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Abstract

In this thesis we propose an immune system for the continuous delivery process
of the Unil application. We add canary deployments and show how continuous
monitoring can be used to detect negative behaviour of the application as a
result of a recent deployment. Analyzing the Unil application is done via user
defined health conditions, which are based on a number of metrics monitored
by the immune system. In case of degraded behaviour, the immune system uses
rollbacks to revert the Unil application to the last stable version. With the help
of the immune system, application developers do no longer have to manually
monitor whether a deployment completes successfully, but instead can rely on
the immune system to gracefully handle deployment errors.
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1 Introduction

1.1 Unil

This thesis uses the software of the Unil startup (http://unil.de) as a basis for
conducting research on the topic of continuous delivery. Unil is founded by Prof.
Dr. Dirk Riehle of the Open Source Research Group at the Friedrich Alexan-
der University of Erlangen-Nuremberg (FAU), and FAU alumni Matthias Lugert
(M.Sc.). The goal of Unil is to revolutionize how universities and companies
collaborate and conduct business with one another.

Unil is made up of a number of different software components. This thesis
focuses on the Unil market software, which is available at https://app.unil.de.
If you would like access to this platform please reach out to Matthias Lugert
(matthias.lugert@unil.de) for details.

1.2 Goal of this thesis

The goal of this thesis is to improve the process of continuous delivery, by adding
an “immune system” to the continuous integration (CI) pipeline of the target
application. This immune system, much like the one which can be found in
living objects, serves two purposes:

e Monitoring: the immune system should be able to detect problems with
the target application, for example sales of a webshop dropping below a
certain threshold.

e Countermeasures: upon discovering problem with the target application,
the immune system should deploy countermeasures to solve the problem.

The term target application in this thesis refers to the application which provides
the actual business value, whereas the immune system is a meta application for


http://uni1.de
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the target application. In the case of Unil, the target application is the website
hosted at https://app.unil.de.

The rest of this thesis is structured as follows. Section 2 describes the concep-
tual model of an immune system, including different types of deployments, how
applications can be monitored and what actions can be taken based on the ap-
plication health status. Section 3 gives a brief overview of the Unil application,
and analyses the architecture of the Unil immune system. Section 4 discusses
the implementation of the Unil immune system, which is evaluated in section 5.
Section 6 lists related works on stabilizing the deployment process and section 7
gives a brief conclusion.



2 Conceptual model

This section gives a brief overview of how the terms continuous integration, con-
tinuous delivery and continuous deployment are used in this thesis, before ana-
lyzing how an immune system can help stabilize the software deployment process.

2.1 Continuous software development practices

2.1.1 Continuous integration

In his “Continuous Integration” article (Fowler, 2006b), Martin Fowler describes
CI as:

Continuous Integration is a software development practice where mem-
bers of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day.
Each integration is verified by an automated build (including test) to
detect integration errors as quickly as possible.

The focus of CI is on integrating software changes from different developers or
machines into a single piece of software, and asserting that this integration hap-
pens without problems. Important here is, that CI does not stand for any single
technology or specific tool, but rather is a loose term for a collection of practices.

In his book on “Continuous Integration” (Duvall, Matyas & Glover, 2007), Paul
Duval describes the bare minimum of a CI system as:

e Integration with a version control system
e A build script

e Some sort of feedback mechanism (such as e-mail), in the case
of build errors or failed tests

e A process for integrating source code changes



Most CI system also provide support for automatically running tests when integ-
rating code changes.

2.1.2 Continuous delivery

Drawing a strict line between CI and continuous delivery is not a simple task,
as many practices are associated with both terms. In his book “Continuous
Delivery“ (Humble & Farley, 2011), Jez Humble describes continuous delivery
as:

Continuous delivery provides the ability to release new, working ver-
sions of your software several times a day.

The key difference to CI is, that continuous delivery includes generating a de-
ployable artifact (for example a war file for Java applications or an APK file
for Android apps) as part of the automated build process. As such continuous
delivery can be thought of as a superset of CI.

Common practices which are generally part of continuous delivery are:

e Deployment pipleline: an extension to the CI pipeline which allows any
built artifact to be deployed to the target machine / customer at any given
time. Triggering this process is done manually.

e Version management: in a bare CI system, built artifacts do not al-
ways relate to a released version of a software. In an continuous delivery
system, each released software version has one (or multiple depending on
the environment) artifacts which are generated as part of the deployment
pipeline. Keeping track of these artifacts makes is possible to deploy any
version of the software at any time, including performing rollbacks in case
of problems.

2.1.3 Continuous deployment

Continuous deployment holds all the same values and practices as continuous
delivery, with the exception that deployments are no longer triggered manually,
but rather after each build of the CI pipeline.

This level of automation may not always be desired and might not even be possible
for all types of applications. For example Android apps, which are typically
released via the Google Play Store, take several hours before becoming available
to end users (Google Inc., 2016a), which makes releasing in intervals less than one
day impractical. Another example are websites which are distributed via global
content delivery networks (CDN), where pushing changes to edge caches of the



network can take up a considerable amount of time. Amazon CloudFront, a CDN
service offered by Amazon Web Services (AWS), states that “propagation to all
edge locations should take less than 15 minutes” (Amazon Web Services, Inc.,

2016b).

2.2 Deployment

Any system that wishes to strengthen the continuous delivery process, requires
knowledge of how the continuous delivery pipeline is constructed, and in partic-
ular how the target application is deployed. This section presents and compares
different types of deployments.

2.2.1 Types of deployments

Full rollout

Probably the most simple and straight forward way to deploy an application is to
simply release the software to all customers all at once. In the context of a static
website, this means updating all HTML, CSS and JavaScript files and possibly
invalidating CDN or browser caches.

The advantages of this approach are:

e Simplicity: implementing a full rollout pipeline is very straight forward
in most cases, as there is always only a single active application version
at any given time. This also makes reasoning about the application state
and tracing errors easier, compared to a scenario where multiple application
versions are involved.

e Speed: deployment of a new application version to all customers is as fast
as can be. This is important when fixing critical bugs in the application.

e Consistency: if multiple and different application versions have simultan-
eous write access to the same application state, this state is bound to be
modified differently from one version to another. If an application version
has access to the state of another application version, which for example
might be the case with a single shared user database where one version has
renamed a table column, the application requires explicit checks for how it
should process this state. Single version environments don’t need this kind
of logic (ignoring application errors and failed version transitions).

