
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

MINH TUAN NGUYEN

MASTER THESIS

A QUALITATIVE COMPARATIVE EVAL-
UATION OF GRACE AND JAVA FOR
IMPLEMENTING DESIGN PATTERNS

Submitted on 26 September 2016

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 26 September 2016

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 26 September 2016

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Design patterns are software design constructs defined and implemented using
a programming language. What features of a programming language make the
implementation of a wide variety of object-oriented design patterns easy? This
thesis analyses Grace for its effectiveness in supporting developers in implement-
ing design patterns. The method is comparing the implementations of standalone
Gang of Four design patterns in Grace and Java. After that we extend our study
by implementing Hotdraw in Grace, producing GraceHotdraw. Based on the
design pattern implementations we present the Grace specific language features
and analyze them against the language evaluation model developed by Michael
Kölling.

ii

Contents

1 Introduction 1

2 Research 1
2.1 Introduction . 1
2.2 Related Work . 2

2.2.1 Educational programming languages 2
2.2.2 Grace and Design Patterns 3

2.3 Research Question . 5
2.4 Research Approach . 5

2.4.1 Grace Standalone Design Pattern Applications 5
2.4.2 GraceHotdraw . 10

2.5 Research Results . 16
2.5.1 Evaluation of Grace . 16
2.5.2 Comparison of GraceHotdraw and JHotdraw 21

2.6 Results Discussion . 22
2.7 Conclusion . 23

Appendices 24
Appendix A Grace Design Patterns 24

A.1 Creational Patterns . 26
A.2 Structural Patterns . 36
A.3 Behavioural Patterns . 48

References 69

iii

1 Introduction

Grace is a new object-oriented programming language which is developed by
a community of researchers in computer science from universities around the
world. The purpose of Grace is to let beginners learn programming in a simple
way. Current languages often used for teaching such as Java or Python are widely
used in the industry but these application languages are hard to learn for novices.
This thesis analyzes the Grace language features in general, and points out which
features make the implementations of design pattern easy by comparing the Grace
design pattern implementations against other application languages, in particular
Java.

1

2 Research

2.1 Introduction

Grace is a new educational programming language developed by a community of
computer scientists from universities around the world (A. P. Black, Bruce, Homer
& Noble, 2012). Grace has potential to become the main teaching programming
language for novices in universities.

Design Patterns inform programmers about good program design (Wolfgang,
1994). They provide standardized and efficient solutions for reoccurring prob-
lems and have been implemented in many programming languages. Design Pat-
tern implementations are different for every programming language.

The contributions of this thesis are:

• Evaluation of Grace as a educational language based on experience in design
pattern implementations.

• The qualitative analysis of language features which make design pattern
implementations easy.

This chapter is structured as follows: In section 2.2 we review related work regard-
ing educational programming languages and Grace’s main language features. In
section 2.3 we show our research questions. In section 2.4 we present our research
approach. We analyze in details three of our 23 design pattern implementations
and describe GraceHotdraw. In section 2.5 we show our results by comparing
our study against Kölling’s language evaluation model. In section 2.6 and 2.7 we
discuss the limitations of our results, present some conclusions and look at future
works.

1

2.2 Related Work

2.2.1 Educational programming languages

Back in the 1980s the choice for programming languages not only for teaching
but also for general purpose was limited. The software engineering and computer
science community chose Pascal as the standard language not only for teaching
but also for industry software or research activities (Noble, Homer, Bruce &
Black, 2013). As a result transferring knowledge and skills between institutions
was easy, textbook choices were more consistent and employers could rely on the
shared basis of graduate’s programming skills.

As the years passed by, the choice for a standard programming languages was not
obvious anymore. Many educational institutions adapted C and Java for teaching
programming languages. They are application languages which are designed for
professional purposes but not for novices however. There are some research works
which evaluate theses languages for suitability and sustainability as introduction
language (Hadjerrouit, 1998) (Farooq, Khan, Ahmad, Islam & Abid, 2014).

As the need for an educational programming languages became bigger, the com-
puter science community identified the requirements for a good introductory pro-
gramming language (Gupta, 2004) and suggested a lot of methods and developed
other teaching programming languages. Some researchers recommended exist-
ing programming languages for teaching purpose, such as Python, by analyzing
the experiences of beginners in learning computer programming in universities
or comparing the language against other widely used teaching languages, such as
Java (Begosso, Begosso, Gonçalves & Gonçalves, 2012) (Lo, Lin & Wu, 2015).
Python lacks on static types however, and is therefore not the best choice for
teaching programming languages.

Uehara from Toyo University developed a new educational programming lan-
guage which is called Cafe. The language is based on Processing, a programming
language that is developed by Reas and Fry at MIT within the context of visual
arts (Uehara, 2009). The language combines the main language features in the
currently teaching programming languages C and Java. Papaspyrou proposed
CAL, a algorithmic language which is similar to C with some extensions dedic-
ated for educational purpose (Papaspyrou & Zachos, 2013). These languages are
not object-oriented however.

Other researchers presented different methods to make learning programming
languages more simple. One popular method was to implement programming en-
vironments or systems for the current widely used application languages. These
environments or systems should make learning programming easier for beginners.
Pawelczak implemented Virtual-C, a IDE for teaching C in undergraduate pro-

2

gramming courses (Pawelczak & Baumann, 2014). Lei presented concepts to de-
velop programming environment aiming on non-technicals (Lei, 2003). Serrano-
Laguna designed a system which helps novices learn programming by creating
video games (Serrano-Laguna, Torrente, Iglesias & Fernández-Manjón, 2015).

All of these methods and programming languages still lack of acceptance from
the computer science community. As the need for a new unified educational
programming language became bigger, during ECOOP 2010, a group of language
researchers and educators decided to collaborate and designed a new educational
language (A. Black, Bruce & Noble, 2010). They developed Grace with the
purpose to teach novices programming and software engineering (Homer & Noble,
2014) (Homer & Noble, 2013) (A. P. Black, Bruce, Homer & Noble, 2013).

2.2.2 Grace and Design Patterns

Grace is an object-oriented language designed for education. The main purpose
is to make learning programming easy for novices. Design Patterns are sets of
solution for commonly occurring problems in object-oriented software engineering
(Cooper, 2002) (Bishop, 2007). During the development of Grace the developers
integrate some design patterns to the language. In this section we introduce the
main Grace language features and highlight the integrated design patterns in the
language (A. P. Black, Bruce & Noble, 2013) (A. P. Black, Bruce & Noble, 2016a)
(A. P. Black, Bruce & Noble, 2016b).

Object and Classes Grace classes and objects contain field declarations and
methods. The following code defines an employee.

class aEmployee (name) {
var name is readable := name
method printName {

print "{name}"
}

}

This is the way to define an object of aEmployee:

var peter := aEmployee (′′Peter′′)

Beside we can define an object constructor without any classes:

//Object Constructor
object {

var name is readable := ′′Peter′′

method printName {

3

print "{name}"
}

}

Singleton is a language feature in Grace. Now we can declare a variable to make
a global access point to the object.

def singleton = object {...}

We will explain the Grace build-in singleton more in details in the later sections.

Grace does not have any built-in null value. Variables which are uninitialized can
not be used as a null reference. The values of those variables are uninitialized.

Types Grace supports both static and dynamic types. One does not have to
specify types to declare local variables, fields and methods. Types are structural
and separated from classes. The concept of defining a type can be compared
to interfaces in Java. Type specifies which attributes and methods types are
required for an object.

type Employee = {
name → String
printName () → Done

}

The arrow symbol separates a method name or attribute from its (return) type.
Done indicates that the method does not return any value. The following example
demonstrates how to define an Employee object:

def peter:Employee = aEmployee (′′Peter′′)

The arrow symbol also enables the use of iterator and command pattern in Grace:

for (commandList) do { command →
command.execute

}

All the information is stored in the single object commandList which can be
accessed. CommandList contains a list of commands. The integrated iterator
pattern in Grace helps us to access all the objects in commandList with a for
loop without knowing its exact structure.

Inheritance Reuse in Grace is supported by Inheritance. The main difference
to Java is the possibilities of multiple inheritance. Inheritance is possible for both
objects and classes.

4

We can extend our previous example as follows:

class aContractor (name) {
inherit aEmployee (name)
var contractTime

}

The clause inherit is equivalent to extends in Java. After calling inherit Grace
will call the super class, which is aEmployee in our example.

Information hiding Grace is designed in a way so that making mistakes is
more difficult. Thus the designer of Grace decided to set the default visibility
for methods to public and the default visibility for attributes to confidential.
Both can be changed by adding “is confidential/public”. Getter and setter for
attributes is possible by adding “is readable and is writable” after the attributes.

2.3 Research Question

This research will address the following questions:

General question: Is an educational programming language better suited for im-
plementing design patterns than an application programming language ?

Specific question: Is Grace, as an example of a educational programming lan-
guage, better suited than Java, as an example of an application programming
language ?

