plugin is considered fit and does not require attention. If the fitness value drops between the 

two indicator lines, the plugin status is changed to problematic and might need inspection by a 

developer. If the fitness value drops below both lines, a plugin state is considered anomalous.  

2.5.2.2  Trend Indicator Line 

The Trend Indicator Line (TIL) is constructed by performing a series of mathematical opera-

tions on the time-series fitness data for a specific plugin with an observation interval of one 

hour. The length of the time series contains 200 usage events or a maximum period of 168 

hours (one week).  

The first operation is the calculation of a moving average for the time series.  
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Equation 10: Moving average formula 

𝑚𝑎𝑛𝑀𝐴

𝑜𝑓𝑓𝑠𝑒𝑡
(𝑡) =

1

𝑛𝑀𝐴
∑ 𝑥(𝑡 − 𝑛𝑀𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)

𝑛𝑀𝐴

𝑖=1

 

This equation contains the dynamic model parameter nMA and is determined by dynamically 

increasing the parameter. 

Equation 11: Moving average dynamic model parameter 

(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) =  6 + 𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) 

The function 𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) assigns higher values for plugins with low usage to achieve better 

smoothing. 

Equation 12: Smoothing for low usage numbers 

𝑓(𝑢𝑠𝑎𝑔𝑒) =  
2,500

𝑢𝑠𝑎𝑔𝑒 + 5
 

lim
𝑢𝑠𝑎𝑔𝑒 →∞

𝑓(𝑢𝑠𝑎𝑔𝑒) = 0; 𝑓(0) = 500 

In the second step, the smoothed curve is subjected to another smoothing round, this time ap-

plying an Exponential Moving Average algorithm thus giving more recent data higher weight. 

Equation 13: Exponential moving average formula 

𝑒𝑚𝑎(𝑡 + 1) =  𝛽 ∗ 𝑥(𝑡) + (1 − 𝛽) ∗ 𝑒𝑚𝑎(𝑡) 

𝛽 defines the speed of decay for old values. It is calculated using the dynamic parameter 𝑛𝐸𝑀𝐴 

which represents the hours passed and is used to calculate the next prediction. 

Equation 14: Decay rate for old values 

β =  
2

𝑛𝐸𝑀𝐴 + 1
 

leading to the final equation  

Equation 15: Exponential moving average with decay rate 

𝑒𝑚𝑎𝑛𝐸𝑀𝐴
(𝑡 + 1) =  

2

𝑛𝐸𝑀𝐴 + 1
∗ 𝑥(𝑡) + (1 −

2

𝑛𝐸𝑀𝐴 + 1
) ∗ 𝑒𝑚𝑎𝑛𝐸𝑀𝐴

(𝑡) 

The dynamic parameter 𝑛𝐸𝑀𝐴 is calculated by starting with a baseline of 180 hours and add-

ing the average usage for a certain time-period multiplied by a factor of two. 

Equation 16: Dynamic model parameter for exponential moving average 

𝑛𝐸𝑀𝐴(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) =  180 + 2 ∗ 𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) 

In the last step, the allowed deviation is subtracted from the trend line. The allowed deviation 

∆𝑓 consists of 10% of the average fitness and 50% of the moving variability within the last 

twelve hours.  

Equation 17: Allowed deviation from the trend line 

∆𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒, 𝑡) = 10% ∗ 𝑎𝑣𝑔𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 50% ∗ 𝑚𝑣12(𝑡) 

Moving variability calculates the deviation at each point in the time series by subtracting the 

moving average at a certain point from the respective value. 
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Equation 18: Moving variability formula 

𝑚𝑣𝑛𝑉𝐴

𝑜𝑓𝑓𝑠𝑒𝑡(𝑡) =
1

𝑛𝑉𝐴
∑ |𝑥(𝑡 − 𝑛𝑉𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)

𝑛𝑉𝐴

𝑖=1

− 𝑚𝑎𝑉𝐴(𝑡 − 𝑛𝑉𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)| 

2.5.2.3  Perfect Level Detection 

Perfect Level Detection (PLL) defines a second approach for evaluating the typical fitness of 

a functioning plugin. For the calculation, it uses the exponential moving average algorithm 

described in the section above, followed by a distribution function that detects high concentra-

tions of fitness values within a time series. It assumes that this distribution peaks indicate the 

ideal fitness value for a plugin to operate. The distribution function looks like this: 

Equation 19: Distribution function for values of the time series 

𝐷𝐹(𝑒𝑚𝑎(𝑡)) = ∑ 1{𝑥𝑖 = 𝑒𝑚𝑎(𝑡)}

n

𝑖=1

 

The resulting distribution graph is again smoothed using a moving average (MA) with a 

model parameter 𝑛𝑀𝐴 of 4% and an offset of 2%. Figure 2 shows the concentration of fitness 

values for the fitness chart presented in figure 1. 