Downsides of a full rollout are:



e Fault tolerance: should a software version contain a critical bug, then this
bug will be deployed to all customers. Even in case the bug is discovered
early on, interrupting a running deployment is not always possible and
has to be explicitly supported, otherwise leaving the application state in a
potential inconsistent state.

e Flexibility: with this all or nothing approach, testing a different version of
software, for example via AB testing (section 2.2.1), requires to either have
a copy of the target application running a different version, or the usage of
feature toggles (section 2.2.2).

e Upgrade downtimes: upgrading all servers of an application all at once,
will lead to the application becoming unresponsive during the deployment
process. One solution to this problem is often referred to as Blue Green De-
ployment (Fowler, 2006a). With Blue Green Deployments an environment
running the old version has to be created first, which handles all requests
while the deployment is running. After a successful upgrade, the two envir-
onments have to be swapped “atomically” (logically, not necessarily on the
machine processor level) for the new version to receive incoming requests.
Depending on the number of machines that make up an application envir-
onment and the duration and frequency of a deployment process, having a
clone environment can cause noticeable additional costs.

Incremental rollout

An incremental rollout differs from a full rollout only marginally, in the sense that
when upgrading software on the target machines (servers, customer devices, etc.),
not all machines are updated at once, but rather one after the other. This pro-
cess only really applies to scenarios where the business has control over the target
machines, such as backend servers. A counterexample are mobile applications,
where the user of the target device has full control over when and if an update
should be processed or not. This freedom of the user doesn’t completely eliminate
incremental rollouts in mobile scenarios, the Google Play Store for Android ap-
plications for example has explicit support for incremental rollouts (Google Inc.,
2016b), but it does make the process more indeterminate and hard to properly
control. We focus on scenarios with full control over target machines.

For the most part the advantages and disadvantages are the same as with full
rollouts, with the following differences.

Advantages:

e No upgrade downtimes: this is the primary difference and advantage
over full rollouts.



Disadvantages:

e Inconsistency: incremental rollouts do away with the idea that a de-
ployment should be an atomic operation, meaning that application envir-
onments can now be in a state somewhere between two versions. This
introduces the previously mentioned potential for inconsistencies in the ap-
plication state, which have to be handled on the application level.

e Error handling: with full rollouts, the actual transition from one version
to another is a simple matter of switching two environments, something that
for example AWS BeanStalk supports naturally, by swapping the CNAME
of two AWS BeanStalk environments (Amazon Web Services, Inc., 2016a).
With incremental rollouts, the switch from one version to another is no
longer atomic, but rather continuous, as more and more machines upgrade
to the new version. The deployment pipeline needs to explicitly handle
errors that can occur when a machine fails to upgrade. There are multiple
options how to handle errors, for example discarding the old machine and
launching a new instance instead (when using virtual machines), discon-
necting the machine from the outside network (for example by removing
it from an AWS Load Balancer), or attempting a rollback should the new
application version as a whole haven been declared faulty.

There are a number of variations of the incremental rollout pattern. AWS Elastic
Beantalk supports additional deployment modes called rolling and rolling with
additional batch. Both modes introduce the concept of deploying fixed size
batches of machines instead of single machines. Rolling with additional batch
will launch an additional batch of machines prior to the first deployment, which
allows the target application to run at full capacity even during the deployment
process.

Canary release

In his article about “CanaryRelease”, Danilo Sato (Sato, 2014a) describes canary
releases as:

Canary release is a technique to reduce the risk of introducing a new
software version in production by slowly rolling out the change to a
small subset of users before rolling it out to the entire infrastructure
and making it available to everybody.

Because a canary release only gradually deploys a new application version to
machines, it can be thought of as another variation of incremental rollout, with
the primary difference that the time between upgrading individual (batches) of
machines is intentionally kept long enough for the effects of the new version to



be measured.

There are different strategies for routing users to a new version, the simplest one
being random selection. More sophisticated approaches include showing the new
version to employees in the own company first, or selecting users based on their
profile.

Canary releases come with all the up and downsides of regular incremental rol-
louts, including the following advantages:

e Testing with live traffic: having a high test coverage is great, testing an
application with real users is better, as no amount of carefully constructed
tests will ever replace real users interacting with the application.

Additional disadvantages are:

e Complexity: canary releases require selecting users for a new version con-
sistently and deterministically. Even a random user selection strategy will
have to be advanced enough, to either always pick a user for the new version
or never, otherwise risking to show a different version to the user on each
visit.

A /B Testing

In their article about “Network A/B Testing”, Gui et al. (Gui, Xu, Bhasin &
Han, 2015) describe A/B testing as:

A /B testing, also known as bucket testing, split testing, or controlled
experiment, is a standard way to evaluate user engagement or satis-
faction from a new service, feature, or product. |...] The goal of A/B
testing is to estimate the treatment effect of a new change |...]

A /B testing is very similar to a canary release, except that the focus is on com-
paring different versions of an application, and not on how to release a software.
A /B testing is listed here for the sake of completeness, but will not be further
analyzed in this thesis.

2.2.2 Feature toggles

Feature toggles are a technique which can be used with any of the above de-
ployment types, with the goal of adding additional flexibility to the application
release and testing process. It its simplest form feature toggles are conditional
statements in the code of an application, which can turn on and off certain fea-
tures of an application.



Hodgson quantifies feature toggles along two dimensions: longevity and dynam-
ism (Hodgson, 2016). Longevity determines how long a feature toggle will be part
of the application software, ranging anywhere from a couple of days to forever.
Dynamism determines how feature toggles can be triggered, for example at build
or runtime.

Hodgson distinguishes between four types of feature toggles:

e Release toggles: usually short lived and static. These toggles aid the
deployment processing by releasing software into production with features
that should not yet be visible to users, and are disabled by default. Once de-
velopment on a feature is complete, the feature can be toggled and released
to users.

e Experimental toggles: slightly longer lived than release toggles and can
be configured dynamically, usually on a per request basis. These toggles
are most often used for A/B testing.

e Ops toggles: medium to long lived and configurable at runtime. These
toggles are used to control high level aspects of an application, for example
by disabling high performance features in case of degraded performance.

e Permission toggles: mostly very long lived and highly configurable. These
can be used to implement regular user permissions, which control the fea-
tures that can be accessed by users. For example paid only features could
be controlled with these toggles.

2.2.3 Deployment orchestration

So far this thesis has assumed that the target application is a single component,
which can be upgraded atomically on a single machine. In reality this is rarely
the case; most modern software architectures are made up of multiple, independ-
ent components which are developed and updated independently. This is not
necessarily a result of the ever increasing popularity of microservices, as even
simple seeming applications often consist of a database, frontend in the form of
a website or mobile application, and a backend. Whether all components should
use the same deployment pipeline is up for discussion,! however keeping these
components in sync does add another layer of complexity to upgrading the ap-
plication as a whole. This section analyses how parallel change can help cope
with that complexity.

n his article about “Microservices”, James Lewis suggests that in a microservice archi-
tecture each component should have its own independent build and deploy process (Lewis &
Fowler, 2014).



The idea of parallel change builds upon the concept of published interfaces
which “refer[s] to a class interface that’s used outside the code base that it’s
defined in” (Fowler, 2003). In an application with multiple components, any in-
terface which is used to communicate between components is a published interface
and hence cannot be changed without updating multiple components. As previ-
ously discussed in section 2.2.1, updating all components atomically or in parallel
is often times impractical (because of downtimes etc.), or in some cases simply
impossible, such as with mobile applications. As a result applications require
some sort of deployment orchestration to successfully transition an application
from one version to another.

