
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

GABRIEL BAUER

BACHELOR THESIS

INTEGRATION OF A
REFACTORING UI IN THE
SWEBLE HUB VISUAL EDITOR

Submitted on 11 April 2017

Supervisor: Dipl.-Inf. Hannes Dohrn, Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 11 April 2017

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 11 April 2017

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Wikis are an essential part of modern internet in order to store knowledge. How-
ever, to date, they lack functions which assist on restructuring and transforming
the contents of a wiki. The task of maintaining the contents and structure is
therefore time-consuming and error-prone. This thesis designs and implements
a user interface for restructurings in wikis build on the Sweble Hub software,
which is a software similar to most wikis. In contrast to classic wikis, it is able
to provide assistance on restructurings. With Sweble Hub and the user interface
designed in this thesis, the wiki authors’ efficiency is greatly improved.

ii

Contents

1 Introduction 1
1.1 Transformations and Refactorings in Wikis 1
1.2 Goal of this Thesis . 2

2 Related Work 4
2.1 Literature Review . 4
2.2 Eclipse IDE Refactoring UI . 5

3 Architecture and Design 8
3.1 Sweble Hub . 8

3.1.1 Visual Editor . 8
3.1.2 Collaborative Platform . 9

3.2 Refactoring Types . 11
3.3 Refactoring UI . 12

3.3.1 Basic Worflow . 12
3.3.2 Additional Functionalities 15

3.4 Backend . 16
3.4.1 API Endpoints . 17
3.4.2 Refactorings in a Collaborative Environment 18

3.5 Exemplary Implementations . 19

4 Implementation 23
4.1 Technologies . 23
4.2 Visual-Editor . 24

4.2.1 Adding the Refactoring Button 24
4.2.2 Communication with the Refactoring UI 25

4.3 Frontend . 26
4.3.1 Structural Overview . 26
4.3.2 Refactoring UI Components 26

4.4 Backend . 28

5 Discussion of Results 29

iii

6 Future Work 30

7 Conclusions 31

Appendices 32
Appendix A API Endpoints . 32
Appendix B Integrating Further Refactorings 35

References 37

iv

1 Introduction

1.1 Transformations and Refactorings in Wikis

Wikis are a substantial component in the world of modern internet. The first wiki
was made public in 19951. Since then, wikis have become more and more impor-
tant with Wikipedia2 being currently the fifth most popular website3. Nowadays
wikis are also used in business organizations, for example to store documentation
(Buffa, 2006). Even though wikis have evolved, they are lacking some crucial
functions. Wikis do not provide automated transformations to restructure their
contents. The authors still have to maintain the contents and structure manually.
A good example of this time-consuming and error-prone task is the renaming of
an article. All articles that contain a link to the renamed article have to be
modified. The author has to find and modify every single article manually.

For instance, the most comprehensive Wikipedia (Wikipedia in English) currently
contains around 5.349.0004 articles. As of 2011 the most internally referenced
article was about the geographic coordinate system5. Nearly 660.000 articles con-
tained a link to this article. Given that the article should be renamed, it would
not be possible to modify this large number of articles manually.

One major barrier to automated transformations is the content format, in which
the wiki articles are stored. Articles are normally written as pure text, which is
structured with a markup language. A commonly used markup language is the
wikitext, which is e.g. used in Wikipedia. The wikis then render the markup
language as HTML, so that the browser is able to display the article. While
nowadays some wikis offer a visual editor with WYSIWYG6 functionality, the
articles are still stored as text. This makes it difficult for computer algorithms

1http://wiki.c2.com/?WikiHistory
2https://www.wikipedia.org/
3http://www.alexa.com/topsites
4https://en.wikipedia.org/wiki/Main Page
5https://en.wikipedia.org/wiki/Wikipedia:Most-referenced articles
6What you see is what you get

1

http://wiki.c2.com/?WikiHistory
https://www.wikipedia.org/
http://www.alexa.com/topsites
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Wikipedia:Most-referenced_articles

to access a wiki’s content.

A high-level representation of the contents is needed to make a wiki more machine-
accessible. Dohrn and Riehle (2011b) designed the Wiki Object Model (WOM),
a tree-based and wiki-independent content representation. With the help of the
Sweble Wikitext Parser (Dohrn & Riehle, 2011a) the wikitext markup language
can be parsed and converted into WOM. The WOM enables computer algorithms
to better interact with the contents of a wiki. Therefore, it is possible to provide
automated transformations in wikis (Dohrn & Riehle, 2013). In the previous
example, a computer tool could apply the modifications to the articles that need
to be changed. The author only has to specify the new article name and after
the tool has performed all changes, review those changes. By this, the author’s
efficiency would greatly improve.

The term refactoring is mainly known from software development. It is used to
describe a process of restructuring the source code of a software without changing
its external functionality. A refactoring is often applied in order to enhance the
maintainability of a software. It therefore improves the readability and decreases
the complexity of the code. The term has also found its way in the context of
wikis and refers to the transformation or restructuring in wikis.

In software development, it is possible to search for the program parts that should
be refactored automatically. To put it simple, a refactoring tool is able to compute
a mathematical measurement of how well the source code is structured (van
Emden & Moonen, 2002). For example, refactoring tools can search for duplicate
lines in the source code and suggest to combine both parts of the program. In
wikis only a human is able to decide whether an article has to be refactored,
since it is difficult to provide an automatic analysis. While source code can be
described mathematically, this is complex for literature. An algorithm cannot
decide yet if e.g. an article deals with two topics and should be split. Since this
is an unsolved problem I will focus on an approach in which the author has to
determine where a refactoring has to be applied. The refactoring tool is therefore
only responsible for executing a given refactoring instead of detecting the need
for a refactoring and then executing it.

1.2 Goal of this Thesis

This thesis is giving a review on literature focusing on refactoring tool support
and human computer interactions as well as introduce an existing tool, used in
software development. The main goal of this work is on designing a workflow
for refactorings in wikis and the corresponding refactoring user interface (UI).
The UI should guide an author through the steps of specifying a refactoring and

2

applying it. The UI has to be easy and comfortable to use for the authors. Three
different examples will be implemented to demonstrate the possible workflows.
The implementation of the refactoring UI has to be extendable with further
refactorings.

The following chapters are structured as follows. Chapter 2 provides a short
literature review on the topic of improving the usability of refactoring tools as well
as a breakdown of an existing refactoring tool for software development. Chapter
3 briefly introduces the Sweble Hub software, one of the main focusses of this
thesis, and the conceptual model of the refactoring UI. I will present the different
types of refactorings, the workflow and functionalities of the refactoring UI and
backend, which provides the data for the refactoring UI. Chapter 4 describes the
implementation of the UI and its challenges. The results and the future work are
presented in chapter 5 and 6. Chapter 7 gives the conclusions.

3

2 Related Work

2.1 Literature Review

While the process of restructuring source code exists since the development of
programming languages, the concept of refactorings was introduced by Opdyke
(1992) for modern programming languages. Since then, refactorings have been
studied and further developed (Murphy-Hill, Parnin & Black, 2012). Nowadays,
most development environments contain a refactoring tool, even though the range
of supported refactorings can vary widely.