The main question is: How difficult is the implementations of design pattern in
Grace ?

2.4 Research Approach

2.4.1 Grace Standalone Design Pattern Applications

We successfully implemented all 23 Gang of Four patterns in Grace (Gamma,
Helm, Johnson & Vlissides, 1995). We describe the implementations and attach
the code in the appendices section. This section shows detailed standalone im-
plementations of singleton from creational patterns group, composite from struc-
tural patterns group and visitor pattern from behavior patterns group and com-
pares them to the Java implementations (Metsker & Wake, 2006) (Hannemann &

5

Kiczales, 2002). We decided to show them because they cover all Grace specific
language features. Singleton shows encapsulation and information hiding rules.
Composite illustrates type concepts and object construction. Visitor shows in-
heritance structure.

2.4.1.1 Singleton Pattern

The singleton pattern belongs to the group of creational patterns and makes sure
that a class only has one instance. The pattern provides a global access point
to that object. In our example we create 2 packages SingleObject.grace and
SingletonPatternDemo.grace. The first includes the single object and the inter-
face to enable global access. The second tests the functionalites of the pattern.

//Singleton Package
var instance := false
class SingleObject is confidential{

var testAttribute is readable, writable := "original attribute"

method asString is public {
print "I am a {testAttribute}"

}
}

class Interface is public {
method getInstance is public {

if (instance == false) then {
instance := SingleObject

} else {
//Do nothing

}
return instance

}
}

//Demo package
import "SingleObject" as s

//How to access the singleton object
var instance := s.Interface.getInstance
instance.asString

var instance2 := s.Interface.getInstance
instance2.asString

6

The method getInstance is the global access point to the singleton from the
class SingleObject. The method getInstance belongs to the class Interface. The
global variable “instance” gives the information whether the singleton-object for
the class SingleObject has been created or not and ensures that we can cre-
ate only one object from SingleObject. In our example instance.asString and
instance2.asString both print “original attribute”.

Our implementation does not prevent creation of many Interface objects, but
method getInstance forces all objects to return the same singleton object. Moreover
nothing from outside the SingleObject package can modify the global variable in-
stance, since it is confidential. Java implements singleton with static fields. Since
Grace does not have any static class members, we make use of Grace’s package
mechanism to enable the pattern.

Another possibility for singleton is making use of an object constructor and im-
mutable variable.

def singleton = object {
var testAttribute is readable, writable := "original attribute"

method asString is override {
"I am a {testAttribute}"

}
}

//How to access the singleton object
var instance := singleton

In this implementation we create a object which we access by calling the immut-
able variable “singleton”.

2.4.1.2 Composite Pattern

The composite pattern belongs to the group of structural patterns and creates
hierachical object models. The purpose is to treat a group of objects in the
same way as a single instance of an object. In our example we implement the
hierarchical system of a company composite. Employee acts as the Component
class. PermanentEmployee is a Employee, acts as Composite class and can have
many other Employees as child elements. Contractor is a Employee, acts as Leaf
class and cannot have any child element.

class Employee (name, department) {
var name is readable := name
var role is readable := department
//...

7

}

class PermanentEmployee (name, department) {
inherit Employee (name, department)
def subordinates = list.with []

method addSubordinate (subordinate) {
subordinates.add(subordinate)

}
//...

}

//Contractor cannot have any subordinates
class Contractor (name, department) {

inherit Employee (name, department)
//...

}

Employee acts as the parent class. The attribute subordinates in PermanentEm-
ployee contains a list of Employees. This list can include other PermanentEm-
ployee objects with their child elements creating a tree structure with Contractor
objects as its leaf elements. The main differences to the Java implementation:

• The concept of abstract class does not exist in Grace. Our implementation
cannot prevent creation of Employee objects. Reuse in our example is
possible with inheritance which is similar to Java.

• Grace classes are basically factory methods. A class is a method of which
body is treated as an object constructor. There is no explicit constructor.
We pass the input arguments through the head of the class after the class
name. Everytime when the class is invoked to create a new object, the
object constructor will be called. In Java we must explicitly define the
class constructor which lengthens the code.

• In PermanentEmployee,

inherit Employee (name, department)

will pass the input parameters directly to the parent class Employee. In
Java the contructor will do this by calling

super(name, department)

• Grace allows using of dynamic types and thus we do not have to worry
about typing while coding the child elements. In our implementation we

8

cannot prevent a PermanentEmployee object from having other objects
than Employee objects as its children.

2.4.1.3 Visitor Pattern

The visitor pattern belongs to the behavioural patterns group and separates a set
of structured data from the functionality that may be performed upon it. This
pattern promotes loose coupling and enables additional operations to be added
without modifying the data classes. In our visitor pattern implementation we
extend our previous composite pattern implementation. EmployeeVisitor acts as
the VisitorBase. PaySalary and PrintAllEmployees act as ConcreteVisitor. The
composite pattern represents the object structure.

class EmployeeVisitor {
method visitPermanentEmployee (employee) {}
method visitContractor (employee) {}

}

//Visitor 1: pay salary to all employees
class PaySalary {

inherit EmployeeVisitor
method visitPermanentEmployee (employee) is override {

print "{employee.name} has got the salary"

}
method visitContractor (employee) is override {

print "{employee.name} has got the contracting rates"

}
}

//Visitor 2: print all employees
class PrintAllEmployees {

inherit EmployeeVisitor
method visitPermanentEmployee (employee) is override {

print "{employee}"
}
method visitContractor (employee) is override {

print "Contractor {employee}"

}
}

We extend the composite structure by an accept method, which serves as the
loose coupling between the composite objects and the visitors.

9

//Extension of class PermanentEmployee
method accept (visitor) {

visitor.visitPermanentEmployee (self)
var counter := subordinates.size − 1
for (0 .. counter) do { n:Number →

subordinates.get(n).accept(visitor)
}

}

//Extension of class Contractor
method accept (visitor) {

visitor.visitContractor (self)
}

In general the Grace implementation of visitor pattern is very similar to Java.
The main difference of our implementation from the Java implmementation is
the visitor base class EmployeeVisitor which represents the interface between the
object structure and the visitor modules. Grace allows using of both dynamic
and static typing. As a result the class EmployeeVisitor is redundant. Removing
that class does not have any influence on the functionalities of our application.

2.4.2 GraceHotdraw

Hotdraw is a framework for a graphic editor which was developed by Kent
Beck and Ward Cunningham (Cunningham, 1994) (Johnson, 1992) (Brant, 1995)
(Froehlich, Hoover, Liu & Sorenson, 1997).

Erich Gamma and Thomas Eggenschwiler developed JHotdraw, the Java im-
plementation of the framework, for teaching purpose (Riehle, 2000) (Gamma &
Eggenschwiler, 2007) (Kaiser, 2001). Thus the framework is mature and well doc-
umented. Moreover JHotdraw is still maintained by a large community. Since
JHotdraw is very large we concentrate on the main functionalities which have
high design pattern density. Users can:

• select tools. Available tools are Selection Tool and Creation Tool.

• create rectangle. To simplify the framework we implement no other figures
than a rectangle.

• select figure.

• resize figure.

• move figure.

10

Figure 2.1: Use Case Diagram

2.4.2.1 Architecture Design

The following section aims at introducing the reader to the design of GraceHot-
draw according to the Model-Controller-View pattern, which allows controlling
of multiple appearances of data on the display (Hatanaka & Hughes, 1999). The

11

controller performs actions based on user inputs. The Model receives instructions
from Controller to manage data. The View is responsible for data representa-
tion. We present the three components, the interaction between them and how
we apply design patterns for the framework.

Model is the central part of the framework.

Figure 2.2: Model

AbstractFigure implements common functionalities for all figure types such as
event listeners handling or manipulation of figure data. In our implementation
we only implement rectangle figures, but we could easily extend the framework
to all other figure types by inheritance from AbstractFigure.

Event listening acts as the observer pattern, receives figure events and updates
View. CompositeFigure contains a list of other figures and we can treat an
CompositeFigure object as a single figure. StandardDrawing acts as a collection
of figures and is displayed by View.

We implement the composite pattern to ensure consistency of the figure objects.
AbstractFigure is the Component. CompositeFigure is Composite and Rect-
angleFigure is Leaf.

We develop AbstractFigureDecorator to add additional features to figure objects
dynamically. AbstractFigureDecorator inherits from AbstractFigure. We are

12

able to add new features to the figure objects by implementing child classes to
AbstractFigureDecorator. In our implementation we implement the BorderDec-
orator which add an extra border to a figure object that inherits from Abstract-
Figure. This is part of the decorator pattern whose goal is to add additional
functionalities only to objects but not to classes and hence reduces the complex-
ity of the class itself.