Danilo Sato describes parallel change as (Sato, 2014b):

Parallel change, also known as expand and contract, is a pattern to
implement backward-incompatible changes to an interface in a safe
manner, by breaking the change into three distinct phases: expand,
migrate, and contract.

In the expand phase an interface is extended with additional methods / end-
points, which present how the interface should look like after the transition. In
the migration phase all client components of the interface are updated to use
the new methods / endpoints of the interface. Finally in the contract phase the
old, and now unused, methods / endpoints of the original interface are removed.
What’s important about this process is, that it is time independent. The contract
phase can be postponed indefinitely should client components or machines take
a long time to update or even never update at all. If the contract phase never
occurs, the original interface will have deprecated methods / endpoints which can
be supported for as long as required.

Parallel change can be used to roll out updates to all components of an ap-
plication. The following is based on a sample application which consists of an
frontend in the form of a website and a backend. The frontend communicates
via an interface with the backend. Figure 2.1 shows how a breaking change to
the backend interface can be deloyed, by first expanding the backend interface
to support both the old and new endpoints, then migrating the frontend to only
use the new endpoints, and finally by contracting the backend interface to only
support the new endpoints.

Branch by abstraction (Fowler, 2014) is a technique for gradually introducing
large scale breaking changes, which is similar to parallel change, with the excep-
tion that an interface is first encapsulate in an abstraction layer which supports
the breaking changes, before changing the underlying logic.
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Figure 2.1: Diagram of introducing breaking changes in the interface of an
application that consists of a frontend and backend. Each box represents a de-
ployed version of an application component, with A being the initial interface, B
the final interface, and AB a version that supports both interfaces A and B.

2.2.4 Rollbacks

Regardless of how software is deployed, there is always the potential for a de-
ployment to fail, for example by failing to restart a service after an update, or
by displaying unwanted and potential critical behaviour. Once such a failure has
occurred, there are two ways to deal with it: either manually fixing any errors
in the application, for example by using SSH to login to a faulty machine and
restarting a service manually, or by using the existing pipeline to deploy a differ-
ent version of the application. We focus on the latter approach of redeploying a
previous application version to the environment, which we refer to as rollbacks.
This section lists the rollback strategies for each deployment type, along with
their respective durations.

e Full / incremental rollout: simply re-deploys a previous version. Roll-
back is not instantaneous, the duration depends on the total number of
machines in an application environment.

e Canary release: users can be routed nearly instantaneously to the stable
version.

e Deployments with feature toggles: depending on the toggle granular-
ity, shutting down a faulty part of the software can be instantaneous. If a
fault cannot be isolated with feature toggles, the rollback strategy depends
on how the application was deployed.
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2.3 Monitoring

This section discusses how to monitor various parameters of the target applic-
ation. The result of these monitoring activities will be used in section 2.4 by
the immune system to determine the health status of the application. In addi-
tion, this section covers some basic mechanisms for constructing a notification
system, which can be used by the immune system to be informed about certain
conditions, without having to fall back on a polling technique to receive these
updates.

Application monitoring consists of roughly three stages: data collection, data
storage and data analysis.

2.3.1 Data collection

At this point we do not want to make any assumptions about what data could
be relevant to determine the health status of the target application. Instead, we
focus on analyzing what kinds of data sources can be tapped and how.

Data sources

We classify the data sources of an application as:

e Domain specific: this data can usually be derived from the database
of an application and contains domain specific values. Using a two sided
marketplace as an example, the number of offered products is a domain
specific parameter.

e User behaviour: while this information can partially be derived from the
application database, it usually stems from a dedicated analytics software
such as Google Analytics, which is kept separate from any application logic
or data. Examples are the behaviour of users on a website (number of
visited pages, total time on website, bounce rate, etc.) or user interaction
with newsletters.

e Machine specific: data about the state of the machines that run the
target application. Sample parameters are the amount of RAM used, CPU
utilization or average time to handle a request.

e Error reporting: problems with an application are usually logged for later
analysis. The number, severity and kinds of errors can be monitored!.

!Google Analytics lists “Crashes and Exceptions” under the category “Behaviour”. We
choose to make errors a separate data source, because errors might not always be the direct

11



¢ Finance reporting: finance related data can sometimes be derived from
an application database, but is usually kept separate from the application
data due to the sensitive nature of the data.

Accessing data sources

To read and process data sources we propose a system of adapters, where each
adapter has specific knowledge about how to access a data source, and then
transfers that data into a common format. A simple adapter could depend on
polling to fetch data from a source, an advanced implementation should register
itself with the data source (where possible) to directly receive updates.

2.3.2 Data storage

To store the data collected from the various data sources for further analysis, the
monitoring system requires some form of database. This section does not give
an overview of different database management systems (DBMS), but rather lists
some of the unique requirements of the monitoring database.

e Fast write and read operations: data is written frequently (depending
on the sources), and usually read in large batches. Update and delete
operations are not required, making the need for transactions obsolete.

¢ Retention length: the immune system in this thesis focuses on the time
between deploying an application, and declaring that application version
stable enough to not require a rollback. This is a finite time frame, and it
is in the interest of all parties involved to keep it as short as possible. As
a result the monitoring database does not need to retain the collected data
for an indefinite time, but rather only during the time of the deployment.

e Timestamp support: each entry in the monitoring database needs to be
timestamped for analysis. While not strictly required, explicit support for
timestamps and queries based on timestamps is helpful.

e No entity relationships: relational database usually support modeling
relationships between tables. Entity relationships are not the focus of mon-
itoring and can be excluded for the most part.

result of a user interaction, but could also result from periodic processes.
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2.3.3 Data analysis

The monitoring system should not make any assumptions about how to derive
the health status of the application from the data it is collecting. Instead, this
decision is delegated to the immune system. To support this delegation, and to
prevent the immune system from having to query the monitoring system for data
at regular intervals, the monitoring system should feature a notification system
which supports the registration of analysis rules, which will notify any subscribers
in case the conditions specified in those rules are met.

The monitoring system should allow clients to register rules, which perform com-
plex event processing (CEP). In “The Power of Events” (Luckham, 2001), Luck-
ham describes an event as “an object that is a record of an activity in a system”.
Events are related to another by time. The data collected by the monitoring
system can be thought of as a collection of events, each one associated with a
single timestamp. Complex events are created by combining multiple events into
a single one. As an example, consider the event “the value of the parameter p
exceeds the threshold z”. In order for this event to happen, two different events
need happen first:

e At time t the value of p needs to be below .
e At time t + §, with 0 > 0, the value of p needs to be above z.

The support for complex event processing in the monitoring system is not strictly
required, as subscribes can also split complex events into multiple “simpler” ones
as seen above and reconstruct the complex events themselves.