One of the first refactoring tools, described in a research paper, was created for
the programming language Smalltalk (Roberts, Brant & Johnson, 1997). The
authors documented that small refactorings can be easily implemented, while
more complex refactorings can be composed of smaller ones. In their article, the
authors described the development of a refactoring browser, which can guide the
author through the process of extracting parts of a program that can be improved.
Further, the authors had the following requirements, while implementing this
tool. Refactorings should be fast - faster than doing it manually. And secondly,
the refactoring UI should integrate well into the standard development tools.

A decade later, Mealy, Carrington, Strooper and Wyeth (2007) worked out some
major points in order to improve the usability of refactoring tools. Since this
publication deals exclusively with software tools, some approaches cannot be ap-
plied to wiki refactoring tools. The authors assumed that the users are computer
experts. However, in case of Wikipedia, most articles are written by the commu-
nity, which is represented by normal computer users rather than developers. A
survey on Wikipedia from 2011 documented that the average author is probably
”computer savvy but not necessarily a programmer”1. Furthermore, Mealy et al.
(2007) described that a refactoring can be broken down into three main steps.
The first step deals with automated detection of program parts that need to be
refactored, while the second step proposes the refactoring to the user. However,
as I described in the introduction (see 1.1), the detection of potential refactorings

1https://meta.wikimedia.org/wiki/Editor Survey 2011/Executive Summary#PROFILE

4

https://meta.wikimedia.org/wiki/Editor_Survey_2011/Executive_Summary#PROFILE

is difficult in wikis. The third step applies the refactoring, which is as well a main
focus of this thesis. Most important, Mealy et al. (2007) provided a good sum-
mary of guidelines for refactoring tools. Among other suggestions, the authors
considered it important to circumvent any errors. If users input data, the system
should immediately check if the provided data is valid, instead of checking the
data later and then returning an error. Another suggestion is to design the in-
terface ”minimal, simple to understand, organised, without redundancy [...] and
aesthetically pleasing” (Mealy et al., 2007). Furthermore, it is important, that
authors always get feedback about what is happening and that the UI responds
fast and meaningful. The authors should be able to check the outcome of a
refactoring before applying it to a wiki.

A more efficient way of refactoring source code is described by Lee, Chen and
Johnson (2013). The authors showed that the most commonly used refactorings
are moving or extracting program parts. Instead of clicking through the refactor-
ing dialogs, the developer could easily drag & drop the source code. While every
standard text editor supports drag & drop, which is essentially copy & paste,
the authors meant that the moved program code is appropriately modified. For
example, in case the developer moves a string concatenation outside its method,
a new function should be created. Repositioning elements inside a wiki’s article
could also be a commonly used refactoring. Therefore, drag & drop refactorings
would be a convenient way in the context of wikis.

2.2 Eclipse IDE Refactoring UI

Since the Eclipse2 IDE3 software includes a well-known refactoring tool, I anal-
ysed its structure and UI. The Eclipse IDE is an open source development envi-
ronment available for different programming languages. It is mostly known for
its Java IDE, which is the most commonly used IDE.4

An IDE is a software application which provides several tools in order to assist
with software development. All tools needed to create software are directly inte-
grated into the IDE. In general, an IDE consists of a source code editor, tools for
building the software as well as a debugger. Modern IDEs also provide further
tools like version control systems, tools for constructing UIs or a toolset for refac-
toring the source code. By using an IDE, the efficiency of software developers is

2https://www.eclipse.org
3integrated development environment
4https://zeroturnaround.com/rebellabs/ides%2Dvs%2Dbuild%2Dtools%2Dhow%

2Declipse%2Dintellij%2Didea%2Dnetbeans%2Dusers%2Dwork%2Dwith%2Dmaven%2Dant%
2Dsbt%2Dgradle/

5

https://www.eclipse.org
https://zeroturnaround.com/rebellabs/ides%2Dvs%2Dbuild%2Dtools%2Dhow%2Declipse%2Dintellij%2Didea%2Dnetbeans%2Dusers%2Dwork%2Dwith%2Dmaven%2Dant%2Dsbt%2Dgradle/
https://zeroturnaround.com/rebellabs/ides%2Dvs%2Dbuild%2Dtools%2Dhow%2Declipse%2Dintellij%2Didea%2Dnetbeans%2Dusers%2Dwork%2Dwith%2Dmaven%2Dant%2Dsbt%2Dgradle/
https://zeroturnaround.com/rebellabs/ides%2Dvs%2Dbuild%2Dtools%2Dhow%2Declipse%2Dintellij%2Didea%2Dnetbeans%2Dusers%2Dwork%2Dwith%2Dmaven%2Dant%2Dsbt%2Dgradle/

greatly improved. Developers are able to perform all tasks inside one program
and do not have to switch between different UIs.

The Eclipse IDE provides refactorings on code lines as well as on an entire file. In
both cases the refactoring is started in the same way. After selecting the element,
a file, function, variable, etc., the developer can start a new refactoring via the
right click context menu. Depending on the selected element, the context menu
shows the available refactorings (see figure 2.1).

Figure 2.1: Screenshot from the Eclipse Java IDE showing the context menu
after selecting a function.

After selecting a refactoring, a new window opens, in which the developer has
to specify the parameters. The structure and content of this window varies for
different refactorings. For example, in case the developer intends to move a
function, the destination has to be specified (see figure 2.2). In order to do
so, the developer can use a search box to find the right destination file. After
specifying the destination, the author can either preview the changes or continue
directly. In both cases the IDE validates if the refactoring is possible. While
the validation is running, a progress bar shows its progress. If any problems
are found during the check, the UI presents a list with the relevant source code
lines (see figure 2.3). The developer can either cancel the refactoring, adjust the
parameters or continue and ignore the problems.

As pointed out by Mealy et al. (2007), the system should prevent any errors. In
case of the Eclipse IDE, instead of validating the users input immediately, the
system only checks the parameters once the developer continues. Even though
the validation cannot be computed instantly, it would be more convenient for the

6

Figure 2.2: Screenshot of the window
after the developer has selected to move
a function.

Figure 2.3: Error dialog of a refactor-
ing in the Eclipse Java IDE.

user to get feedback directly. A solution to improve this functionality could be
to use idle time and to check the input in the background.

A valuable feature that was integrated into the Eclipse IDE refactoring tool is
the process of renaming elements. Instead of opening a dialog, the user is able to
directly rename the element inside the editor.

7

3 Architecture and Design

In this section I present the Sweble Hub software, on which this thesis is focussing
on, describe the three different categories of refactorings and the basic workflow.
Furthermore, I show additional functionalities to the basic workflow and present
three exemplary implementations.

3.1 Sweble Hub

The Sweble Hub is a software for managing knowledge. Its basic functionality
is comparable to Wikipedia. It improves some main aspects of the underlying
technology by using the WOM for storing its contents. Since the WOM enables
algorithms to better interact with the contents, the Sweble Hub is able to assist on
refactorings in a wiki (Dohrn & Riehle, 2013). With the ability to offer automated
refactorings, the Sweble Hub has a main advantage compared to classic wikis.
Refactorings that are executed by the software produce less errors and save the
author’s time.