The framework uses Handle objects to resize figure. There are eight handles in
total. The method createHandle creates four handles on each figure corner and
four on each side. We use factory pattern to create the handles while innitializing
a new figure object.

method createHandle (ownerFigure) is override {
var handleList := list.with[]
handleList.add(NorthHandle (ownerFigure, locator.createNorthLocator)

)
handleList.add(SouthHandle (ownerFigure, locator.createSouthLocator)

)
handleList.add(EastHandle (ownerFigure, locator.createEastLocator))
handleList.add(WestHandle (ownerFigure, locator.createWestLocator))
handleList.add(NorthEastHandle (ownerFigure, locator.

createNorthEastLocator))
handleList.add(NorthWestHandle (ownerFigure, locator.

createNorthWestLocator))
handleList.add(SouthEastHandle (ownerFigure, locator.

createSouthEastLocator))
handleList.add(SouthWestHandle (ownerFigure, locator.

createSouthWestLocator))
return handleList

}

We simplify the factory pattern. Our implementation statically creates the handle
objects and return them. The standard factory pattern creates object types
dynamically based on its receiver. The handles use RelativeLocator to locate the
position on the figure in order to display the handles.

View is responsible for the presentation of the data model, receives user inputs
and forward them to Controller.

13

Figure 2.3: View

StandardDrawingView renders a StandardDrawing and listens to its changes.
StandardDrawingView is a part of the observer pattern which receives mouse
and key events and forwards them to the correspond handler. Since there ane no
graphic libraries available in Grace we create Graphic which acts as an interface
between Grace and graphic libraries. In that interface, we define all methods
that represents functionalities which are necessary for the graphical user interface
in our framework. Moreover we develop WindowFormGraphics as the concrete
implementation of Graphic. Due to time constraints we are not able to finish the
implementation of Grace graphic libraries however. As a result we do not have
any user interface for our framework.

SimpleUpdateStrategy is a part of the strategy pattern which listens to the user
interface changes and every time when changes with input events are recognized,
it creates a new drawing by repainting the whole drawing.

//Strategy Pattern
class SimpleUpdateStrategy {

method draw (graphics, drawingView) {
drawingView.draw(graphics)
var size := graphics.getWindowSize()
graphics.repaint(0,0,0,0,size.width, size.height)

}
}

Controller performs actions based on the user inputs in form of events. View
listens to the events and forwards them to the corresponding controller part.

14

Figure 2.4: Controller

DefaultDrawingEditor defines the interface for coordinating the different objects
that participate in a drawing editor. DefaultDrawingEditor delegates requests
from view to the current tool. We use the mediator pattern to decouple the
communication between view and tools. DefaultDrawingEditor is mediator, view
and tool are colleagues. We use the factory pattern in our application to choose
the current tool based on key events.

// Factory Pattern to create tools
method keyDown(keyEvent) {

if (keyEvent.keyCode == "F1_KEY") then {
self.setTool(Tool.SelectionTool(self))

} elseif {keyEvent.keyCode == "F2_KEY"} then {
self.setTool(Tool.CreationTool(self,AbstractFigure.RectangleFigure

))
}

}
}

When the key “F1” from the keyboard is pressed, the current tool changes to
SelectionTool. When the key “F2” from the keyboard is pressed, the current tool
changes to CreationTool. We use the state pattern to enable different behaviors
for the different states of current tool. In our implementation there are 2 possible
states in the first level: SelectionTool and CreationTool. While the current tool
is SelectionTool. There are following possible states:

• User clicks outside of figures: Nothing happens.

• User clicks on one of the 8 handles: SelectionTool changes the state to
HandleTracker. HandleTracker locates the selected Handle and performs
actions based on the following mouse events inputs.

• User clicks inside the figure, but not on one of the eight handles: Selection-
Tool changes the state to DragTracker. DragTracker modifies the location
of the selected figure based on following mouse events inputs.

We ignore the option to select several figures to simplify the framework. In that

15

case nothing happens. The CreationTool creates a new figure and uses prototype
pattern which has already predefined a figure. The method createFigure in Cre-
ationTool calls the clone method in AbstractFigure which returns a predefined
prototype.

//In CreationTool
method createFigure {

if (self.prototypeFigure == false) then {
print "No prototype defined"

}
return self.prototypeFigure.clone

}

//In AbstractFigure
method clone {

var cloneRect := RectangleFigure
cloneRect := cloneRect.newRectangleFigureFromRect(self.

getDisplayBox)
return cloneRect

}

2.5 Research Results

Michael Kölling developed an evaluation framework for a teaching programming
language by presenting eleven criteria which a first programming language should
have (Kölling, 1999). In this chapter we use his evaluation model and make a qual-
itative comparative evaluation of the design pattern implementations in Grace
and Java based on our experience in developing GraceHotdraw and Grace design
pattern standalone implementations. In addition we present the constraints of
Grace libraries and how they affects our GraceHotdraw implementation.

2.5.1 Evaluation of Grace

In this section we point out the language design differences between Java and
Grace by applying the evaluation framework developed by Michael Kölling on
Grace as first programming language. We observe the differences during the
design pattern implementations in Grace.

Clean concepts The Grace developers mentioned that objects, classes and
types are three separate clean concepts which can be used independently (Homer

16

& Noble, 2015). Our Grace design pattern implementations confirmed that state-
ment. In the singleton Pattern we develop a single object without defining any
classes. Using type is not necessary to define a class and its objects. Although
types can be ignored, we define types in some of the design patterns to have some
simple comparison base. In standalone design pattern applications types are often
redundant and make the code unnecessarily longer. However in GraceHotdraw,
we observe that having types can make the code easier to read, as they serve as
bridges or interfaces between the different independent software components.

Pure object-orientation Kölling points out that a first teaching programming
language should be only object-oriented. Grace supports this feature by making
everything an object, including numbers and booleans, which we observe from the
design pattern implementations. In the Visitor standalone application we present
functionalities such as pay salary or print all employees as classes: PaySalary
and PrintAllEmployees. In the Command standalone application we implement
the commands remove product and store product as classes. These are only
two examples which show the Grace high degree of pure object-orientation. In
comparisons, Java is not even pure object-oriented because it has some primitive
data types such as char, int or long which are not objects.

Safety The developers of Grace aim to make it strongly typed and catch type
errors latest at run time. However in our current compiler version of Kernan,
type does not have any effect on any classes at run time. As a result, using type
for our study in this thesis only has documentation purpose. The developers of
Grace plan more type checking at run time for future Kernan versions though.
Both type static and dynamic checking would be possible.

High level According to Kölling programmers should not be responsible for
machine internal tasks such as dynamic storage. Similar to Java, Grace has a
built-in garbage collector which eliminates a lot of errors for students. During
the the implementations of our study we have never encountered any storage
problems.

Simple object/execution model Regarding memory allocation for objects
many languages distinguish between stack and heap. Grace allocates all objects
to the heap. Based on our study we confirm that this occurs automatically and
is not visible on the language itself.

17

Readable syntax Based on our experience during the study there are both
good and bad practices in Grace syntax:
Good

• Grace is a C similar programming language, making it easy for students to
transit in one of the languages in the C-family.

• In general the syntax of Grace is simple comparing to application languages
such as Java. For instance the syntax requires no semicolon required at the
end of the line.

//Grace vs Java
command.execute(argument)
command.execute(argument);

The print method, for rookies in programming one of the most used method
in the learning phase, is in Grace is much shorter than Java.

//Grace vs Java
print "Peter has got the contracting rates"

System.out.println("Peter has got the contracting rates");

Or when calling a method without any arguments in Grace, the brackets
can be ignored.

//Grace vs Java
player.pressPlayButton
player.pressPlayButton();

The simple syntax in Grace lets students concentrate on its language specific
features.

Bad

• Regarding control statements, in Java they all use parentheses to include
their expression. Grace lacks the uniformity about whether to use braces
or parentheses to include the expression. For and If-then statements use
parentheses whereas while and else-if statements use braces

// Statements in parentheses
for (commandList) do { ...
if (audioType == "mp3") then...
// Statements in brackets
while {iterator.hasNext} ...
elseif {foodType == "Sandwich"} then ...

We find the different usage of braces vs parentheses for control statements
very confusing, especially for beginners in programming.

18

• Regarding the differences between syntax for mutable vs immutable variable
declarations, for mutable the syntax is:

var name := name

Whereas for immutable declaration the syntax is:

def name := name

The distinction between “:=” and “=” for “mutable vs. immutable vari-
able declarations” takes some time to getting used to for programmers with
C similar languages background. The developer of Grace distinguish ’:=’
and ’=’ because they represent different language concepts. However we
think that the expressions “def” and “var” should be enough to distinguish
between mutable and immutable variables. During the study we often for-
get the “:” for declaration of mutable variables. For beginners in program-
ming this syntax is another additional unnecessary thing they have to pay
attention to.

No redundancy Pattern matching seems to be redundant for Grace. The
developers of Grace argue that pattern matching makes Grace more effective in
terms of teaching language and that student can compare and decide which way
is easier to learn coding (Homer, Noble, Bruce, Black & Pearce, 2013). Our study
cannot confirm or deny that argument. We can only show that the design pattern
implementations are possible without using pattern matching.