2.4 The immune system

The goal of the immune system is to further stabilize the process of deploying a
software version by

e determining and monitoring the application health status over the
duration of the deployment, until the application is considered “stable”.

e performing actions to improve the application health should the
health status decline.

2.4.1 Determining the application health status

We propose two approaches for determining the health status of an application:
white box monitoring and black box monitoring.

13



White box monitoring

With this approach the immune system defines a number of conditions that best
describe how a healthy application should behave. These conditions will differ
from one application to another and can include domain specific aspects, for
example the number of visitors on a particular page of a website.

The advantage of this approach is, that the description “healthy” can be fine-
tuned to fit the target application. Additionally the conditions can be adjusted
over time or even season to cope with changes.

The primary disadvantage of this approach is, that conditions have to be defined
manually and cannot always be applied to applications from different domains.
In the case of a business with many applications, this can lead to a fragmented
definition of “healthy”.

Black box monitoring

Instead of defining the health status of an application on a software level, which
we do with white box monitoring, we can derive the health status from the
purpose the application serves for a business. In many cases the ultimate goal
of an application is to generate revenue. We can use revenue as a metric to
define the health status of an application. An application version is considered
unhealthy should it generate no or less revenue than the previous version, and
healthy should it generate the same or more revenue.

This simple approach has many drawbacks though, and does not take into account
daily / weekly / seasonal fluctuations, the revenue growth gradient, businesses
that do not yet generate revenue or non-profit organizations that will never gen-
erate any revenue.

Another difficulty with this approach is, that the time to generate a representative
amount of revenue limits the the deployment frequency. As an example consider
an online car dealership with an average of three sold cars per day. An immune
system cannot determine the health status of the shop website with any certainty,
if the software is released on a daily basis. Missing revenue can either be the result
of a faulty software, or simply be caused by the fluctuations of the business. For
the immune system to monitor the health status of the car dealership software, the
release frequency has to be either low enough for representative revenue samples
to be collected, or a combination of white and black box monitoring could be
used.

14



Health status granularity

Independently of the monitoring approach used, an application is hardly ever
completely “healthy” or “unhealthy”, instead the actual health status is usually
somewhere in between. In this thesis we focus on applications with a binary
health status (healthy / unhealthy), a more advanced immune system however
should take into account that an application consists of multiple components,
which all have their own health status. Additionally, when using white box
monitoring, degrading a single metric might be done intentionally to improve
several other metrics. For example increasing the number of server machines in
an environment, which will increase costs, will reduce latency of client requests
and potentially resolve out of memory errors.

2.4.2 Performing actions to improve application health

An immune system is not much more than an advanced monitoring solution, un-
less it acts upon the information it derives about the target application. The kind
of actions that the immune system can perform largely depend on the granular-
ity of the application health status. In the case of this thesis that is “healthy”
and “unhealthy”, which limits what a monitoring system can do to improve the
application health. We focus on rollbacks as a solution to a degraded application
health status. If the target application uses feature toggles for releasing new fea-
tures to customers (in this case called release toggles), the immune system can
turn a toggle back off to perform the rollback.

15



3 Architecture and design

Section 2 introduces a conceptual model for an immune system for continuous
delivery. This section applies this model to the case of the Unil software, by
first giving on overview of the Unil software stack and architecture, and then by
discussing how to construct an immune system on top of the Unil CI pipeline.

3.1 Unil application

This thesis focuses on the Unil market place software. The purpose of this mar-
ket place is to create an online community, where members of higher education
institutes and companies can come together to organize courses and projects for
students. In the following the term Unil is used to refer to the market place
software.

3.1.1 Software stack

Unil uses a classical client / server architecture, where the Unil website has the
role of the client which interacts with a backend server. The two components are
strictly separated and can be developed and deployed independently. Commu-
nication between the two components is handled via a RESTful API.

Frontend

The Unil frontend is a so called static website, which means that all files
required to host the website (HTML, CSS, JS) are generated at compile time.
Dynamic content is created at runtime via JavaScript in the browser of the user.
Hosting a static website can be achieved via any regular file server, such as
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Apache HTTPD?!, AWS S3? or Netlify>. PHP or NodeJS / Express applications
are examples for applications where the website is dynamically constructed on
the server for each request.

The software stack of the Unil frontend consists of a ReactJS * application with
Redux® for managing the application state. ReactJS is a JavaScript framework
originally designed by Facebook, for developing rich single page applications®.
ReactJS is well known for its ability to create highly modular components which
can easily be reused, and for its ability to build declarative interfaces which
automatically update whenever the underlying application state has changed.
Redux is a small framework on top of ReactJS, that advocates a stricter way of
organizing the application state, and defines how user interactions should trigger
changes in the application state.

Backend

The Unil backend consists of a NodeJS / ExpressJS” application with MongoDB®
as a database. NodelJS is a Javascript framework for writing server side applica-
tions, and ExpressJS is a routing library used to built the RESTful API on top
of NodelJS.

Landing page

The website at http://unil.de is not to be confused with the previously discussed
application. The software running behind unil.de is a Wordpress installation,
serving as a landing page for the Unil startup, but otherwise does not interact
with the Unil marketplace.

thttps:/ /httpd.apache.org/

Zhttps://docs.aws.amazon.com/AmazonS3/latest /dev/Welcome.html

3https://www.netlify.com/

4https://facebook.github.io/react/

Shttps://github.com /reactjs/redux

5The term “Single page application” refers to a JavaScript web application, where the
client browser typically only loads a single HTML file with a reference to the main Javascript
application. Any further interactions with the website, including navigating to different parts
of the application, are handled in JavaScript. Single page applications are frequently combined
with the pattern of static pages for their ease of deployment.

"https://nodejs.org/en/ and https://expressjs.com/

8https://www.mongodb.com/
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3.1.2 Deployment setup

This section discussed how the Unil application is hosted, and what other ex-
ternal services are required by the application.

Frontend

The Unil frontend is hosted in an Amazon Simple Storage Service bucket with
public read permissions (Amazon S3). Amazon S3 is a storage solution provided
by AWS. One limitation of static single page applications is, that because there is
only a single index.html at the root of the application, accessing any other page
of the application will result in a 404 (not found) HTTP status code. To overcome
this limitation, the S3 bucket redirects all 404 requests to the root index.html,
with the original path as a query parameter. It is then the responsibility of
the JavaScript application to read this query parameter and navigate to the
appropriate page!.

In order to enable SSL on the domain app.unil.de, traffic to and from the AWS
S3 bucket is routed through AWS CloudFront, the AWS content delivery network
(CDN)2. This is due to the limitation of AWS S3, where S3 buckets can have a
custom domain name, but not with SSL support. AWS CloudFront on the other
hand offers free SSL certificates with custom domain names.

Backend

The Unil backend is hosted on AWS Elastic Beanstalk®. AWS Elastic Beanstalk
is a free supporting service offered by AWS, which provides a simple interface
for hosting backend applications on AWS. AWS Elastic Beanstalk does not host
applications itself, but rather combines a number of other AWS resources in a
convenient and intuitive way, such as AWS virtual machines (EC2%), which come
preconfigured with auto scaling groups and load balancers. The description “free”
only applies to the usage of AWS Elastic Beanstalk itself. Other AWS resources,
such as EC2, are billed to the customer as usual.