Two aspects of the Sweble Hub are particularly important for this thesis. First,
the visual editor which is the starting point of each refactoring and will be further
extended. Second, the approach that is used in order to manage a collaborative
usage of the platform.

3.1.1 Visual Editor

The Sweble Hub includes a visual editor (see figure 3.1), which is also used by
almost all Wikipedias with the exception of some languages with special char-
acters e.g. Chinese1. Before the visual editor was introduced to Wikipedia, the
editors had to write all articles in the wikitext markup language. The wikitext is
a simplified or alternative way of structuring text instead of using pure HTML.

1https://www.mediawiki.org/wiki/VisualEditor

8

https://www.mediawiki.org/wiki/VisualEditor

Therefore, authors had to learn the syntax instead of concentrating only on the
content of an article. The visual editor, on the other side, provides a user-friendly
alternative, whose WYSIWYG functionality is comparable to a rich-text editor
like OpenOffice or Microsoft Word. All formattings can be applied visually and
are internally represented as wikitext. Furthermore, every element, as e.g. a
paragraph or link, can contain a popup, which provides additional editing func-
tionalities or information.

Figure 3.1: Screenshot of the Sweble Hub visual editor, which is used for easy
editing of wiki articles.

The visual editor itself was originally developed by the Wikimedia Foundation,
the non-profit organization behind Wikipedia. Since the visual editor only ex-
ports its contents as wikitext markup language, it had to be extended for the
Sweble Hub. Haase (2016) implemented the extension to work with WOM and
integrated the visual editor into Sweble Hub. The visual editor now supports the
entire WOM specification and can therefore export any formatting into WOM.

3.1.2 Collaborative Platform

In wikis, multiple users work simultaneously on the contents. Whenever two
authors work on the same article at once, there is a chance that the changes from
one author will accidentally overwrite the changes of another author. Therefore,
the wiki software has to make sure that different changes cannot interfere with
each other and no modifications are lost.

To overcome this issue, the Sweble Hub uses version control for all stored con-
tents, which allows multiple users to edit, create and delete articles simulta-
neously. The used type of collaborative groupware is called multi-synchronous
(Molli, Skaf-Molli, Oster & Jourdain, 2002). A well-known example for a service,
that uses multi-synchronous groupware, is GitHub2. It is a web-based version

2https://github.com/

9

https://github.com/

control system, which is commonly used for open-source software projects.

On GitHub, each project has its own repository, in which the project files are
stored. Changes to a project are always done as commits. A commit contains
changes to 1 to n files. Those changes are commonly dealing with the same
topic, for example updating the project’s description. Every single commit is
stored in the repository and can be viewed in a version history. Furthermore,
every repository consists of different branches, typically with one master branch.
Each branch can contain a different set of commits. Branches can be created at
any time, even from previous commits. Furthermore, different branches can be
combined by merging them. Most merges can be achieved automatically. If both
branches contain conflicting changes, the conflicting files have to be merged by a
human.

This concept can be applied to wikis. It has some advantages compared to the
current concept of most wikis. Changes that were made once, will not get lost,
even if they are overwritten by further changes. All changes that were applied
to the wiki can be viewed in a version history. Authors may make changes to
multiple articles and submit them as one commit, which contains the complete
set of changes. Reviewing those changes in context is much easier than reviewing
the changes of every file individually.

Furthermore, volunteers can easily contribute to the wiki. On classic wikis,
changes by voluntary authors are made directly to the wiki. However, they
are not shown until they have been reviewed by the administration. If they get
rejected, they are normally deleted after a while. In the multi-synchronous ap-
proach, a new branch can be created for each volunteer. The author can then
apply the changes to the branch, which is independent from other branches. After
the author made his changes, they can be merged back into the master branch.
Therefore, changes in multiple branches cannot interfere with each other until
they are merged. The administrators can review the changes and merge both
branches. Even if the changes are not merged into the master branch, they are
still stored in the author’s branch. The changes on this branch can be improved
and submitted for review again.

Another important advantage is the functionality to revert commits. All changes
of one commit can be automatically reverted afterwards. Given that an author
changed a large number of articles, the changes can be undone quickly. In con-
trast, undoing the changes manually and without a version control system is a
huge task.

In summary, using a version control system in a wiki system has major advan-
tages. However, the refactoring tool has to collaborate with this approach.

10

3.2 Refactoring Types

There are several possible refactorings that can be applied to a wiki. With a
greater number of changed articles, the time that is needed to process the refac-
toring will increase. A refactoring is categorized mainly by the number of articles
it will change. Each refactoring can be categorized into one of three categories;
local, global-limited and global-unlimited refactorings.

Local refactorings

Local refactorings only apply to one article currently opened in the visual editor.
An example for a local refactoring is the repositioning of a paragraph inside
the same article. The backend does not need much time to prepare and apply
this refactoring. Consequently, the changes can be applied immediately after the
refactoring has been confirmed. The entire process of a local refactoring can be
computed instantly. Normally, the author will not notice any delay.

Global-limited refactorings

If a refactoring changes more than one article, it is called a global refactoring.
Furthermore, if the number of changed articles is still small, the refactoring is
categorized as global-limited refactoring. This category includes refactorings that
commonly change less than ten articles. Most refactorings of this category only
change two articles, e.g. the extraction of a paragraph into another article. Ex-
tracting a paragraph cuts a paragraph from one article and pastes it into another
article. Since this refactoring only affects two articles, the transformations can
be applied relatively fast. The general workflow of a global-limited refactoring is
the same as a local refactoring since the computation-time is similar.

Global-unlimited refactorings

If a refactoring affects a large number of articles, it is categorized as global-
unlimited refactoring. This type of refactoring is the most complex one. An
example refactoring that fits this category is the modification of an article name.
If the name is changed, all other articles that have a link to the renamed article
have to be changed, too. Predicting how the change will affect those articles could
take some time, depending on the number of changed articles. As mentioned in
section 1.1, in 2011 the internally most referenced article of Wikipedia was linked
660.000 times. The task of modifying this large number of articles needs time,
even for a fast computer system.

Therefore, the general workflow of this type of refactoring has to be different.
The author should not have to wait until the backend has finished preparing the

11

refactoring. So, the dialog has to close after all parameters have been provided
by the user. The refactoring will then be processed in the background and can
be resumed once it has finished its preparations.

3.3 Refactoring UI

The refactoring UI is built on top of the visual editor, which I described in section
3.1.1. The UI guides the author through the process of applying a refactoring in
a wiki.

3.3.1 Basic Worflow

The refactoring UI has a predefined workflow, consisting of three major steps.
As shown in figure 3.2 each step has interactions with the author. The workflow
varies depending of the refactoring type. Nevertheless, they are based upon the
same basic workflow.

Figure 3.2: The basic workflow of a refactoring represented as an UML activity
diagram.

1. Starting a refactoring

First, the author has to select the element which should be refactored. As
shown in figure 3.3, the context menu opens, after an element has been cho-
sen. The context menu only contains a refactoring button if there is at least
one possible refactoring. After clicking the button, the actual refactoring
UI opens in a modal window. The visual editor greys out and stays in the
background, while the author navigates through all steps of the refactoring.