Small Although the Grace core is quite small, we are able to implement all
design patterns with no big difficulties. For GraceHotdraw implementation we
observe some challenges regarding multiple constructors. In Grace multiple con-
structors are not explicitly possible. In the Hotdraw framework we often have to
create multiple constructors to enable different object behaviors. Not explicitly
having multiple constructors made the implementation of GraceHotdraw more
difficult. There are two workarounds.
1. We define multiple classes that inherit from each other, with the same effect:

class RectangleFigure { ... }
class RectangleFigure (pointTopLeft, pointBottomRight) { inherit

RectangleFigure ... }
class RectangleFigure(rectangle) { inherit RectangleFigure(...) ... }

2. We create multiple methods which depend on each other.

class RectangleFigure {
method newRectangleFigure {

19

return newRectangleFigureFromPoints(Util.Point(0, 0), Util.Point(0,
0))

}
method newRectangleFigureFromPoints(pointTopLeft, pointBottomRight)
{
var figure := RectangleFigure
figure.setBasicDisplayBox(pointTopLeft, pointBottomRight)
return figure

}
method newRectangleFigureFromRect(rectangle) {

return self.newRectangleFigureFromPoints(
Util.Point(rectangle.x, rectangle.y),
Util.Point(rectangle.x + rectangle.width, rectangle.y + rectangle.

height))
}
...

}

We observe another main difference between Java and Grace implementation of
the prototype pattern. In Grace we must implement clone:

class Hamburger (typeOfburger, levelofSpiciness, size, friesIncluded, sauce) {
...
method clone is override {

var cloneHamburger := Hamburger (typeOfburger, levelofSpiciness,
size, friesIncluded, sauce)

return cloneHamburger
}
...

}

This implementation is much worse than in Java, which build-in clone .

Grace is a teaching programming language. With its small core of language
features Grace still enabled us to implement all design patterns and almost all of
GraceHotdraw components.

Easy transition to other languages Other application languages such as
Java support Grace basic language features as well. One Grace language feature
which is not supported in Java is dynamic types. We show in our study that
dynamic typing reduces the length of the code and is easier to implement design
patterns. For example the state pattern (see the whole code in Appendix A.3.8).
Java or C# implementations require an interface or abstract class RadioPlayer-
State for the Radioplayer class to access all its states. This is not necessary in

20

Grace. Radioplayer can access all its states without any RadioPlayerState ab-
stract class.
The implementations of design pattern and object-oriented programming in gen-
eral widely use abstract classes and interfaces. Grace does not support abstract
classes. Modules reusing is possible with inheritance.

Support for correctness assurance Since the Grace developers want to keep
Grace core as small as possible, annotations for pre- and post-condition, variants
and invariants are not implemented. They will develop these features as librar-
ies. For our study there is no case where we think that correctness assurance is
necessary for the implementations.

Suitable environment A suitable development environment is essential for
every educational programming language. As Grace developers are still on the
way to develop user friendly development environment, for our study we use
Sublime Text as the editor, Kernan as the compiler. We navigate to file folders
and run all the compiling commands on Terminal.

2.5.2 Comparison of GraceHotdraw and JHotdraw

In this section we point out the differences between GraceHotdraw and JHotdraw
implementation.

User Interface Java contains many mature graphic libraries in its core such as
AWT or Swing. Grace does not have any stable runnable graphic libraries. For
displaying graphics we try to extend the compiler and build a graphic library on
the top of the compiler. The implementation of graphic library is time consuming
and not the focus of this thesis. Thus we define interfaces between GraceHotdraw
and all future graphic libraries. We implement the adapter pattern to enable all
third party graphic libraries for GraceHotdraw.

Collection In design pattern implementations we often have to use collections.
Grace library does not include collection however. We implemented list.grace
which acts as a LinkedList.

Abstract classes and interfaces Grace does not support any abstract classes
and interfaces. A workaround for interfaces is using type. We do not need
these language features to implement GraceHotdraw components. The concept of
dynamic types in Grace makes all the interfaces in Hotdraw framework redundant.

21

Appendix : Results Discussion

2.6 Results Discussion

Our goal is to analyze the language features in Grace with regards to object-
oriented design patterns by comparing design pattern implementations in Grace
and Java.

Our results show that design pattern implementations in Grace are very similar
to application languages such as Java. In the first place Grace is developed for
teaching purposes and not explicitly for design pattern implementations. Nev-
ertheless some of the language features and syntax of Grace make the design
pattern implementations much easier compared to Java. Singleton, iterator and
command patterns are in Grace core. Only the prototype pattern implementation
is in Grace more difficult than in Java as clone method is in Java core.

As the development of a fully runnable GraceHotdraw framework is not a central
research point there are limitations in our framework. Some of the functionalities
are not complete and we cannot implement a functional graphic user interface.
However with our implementation we set the basis for Grace developers to com-
plete and further extend the framework.

There are many different ways to implement design patterns in Grace and many
different versions and implementations of the language. We limit our study on
one particular stable implementation of Kernan.

In the future we would like extend our study to other programming languages.
So far our study is rather qualitative and we only compare the implementation of
Grace and Java. We would like to compare Grace against other object-oriented
languages to observe more design pattern language features. Moreover we would
also like to extend the study to other implementations of Grace in order to further
evaluate the language. We find the design pattern implementations of the current
Kernan version very easy compared to Java. One possible approach is to restrict
dynamic typing and then evaluate the design pattern implementations again.

2.7 Conclusion

In this thesis we present Grace as a educational language and show the differ-
ences of the design pattern implementations to Java. We highlight the Grace
specific language features and syntax which make design pattern implementa-
tions easier. We show that the design pattern implementations in Grace are not
significantly different, but still easier than an application language, in particu-
lar Java. Moreover our results show the strength and weaknesses of Grace as

22

a teaching programming language based on the design pattern implementations
and help the designers to further develop the language.

23

Appendix A: Grace Design Patterns

Appendix A Grace Design Patterns

In this appendix we present the implementation of 23 GoF design patterns in
Grace. Since the collection libraries are not implemented in Grace we have to
create our own:

def nothing is public = object {
method get(index) {

Exception.raise "Index out of bounds"

}

method do(procedure) {}

method asString {
""

}
}

class node(element′) is confidential {
// class node(element′) {

def element = element′

var next := nothing

method get(index) {
if (index == 0) then {

element
} else {

next.get(index − 1)
}

}

method add(element′) {
if (next == nothing) then {

next := node(element′)
} else {

next.add(element′)
}

}

method do(procedure) {
procedure.apply(element)
next.do(procedure)

}

24

method asString {
if (next == nothing) then {

element.asString
} else {

"{element.asString}, {next.asString}"

//element.asString
}

}
}

class with(elements) {
var node := nothing
var sizeOfList := 0
method get(index) {

node.get(index)
}

method add(element′) {
if (node == nothing) then {

node := node(element′)
} else {

node.add(element′)
}
sizeOfList := sizeOfList + 1

}

method do(procedure) {
node.do(procedure)

}

method size {
sizeOfList

}

method asString {
"{node.asString}"

}

for (elements) do { element′ →
add(element′)

}

25

Appendix A: Grace Design Patterns

method printAll {
print "{node.asString}"

}
}

A.1 Creational Patterns

A.1.1 Abstract Factory

Definition Creation of groups of related objects without the requirement of
specifying the exact concrete classes that will be used. The pattern creates the
concrete object family at run time.

Standalone application We implement a delivery service system. There are
2 different kinds of delivery: Standard and fragile delivery. The package and
calculate cost processes differs based on the current delivery type.

class DeliveryService (factory, nameOfProduct, materialForPackaging) {
var nameOfProduct := nameOfProduct
var packaging is readable,writeable := factory.createPackaging (

materialForPackaging)
var deliveryCost is readable,writeable := factory.createDeliveryCost

}

class DeliveryFactory {
method createPackaging (materialForPackaging) {}
method createDeliveryCost {}

}

class StandardDeliveryFactory {
inherit DeliveryFactory

method createPackaging (materialForPackaging) is override {
return StandardPackaging (materialForPackaging)

}

method createDeliveryCost is override {
return StandardCost

}
}

26

class FragileDeliveryFactory {
inherit DeliveryFactory

method createPackaging (materialForPackaging) is override {
return FragilePackaging (materialForPackaging)

}

method createDeliveryCost is override {
return FragileCost

}
}

class Packaging (materialForPackaging) {
var materialForPackaging := materialForPackaging
method packageProduct {

print "{materialForPackaging} is used to for this

packaging process"

}
}

class StandardPackaging (materialForPackaging) {
inherit Packaging (materialForPackaging)
alias packageStandardProduct = packageProduct

method packageProduct is override {
packageStandardProduct

}
}

class FragilePackaging (materialForPackaging) {
inherit Packaging (materialForPackaging)
alias packageFragileProduct = packageProduct

method packageProduct is override {
packageFragileProduct

}
}

class DeliveryCost {
var cost := 10

method calculateDeliveryCost {
print "The cost for this delivery is {cost} Euro"