 

Figure 2: Fitness value distribution and perfect level band detection (Rechenmacher, 2014) 

The threshold levels are identified by analyzing the gradient of the distribution function. The 

section with the highest density of fitness values is defined as the perfect level band. The 

lower edge of this band minus 5% tolerance is the perfect level threshold. The perfect level 

function pll(t) is the continuing series of all perfect level values. 

2.5.2.4  Anomalous Behavior Identification 

Figure 3 puts these individual pieces of information together. It shows a sudden drop in the 

raw and smoothed fitness data. First, the Perfect Level Line (PLL) is crossed at a fitness value 

of 6,205.872, putting the Plugin-fitness in “problematic state”. As the fitness value continues 

to drop and crosses the Trend Indicator Line (TIL) at 5,669.764, the plugin is considered 

anomalous, an error trigger is sent and a developer is notified. 
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Figure 3: Anomalous behavior detection through the JDownloader Immune System 

(Rechenmacher, 2014) 

2.5.3  Architecture and Implementation of the JDownloader Immune System 

The functions described in the model section before are executed in two components within 

the Immune System known as StatServ: The StatServ Collector (SSC) Service and the  

StatServ Evaluator (SSE) Service. StatServ extended a previously existing Feedback Loop 

where users could manually report problems via a Community Board, a Live Chat and 

through a Support Desk. These reports were manually evaluated by either AppWork staff or 

supporters from the Open Source community. Once verified, bugs where manually entered 

into a bug-tracking system. StatServ currently logs 850,000 events per hour on average.  

 

Figure 4: Architecture of the JDownloader Immune System 

2.5.3.1  Data Sources 

The JDownolader Immune System continues to accept manual user reports submitted via a 

“Report a Problem”-button. Reports are generated as JSON files and contain the following in-

formation: 

buildTime buildTimestamp used to identify the running JD version 

timestamp Local user time 

sessionStart Time when the current JD session was initiated 

linkID Link identifier for this JD installation 

host Top Level Domain (TLD) of the URL related to the error report. 

candidates List of plugin-candidates who could potentially have been used to download the URL in 

question. A candidate consists of a plugin-identifier (plugin) + subtype of the plugin (type) 

+ VCS-version of the plugin (revision) 

Table 2: Manual user report data 
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In addition, every single (successful or unsuccessful) download attempt generates a fully auto-

mated report which, since the relevant plugin is still in memory, can aggregate more error-re-

lated information: 

candidate Specification of the candidates list above. Since the plugin is still in memory, the “culprit” 

can be identified easily. Stored as type + plugin + revision 

result Result of the download attempt (e.g. FINISHED, PLUGIN_DEFECT, SKIPPED, …) 

errorID If a download attempt results in an error, a unique error id is stored in this attribute. When 

a plugin experiences a problem, an error-specific exception is thrown, the download rou-

tine stopped and a stack trace generated. The errorID represents the MD5 checksum for the 

stack trace to identify identical errors. 

Table 3: Additional automated report data 

2.5.3.2  StatServ Collector Service (SSC) 

The SSC service serves two purposes. It efficiently collects and stores error and fitness data 

and polls stack traces or application logs for each error id to allow easier debugging.  

SSC is an FCGI module providing a REST API and is optimized to handle large numbers of 

requests. It enriches uploaded log entries with the user’s country and ISP, collects log entries 

in memory and writes them to hard disk in batch sizes of 30,000. Evaluation is not done in 

real-time and raw data is saved in JSON format to allow recalculations should the model 

change. 

If for a specific error id, a stack trace or application log is missing, the SSC adds a request for 

“Send Stack Trace” or “Send Full Log” to the HTTP response and – if the user agrees – adds 

that information to each error ID. 

To ensure that each stack trace can be attributed to the correct error id, line numbers are re-

moved from the stack trace and replaced with the actual line of code. To do this, the SSC ser-

vice is connected to version control and - via the buildtime and candidate.revision attribute - 

is able to retrieve the relevant source code file for each line in the stack trace. 