12

Figure 3.3: Screenshot of the Sweble Hub visual editor with the added
refactoring button to the context menu.

Another position for the refactoring button, would have been the top bar
inside the editor, which also offers options like e.g. formatting bold, italic
or underlined text. While this position is easier and faster to reach for the
author, it would have been inconsistent with the structure of the visual
editor. The top bar offers formatting options as well as buttons to insert
specific elements. All element options and actions are placed within the
context menu. Therefore, I placed the button to start a refactoring inside
the context menu, too.

2. Selecting the parameters

After the main refactoring UI has opened, the author has to specify the
parameters for the refactoring. In order to provide a better structure this
step was split into two sub-steps.

(a) Type selection

The author has to specify which refactoring should be applied. There-
fore, the user has to select a type of refactoring. The possible types,
that are shown in the select box, depend on the element that was se-
lected previously. For example, a link can be renamed or moved, but
a paragraph can be moved but not renamed. Thus, the type selection
box does not offer the option to rename a paragraph.

This UI was mainly inspired by the Eclipse IDE right-click context
menu. Compared to the Eclipse IDE, the refactoring UI was extended
with a subtype. The subtype input field will only appear if the type
needs clarification. For example, if the author selects the type move
on a paragraph, the subtype field is displayed. The options for the
subtype are to either move the paragraph up, down or to move it into
another article. Once the author selected the type and if necessary the
subtype, the continue button is enabled.

13

(b) Additional parameters (optional)

Since there are commonly more parameters needed, the author has
to provide them in this second sub-step. However, not all refactorings
have additional parameters, e.g. moving a paragraph upward inside its
article. Therefore, this step is optional, depending on the refactoring.
An example for a refactoring needing additional parameters is the
extraction of a paragraph into a new article. The backend has to
know the name of the new article. It is important to note that all
inputs of the author should be validated immediately, as described in
section 2. Therefore, the system has to check whether an article with
the same name already exists.

3. Reviewing the changes

After the author provided all parameters, the backend computes the results.
The UI shows a list of changed articles. The author can exclude or include
articles from the refactoring by checking or unchecking a checkbox. Fur-
thermore, for each article the UI offers a diff view to review the changes in
detail and a visual editor (see figure 3.4) to adjust articles manually. Cur-
rently, the diff view, which is shown in figure 3.5, is only a mock and has to
be replaced. Another small function, that was integrated into the review
process, is the possibility to display a warning (or error) message. The sys-
tem can produce a message for each article individually and a warning icon
is then displayed behind the article name. Since the Sweble Hub frontend
does not include a mouse-hover popup functionality currently, the message
is displayed only above the visual editor. After the changes have been re-
viewed and confirmed by the author, the backend applies the refactoring
and the editor reloads with its updated content.

Figure 3.4: Screenshot of the visual editor to perform manual changes on an
article within the review process.

While the author is selecting the parameters, he can go back through all steps
and adjust parameters. As I will explain later, the refactoring is created on

14

the backend after all parameters have been selected. Therefore, the parameters
cannot be changed anymore. Instead, the author has to cancel the refactoring
and start a new refactoring with adjusted parameters.

Figure 3.5: Screenshot of the refactoring UI showing the demo diff view of an
article.

3.3.2 Additional Functionalities

The basic workflow was further extended with additional functionalities. This is
necessary due to the fact that a global-unlimited refactoring has - as pointed out
in section 3.2 - extended requirements and to enrich and simplify the refactoring’s
workflow.

Pausing refactorings

Since global-unlimited refactorings may change many articles, reviewing all
changes and if necessary modifying some of them can take time. The UI there-
fore offers the possibility to save the refactoring for later. This functionality is
provided for all types of refactorings. The author has to name the refactoring
and can save it anytime during the review process (see figure 3.6). By default,
the refactoring is named after its internal ID, for example refactoring#0. After
the author named the refactoring, the dialog closes and the author returns to the
visual editor. In contrast, the selection of parameters does not include a function
to save the current state, because it should be possible to provide all parameters
in only a few moments.

15

Figure 3.6: Screenshot of the dialog to save refactorings.

Addition for global-unlimited refactorings

In case of global-unlimited refactorings, the backend needs time to perform the
refactoring. The processing takes place between step two, selecting the param-
eters, and step three, reviewing the changes. Therefore, the workflow must be
paused after step two, so that the author can continue on other tasks and does
not have to wait. The refactoring dialog closes with a message that the refactor-
ing will be performed in the background. Once the refactoring has finished the
author can resume and continue with step three, as described in the following
paragraph.

List of refactorings

The refactorings from the two above described functionalities are both collected in
a list. The author can follow the process of a refactoring, cancel each refactoring
or resume saved or finished refactorings in this list. The list is rendered on a
independent webpage and not on top of the visual editor. Furthermore, if the
author resumes a refactoring, it will not open in a modal windows. Instead, it
is also displayed on a independent webpage. After finishing the refactoring, the
author is redirected back to the list of refactorings.

3.4 Backend

The refactoring UI uses a client-server architecture, where the backend handles
most of the logic. The backend already existed before I started the work on this
thesis. It provides demo articles for the visual editor from a local Git repository.
I further extended the backend to serve the data for the refactoring UI.

Furthermore, the backend includes the Sweble Wikitext Parser, which converts
articles stored as wikitext into WOM. With the Sweble Wikitext Parser all articles
from Wikipedia can be opened in the visual editor and be refactored with the

16

UI, as described in this thesis. However, the backend is currently lacking the
implementation that actually performs the refactorings. All provided data for
the refactoring UI are for demo purposes only. Nevertheless, I implemented
some logic into the backend to show the functionality of the refactoring UI. For
example, after a refactoring has been applied, the backend appends a line with
the refactoring’s parameters to the article in which the refactoring was started.

An exception to the server-sided logic is the initial parameter selection. Inside
the visual editor, each element (e.g. paragraph, link, image, ...) has an option to
either enable or disable the refactoring button, because not every element can be
refactored currently. The visual editor does not communicate with the backend
directly. Instead, the articles are passed by the frontend into the visual editor.
Therefore, the starting button of a refactoring is hard-coded, because it would
have been rather complex to integrate a server-sided control mechanism into the
visual editor. Since the refactoring definitions should be positioned at a consistent
place, they were all implemented into the frontend. Therefore, no communication
with the backend is needed at this step. As soon as the author provided all
parameters, the refactoring is created on the backend and the parameters are
transferred afterwards. Any further steps will now be handled by the backend.
The client will only display the information in a correct manner.

Furthermore, the backend provides different status codes to the frontend, as
shown in table 3.1. The frontend then shows the right UI depending on the
status code. Since the parameter selection is not managed by the backend, the
frontend begins fetching the status from the backend afterwards.

Status Client content Backend
started parameter selection client-side only
progressing closes dialog prepares the refactoring
awaiting-confirmation review changes -
committed closes dialog finished the refactoring

Table 3.1: All status codes and their frontend behaviour.