27

Appendix A: Grace Design Patterns

}
}

class StandardCost {
inherit DeliveryCost
alias calculateCost = calculateDeliveryCost

method calculateDeliveryCost is override {
calculateCost
return cost

}
}

class FragileCost {
inherit DeliveryCost
alias calculateCost = calculateDeliveryCost

method calculateDeliveryCost is override {
cost := cost + 10
calculateCost
return cost

}
}

The following code create first a standard delivery and after that a fragile delivery:

var standardDeliveryFactory := StandardDeliveryFactory
var standardDeliveryService := DeliveryService (standardDeliveryFactory, "

Iphone 10", "standard box")
standardDeliveryService.packaging.packageProduct
standardDeliveryService.deliveryCost.calculateDeliveryCost

var fragileDeliveryFactory := FragileDeliveryFactory
var fragileDeliveryService := DeliveryService (fragileDeliveryFactory, "Samsung

Universe 7", "special box")
fragileDeliveryService.packaging.packageProduct
fragileDeliveryService.deliveryCost.calculateDeliveryCost

Output:

standard box is used to for this packaging process
The cost for this delivery is 10 Euro
special box is used to for this packaging process
The cost for this delivery is 20 Euro

28

A.1.2 Builder

Definition The builder pattern is a design pattern that enables step-by-step
creation of complex objects using the correct sequence of actions. The construc-
tion is controlled by a director object that only needs to know the type of object
to create.

Standalone application The program represents a burger menu order system.
There are 2 menu choices: The standard burger and surprise meal menu. One can
choose a type of burger independently from the type of menu. In our application
we provide 2 different types of burger: Hamburger and CheeseBurger.

class MenuOrder {
method makeMenu(menuBuilder) {

menuBuilder.addMainDish
menuBuilder.addSideOrder
menuBuilder.addDrink
menuBuilder.setPrice

}
}

type MenuBuilder = {
addMainDish → Done
addSideOrder → Done
addDrink → Done
setPrice → Done
getMenu → Done

}

class BurgerMenu (burger){
var menu is readable := Menu

method addMainDish { menu.mainDish := burger}
method addSideOrder {menu.sideOrder := "Fries"}
method addDrink {menu.drink := "Soft Drink"}
method setPrice {menu.price := 8 }

}

class SurpriseMealMenu (burger) {
var menu is readable := Menu

29

Appendix A: Grace Design Patterns

method addMainDish { menu.mainDish := burger}
method addSideOrder {menu.sideOrder := "Toy"}
method addDrink {menu.drink := "Cola"}
method setPrice {menu.price := 5 }

}

class Menu {
var mainDish is readable, writable
var sideOrder is readable, writable
var drink is readable, writable
var price is readable, writable

method printOrder {
"{mainDish} with {sideOrder}, {drink}, {price}"

}
}

class Burger (size) {
var size := size

}

class Hamburger (size, sauce) {
inherit Burger (size)
var sauce := sauce

method asString is override {
"Hamburger, {size}, {sauce}"

}
}

class CheeseBurger (size, extraCheese) {
inherit Burger (size)
var extraCheese := extraCheese

method asString is override {
"CheeseBurger, {size}, {_extraCheese}"

}
}

We implement type MenuBuilder as a replacement for interface in Java. Altern-
atively we can make MenuBuilder a class and let BurgerMenu and SurpriseMeal-
Menu inherit from it. The following code creates one hamburger menu and one

30

surprise meal menu with Hamburger and CheeseBurger.

var hamburgerMenu : MenuBuilder := BurgerMenu (Hamburger("medium","
ketchup"))

var menuOrder := MenuOrder
menuOrder.makeMenu (hamburgerMenu)
print "{hamburgerMenu.menu.printOrder}"

var surprisemealMenu : MenuBuilder := SurpriseMealMenu (CheeseBurger("
large","yes"))

menuOrder.makeMenu (surprisemealMenu)
print "{surprisemealMenu.menu.printOrder}"

Output:

Hamburger, medium, ketchup with Fries, Soft Drink, 8
CheeseBurger, large, yes with Toy, Cola, 5

A.1.3 Factory Method

Definition Creation of objects without specifying the object type that is to be
created in code. Subclasses decide which object type is to instantiate.

Standalone application We implement a food factory system. FoodFactory
can generate either Western or Asian FoodFactory. WesternFoodFactory can cre-
ate either Burger or Sandwich. AsianFoodFactory can create either BeijingDuck
or Sushi.

class FoodFactory {
method createFood(foodType) {

print "Factory is generating {foodType}"

}
}

class WesternFoodFactory {
inherit FoodFactory

method createFood (foodType) is override {
if (foodType == "Burger") then {

return Burger (foodType)
} elseif {foodType == "Sandwich"} then {

return Sandwich (foodType)

31

Appendix A: Grace Design Patterns

} else {
print "We do not have this kind of food"

}
}

}

class AsianFoodFactory {
inherit FoodFactory

method createFood (foodType) is override {
if (foodType == "Beijing Duck") then {

return BeijingDuck (foodType)
} elseif {foodType == "Sushi"} then {

return Sushi (foodType)
} else {

print "We do not have this kind of food"

}
}

}

class Food (foodType) {
var foodType := foodType

method serveFood {}
}

class Burger (foodType) {
inherit Food (foodType)
method serveFood is override {

print "Its {foodType}, so bring fork and knife."

}
}

class Sandwich (foodType) {
inherit Food (foodType)
method serveFood is override {

print "Its {foodType}, so bring fork and knife."

}
}

class BeijingDuck (foodType) {
inherit Food (foodType)
method serveFood is override {

32

print "Its {foodType}, so bring the additional rice and

chopstick to the table."

}
}

class Sushi (foodType) {
inherit Food (foodType)
method serveFood is override {

print "Its {foodType}, so bring Wasabi and ginger to the

table."

}
}

The following code produces first a Burger and then Sushi:

var westernFoodFactory := WesternFoodFactory
var burger := westernFoodFactory.createFood("Burger")
burger.serveFood

var asianFoodFactory := AsianFoodFactory
var sushi := asianFoodFactory.createFood("Sushi")
sushi.serveFood

The method createFood creates different types of food based on its receivers. The
method serveFood performs different actions.

Output:
Its Burger, so bring fork and knife.
Its Sushi, so bring Wasabi and ginger to the table.

A.1.4 Prototype

Definition Instantiate a new object by copying all of the properties of an ex-
isting object, creating an new independent clone of that existing object.

Standalone application We implement Burger as the parent class, Cheese-
Burger and Hamburger as child classes of Burger. CheeseBurger and Hamburger
both implements the method clone, which uses copy by value and creates new
object by copying all properties of the existing object.

class Burger (typeOfburger, levelofSpiciness, size, friesIncluded) {
method clone {}

33

Appendix A: Grace Design Patterns

var typeOfburger is readable, writable := typeOfburger
var levelofSpiciness is readable, writable := levelofSpiciness
var size is readable, writable := size
var friesIncluded is readable, writable := friesIncluded

}

class CheeseBurger (typeOfburger, levelofSpiciness, size, friesIncluded,
extraCheese) {
inherit Burger (typeOfburger, levelofSpiciness, size, friesIncluded)
var extraCheese is readable, writable := extraCheese

method clone is override {
var cloneCheeseBurger := CheeseBurger (typeOfburger,

levelofSpiciness, size, friesIncluded, extraCheese)
return cloneCheeseBurger

}

method asString is override {
"{typeOfburger}, {levelofSpiciness}, {size}, {

friesIncluded}, {extraCheese}"

}
}

class Hamburger (typeOfburger, levelofSpiciness, size, friesIncluded, sauce) {
inherit Burger (typeOfburger, levelofSpiciness, size, friesIncluded)
var sauce is readable, writable := sauce

method clone is override {
var cloneHamburger := Hamburger (typeOfburger, levelofSpiciness,

size, friesIncluded, sauce)
return cloneHamburger

}

method asString is override {
"{typeOfburger}, {levelofSpiciness}, {size}, {

friesIncluded}, {sauce}"

}
}

The following code produces first a CheeseBurger object and after that a clone
from that object:

34

var CheeseBurger := CheeseBurger ("CheeseBurger", "Very spicy", "
Medium", true, false)

var CheeseBurgerClone := CheeseBurger.clone
CheeseBurgerClone.extraCheese := true
print (CheeseBurgerClone)
print (CheeseBurger)

After modifying the extraCheese property we now have two different objects.

Output:
CheeseBurger, Very spicy, Medium, true, true
CheeseBurger, Very spicy, Medium, true, false

A.1.5 Singleton

Definition Makes sure that only one object can be instantiated for a class.
This pattern provides a global access point to that object.