AWS Elastic Beanstalk is used to host the RESTful API of the Unil backend.

Other parts of the application, such as resizing uploaded images, are hosted on

!This behaviour can be observed with “the naked eye”, by directly requesting any path
within the Unil application (other than the root index.html). The URL in the address bar of
the browser will change a couple of times before settling on the requested URL.

Zhttps://aws.amazon.com /cloudfront /

3https://docs.aws.amazon.com/elasticbeanstalk /latest /dg/Welcome.html

4https://aws.amazon.com/ec2/
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AWS Lambda!. The AWS documentation describes AWS Lambda as

AWS Lambda is a compute service where you can upload your code to
AWS Lambda and the service can run the code on your behalf using
AWS infrastructure. After you upload your code and create what we
call a Lambda function, AWS Lambda takes care of provisioning and
managing the servers that you use to run the code.

The Unil backend uses AWS Lambda for executing code on events that originate
from within the AWS ecosystem, for example for resizing an image after it has
been uploaded to S3. Future work on the Unil application might include mi-
grating the RESTful API from AWS Elastic Beanstalk to AWS Lambda, as this
eliminates the need to maintain EC2 servers, and in the case of irregular or low
traffic numbers, can reduce costs significantly by only paying for code execution
time with AWS LambdaZ.

Other services used by the Unil backend are Mailgun® for sending transactional
emails, MailChimp* for managing newsletters, and mLab® for hosting the Mon-
goDb database.

3.1.3 (I pipeline

The Unil frontend and backend use a continuous integration pipeline for running
tests after each commit. Deployments are started manually, the deployment itself
however is automated.

The CI pipeline begins with the Unil software being hosted in a private repository
on GitHub®. After each git push to the repository, GitHub notifies TravisCI’, a
continuous integration as a service provider, about the new changes. TravisCI
then builds and tests the Unil software, and alerts involved parties in case of
erTors.

Deploying a new version of the Unil application is done manually, and involves
the following steps:

Thttps://docs.aws.amazon.com/lambda/latest /dg/welcome.html

2This pattern is called serverless architecture. Due to recent popularity and the
release of AWS Lambda to the general public in April of 2015, a number of frameworks
have evolved which try to port legacy (Nodel]S) applications to this serverless architec-
ture.  Noteworthy mentions are Claudia.JS (https://claudiajs.com/) and serverless (ht-
tps://github.com/serverless/serverless)

3https://www.mailgun.com/

4https://mailchimp.com/

Shttps://mlab.com/

Shttps://github.com/

"https://travis-ci.com/
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e Frontend: uploading all HTML, CSS and JS files to the Amazon S3 bucket.

e Backend: sending a bundled ZIP package of all relevant files to the AWS
Elastic Beanstalk application.

3.2 Unil Immune System

This section describes the high level architecture of the Unil immune system.
Roughly speaking the immune system can be divided into two parts:

e Monitoring: how the immune system determines the health status of the
application. We discuss a number of metrics that are specific to the Unil
application.

e Deployments: we propose a canary deployment model for the Unil ap-
plication. This part of the immune system is responsible for managing the
Unil canary and provides a simple interface for deploying new versions of
the Unil application.

Both parts of the immune system have a frontend in the form of a website.

3.2.1 Monitoring

Before undertaking any actions to modify the behaviour of the Unil application,
the immune system first needs to assess the health status of the application.

Unil metrics

At the time of writing this thesis, the Unil startup is still very young and does not
yet! have a large enough user base or regular income to support black box mon-
itoring. This section consequently uses white box monitoring to determine
the application health status. The following metric types are analyzed:

e Domain specific: due to the small number of users, metrics in this cat-
egory largely serve the purpose of providing “sanity checks”, for example
that the total number of courses created on the platform should never de-
cline. While this does not give an accurate and detailed picture of the

1Go, Unil, go!
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application health status, it does help to assert a level of basic fitness of
the application®.

e Machine specific: every application hosted on AWS Elastic Beanstalk is
preconfigured to export EC2 performance data to Amazon CloudWatch?.
Amazon CloudWatch is a monitoring solution for AWS resources, but also
features an API for importing data from other sources. The Unil immune
system uses this EC2 data to detect abnormal behaviour of the application,
by defining a range for key metrics, such as CPU and memory consumption,
which are considered to be “healthy”.

Configuration

In order to cope with changing definitions of what constitutes a healthy Unil
application, the monitoring service contains two interfaces for configuration: a
static configuration file which lists the metrics that should be monitored, and a
dynamic set of rules that decide how the metric values should be interpreted.

e Metrics configuration: The Unil immune system uses a static configur-
ation file? to define which metrics of the Unil application should be mon-
itored, and how. The contents of this file are used to configure adapters
for fetching metric data. Typical configuration parameters for a metric are:
the location of the data source (usually an URL), the protocol used for
accessing it (HTTP, HTTPS, FTP, etc.), format of the data (JSON, XML,
etc.) and the frequency in which this data source should be accessed.

e Analysis rule configuration: The immune system delegates the decision
about what makes a healthy application to the administrator of the immune
system, by providing an interface for registering rules for determining the
health status. This interface is similar to that of a CEP rule engine, where
each rule can analyze multiple metrics from different timestamps before it
triggers an event.

Data storage and analysis

The immune system stores the collected monitoring data in Amazon CloudWatch.
Amazon CloudWatch supports this process by letting users defined custom met-
rics, and by providing an interface for publishing data to those metrics. Each

1One could argue that these kinds of metrics could also be covered with regular unit and
integration tests. We however argue, that monitoring such values in production can provide an
additional level of security which simply cannot be achieved in a regular testing environment.

Zhttps://aws.amazon.com /cloudwatch/

3A configuration file which is only read once when starting the immune system.
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Figure 3.1: This diagram shows a high level overview of the monitoring archi-
tecture, with three configured metrics which all come from different data sources.
Data flows from the sources, through the immune system into Amazon Cloud-
Watch. To monitor these metrics, clients of the monitoring system can register
analysis rules with the monitoring system, which trigger whenever the conditions
describes in those rules are met. The monitoring system registers these rules with
Amazon CloudWatch in the form of Amazon CloudWatch alarms.

published data point requires the following attributes: a value, a unit and a
timestamp from when it was recorded.

Besides acting as a storage solution for the immune system, Amazon CloudWatch
is also used for analyzing the recorded data. Administrators of the immune system
can define the characteristics of a healthy Unil application, by uploading a set
of conditions to the immune system. Those conditions define valid ranges for the
monitored metrics. If any condition is not met for an extended period of time,
the monitoring system will consider the health status of the Unil application
degraded, and will alert any clients of this change.