3.4.1 API Endpoints

The frontend communicates with the backend over an application programming
interface (API). The frontend sends HTTP requests to specific API endpoints.
Any endpoint has its own function and returns different data. Furthermore, the
frontend sends its request with a HTTP method, e.g. GET, PUT, POST, etc..
The sent HTTP method indicates the type of request. Three HTTP methods
were used in the refactoring’s API. If the frontend needs data, it sends a GET

17

request. If the frontend sends data to the backend, it will use a PUT request.
The third used HTTP method POST is used for creating a new refactoring.

Path Method Description

/refactorings/create POST Creates a new refactoring
/refactorings/list GET List all refactorings
/refactorings/${ID}/status GET Returns the status
/refactorings/${ID}/status PUT Set the status
/refactorings/${ID}/parameters PUT Set the parameters

.../articles GET Returns all changed articles

.../articles/${article} GET Returns the XML of an article

.../articles/${article} PUT Set the content of an article

.../articles/${article}/changes GET Return diff

Table 3.2: Overview of all API endpoints implemented for the refactoring UI.
The second part’s path is /refactorings/${ID}/review/...

I had to choose different endpoints in order to design a clear and simple API.
All implemented endpoints are shown in table 3.2. The first five endpoints are
used in general for starting and managing a refactoring. The second part of the
endpoints was necessary to provide all the functionalities for the review process.
A detailed, technical description is listed in appendix A.

3.4.2 Refactorings in a Collaborative Environment

As described above, the Sweble Hub uses a version control system for its contents.
The refactoring backend has to cooperate with the version control system. If an
author starts refactoring, other changes may interfere with the refactoring. This
is especially true for global-unlimited refactorings, which take time in order to
prepare and process. If another conflicting commit is applied before a refactoring
has finished, the refactoring has to be restarted or the wiki is in an inconsistent
state.

One way of dealing with such problems could be a directly integrated UI for
repeating the refactoring inside the refactoring UI. While this appeared to be a
good and easy solution, it turned out that this could lead to a nearly infinite loop
of restarting refactorings. Since the backend has to prepare the refactoring, some
time may elapse between starting and finishing the refactoring. Therefore, other
commits can interfere with the refactoring again.

Another way of eliminating this problem is to create a new, temporary branch,
where the state of the wiki will not change. Each time a refactoring is started the
backend creates a new branch, on which the refactoring is applied. Therefore, the

18

process of applying a refactoring stays simple, with no possibility for conflicts to
arise. All changes of a refactoring will be summarized as one commit automat-
ically. However, the changes from the automated refactoring and the optional
changes from the author are split into two separate commits. Thus, the manual
changes can be undone easily.

Nevertheless, the branch has to be merged back into the original branch, which
may not be the master branch, but a branch from an author. While most smaller
refactorings can probably be merged automatically, bigger ones are more likely
to produce conflicts. If it is not possible to merge both branches automatically,
the user has to merge it manually. Since a UI for resolving conflicts manually
was beyond the scope of this thesis, this workaround was not further elaborated.

However, a general problem is not solved with this approach. If an author inserts
new content to the wiki while a refactoring is running, this may lead to an
inconsistent state. Since the refactoring only applies to the commit at the time
it was started, any further changes are not considered by the refactoring. Given
that a refactoring, that renames an article, is running at the same time and an
author inserts a link to this article, the new inserted link will not be changed.
After the refactoring has finished and was merged, the wiki will contain an invalid
link to the renamed article. Therefore, further work is needed on how to deal
with inconsistencies from refactorings.

3.5 Exemplary Implementations

In the following, I present one example for each of the three categories to illustrate
the different workflows.

Local refactoring

An example for a local refactoring is the repositioning of a paragraph inside its
article by e.g. moving a paragraph upwards or downwards. The refactoring is
started from within the visual editor through the refactorings button inside the
element’s context menu, as previously shown in figure 3.3. Afterwards, the refac-
toring dialog opens and shows the parameters selection. Since this refactoring
does not have any additional parameters, the author only selects the type ’Move
...’ and subtype e.g. ’... down’ (see figure 3.7). Directly afterwards, the UI shows
the list of changed articles, which looks similar to figure 3.9. In this case, only
one article was changed. After the author accepted the changes, the visual editor
will reload with the updated content. Since the backend is missing the actual
refactoring implementation, only a line with the refactoring’s parameters is in-
serted into the article. In this example the appended line shows ”Refactored with

19

params: {article=lorem, type=move, subtype=down, nodeType=paragraph}”.

Figure 3.7: Screenshot of the parameter selection after selecting a paragraph.

Global-limited refactoring

In general, the workflow of a global-limited refactoring is similar to a local refac-
toring. As an example for a global-limited refactoring I chose to implement the
extraction of an paragraph into another (existing) article. The refactoring is
started inside the visual editor and afterwards, the type ’Move ...’ and subtype
’... into another article’ have to be selected. In contrast to the first example, the
system needs to know in which article the author wants to move the paragraph

Figure 3.8: The second step of the parameter selection, when extracting a
paragraph into another article.

20

(see figure 3.8). Therefore, the UI shows the second step of the parameter selec-
tion. In this case, an article selection is shown. After the author has selected
the target article, the review dialog is displayed. As shown in figure 3.9, both
articles, that will be modified, are listed in the review dialog. As in the above
example, the visual editor reloads after the confirmation of the changes.

Figure 3.9: Screenshot of the review dialog of a global-limited refactoring.

Global-unlimited refactoring

Renaming an article represents an example for a global-unlimited refactoring.
All articles that contain a link to the renamed article have to be modified. The
workflow differs from the two above examples. The refactoring is started via the
button above the visual editor. After the author has selected the parameter to
rename the article, the UI shows an input field to provide the new name. The
new name is validated immediately. Following, the dialog closes and the visual
editor becomes visible again.

Figure 3.10: Screenshot of the list of running refactorings.

21

The progress of the refactoring is then shown in the list of running refactorings
(see figure 3.10). If the backend finished preparing the refactoring, the author
can resume with step three. The dialog is displayed on its own webpage. After
the author has confirmed the changes, the refactoring list is shown again and the
refactoring is listed as committed.

22

4 Implementation

This chapter gives a brief overview of how I implemented the refactoring UI into
the Sweble Hub. This work is based on the state of the frontend after the visual
editor has been integrated by Haase (2016).

4.1 Technologies

The Sweble Hub uses several technologies and programming languages. The
top most layer of the software stack, the frontend is programmed in React, a
JavaScript library. In React, all frontend elements are programmed as compo-
nents. A complex UI is created by combining multiple smaller components into
one bigger component, with each component having its own state and logic. In
order to create a complex frontend, React is combined with Redux, which is also
a JavaScript library. Redux provides a global storage, e.g. for the application
state.

To achieve a global look & feel, the frontend framework Foundation is used. Thus,
the styling of all HTML elements can be changed easily and the framework is
mobile friendly. All refactoring UIs are developed with the help of Foundation
elements. The refactoring UI integrates well into other UI elements, which also
use Foundation. Furthermore, I used icons from Font Awesome, a CSS-based
icon toolkit.