Standalone application Our implementation makes use of the object con-
struction feature in Grace. We define a single object and define “singleton” as
the global access point.

def singleton = object {
var testAttribute is readable, writable := "original attribute"

method asString is override {
"I am a {testAttribute}"

}
}

We now test for correct behavior of our implementation:

//How to access the singleton object
var instance := singleton

both variables instance and instance2 points to singleton. So in case we change
the variable testAttribute in singleton object, both instance and instance2 are
changed.

Output:
I am a testAttribute is modified
I am a testAttribute is modified

35

Appendix A: Grace Design Patterns

A.2 Structural Patterns

A.2.1 Adapter

Definition The adapter pattern provides a link between two incompatible types
by wrapping the ”adaptee” with a class that supports the interface required by
the client.

Standalone application Our application is a media player which plays only
audio files. We extend the player so that it is now able to play video (avi) files.

type MediaPlayer = {
play → Done

}

class AviPlayer {
method playAviFile (fileName) {

print "Now we play Avi file {fileName}"

}
}

class Player (name) {
var videoAdapter : MediaPlayer
var name := name

method play (mediaType, fileName) {
if (mediaType == "audio") then {

//inbuilt support to play mp3 music files
print "Now play audio file {fileName}"

} elseif {mediaType == "avi"} then {
//mediaAdapter is providing support to play other file formats
videoAdapter := VideoAdapter(mediaType)
videoAdapter.play(mediaType, fileName)

} else {
print ("Media {mediaType} is invalid. The Format is not

supported")
}

}
}

class VideoAdapter (audioType) {
var aviPlayer

36

method play (mediaType, fileName) {
if (mediaType == "avi") then {

aviPlayer := AviPlayer
aviPlayer.playAviFile(fileName)

} else {
print "File undefined"

}
}

}

Originally Player can only plays audio as mediaType. The class VideoAdapter
extends the mediaType of Player by avi. The type of both Player and VideoAd-
apter are MediaPlayer.

The following codes let the radio player plays different media in different media
types

var player : MediaPlayer := Player ("Media Player")
player.play("audio", "My love.mp3")
player.play("avi", "Grace is cool.avi")
player.play("mov", "The Lord of Tthe Rings.mov")
player.play("mkw", "Harry Potter.mkw")

Output:
Now play audio file My love.mp3
Now we play Avi file Grace is cool.avi
Media mov is invalid. The Format is not supported
Media mkw is invalid. The Format is not supported

A.2.2 Bridge

Definition Promotes loose coupling by separating the abstract elements of a
class from its concrete implementation.

Standalone application Our application is a message sender systems. The
system has three different sender types: Email, mobile and web sender. For each
sender type we can either send messages or have the option to send them with a
security layer.

class MessageSendingBase {
method sendMessage (messageTitle, messageBody) {}

37

Appendix A: Grace Design Patterns

}

class EmailSender {
inherit MessageSendingBase
method sendMessage (messageTitle, messageBody) is override {

print "Message on the Email: ′{messageTitle}′ with the

message: ′{messageBody}′ sent"

}
}

class MobileSender {
inherit MessageSendingBase
method sendMessage (messageTitle, messageBody) is override {

print "Message on the mobile phone: ′{messageTitle}′ with

the message: ′{messageBody}′ sent"

}
}

class WebSender {
inherit MessageSendingBase
method sendMessage (messageTitle, messageBody) is override {

print "Mesaage on the web: ′{messageTitle}′ with the

message: ′{messageBody}′ sent"

}
}

class MessageBase (messageSendingBase, title, body) {
var messageSendingBase := messageSendingBase
var title := title
var body := body

method send {
messageSendingBase.sendMessage(title, body)

}
}

class MessageSecurity (messageSendingBase, title, body, securityCode) {
inherit MessageBase (messageSendingBase, title, body)
var securityCode := securityCode

method send is override {
if (securityCode == 1) then {

messageSendingBase.sendMessage(self.title, self.body)

38

} else {
print "securityCode is wrong. Send failed"

}
}

}

The base class for the implementation is MessageSendingBase. This class defines
the method sendMessage that will be used to send a message. EmailSender, Mo-
bileSender and WebSender are concrete implementations which perform different
actions for the abstract method sendMessage. The class MessageBase is the base
class for abstractions. This class define the default properties of a message re-
gardless of its sender type and hold a reference to an implementation object.
We refine MessageBase with MessageSecurity for additional security layer. Mes-
sageSecurity simply requests a integer code from client. If the code is correct,
the message will be sent.

The following code uses a WebSender to send a message with security layer:

var webSender := WebSender
var message := MessageSecurity (webSender,"Hello", "How are you", 1)
message.send

Output:
Mesaage on the web: ’Hello’ with the message: ’How are you’ sent

A.2.3 Composite

Definition Creates hierarchical object models and relationships between classes
or entities. This pattern creates a tree structure of group of objects and treat
them in similar way as a single object.

Standalone application Our application defines a company’s composite struc-
ture. Employee is the base class. Contractor cannot have subordinates. A per-
manent employee can have other employees as subordinates which can also be
permanent employee. The imported library list is our own developed library for
collection.

import "../list" as list

class Employee (name, department) {
var name is readable := name
var role is readable := department

39

Appendix A: Grace Design Patterns

method asString is override {
"{name}, {role}"

}

method executeTask {
print "{name}, {role} is executing a task"

}

method printAll {
}

}

class PermanentEmployee (name, department) {
inherit Employee (name, department)
def subordinates = list.with []
method addSubordinate (subordinate) {

subordinates.add(subordinate)
}

method printAllEmployees {
print "{self}"
printAll

}

method printAll is override {
var counter := subordinates.size − 1
for (0 .. counter) do { n:Number →

print "{subordinates.get(n)}"
subordinates.get(n).printAll

}
}

}

//Contractor cannot have any subordinates
class Contractor (name, department) {

inherit Employee (name, department)
}

Now we want to create a hierarchical object models and print all employees:

var headManager is public:= PermanentEmployee ("Christ", "HeadManager"
)

var headRD is public := PermanentEmployee ("Florian", "Head Research

40

and Development")
var headSoftwareDevelopment is public := PermanentEmployee ("Harry", "

Head Software Development")
var scientist is public := PermanentEmployee ("Fabian", "Scientist in

Research and Development")
var contractor is public := Contractor ("Andrew", "Contractor Scientist

in Research and Development")
var developer is public := PermanentEmployee ("Ben", "Developer in

Software Development")
var tester is public := PermanentEmployee ("Corey", "Tester in Software

Development")
headManager.addSubordinate(headRD)
headManager.addSubordinate(headSoftwareDevelopment)
headSoftwareDevelopment.addSubordinate(developer)
headSoftwareDevelopment.addSubordinate(tester)
headRD.addSubordinate(scientist)
headRD.addSubordinate(contractor)
headManager.printAllEmployees

We implement the method printAll as the only common functionality of the object
model. The method executeTask is a extension for decorator pattern which we
will explain later.

Output:
Christ, HeadManager
Florian, Head Research and Development
Fabian, Scientist in Research and Development
Andrew, Contractor Scientist in Research and Development
Harry, Head Software Development
Ben, Developer in Software Development
Corey, Tester in Software Development

A.2.4 Decorator

Definition Add additional features to an object dynamically. We use decorator
pattern when we want to add other functionalities to the object, but do not want
to increase the complexity of its class.

Standalone application We demonstrate this pattern by extending our ap-
plication for composite pattern. We add the feature to determine whether an
employee is busy or not. First we add the method executeTask to the base class
Employee. Then we implement two new classes:

41

Appendix A: Grace Design Patterns

import "CompositePattern" as CompositeEmployeePackage

class DecoratorEmployee (employee) {
inherit CompositeEmployeePackage.Employee (employee.name, employee.

role)

var decoratorEmployee is readable := employee

method executeTask {
decoratorEmployee.executeTask

}
}

class DecoratedTask (employee) {
inherit DecoratorEmployee (employee)
alias executeTaskEmployee = executeTask

var isBusy := false

method executeTask is override {
executeTaskEmployee
print "{name} is busy"

isBusy := true
}

}

We set the attribute isBusy := true every time after executing the method ex-
ecuteTask.

The following codes let decoratedCEO execute a task and set isBusy := true:

var decoratedCEO := DecoratedTask (CompositeEmployeePackage.
headManager)

decoratedCEO.executeTask

Output:
Christ, HeadManager is executing a task
Christ is busy

A.2.5 Facade

Definition In a complex or bad designed system this pattern simplifies the
access to the modules of that system and provides a simple interface that hides
the implementation details.