Full application logs contain all relevant information about the specific JD session, including 

environment information such as the operating system, java version, launcher version, and 

other. Since the full session is recorded, the information stored in these application logs is 

highly valuable for debugging. Logs also contain sensitive information like premium accounts 

or URLs and are thus stored on a separate server.  

2.5.3.3  StatServ Evaluator Service (SSE) 

The StatServ Evaluator component serves the purpose of processing the calculations outlined 

in chapter 2.5.2 It consists of three main modules: The Aggregator, the Analyzer and the Re-

porter. 

 

Figure 5: StatServ processing sequence 

The Aggregator module 

The Aggregator collects and aggregates data based on the following information triple: Plugin 

(P) – Account (download mode) (A) – Source (downloaded from) (S). Practical examples are 
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• “youtube.com” (P) - “account.free” (A) - “total” (S): For all downloads done by the 

“youtube.com” plugin 

• “premiumize.me” (P) - “account.multi.premium” (A) - “rapidshare.com” (S): for all 

downloads from rapidshare using a premium account through the “premiumize.me” 

plugin. 

For these Plugin-Account-Source-Collections (PASCs), raw log entries are aggregated to a fit-

ness time series with an interval of one hour, while the last entry is aggregated every 15 

minutes. This allows problem detection to happen more quickly without compromising over-

all system performance. Every two hours, this data is written into a single ChartData object. 

Since a period of two hours is not sufficient for low-usage plugins, the period is gradually in-

creased until the total usage reaches 200. If remains below this value for 168 hours (one 

week), the time series is ignored. 

From the resulting list of ChartData objects, the aggregator module calculates the fitness met-

rics described in section 2.5.2 to determine the overall fitness of a plugin. In addition to the 

automated fitness calculation, user reports are stored and calculated in a separate reportsFit-

ness value. 

Equation 20: Reports fitness formula 

𝑟𝑒𝑝𝑜𝑟𝑡𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 −  
10,000 ∗ 𝑟𝑒𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟

0.86% ∗ 𝑢𝑠𝑎𝑔𝑒
 

The Analyzer module 

The Analyzer module calculates the TIL and PLL indicator lines and compares the current fit-

ness value against those thresholds. It iterates through all ChartData objects stored for each 

PAS-combinations and creates the trend lines. The TIL/PLL analysis is also performed for the 

Network Fitness and Reports Fitness time series.  

For the Trend Indicator Line (TIL) and Perfect Level Detection (PLL), dynamic parameters 

are determined as described above while calculations for reportsFitness vary slightly. The 

module then compares the most recent EMA for a particular PASC and determines whether 

anomalous behavior is present and a developer must be notified. 

The Reporter module 

Irrespective of error state, the reporting module generates two types of reports. A detailed sta-

tus report for each plugin is posted to open source issue tracking and project management tool 

Redmine8. The State Overview contains the following information: 

Status Working PASCs have the Status “closed” which is changed to “new” when a 

PASC stops working 

Priority Depending on the ratio between low fitness and high usage 

Revision Last revision of the plugin in version control 

Current Fitness States A quick emoticon-based overview of current fitness states 

Affected Builds Time stamps of currently active builds 

Usage Chart Graph showing usage, revisions, and error events over time 

General Fitness Chart Graph plotting the raw fitness series, EMA, TIL, and PIL 

Network Fitness Chart Graph plotting raw networkFitness series, EMA, TIL, and PIL 

User Reports Chart Graph plotting the raw reportsFitness series, EMA, TIL, and PIL 

                                                        
8 http://www.redmine.org/ 
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Current Error Over-

view 

Overview of currently unresolved errors relating to this PASC 

Current Error Chart Graph displaying introduction of new revisions, errors, and fixes over time 

All Time Error Chart Like the current error chart but plotted over all revisions of a certain PASC 

Table 4: Plugin-Account-Source-Collection (PASC) state overview 

Figure 6 shows an example for the dashboard created presenting overview information as well 

as usage and general fitness for the Zippyshare.com plugin. 