The visual editor is programmed mainly with the help of the JavaScript library
jQuery. The Sweble Hub visual editor consists of the original visual editor from
Wikimedia and the WOM3 extension to collaborate with the WOM format. All
code changes are done exclusively to the WOM3 -module. To structure the visual
editor, it uses a namespace inside the global domain. While both parts share
the same namespace, classes can be distinguished easily. WOM3 files begin with
’Wom3’, e.g. ve.ui.Wom3LinkContextItem.

Further, the backend is programmed exclusively in Java. In order to offer the
REST-API, the framework JAX-RS is used. The entire backend is build with the

23

automated build system Marven.

4.2 Visual-Editor

I mainly implemented the UI as React components rather than as part of the
visual editor. Therefore, the look & feel is the same as the general frontend and
it is easier to maintain. However, the initial step - starting a refactoring - had to
be implemented directly into the visual editor.

4.2.1 Adding the Refactoring Button

As I described in section 3.3.1, the context menu of an element may contain a
refactoring button. Whether a refactoring button is shown depends on if refac-
torings are defined for the element. Currently, not all elements have refactorings
defined. Therefore, each type of element has the hard coded option to either
enable or disable the refactoring button.

For each element the visual editor offers a contextItem, which I referred to as
context menu previously. The contextItem is located in the ve.ui. namespace and
defines the popup appearing after an elements has been selected. Any contextItem
inherits the ve.ui.LinearContextItem class. I implemented an extension for this
class called Wom3LinearContextItem. It inherits the LinearContextItem and
is responsible for adding the refactoring button. The Wom3LinearContextItem
offers a simple variable, hasRefactorings, to its childs to either enable or disable
the button.

In order to add a refactoring button to a contextItem, e.g.
ve.ui.Wom3LinkContextItem for links, it has to inherit the new class
ve.ui.Wom3LinearContextItem. After completion, the refactoring button
can be enabled via the hasRefactorings variable, as shown in listing 4.1.

1 OO.inheritClass(ve.ui.Wom3LinkContextItem , ve.ui.

Wom3LinearContextItem);

2 //...

3 ve.ui.Wom3LinkContextItem.static.hasRefactorings = true;

Listing 4.1: Lines that need to be changed or inserted in order to enable the
refactoring button on links.

24

4.2.2 Communication with the Refactoring UI

After the user clicks the refactoring button, the visual editor has to send an
event to the React component. Even though the visual editor as well as the
frontend use a JavaScript library, it is difficult to communicate directly, since
both elements use different approaches in their dataflows. The visual editor
uses a namespace inside the global domain. Different classes can communicate
easily. The react frontend has a hierarchical structure of its components similar to
object-oriented programming. Only with the addition of Redux, communication
between hierarchical not directly related components becomes possible.

The click event is triggered in the ve.ui.Wom3LinkContextItem class and has to
be passed to the refactor component. There are two options in order to connect
both lower-level elements. On possibility is to pass the event through different
classes, which requires to modify many files. The other option is to communicate
through the global namespace, which is not generally recommended in React.
Since there will be only one refactor component, I decided to implement it this
way. The connection is defined inside the refactor component. As shown in
listing 4.2, I defined a new sub-namespace ve.globalWom3 and bound a local
React function to ve.globalWom3.refactorHandler. In order to suppress warnings
from ESLint, which is used to check if the code meets the style guidelines, it is
disabled and re-enabled afterwards.

1 /* eslint -disable */

2 ve.globalWom3 = {

3 //this.startRefactor is a method inside the react component

4 refactorHandler: this.startRefactor.bind(this)

5 };

6 /* eslint -enable */

Listing 4.2: Code that binds a component’s function to the visual editors
namespace.

Inside the visual editor, the click event can simply be passed to the function
defined in ve.globalWom3.refactorHandler, as shown in listing 4.3. Since the
backend currently does not contain the actual refactor implementation, only the
name of the element type is transferred as parameter. The parameters have to
be extended with an element identifier so that the backend knows which element
should be refactored.

1 ve.globalWom3.refactorHandler(this.constructor.static.name);

Listing 4.3: The method-call within the click event handler of the
ve.ui.Wom3LinearContextItem which is used to pass the event to the refactoring
frontend.

25

4.3 Frontend

All further refactoring UI elements were implemented using React and Redux.

In general, all components with lists (article selection, refactoring list and the list
in the review component) are equipped with pageination, filter and sort mecha-
nisms. Each component contains a loading animation (LoadingDataDecorator),
which is provided by the Sweble Hub frontend.

4.3.1 Structural Overview

I split the refactoring UI into multiple components for a better maintainability.
As shown in listing 4.4, there are three smaller components (refactorings/com-
ponents/*), two main components (refactorings/*) as well as a demo implemen-
tation (refactorings/demo). The three smaller components are independent on
their own and can therefore be better tested and reused elsewhere.

refactorings

components

diff

parameters

components

review

demo

dialog

list

Listing 4.4: Directory structure of the React components, which are located at
frontend/app/client/src/.

4.3.2 Refactoring UI Components

Parameter selection ./components/parameters

The parameters component handles the gathering of the parameters. Inside the
directory is a settings.js file, which contains the basic configuration for each
type of element, e.g. paragraph or wom3Link for links. The type (and subtype)
selection is specified in this JSON config. New refactorings can therefore be added
easily. Further steps of the parameter selection have to be specified manually
inside the main Parameters.js component. Sub-components for further steps
should be placed inside the parameters/components directory. A documentation
how to integrate further refactorings can be found in appendix B.

26

Review list ./components/review

After the author specified all parameters and the backend has finished preparing
the refactoring, the dialog shows a list of changes. This component also imple-
ments the function to save the refactoring, displays the diff view for a specific
article, in- or excludes an article from the refactoring as well as opens the visual
editor for manual changes.

Diff view ./components/diff

This component contains a demo implementation of the diff view. It fetches
the data from the backend and displays it. It has to be replaced with the real
implementation of the diff view.

Main dialog ./dialog

The dialog component is the main component in the refactoring UI. I implemented
all the general logic regarding the refactoring dialog into this component. It
connects the parameter and review components and is responsible for fetching
the status code from the backend as well as determining which component should
be displayed. The component is used for starting and for resuming a refactoring.
Therefore, this component includes the ve.globalWom3.refactorHandler function,
from which the visual editor sends the refactoring start event. Furthermore, the
component includes the logic to decide whether to display the dialog in a modal
windows. In summary, this component is mainly used as content-router and in
order to glue all subcomponents together.

List of running refactorings ./list

When refactorings are manually saved or prepared in the background, they are
listed with the help of this component. It fetches all running refactorings and
displays them.

Demo implementation ./demo

This directory contains two small components, which combine the visual editor
with the refactoring dialog as well as the refactoring list with the refactoring
dialog.

API Client

Most of the components have to communicate with the backend. I created a
singleton class, which provides all methods for the communication. It is located
at frontend/app/client/src/api-clients and uses the JavaScript library SuperAgent

27

for all ajax requests.