The immune system allows clients to register these conditions at runtime. After
registration, the conditions are transformed into Amazon CloudWatch alarms®,
which are then registered with Amazon CloudWatch. The immune system peri-
odically checks the state of the alarms on Amazon CloudWatch, and will forward
any triggered alarms to its clients when necessary.

Figure 3.1 shows an overview of how data is processed in the monitoring service.

Thttps://aws.amazon.com/blogs/aws/amazon-cloudwatch-alarms /
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3.2.2 Deployments

This part of the immune system extends the Unil CI pipeline to store created
assets, to setup canary releases of the Unil application and to manage how new
versions are deployed to canary and production machines.

CI pipeline

Prior to the introduction of the immune system, the Unil CI pipeline was only
responsible for building and testing the application, but did not store created
artifacts for future use. The immune system extends the CI pipeline, by uploading
all build artifacts to S3 as the last step in the pipeline. Artifacts are named
according to the git commit hash, in case a reference back to the original source
code is required.

Canary releases

In AWS Elastic Beanstalk, each application consists of one or more environ-
ments, where each environment is an actual instance of running software, which
can be addressed via a unique URL. One use case of multiple environments in
a single application is to create separate production and testing setups, that are
used in different stages of the software development cycle. The Unil immune
system leverages this feature to create a clone of the original Unil environment,
to be used for canary deployments.

Managing the deployment process

When deploying a new version of the Unil application via the immune system,
the following steps are executed:

1. Deploy artifacts to canary environment: the immune system will
download the build artifacts from S3 and create a new version in the canary
environment. The immune system only triggers the deployment to the
canary environment, but does not wait for its completion. Instead, it will
continue to step 2 as soon as possible.

2. Start monitoring canary environment: the immune system will peri-
odically check with the monitoring system to get the health status of the
canary environment. The duration of the monitoring period is configurable
and should be short enough to release a new version to the customer quickly,
but long enough to get a representative sample of how the application is
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performing. After the monitoring period is over, the immune system will
continue to step 3. Should the monitoring service report a degraded health
status in this period, the immune system will proceed to step 4 instead.

. Deploy artifacts to production environment: similar to how artifacts
are deployed to the canary environment, the immune system will now deploy
the build artifacts to the production environment.

. On error, rollback canary environment: in case the monitoring service
reports an unhealthy canary environment, the immune system will regard
the deployment as failed, and will redeploy a previous application version
to the canary environment.
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4 Implementation

This section gives a brief overview of the technologies used to build the Unil
immune system and discusses a number of implementation decisions.

4.1 Software stack

The Unil immune system consists of two separate components: a backend fea-
turing a RESTful API, and a frontend in the form of a static website.

Backend

The backend is a Java application based on the Dropwizard! framework. Dropw-
izard is similar to other Java backend frameworks, for example the Spring frame-
work?, in the sense that it tries to provide all relevant building blocks for modern
backend applications, such as support for RESTful APIs, request validation, re-
quest authentication or integration with an object-relation manager (ORM). Un-
like Spring however, Dropwizard does not implement all of these features itself,
but rather uses existing open source libraries®, and only provides the necessary
“glue” to make all these libraries work in harmony.

Additional services used by the backend are Amazon DynamoDb as a NoSQL
database?, Amazon CloudWatch for storing and processing the monitoring data,
and AWS Simple Notification Service® for receiving push notifications whenever
alarms on Amazon CloudWatch are triggered.

lwww.dropwizard.io

Zhttps://projects.spring.io/spring-framework /

3Standard Dropwizard libraries are Jetty (HTTP server), Jersey, (RESTful web framework),
Jackson (JSON library), Metrics (metrics library), Guava (utility library), Logback (logging
framework) and Hibernate Validator (bean validation support).

“https://aws.amazon.com/dynamodb/

Shttps://aws.amazon.com/sns/
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Frontend

The immune system frontend is a static website based on a ReactJS / Redux
architecture, and uses the RESTful API of the backend for communication. The
website is written using the ECMAScript 6 standard!, uses ESLint for linting?
and Semantic UI? as the CSS framework.

4.2 Features

This section covers implementation details of the Unil immune system.

Canary release configuration

One key characteristic of applications with canary releases is, how users are routed
to the canary environment. Conceptually there are three ways of doing this:

e Application based routing: the logic of how users gets routed to which
environment is part of the application itself. This approach provides max-
imum flexibility, but comes at a performance cost, such as additional roundtrips
when requests are forwarded to the target environment.

e Network based routing: the network layer is responsible for routing
users to the correct environment. This has the benefit of coming with little
to no performance costs (a request needs to pass through the network layer
in any case), but limits the routing logic to information which is publicly
available in the request, such as IP address of the sender.

e DNS based routing: even more performant than network based routing,
this approach lets the DNS provider decide how to route clients, by map-
ping the domain name to different environments depending on the DNS
lookup request. While this makes implementing routing very easy with
DNS providers such as Amazon Route53*, it ultimately makes the DNS
client (browser, mobile application, etc.) responsible for correctly rout-
ing users to the appropriate environment. This can lead to inconsistent
behaviour should the client not honor the DNS settings. In their paper
titled “On the Responsiveness of DNS-based Network Control”, Pang et
al. (Pang, Akella, Shaikh, Krishnamurthy & Seshan, 2004) discovered that

thttp://es6-features.org/

Zhttp:/ /eslint.org/
3http://semantic-ui.com/
4https://aws.amazon.com/route53/
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up to 47% ob web clients did not adhere to the DNS time-to-live (TTL)
settings.

Because we do not wish to modify the Unil application to accommodate the
immune system, and because reconfiguring the network layer of the AWS Elastic
Beanstalk application would ultimately require the Unil application to use plain
EC2 instances without the Elastic Beanstalk environment, the immune system
uses a DNS based routing approach for managing the canary environment.

The Unil application uses Amazon Routeb3 as its DNS provider. Amazon
Routeb3 supports three DNS routing policies which are relevant to canary envir-
onments!:

e Simple Routing Policy: this is the default policy and maps a domain
name to a single target address. With this policy the production and canary
environment have distinct endpoints, which makes it the responsibility of
the Unil business to manually distribute users between the two environ-
ments.

e Geolocation Routing Policy: this policy is typically used for perform-
ance reasons, by routing users to servers which are closest to them. The
policy allows multiple target addresses to be associated with a single domain
name, and each target address to be associated with a location. Routing is
then based on the location of the incoming request.

e Weighted Routing Policy: with this policy, multiple target addresses
can be associated with a single domain name. Each target address can
have a weight assigned, which determines the likelihood of a request being
routed to that address. When applied to canary releases, this approach
essentially implements a random distribution of clients between the canary
and production environment, where the ratio between the two groups can
be configured.

The Unil immune system uses a weighted DNS approach for routing users to
the canary and production environments, where 1% of users are being shown the
canary environment.