 

Figure 6: Exemplary PASC dashboard for the zippyshare.com - Free PASC (Rechenmacher, 

2014) 

In addition, for each recorded errorID (see Table 2) an error issue is automatically opened in 

Redmine by the SSE service. These errors are linked to their respective PASC state overviews 

and vice versa. These records contain the following information: 

Status “New” for still occurring errors, else “Closed” 

Priority Increasing priority with higher reporting frequency 
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Revision Last revision of the plugin in version control 

Related Issues List of different error IDs with identical cleaned stack traces (these are automati-

cally created because of changed line numbers in the stack trace) 

Stack Trace Stack trace including code line numbers 

Cleaned Stack Trace Stack trace with code snippets instead of line numbers 

Application Log IDs Log IDs collected for this error 

Error Chart A graph that shows when the error first appeared and if it still exists 

Table 5: Error record data 

Apart from the developer-oriented PASC status pages, there is a dashboard aimed at users that 

provides a high-level overview on general and connection fitness for plugins that can be se-

lected by the users. Figure 7 is an example for this type of dashboard. 

 

Figure 7: Overview fitness dashboard (Rechenmacher, 2014) 

2.5.4  Evaluation of the effectiveness of the JDownloader Immune System 

As mentioned earlier, comparisons of the JDownloader software before and after the introduc-

tion of the immune system cannot be easily made as old versions continue to be used in paral-

lel and error reports cannot be easily attributed to each version. Nevertheless, statistical data 

proves the usefulness of the immune system. We identify two relevant observations: StatServ 

dramatically increases the visibility of errors in rarely used plugins and it significantly short-

ens the time until severe errors are detected. 

Amount of Errors detected 

In the observation period, the JDownloader Immune System created 103,231 unique error IDs 

from 2,800 PASCs that were condensed to 3,534 relevant errors in the bug-tracking system. 

Out of these 3,534 relevant errors, only 50 have been assigned a priority of normal or higher 

amounting to only 1.4% of errors. We thus conclude that the JDownloader Immune System 

performs exceptionally well for detecting rare error conditions and edge cases that users sel-

dom experience and report. 
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Error Detection Speed compared to User reports 

More interesting than identifying errors hardly anyone ever encounters is the speed at which 

severe errors are detected. To evaluate this, we manually collected the 41 most severe bugs 

over several weeks and measured the response times through traditional channels (report 

functionality within the application and support forums) and via the StatServ Immune System.  

Table 6 compares the likeliness for a bug to be reported through the StatServ appears to be 16 

times faster for the most critical issues.  

 StatServ Board Reports 

Reported within 15 hours probability 50.4% 13.6% 

Reported within 24 hours probability 91.3% 21.3% 

Average report duration 10 hours 9 minutes 6 days 21 hours 49 minutes 

Table 6: Error detection metrics 

Since these numbers only refer to the most critical issues, we expect the difference in detec-

tion speed to be even more significant for less common issues that often are not reported at all 

by users. 
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2.6  Limitations 

2.6.1  Case unique in some aspects 

While we believe that a lot of lessons can be learned from the JDownloader example, it is 

unique in some aspects. Many issues detected by the immune system are caused by changes to 

the interfaces of the hosting providers. These changes cannot be tested in advance which 

makes reactive self-healing particularly attractive in comparison to pre-release testing. We do 

not find many scenarios in the current research where preventive testing of key functionality 

is not adequately possible. 

2.6.2  Only a single case 

We would have expected to find research or at least data on similar approaches to validate our 

findings. Since such research apparently does not yet exist, we are limited to present this ex-

ample as a single outstanding case for the implementation of a Software Immune System. 

2.6.3  Lack of quantitative data for comparison 

This paper could have been enhanced by the presence of data on JDownloader’s record for de-

tecting errors prior to the introduction of the Immune System. The Immune System has been 

introduced with the JDownloader 2 beta Version and as JDownloader 1 and 2 continue to exist 

simultaneously, there is no straightforward way to differentiate bugs generated via the old sys-

tem from bugs identified by the new Immune System. Thus, it is not possible to formulate 

previous system behavior as a null hypothesis and measure the actual improvement generated 

through the introduction of the new Immune System.  