4.4 Backend

While the backend consists of the fully implemented API, it only serves demo
data right now. To demonstrate all frontend functionalities some logic had to be
implemented into the backend. I implemented logic for pageniation, filtering and
sorting as well as to change the status code of a refactoring after a user input.
However, since the functional implementation will be replaced, the logic was only
provisionally programmed. Only the API definitions will be adopted.

In the JAX-RS framework, all API endpoints are represented as inde-
pendent class. To separate the new refactoring endpoints from exist-
ing endpoints for the visual editor, I created a new package named
org.sweble.student thesis.refactor. Only the EditorBackendApplication class,
which is located in the org.sweble.student thesis.ve3 package and initialises the
API, was extended to integrate the new endpoints. To store the refactorings data
in the backend, I used multiple HashMaps. Therefore, the refactoring data are
not stored persistently and are reset once the backend is restarted.

The endpoint for creating a refactoring returns the ID of the new refactoring
as part of the location HTTP header. However, browsers remove the location
header from the HTTP response1. In order for the frontend to get the location
header, the backend has to instruct the browsers to expose this header. As shown
in listing 4.5, the backend therefore needs to send the additional HTTP Header
Access-Control-Expose-Headers: Location.

1 UriBuilder builder = uriInfo.getBaseUriBuilder ();

2 builder.path("refactoring/" + Integer.toString(refacID));

3 return Response.created(builder.build()).header("Access -Control

-Expose -Headers", "Location").build ();

Listing 4.5: Excerpt of the Java code, which responds the refactoring ID as
location header and exposes this header to the JavaScript code.

1https://github.com/visionmedia/superagent/issues/770

28

https://github.com/visionmedia/superagent/issues/770

5 Discussion of Results

The goal of this thesis was to design a refactoring workflow with working imple-
mentations that is easy to extend and integrates well. New refactorings can be
added fast, since the first step of selecting the type and optional subtype is de-
fined in a JSON configuration file. Even further steps in the parameter selection
can be added with minor changes (see appendix B). Furthermore, one example
per refactoring type was implemented to illustrate the refactoring UI.

As presented in section 2, drag & drop could replace some commonly used refac-
torings. Repositioning a paragraph inside an article could be a common refactor-
ing performed in a wiki. The feature of drag & drop could be easy and intuitive
for authors. However, since drag & drop is handled by browsers and not by
a script on the webpage, it is probably rather complex to achieve such a func-
tionality for web components. Therefore, it was not further considered in this
thesis.

A suggestion for the design of refactoring tools was to provide fast refactor-
ings (Mealy et al., 2007). The simplest refactoring, moving a paragraph inside
its article, takes more time than copying and pasting the paragraph manually.
Therefore, this particular refactoring is rather a proof of concept. Another sug-
gestion was to offer shortcuts for power-users (Mealy et al., 2007). Currently,
the refactoring does not offer shortcuts. A possible shortcut could be a checkbox
in the parameter selection to confirm the changes automatically and to skip the
review dialog.

Furthermore, the author should be aware of the current position in the refactoring
dialog. Since the workflow always consists of three major steps (starting the
refactoring, providing the parameters and reviewing the changes), it is easy to
follow the progress. Another suggestion from the literature is to prevent errors
(Mealy et al., 2007). The refactoring UI checks the user input immediately and
therefore prohibits errors.

In summary, the requirements for designing and implementing the refactoring UI
from section 1.2 were achieved. Further, most of the suggestions from section 2
were implemented into the refactoring UI.

29

6 Future Work

Future work is necessary to implement more refactorings as well as integrate the
actual refactoring algorithm. With both additions authors could use the refactor-
ing UI in a productive environment. Small improvements could be implemented
to the refactoring UI, for example shortcuts for power-users. Furthermore, the
type and optional subtype of a refactoring should be validated. Currently, the
last paragraph of an article shows the option to move it downwards. Thus, for
the last paragraph of an article, the subtype down and for the first paragraph
the subtype up should be hidden.

Since each refactoring creates a new temporary branch, both branches, the tem-
porary and the original branch, have to be merged afterwards. A ’merge UI’ is
missing to resolve conflicts, which may arise if both branches contain changes to
the same articles. As workaround, branches can be merged with existing soft-
ware (e.g. KDiff31) or manually with an editor and a terminal. However, as
described previously, after merging the branches inconsistencies can occur, such
as e.g. dead links. Therefore, future work is needed on the merge UI as well as
to validate options to prevent such inconsistencies.

1http://kdiff3.sourceforge.net/

30

http://kdiff3.sourceforge.net/

7 Conclusions

In this thesis, I have summarized UI-goals for refactoring tools, designed a work-
flow for refactorings in wikis and implemented it on top of the Sweble Hub soft-
ware. The UI guides the authors through the process of applying a refactoring in
a wiki. The dialog consists of three steps, in which the authors start the refactor-
ing, provide the necessary parameters and review the changes. The refactoring
UI is extendable, can be integrated easily and is able to handle all sorts of refac-
toring types. Furthermore, it follows the summarized suggestions, for e.g. to
prevent errors by immediately checking the user’s inputs.

Currently, wiki authors have to manually restructure and transform wikis, since
the used software can only offer limited assistance in this process. Refactorings
are therefore time-consuming and error-prone. With the framework of the Sweble
Hub software, it is possible to provide assisted refactorings. Especially in bigger
wikis, the author’s efficiency is increased. With the refactoring UI designed in
this thesis, everybody is able to start and perform refactorings in a wiki.

31

Appendix A: API Endpoints

Appendix A API Endpoints

POST /refactorings/create

Request query: which=${node-type}
Response code: 201 CREATED

GET /refactorings/list

Request query: length=${pageinationMaxLength}&offset=${pageinationOffset}
Request query (optional) : filter=${filter}&sort=${sortByRow}[:desc]&direction=[next,
prev, last]
Response code: 200 OK
Response type: JSON
Example response:

1 {
2 "itemsTotal":2,

3 "paginationOffset":0,

4 "items":[

5 {
6 "name":"multipleFiles#1",

7 "refacId":1,

8 "id":0,

9 "status":"processing"

10 },
11 {
12 "name":"multipleFiles#2",

13 "refacId":2,

14 "id":1,

15 "status":"awaiting -confirmation"

16 }
17]

18 }

GET /refactorings/${ID}/status

Response code: 200 OK
Response type: JSON
Possible responses:

1 //One of the following status codes:

2 [awaiting -confirmation, processing, committed]

32

PUT /refactorings/${ID}/status

Request query: ?which=[cancel, apply-refactoring]
Response code: 200 OK

PUT /refactorings/${ID}/parameters

Request body: JSON
Response code: 200 OK
Example request:

1 {
2 "type":"move",

3 "subtype":"up",

4 "article":"lorem"

5 //...