4.2.1 Monitoring domain specific metrics

The two types of metrics monitored by the immune system are domain specific
and machine specific ones. AWS Elastic Beanstalk takes care of exporting any
EC2 and load balancer specific data to CloudWatch, which leaves the domain
specific metrics to be handled by the immune system. There are a number of

Thttps://docs.aws.amazon.com /Route53 /latest /DeveloperGuide/routing-policy.html
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strategies to access domain specific data of a target application, such as directly
reading from the application database or using existing interfaces. We propose a
third solution by implementing a “monitoring endpoint” in the Unil application,
which returns a mixed set of domain data points. This interface is a RESTful
API which returns data in JSON format. Listing 1 shows a sample output of this
endpoint.

1 {

2 "dbConnected": true,

3 "courseCount": 10,

4 "projectRequestCount": 42,
5 "projectCount": O,

6 "users": {

7 "companyUserCount": 31,
8 "eduUserCount": 17,

9 "studentUserCount": O
10 1,

11 "timestamp": 1479822696306
12 }

Listing 1: This JSON data is returned by the Unil monitoring endpoint. The
timestamp defines when this data was last generated, in case a cached result is
returned by the Unil application.

The immune system periodically queries this endpoint and forwards the data to
Amazon CloudWatch.

4.2.2 Analysis rules

To configure how the health status of the Unil application is determined, the
immune system has an interface for registering “health conditions”, which define
valid ranges for the metric values of the Unil application.

The immune system supports two kinds of health conditions:

e Single threshold: this condition compares the value of a metric with a
single threshold. The comparison operators are greater, greater than, lesser,
lesser than and equal to.

¢ Range threshold: this condition defines two thresholds, which determine
the valid range of a metric value. The range can either be inclusive (the
metric should be within the range) or exclusive (the range should be outside
the metric).
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Internally the immune system converts these conditions to Amazon CloudWatch
alarms. Single threshold conditions can be mapped directly to a Amazon Cloud-
Watch alarms, where range thresholds require two alarms to be created. In order
reconstruct the mapping between conditions and alarms, the immune system uses
Amazon DynamoDDb for storing meta data about conditions. Amazon SNS is used
to receive push notifications whenever the state of an alarm on CloudWatch has
changed, by implementing an API endpoint in the immune system which is called
by SNS with the ID of the alarm and its current state.

4.2.3 Generic graphical user interface

The user interface of the immune system has three main pages:

e Deploying applications: this Ul shows an overview of all build artifacts
that were generated as part of the Ci pipeline, which of those artifacts
are currently deployed to what environment, and controls for deploying an
artifact.

e Monitoring the canary health status: for each metric configured in the
immune system, a graph with the latest measurements is show. This UI is
dynamically created at runtime, using an endpoint of the backend which
lists all configured metrics.

e Defining health conditions: this enables administrators to configure
health conditions for the Unil application.

A visual overview of the Ul is shown in appendix B.
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5 Evaluation

This section evaluates how the immune system can be integrated with other
applications, and the strengths and weaknesses that come with the monitoring
solution of the Unil immune system.

5.1 Integration

The immune system we propose is heavily dependent on the AWS ecosystem.
While the concepts of the immune system can easily be ported to different hosting
environments, the software itself is specifically built for applications using AWS
Elastic Beanstalk.

Because Elastic Beanstalk applications are highly standardized, and because the
immune system does not require the target application to be modified, the Unil
immune system can be regarded as a “plug and play” immune system for any
application hosted on Elastic Beanstalk. This is especially interesting for busi-
nesses that wish to provide a basic guard against failed deployments, something
which Elastic Beanstalk does not provide at this point®.

At the same time the tight integration with Elastic Beanstalk makes it difficult
to extend the immune system beyond what AWS supports. For example the
data retention length of Amazon CloudWatch is limited to two weeks?. This is
sufficient for monitoring canary deployments which are expected to last only a
couple of days. Should be monitoring system be extended to continuously monitor
the production environment as well, CloudWatch would no longer be suitable as
a data storage. Other limitations include the policy for routing users to the
canary environment, how deployments are performed within an environment or
extracting machine specific metrics which are not provided by Elastic Beanstalk.

LAWS Elastic Beanstalk requires customers to manually monitor the status
of the deployment, and in case of errors, to manually start a rollback. See
https://docs.aws.amazon.com/elasticbeanstalk /latest /dg/using-features.deploy-existing-
version.html for details.

Zhttps://aws.amazon.com /cloudwatch /faqs/
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5.2 Monitoring

The Unil immune system uses a white box monitoring approach for determ-
ining the health status of an application, and requires the administrator of the
immune system to configure conditions that define a healthy application. This
approach provides maximum flexibility and even makes short term adjustments
possible. In addition, domain specific metrics allow for a very high level, busi-
ness driven definition of how the application should behave, which might even be
considered a domain specific language (DSL).

The cost of this configuration freedom is the required knowledge to configure
these health conditions. Misconfiguration can lead to accidental rollbacks with
negative user experience. Depending on how deployment orchestration of multiple
components is handled, an unexpected rollback can also introduce new and very
real errors in the application, for example by rolling back the backend to a version
which is incompatible with the frontend.

Another limitation of this approach is how difficult it is to apply to applica-
tions with low traffic volumes. Because of the limited data available on how the
application behaves under load, administrators are not able to experiment how
different health conditions affect the deployment process. Instead when traffic
volumes increase, the application might perform very differently than it did with
low traffic volumes.
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6 Related Work

An alternative approach to using an immune system for deployments is, to first
deploy a new application version to a testing environment, which ideally is an
exact clone of the production environment. This environment can then be used to
run extensive integration tests. Neely describes this approach in his work about
“Continuous Delivery” (Neely & Stolt, 2013).

Facebook uses a similar method, but additionally requires the developers of the
changes which are about to be deployed to be on call during deployment. To verify
the availability of the engineers, an IRC bot will contact the engineer before the
deployment, and should the engineer not be reachable, will automatically revert
all changes of that engineer (Feitelson, Frachtenberg & Beck, 2013).

The term “immune system” in computer science is most often associated with
dynamically detecting and fixing security vulnerabilities in applications. Sathre
proposes rolling back a software to the last know uncompromised state in the case
of security breach (Sathre & Zambreno, 2008). “Immune system” can also be
used to describe a system which tries to mask runtime errors caused by mistakes
made during development. Sidiroglou et al. present such a system for the x86
platform in their article “Building a reactive immune system for software services”
(Sidiroglou, Locasto, Boyd & Keromytis, 2005).

We have not found any work on detecting and fixing problems caused by deploy-
ments without the need for manual intervention. We believe the Unil immune
system to be unique in this regard.