2.7  Conclusion 

In this paper, we presented a case on how an assisted self-healing software system can facili-

tate Continuous Deployment and Rapid Release practices. Specifically, the immune system 

provides earlier failure detection (in the case of JDownloader, 16 times faster) enabling more 

rapid bug fixes through Continuous Deployment practices. While adequately testing software 

remains a vital process for software quality, we show that monitoring production software 

through a Software Immune System can be an additional important pillar for quality. One 

unique aspect of our model is that the thresholds for determining failure state are generated 

and adjusted dynamically across plugins and within the lifecycle of one specific plugin. We 

believe that this flexibility can be a useful insight and be a useful resource for further research 

and practical applications. 
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3  Elaboration 

3.1  Additional relevant literature 

The main section contains the most relevant literature regarding the JDownloader Immune 

System. However, the JDownloader Immune System could also be relevant in the context of 

DevOps. Should the paper be presented in this slightly shifted context, the information pro-

vided here might prove to be relevant. 

3.1.1  DevOps 

DevOps, meaning the close collaboration between development and IT operations (Dyck et 

al., 2015), is a relatively new trend among software practitioners and in software research. For 

the intended collaboration between Dev and Ops, accurate data about system behavior in pro-

duction is crucial (Erich, 2014; Roche, 2013). Zhu et al. (2016) stress the importance of ade-

quate tooling and monitoring capabilities to benefit from DevOps.  The JDownolader Immune 

System facilitates exactly that: Quickly identifying abnormal state in production plugins al-

lowing developers to react and fix issues rapidly.   

3.2  Additional Comments on the JDownloader Immune System 

Chapter 2 contains the generally most compelling description of the JDownloader Immune 

System. This section here contains logically concise snippets on niche aspects of the JDown-

loader Immune System that can be hot-swapped into the main text body by an editor depend-

ing on the context in which the paper will be submitted. 

3.2.1  More information on J.D. Brutlag’s Forecasting model 

Most of the math presented in this paper is based on a model developed by Jake D. Brutlag 

(2000) for RRDTool, a system to help network technicians to detect errors. The model takes 4 

distinct characteristics into account: 

1. Long-term trend (e.g. server load increases over several months) 

2. Seasonal cycle (e.g. daily traffic peaks in the evening) 

3. Seasonal variability (e.g the average variability is not constant over a day) 

4. Gradual change of 2 and 3 over time (e.g. the daily traffic peaks change due to day-

light changes through the year) 

From these four trends, Brutlag splits the time series into three components: The baseline, a 

linear trend and a seasonal trend. These components combined are used to give a prediction 

for the next observation interval. If the recorded data differs from the prediction by more than 

a pre-defined threshold (the so-called “confidence band”), an error event is triggered. Brutlag 

calculated an upper and a lower confidence band. For JDownloader, the upper band is not rel-

evant (a plugin cannot work “too good”) and only a bottom threshold is determined. Evan 

Miller (2007) extended the model for “IMVU, Inc.”9 to operate better for low volume time se-

ries. JDownloader’s implementation is closer to Brutlag’s original model. 

                                                        
9 http://imvu.com  

http://imvu.com/
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3.2.2  Visualization for Perfect Level Detection and Trend Indicator Line 
determination 

 

 

Figure 8: Trend Indicator Line (TIL) calculation 

Figure 7 summarizes the process to calculate the Trend Indicator Line (TIL) outlined in chap-

ter 2.  

 

 

Figure 9: Perfect Level Line (PLL) calculation 

Correspondingly, Figure 8 shows the calculation process for the Perfect Level Line (PLL). 

These two graphical representations can be used to summarize the calculations without diving 

into the underlying mathematics and can help to easily explain the concept. 

3.2.3  Seasonal Cycles in the data 

 

Figure 10: Seasonal cycles in the data (Rechenmacher, 2014) 

An interesting phenomenon when calculating fitness data for a specific PASC can be seasonal 

cycles within the fitness time series. One possible explanation could be that certain 

errors only occur in specific time-zones (think government firewalls, etc.). A possible 

solution could be to collect separate fitness time series for each time zone and 

calculate differing threshold values. The downside would be additional processing 

resources.  
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Appendix A Equations used in the JD Immune System 

Equation 1: Basic usage definition 

𝑢𝑠𝑎𝑔𝑒 = ∑ 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡

1 ℎ𝑜𝑢𝑟

𝑡=0

 

 

Equation 2: Basic error definition 

𝑒𝑟𝑟𝑜𝑟𝑠 = ∑ 𝐹𝑎𝑖𝑙𝑒𝑑 𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡

1 ℎ𝑜𝑢𝑟

𝑡=0

 

Equation 3: Basic fitness definition 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) = 1 −
𝑒𝑟𝑟𝑜𝑟𝑠(𝑡)