6 }

GET /refactorings/${ID}/review/articles

Request query: length=${pageinationMaxLength}&offset=${pageinationOffset}
Request query (optional) : filter=${filter}&sort=${sortByRow}[:desc]&direction=[next,
prev, last]
Response code: 200 OK
Response type: JSON
Example response:

1 {
2 "itemsTotal":1,

3 "paginationOffset":0,

4 "items":[

5 {
6 "name":"lorem",

7 "include":"true",

8 "warning":"This is a demo warning that may appear when

the server is unsure with a decision .",

9 "id":0

10 }
11]

12 }

GET /refactorings/${ID}/review/articles/${articleName}

Response code: 200 OK
Response type: XML

33

Appendix A: API Endpoints

PUT /refactorings/${ID}/review/articles/${articleName}

Request body: XML
Response code: 200 OK

GET /refactorings/${ID}/review/articles/${articleName}/changes

Response code: 200 OK
Response type: JSON (Diff view)

PUT /refactorings/${ID}/review/articles/${articleName}/status

Request body: JSON
Response code: 200 OK
Possible requests:

1 //One of the following:

2 [exclude, include]

34

Appendix B Integrating Further Refactorings

This appendix gives a brief overview of the necessary steps to add new refactorings
to the frontend.

Enabling the refactoring button

The steps are presented in section 4.2.1 and in listing 4.1.

Defining the type (and subtype)

The refactoring type and its optional subtypes have to be defined in the JSON
configuration file, which is located at /refactorings/parameters/settings.json. The
current configuration is shown in listing 7.1.

1 {
2 paragraph: { // Refactorings on paragraphs:

3 move: { //Type ’move ’

4 label: ’Move ...’,

5 options: { // Subtypes

6 up: {
7 label: ’... up’,

8 },
9 down: {

10 label: ’... down ’,

11 },
12 article: {
13 label: ’... to another exisiting article ’,

14 steps: 2, //One additional step

15 }
16 }
17 }
18 },
19 wom3Link: {
20 rename: {
21 label: ’Rename linked article ’,

22 }
23 },
24 article: {
25 rename: {
26 label: ’Rename article ’,

27 }
28 }
29 }

Listing 7.1: JSON configuration for the types and subtypes of a refactoring.

35

Integrating Further Refactorings

The JSON configuration contains all elements (paragraph, wom3Link, etc.),
which can currently be refactored. The exact naming of an element type can
be viewed in the error message after the refactoring was started on an element
without defined refactorings. The key, that is used in the JSON file, of the types
or subtypes will be sent to the backend, for e.g. ’move’ when moving a paragraph.
Each type or subtype has to contain a label, optional is the key ’steps’. It is used
for additional steps in the parameter selection.

Implementing further steps in the parameter selection

As described in 7.2, additional steps are added to the Parameters.js, which is lo-
cated under refactorings/components/parameters/. The ’content-routing’ is cur-
rently done with simple if-statements. It is important to note, that the number
of steps has to be defined in the config file first. The new parameters can be
saved via a function that is passed to the sub component (line 78). The Naviga-
tionButtons display the buttons in order to continue or go backwards.

71 // Second step

72 if(step === 1) {

73 if(params.type === ’move’ && params.subtype === ’article ’) {

74 return (

75 <div >

76 <h1>Move {nodeType} to another existing article </h1 >

77 <ArticleSelection

78 onArticleSelect ={(article) => dispatch(actionSetParam(’

targetArticle ’, article))}

79 />

80

81 <NavigationButtons enabled ={ params.targetArticle !==

undefined} handleAction ={ handleAction} />

82 </div >

83);

84 }

85 }

Listing 7.2: Excerpt of the Parameters.js:71, in which additional steps in the
parameter selection are shown.

36

References

Buffa, M. (2006). Intranet wikis. In Proceedings of the intrawebs workshop 2006
at the 15th international world wide web conference (Vol. 6).

Dohrn, H. & Riehle, D. (2011a). Design and implementation of the sweble wikitext
parser: Unlocking the structured data of wikipedia. In Proceedings of the 7th
international symposium on wikis and open collaboration (pp. 72–81). Wik-
iSym ’11. Mountain View, California: ACM. doi:10.1145/2038558.2038571

Dohrn, H. & Riehle, D. (2011b). Wom: An object model for wikitext (tech. rep.
No. CS-2011-05). University of Erlangen, Dept. of Computer Science.

Dohrn, H. & Riehle, D. (2013). Design and implementation of wiki content trans-
formations and refactorings. In Proceedings of the 9th international sym-
posium on open collaboration (2:1–2:10). WikiSym ’13. Hong Kong, China:
ACM. doi:10.1145/2491055.2491057

Haase, M. (2016). Integration und erweiterung eines visuellen editors in sweble
hub. Master thesis FAU Erlangen-Nuernberg, 98pp.

Lee, Y. Y., Chen, N. & Johnson, R. E. (2013). Drag-and-drop refactoring: In-
tuitive and efficient program transformation. In Proceedings of the 2013
international conference on software engineering (pp. 23–32). ICSE ’13.
San Francisco, CA, USA: IEEE Press.

Mealy, E., Carrington, D., Strooper, P. & Wyeth, P. (2007). Improving usability of
software refactoring tools. In Software engineering conference, 2007. aswec
2007. 18th australian (pp. 307–318). doi:10.1109/ASWEC.2007.24

Molli, P., Skaf-Molli, H., Oster, G. & Jourdain, S. (2002). Sams: Synchronous,
asynchronous, multi-synchronous environments. In The 7th international
conference on computer supported cooperative work in design (pp. 80–84).
doi:10.1109/CSCWD.2002.1047653

Murphy-Hill, E., Parnin, C. & Black, A. P. (2012). How we refactor, and how we
know it. IEEE Transactions on Software Engineering, 38 (1), 5–18. doi:10.
1109/TSE.2011.41

Opdyke, W. F. (1992). Refactoring object-oriented frameworks (Doctoral disser-
tation, University of Illinois at Urbana-Champaign).

Roberts, D., Brant, J. & Johnson, R. (1997). A refactoring tool for smalltalk.
Urbana, 51, 61801.

37

https://dx.doi.org/10.1145/2038558.2038571
https://dx.doi.org/10.1145/2491055.2491057
https://dx.doi.org/10.1109/ASWEC.2007.24
https://dx.doi.org/10.1109/CSCWD.2002.1047653
https://dx.doi.org/10.1109/TSE.2011.41
https://dx.doi.org/10.1109/TSE.2011.41

REFERENCES

van Emden, E. & Moonen, L. (2002). Java quality assurance by detecting code
smells. In Ninth working conference on reverse engineering, 2002. proceed-
ings. (pp. 97–106). doi:10.1109/WCRE.2002.1173068

38

https://dx.doi.org/10.1109/WCRE.2002.1173068

	Introduction
	Transformations and Refactorings in Wikis
	Goal of this Thesis

	Related Work
	Literature Review
	Eclipse IDE Refactoring UI

	Architecture and Design
	Sweble Hub
	Visual Editor
	Collaborative Platform

	Refactoring Types
	Refactoring UI
	Basic Worflow
	Additional Functionalities

	Backend
	API Endpoints
	Refactorings in a Collaborative Environment

	Exemplary Implementations

	Implementation
	Technologies
	Visual-Editor
	Adding the Refactoring Button
	Communication with the Refactoring UI

	Frontend
	Structural Overview
	Refactoring UI Components

	Backend

	Discussion of Results
	Future Work
	Conclusions
	Appendices
	Appendix API Endpoints
	Appendix Integrating Further Refactorings

	References