32



7 Conclusion

This thesis discusses a number of models for strengthening the software deploy-
ment process, by continuously monitoring the application under development,
and deploying countermeasures in case of degraded application performance. As
an example we study the Unil immune system, which is used to deploy the Unil
software. The immune system extends the Unil CI pipeline by introducing ca-
nary deployments and a monitoring service, which tracks the state of the canary
environment. The immune performs automated rollbacks on the canary environ-
ment should the health status decline. A user defined set of conditions is used
by the immune system to determine the health status of the Unil application.
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Appendix A: Using the Open Data Service

Appendix A Using the Open Data Service

The immune system we propose consists of roughly two core components: a mon-
itoring system and a deployment component. The three primary objectives
of the monitoring system are data collection, data storage and data analysis.
Data storage and data analysis is handled by Amazon CloudWatch, which leaves
data collection to be implemented by the monitoring system. This section dis-
cusses how the Open Data Service (ODS), developed by the Open Source Software
Research Group in Erlangen, can be used as a replacement for the monitoring
system.

Data collection

The ODS features a fully customizable adapter framework for fetching data from
various sources, which is far superior and more flexible than that of the immune
system. Migrating the immune system to use the ODS would require the ODS
to support more advanced authentication protocols required AWS services, but
otherwise does not require any code changes. Data sources in the ODS can be
configured dynamically via a RESTful API, as long as the data source uses an
HTTP or FTP protocol, and returns the data in JSON or XML format.

Data storage

The ODS relies on Apache CouchDb', a document oriented NoSQL database, for
storing data. This means that any data regardless of the data schema can be
stored. If the immune system monitors data source with heterogeneous schema
and stores this data as is in the ODS, it becomes the responsibility of the immune
system to deal with these possibly conflicting schema. The adapter framework
of the ODS can help with this problem, by configuring adapters which perform
schema transformation. This logic is hard coded in the immune system; the ODS
allows configuration of these transformations at runtime.

Data analysis

The ODS itself only allows clients to fetch data as is from CouchDb. In order to
perform more advanced analysis, the complex event processing service (CEPS)
was developed at the Open Source Software Research Group, which nicely integ-
rates with the ODS. This solves the need of the immune system to dynamically

Thttps://couchdb.apache.org/
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register health conditions, but does not provide the same range of statistical
analysis tools which are offered by Amazon CloudWatch.
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Appendix B The Unil immune system GUI

This section gives a brief visual overview of the Unil immune system graphical
user interface. The Ul is roughly divided into three pages: deployments, monit-
oring metric values and a health conditions editor.

Deployments page

Figure 7.1 and 7.2 show the deployment page. At the top of the page, the Ul
shows an overview of which version, referenced by the shortened git commit hash,
is currently deployed to which environment, followed by a high level health status
taken from AWS Elastic Beanstalk.

Below that, figure 7.2 shows a list of all build artifacts created by the CI pipeline,
as well as an option to deploy those artifacts to the canary environment. The
“bug” icon indicates that this version is currently deployed to the canary envir-
onment, the “rocket” icon represents the production environment.

Monitoring metric values page

Figures 7.3 and 7.4 show current and past values of the configured metrics, divided
into the categories domain specific and machine specific metric types. This part
of the UI is dynamically created at runtime from the metric configuration of the
immune system backend.

Health conditions editor page

This page contains the editor for creating and modifying health conditions which
should be monitored by the immune system. Figures 7.5 and 7.6 show how
different kinds of health conditions can be configured. Figure 7.7 shows which
conditions are currently enabled on the system and their current status (green
indicating healthy values, red indicating unhealthy values).

The immune system UI uses the term “monitoring alarms” to refer to health
conditions.
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Deployments Metric stats Metric alarms

Deployment Status

Canary testing running
A canary deployment is running, this might take a while.

Production Canary
EB name unil-prod unil-canary
Health Ok Ok
Causes
EC2 health status ok: 1 ok: 1
Version 24b293a 24b293a
Status Ready Updating =
Health status Ok Ok

Figure 7.1: The top of the deployments page shows which version is currently
deployed to which environment, along with a high level health report. In this
screenshot a new version is currently being deployed to the canary environment.
The deployment is not yet complete; both environments are showing the same
version number as a result.

Deployment Artifacts

.f‘ 2e75e4eac276235516d856¢85e88772fac1bff57
Tue, 22 Nov 2016 09:43:03 GMT

f 24b2932ec157309d99d18a8c9c50cbedb7623097
Tue, 08 Nov 2016 01:00:24 GMT Deploy

484b5c¢20958b2679062c317d050d580d775256de
Thu, 03 Nov 2016 13:42:12 GMT Deploy

8ac049dc1a60ed456079561d5e6f39fdfdOf7aff
Thu, 03 Nov 2016 13:24:56 GMT Deploy

Figure 7.2: This graphic shows a list of all build artifacts, together with a small
indicator saying if a version is currently deployed or not.
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Deployments Metric stats Metric alarms

AWS Elastic Beanstalk Monitoring

EC2 CPU utilization (Percent) EC2 network out (Bytes)
25 36000
20 34000
15 32000
1.0 30000
o< T —— 28000
0 26000 g
Nov 15 Nov 17 Nov 19 Nov 21 Nov 23 Nov15 Nov17 Nov19 Nov21 Nov 23
EC2 network in (Bytes) ELB latency (Seconds)
250000 | 0.20
200000 | 015
150000 |
0.10
100000 |
50000 | 7 0.05
0 } O IR T 1 1O 1Y (il e O i) i
Nov15 Nov17 Nov19 Nov21 Nov23 Nov 15 Nov 17 Nov 19 Nov 21 Nov 23

Figure 7.3: This screenshot shows machine specific metric values for the canary
environment. The unit of the x-axis is time, while the unit for the y-axis is
displayed in the graph header.
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Domain Monitoring

Project requests (Count)

Courses (Count)

Company users (Count)

5.0
45
4.0 4
3.5
3.0

“o,

Educational users (Count)

4.0
35
3.0 4
25
2.0

bo,

Figure 7.4: This screenshot shows domain specific metric values for the canary
environment. The empty appearance of the graphs comes from a very low up-
date frequency of the domain values, along with no recorded changes during the

monitoring period.
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Deployments Metric stats Metric alarms

Alarm editor
Metric

Courses

Alarm type

Single threshold v

Alarm when value is than threshold

< v 42

Submit

Figure 7.5: A screenshot of how single threshold health conditions can be con-
figured. The metric dropdown includes all domain and machine specific metrics.

Deployments Metric stats Metric alarms

Alarm editor

Metric

EC2 CPU utilization v
Alarm type

Inside band v
Alarm when value is than lower threshold

>= v 5
and than upper threshold

<= v 80

Submit

Figure 7.6: Similar to single thresholds, this screenshot shows the configuration
of a health condition value range. The types “inside band” and “outside band”
refer to whether the value should be within, or outside of the range.
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All alarms

A a3cdf273-2825-491d-994e-60a82faeada9
When Courses is LessThan 42 (Count) Delete
V f3a511fc-aafd-4be7-a699-e7ac3225299% Del
When EC2 CPU utilization is GreaterThanOrEqualTo 5 and LessThanOrEqualTo elete
80 (Percent)

Figure 7.7: This list shows all configured health conditions in the system, here
referred to as “alarms”.
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