42

Standalone application We demonstrate this pattern by extending our ap-
plication for the prototype pattern. We provide a simple interface to the method
clone. The application will copy either CheeseBurger or Hamburger in run-time
environment.

import "../01_CreationalPatterns/PrototypePattern" as
prototypePattern

class BurgerFacade (burger) {
var burger := burger

method cloneBurger {
burger.clone

}
}

The following code produces a cheese burger and a clone from the cheese burger.
After that the code modifies the attribute extraCheese from false to true. Finally
we print both objects.

var cheeseBurger := prototypePattern.CheeseBurger ("CheeseBurger", "Very
spicy", "Medium", true, false)

var burgerFacade := BurgerFacade (cheeseBurger)
var cloneCheeseBurger := burgerFacade.cloneBurger
cloneCheeseBurger.extraCheese := true
print (cheeseBurger)
print (cloneCheeseBurger)

Output:
CheeseBurger, Very spicy, Medium, true, false
CheeseBurger, Very spicy, Medium, true, true

A.2.6 Flyweight

Definition Minimizes resource usages while working with large number of ob-
jects by avoiding the creation of similar objects.

Standalone application We demonstrate this pattern by extending our ap-
plication for the Factory Pattern. The only difference to factory pattern are the
food objects which we declare in the base class FoodFactory. In the concrete
implementation of FoodFactory we only create the food objects once. They reuse
them after the first use.

43

Appendix A: Grace Design Patterns

class FoodFactory {
var burgerObject := false
var sandwichObject := false
var sushiObject := false
var beijingDuckObject := false
method createFood(foodType) {

print "Factory is generating {foodType}"

}
}

class WesternFoodFactory {
inherit FoodFactory
alias createWesternFood (foodType) = createFood (foodType)

method createFood (foodType) is override {
createWesternFood (foodType)
if (foodType == "burger") then {

if (burgerObject == false) then {
burgerObject := Burger (foodType)

} else {
//do nothing

}
return burgerObject

} elseif {foodType == "sandwich"} then {
if (sandwichObject == false) then {

sandwichObject := Sandwich (foodType)
} else {

//do nothing
}
return sandwichObject

} else {
print "We do not have this kind of food"

}
}

}

class AsianFoodFactory {
inherit FoodFactory
alias createAsianFood (foodType) = createFood (foodType)

method createFood (foodType) is override {
createAsianFood (foodType)
if (foodType == "Beijing Duck") then {

44

if (beijingDuckObject == false) then {
beijingDuckObject := BeijingDuck (foodType)

} else {
//do nothing

}
return beijingDuckObject

} elseif {foodType == "Sushi"} then {
if (sushiObject == false) then {

sushiObject := Sushi (foodType)
} else {

//do nothing
}
return sushiObject

} else {
print "We do not have this kind of food"

}
}

}

class Food (foodType) {
var foodType := foodType
print "{foodType} created"

method serveFood {}
}

class Burger (foodType) {
inherit Food (foodType)
method serveFood {

print "Its {foodType}, so bring fork and knife"

}
}

class Sandwich (foodType) {
inherit Food (foodType)
method serveFood {

print "Its {foodType}, so bring fork and knife"

}
}

class BeijingDuck (foodType) {
inherit Food (foodType)
method serveFood {

45

Appendix A: Grace Design Patterns

print "Its {foodType}, so bring the additional rice and

chopstick to the table"

}
}

class Sushi (foodType) {
inherit Food (foodType)
method serveFood {

print "Its {foodType}, so bring Wasabi and ginger to the

table"

}
}

The following codes produce two burger objects. However WesternFoodFactory
will not create any more burger objects after it instantiates the first one.

var westernFoodFactory := WesternFoodFactory
var burger := westernFoodFactory.createFood("burger")
var burger2 := westernFoodFactory.createFood("burger")
burger.serveFood

Output:
Factory is generating burger
burger created
Factory is generating burger
Its burger, so bring fork and knife

A.2.7 Proxy

Definition acts as an interface to other objects or software components.

Standalone application In this application we demonstrate how to use the
pattern to cache files.

class File (fileName) {
var fileName := fileName
method open {}

}

class PDFDocument (fileName) {
inherit File (fileName)

46

method loadFile {
print "Load file: {fileName}"

}

method open is override {
print "Open file: {fileName}"

}
}

class ProxyFile (fileName) {
inherit File (fileName)
var pDFDocument := false

method open is override {
if (pDFDocument == false) then {

pDFDocument := PDFDocument (fileName)
pDFDocument.loadFile

}
pDFDocument.open

}
}

The following codes creates a file and open this file twice.

var file := ProxyFile("textBook.pdf")
file.open
file.open

The first time opening a file, the application loads the file and then opens it. The
second time the application does not have to load the file anymore in order to
open this file.

Output:
Load file: textBook.pdf
Open file: textBook.pdf
Open file: textBook.pdf

47

Appendix A: Grace Design Patterns

A.3 Behavioural Patterns

A.3.1 Chain of Responsibility Pattern

Definition Defines a linked list of handlers which are able to process requests.
The first handler in the list processes a request first. If the first handler is unable
to process the request, it will pass the request to the next handler in the list.

Standalone application This is a coin machine handler system which only
accepts 50 Cent and 1 Euro coins. The system examine the type of coins by
analyzing the weight and diameter of the coins.

class Coin (weight, diameter) {
var weight is readable, writable := weight
var diameter is readable, writable := diameter

}

class CoinHandlerBase {
var successor is readable, writable

method handleCoin (coin:Coin) is abstract {}

method setSuccessor(successor) {
successor := successor
successor. successor := false

}
}
class FiftyCentHandler {

inherit CoinHandlerBase

method handleCoin (coin) is override {
if ((coin.weight == 20) && (coin.diameter == 0.15)) then {

print "50 cent recieved"

} elseif { successor != false} then {
successor.handleCoin(coin)

} else {
print "Cannot handle this coin"

}
}

}

class OneEuroHandler {

48

inherit CoinHandlerBase
method handleCoin(coin) is override {

if ((coin.weight == 30) && (coin.diameter == 0.2)) then {
print "1 Euro recieved"

} elseif { successor != false} then {
successor.handleCoin(coin)

} else {
print "Cannot handle this coin"

}
}

}

Now the client creates objects from FiftyCentHandler and OneEuroHandler and
determines the order of the handlers.

var h50 := FiftyCentHandler
var h100 := OneEuroHandler
h50.setSuccessor(h100)

Every time when a coin is passed to the handler the system calls 50 cent handler
first. If the coin is not a 50 cent coin, the handler passes this coin to the 1 Euro
handler.
Now we create three different types of coins and let the handlers process them.

var fiftyCent := Coin (20,0.15)
var oneEuro := Coin (30,0.2)
var twoEuro := Coin (40,0.3)
h50.handleCoin(fiftyCent)
h50.handleCoin(oneEuro)
h50.handleCoin(twoEuro)

Output:
50 cent recieved
1 Euro recieved
Cannot handle this coin

A.3.2 Command

Definition Stores all information which are needed to perform an action within
a single object.

Standalone application Command pattern is a part of Grace core:

49

Appendix A: Grace Design Patterns

for (commandList) do { command →
command.execute

}

Now we extend the pattern to an example application. Our implementation is a
product handler system. The commands are “remove - ” and “store products”.

import "../list" as list

class Command {
method execute {}
var product

}

class Invoker {
var commandList := list.with []

method takeComamnd (command) {
commandList.add (command)

}

method placeCommands{
for (commandList) do { command →

command.execute
}

}
}

class Product (productName) {
var name := productName
print "product {name} created"

method store{
print "Store product {name}"

}
method remove{

print "Remove product {name}"

}
}

class RemoveProduct (aProduct) {
inherit Command
product := aProduct

50

method execute() {
product.remove

}
}

class StoreProduct (aProduct) {
inherit Command
product := aProduct
method execute {

product.store
}

}

The following code creates a product, one remove command and one store com-
mand. After that our code passes the two commands to Invoker. Finally Invoker
place the commands and execute them.

var product := Product ("Smartphone")
var removeCommand := RemoveProduct (product)
var storeComamnd := StoreProduct (product)
var invoker := Invoker
var test := "test"

invoker.takeComamnd (storeComamnd)
invoker.takeComamnd (removeCommand)
invoker.takeComamnd (test)
invoker.placeCommands

Output:
product Smartphone created
Store product Smartphone
Remove product Smartphone

A.3.3 Interpreter

Definition Specifies how to evaluate a sentence or the grammar in a language.
The pattern can easily extends its grammar.

Standalone application Our implementation enables a simple AND expres-
sion with 2 terminal expressions.

class ExpressionBase {
method interpret(context) {}

51

Appendix A: Grace Design Patterns

}

class TerminalExpression (data) {
inherit ExpressionBase
var data is readable := data
var exp1 := ""

var exp2 := ""

method interpret (context) is override {
parseExpression(context)
if ((exp1 == data) || (exp2 == data)) then {

return true
} else {

return false
}

}

method parseExpression (context) {
for (1 .. context.size) do { n:Number →

if (context.at(n) == " ") then {
exp1 := context.substringFrom(1) to (n − 1)
exp2 := context.substringFrom(n + 1) to (context.size)

}
}

}
}

class AndExpression (exp1,exp2){
inherit ExpressionBase
var expression1 is readable,writable := exp1
var expression2 is readable,writable := exp2

method interpret (context) is override {
if (expression1.data == expression2.data) then {

print "Warning: expression1 is equal expression2"

return false
} else {

return expression1.interpret(context) && expression2.interpret(
context)

}
}

}

52

The client creates two new TerminalExpression and provides them as input for
AndExpression. After that the variable andrewisMarried from AndExpression
proves whether this expression is true or not.

var andrew := TerminalExpression ("Andrew")
var married := TerminalExpression ("Maried")
var andrewisMarried := AndExpression(andrew,married)
print "{andrewisMarried.interpret ("Maried Andrew")}"

The output is true.