𝑢𝑠𝑎𝑔𝑒(𝑡)
 

Equation 4: Network fitness definition 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  10,000 ∗
𝑢𝑠𝑎𝑔𝑒−(𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁_𝐼𝑆𝑆𝑈𝐸𝑆+ 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁_𝑈𝑁𝐴𝑉𝐴𝐼𝐿𝐴𝐵𝐿𝐸)

𝑢𝑠𝑎𝑔𝑒
  

Equation 5: Plugin fitness definition 

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 ∗  
𝑢𝑠𝑎𝑔𝑒 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑃𝐿𝑈𝐺𝐼𝑁_𝐷𝐸𝐹𝐸𝐶𝑇

𝑢𝑠𝑎𝑔𝑒
 

Equation 6: Finished fitness definition 

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 ∗  
𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝐹𝐼𝑁𝐼𝑆𝐻𝐸𝐷

𝑢𝑠𝑎𝑔𝑒
 

Equation 7: Plugin fitness factor 

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 =  
9

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠
2,500

+ 0.5
 

Equation 8: Finished fitness factor 

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 =  
1

𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠
2,500

+ 0.5
 

Equation 9: Complete fitness definition 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

=  
𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠

𝑝𝑙𝑢𝑔𝑖𝑛𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 + 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟
 

Equation 10: Moving average formula 

𝑚𝑎𝑛𝑀𝐴

𝑜𝑓𝑓𝑠𝑒𝑡
(𝑡) =

1

𝑛𝑀𝐴
∑ 𝑥(𝑡 − 𝑛𝑀𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)

𝑛𝑀𝐴

𝑖=1

 

Equation 11: Moving average dynamic model parameter 

𝑛𝑀𝐴(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) =  6 + 𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) 
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Equation 12: Smoothing for low usage numbers 

𝑓(𝑢𝑠𝑎𝑔𝑒) =  
2,500

𝑢𝑠𝑎𝑔𝑒 + 5
 

lim
𝑢𝑠𝑎𝑔𝑒 →∞

𝑓(𝑢𝑠𝑎𝑔𝑒) = 0; 𝑓(0) = 500 

Equation 13: Exponential moving average formula 

𝑒𝑚𝑎(𝑡 + 1) =  𝛽 ∗ 𝑥(𝑡) + (1 − 𝛽) ∗ 𝑒𝑚𝑎(𝑡) 

Equation 14: Decay rate for old values 

β =  
2

𝑛𝐸𝑀𝐴 + 1
 

Equation 15: Exponential moving average with decay rates 

𝑒𝑚𝑎𝑛𝐸𝑀𝐴
(𝑡 + 1) =  

2

𝑛𝐸𝑀𝐴 + 1
∗ 𝑥(𝑡) + (1 −

2

𝑛𝐸𝑀𝐴 + 1
) ∗ 𝑒𝑚𝑎𝑛𝐸𝑀𝐴

(𝑡) 

Equation 16: Dynamic model parameter for exponential moving average 

𝑛𝐸𝑀𝐴(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) =  180 + 2 ∗ 𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒) 

Equation 17: Allowed deviation from the trend line 

∆𝑓(𝑎𝑣𝑔𝑢𝑠𝑎𝑔𝑒, 𝑡) = 10% ∗ 𝑎𝑣𝑔𝑓𝑖𝑡𝑛𝑒𝑠𝑠 + 50% ∗ 𝑚𝑣12(𝑡) 

Equation 18: Moving variability formula 

𝑚𝑣𝑛𝑉𝐴

𝑜𝑓𝑓𝑠𝑒𝑡(𝑡) =
1

𝑛𝑉𝐴
∑ |𝑥(𝑡 − 𝑛𝑉𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)

𝑛𝑉𝐴

𝑖=1

− 𝑚𝑎𝑉𝐴(𝑡 − 𝑛𝑉𝐴 + 𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡)| 

Equation 19: Distribution function for values of the time series 

𝐷𝐹(𝑒𝑚𝑎(𝑡)) = ∑ 1{𝑥𝑖 = 𝑒𝑚𝑎(𝑡)}

n

𝑖=1

 

Equation 20: Reports fitness formula 

𝑟𝑒𝑝𝑜𝑟𝑡𝑠𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 10,000 −  
10,000 ∗ 𝑟𝑒𝑝𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟

0.86% ∗ 𝑢𝑠𝑎𝑔𝑒
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