A.3.4 Iterator

Definition Provides an interface to access the elements of an aggregate object
in sequence without knowing its underlying structure.

Standalone application Since iterator pattern is part of Grace core we do
not implement any standalone application.

A.3.5 Mediator

Definition Reduces coupling between classes that communicate with each other
by providing a central object. The classes send the messages to this central object
which forwards them to their receivers.

Standalone application Our application is a demonstration of an online lec-
ture. Teacher objects can present slides to all students, receives question from a
particular student and answer directly to it. Student objects can receive slides,
ask questions to Teacher and receive answers. Mediator is responsible for the
whole communication. Teacher and Student do not send messages to each other
directly. Mediator takes the messages from one participant and send them to
another participant. Each time a new Student joins the lecture, Mediator will
add this Student object to its Student list. When Teacher updates the slides on
the board, Mediator notifies all its Student objects and presents them the new
slides on the board.

import "../list" as list

class ClassMember (mediator, name) {
var mediator := mediator
var name is readable:= name

53

Appendix A: Grace Design Patterns

}

class Teacher (mediator, name) {
inherit ClassMember (mediator, name)

method receiveQuestion (question, attendee) {
print "Teacher received question: {question} from {

attendee} "

}

method answerQuestion(answer, attendee) {
print "Teacher answered: {answer} to {attendee.name} "

mediator.sendAnswer(answer, attendee)
}

method presentSlides (url){
print "Teacher changed slide to {url}"

mediator.updateBoard(url)
}

}

class Student (mediator, name) {
inherit ClassMember (mediator, name)
mediator.addNewStudentToClass(self)

method askQuestion (question) {
print "Student {name} asks question: {question}"

mediator.sendQuestion(question,self)
}

method receiveAnswer (answer) {
print "{name} has received the answer {answer}"

}

method receiveSlides (url) {
print "Student {name} revceives the slides from the file:

{url}"

}

method asString {
"{name}"

}
}

54

class Mediator {
var teacher is readable, writable
var classMember := list.with []

method addNewStudentToClass (student) {
classMember.add(student)

}
method sendAnswer(answer, student) {

student.receiveAnswer(answer)
}

method sendQuestion(question, student) {
teacher.receiveQuestion(question, student)

}

method updateBoard (url) {
for (classMember) do { member →

member.receiveSlides (url)
}

}
}

The following code creates an online lecture with one teacher and two students.
They communicate with each other via the Mediator object “mediator”.

var mediator := Mediator
var teacherDavid := Teacher (mediator, "David")
mediator.teacher := teacherDavid
var andrew := Student(mediator, "Andrew")
var michael := Student(mediator, "Michael")

Now we let the Teacher object present a new slides. The Mediator object imme-
diately notifies all students and presents them the new slides.

teacherDavid.presentSlides ("MarketingStrategyMethods.pdf")

Output:
Teacher changed slide to MarketingStrategyMethods.pdf
Student Andrew revceives the slides from the file: MarketingStrategyMethods.pdf
Student Michael revceives the slides from the file: MarketingStrategyMethods.pdf

After that Andrew asks the teacher a question. The Mediator object first forwards
the question to teacher and then forward the teacher’s answer back to Andrew.

55

Appendix A: Grace Design Patterns

andrew.askQuestion("′What does economy of scale mean ?′")
teacherDavid.answerQuestion("′A proportionate saving in costs gained

by an increased level of production.′", andrew)

Output:
Student Andrew asks question: ’What does economy of scale mean ?’
Teacher received question: ’What does economy of scale mean ?’ from Andrew
Teacher answered: ’A proportionate saving in costs gained by an increased level
of production.’ to Andrew
Andrew has received the answer ’A proportionate saving in costs gained by an
increased level of production.’

A.3.6 Memento

Definition Captures the current state of an object and stores it in a way that
it can be restored in the future.

Standalone application We implement a log system of firmware versions of
machines. Memento stores the all the necessary information on a machine object.
Machine can create a Memento object and restore to its last firmware version.

class Machine (id, version, firmWareDescription) {
var id is readable,writable := id
var firmWareDescription is readable,writable := firmWareDescription
var version is readable,writable := version

method createUndo {
return Memento (id, version, firmWareDescription)

}

method restoreFromUndo (memento) {
version := memento.version
firmWareDescription := memento.firmWareDescription

}

method logMachine {
print "MachineID: {id}. Version: {version}. Firmware : {

firmWareDescription}"

}
}

56

class Memento (id, version, firmWareDescription) {
var id is readable := id
var version is readable := version
var firmWareDescription is readable := firmWareDescription

}

class Caretaker {
var memento is readable,writable

}

The client creates a Machine object and its Memento object.

// Initialise Machine
var machine := Machine("12","1.0","Beta version");
machine.logMachine
// Set undo point
var history := Caretaker
history.memento := machine.createUndo

Now our client modifies this Machine object and later restores its firmware to its
previous version.

// Modify version and firmware of that Machine object
machine.version := "2.0"

machine.firmWareDescription := "Stable Version"

machine.logMachine

// Undo
machine.restoreFromUndo(history.memento)
machine.logMachine

Output:
MachineID: 12. Version: 1.0. Firmware : Beta version
MachineID: 12. Version: 2.0. Firmware : Stable Version
MachineID: 12. Version: 1.0. Firmware : Beta version

A.3.7 Observer

Definition The pattern is used when there is one-to-many relationship between
objects. When one object is changed, it notifies all other objects about its
changes.

57

Appendix A: Grace Design Patterns

Standalone application The application monitors all the actions from Fam-
ousPerson instances and provides notifications for all the changes. Based on
the changed state of the FamousPerson instance Newspaper and Tabloid objects
perform different actions.

import "../list" as list

class FamousPerson {

var monitors := list.with []
var action

method attach (monitor) {
monitors.add (monitor)

}

method setAction (action) {
action := action
notify

}

method getAction {
return action

}

method notify {
for (monitors) do { monitor →

monitor.update (self)
}

}
}

class FamousActor (name) {
inherit FamousPerson
var name is readable := name

}

class FamousPersonMonitor {
method update (famousPerson) {}

}

class Newspaper {
inherit FamousPersonMonitor

58

method update (famousPerson) is override {
print "Headline: {_famousPerson.name} {_famousPerson.

getAction}"

}
}

class Tabloid {
inherit FamousPersonMonitor

method update (famousPerson) is override {
print "Headline: Oh my God. {_famousPerson.name} {

_famousPerson.getAction}"

}
}

The client creates a FamousActor, Newspaper and Tabloid object.

var emma := FamousActor ("Emma")
var cnn := Newspaper
var theSun := Tabloid

After that the client attaches the Newspaper and Tabloid objects to the Famous-
Actor object.

emma.attach (cnn)
emma.attach (theSun)

Finally when the state of the FamousActor object changes, it notifies all the
attached observers.

emma.setAction ("takes part in a new movie")

Output:
Headline: Emma takes part in a new movie
Headline: Oh my God. Emma takes part in a new movie

A.3.8 State

Definition Performs different object behaviors based on the its internal state
changes. The pattern enables the client to determine the class for an object at
run-time.

59

Appendix A: Grace Design Patterns

Standalone application Our application implements the different states of
a radio player. The four different states are StandbyState, MusicPlayingState,
MusicPausedState and RadioState. The player has two buttons which invokes
different actions on each state. The below state diagram describes how the in-
ternal states of the radio player change.

Figure 2.5: States of RadioPlayer

class RadioPlayer (stateOfPlayer) {
var currentState is readable, writable := stateOfPlayer

method pressPlayButton {
currentState.pressPlayButton(self)

}

method pressAudioSourceButton {
currentState.pressAudioSourceButton(self)

}
method asString {

print "{currentState}"
}

60

}

//Class RadioPlayerState not required for dynamic typing.
class RadioPlayerState {

method pressPlayButton(player) {}
method pressAudioSourceButton(player) {}

}

class StandbyState {
inherit RadioPlayerState
print "In Standby State"

method pressPlayButton (player) is override {
print "Play Button pressed. No Action"

}

method pressAudioSourceButton (player) is override {
print "Audio Soure Button pressed"

player.currentState := MusicPlayingState
}

}

class MusicPlayingState {
inherit RadioPlayerState
print "In Music Playing State"

method pressPlayButton (player) is override {
print "Play Button pressed. Pause the Music"

player.currentState := MusicPausedState
}

method pressAudioSourceButton (player) is override {
print "Audio Soure Button pressed"

//print ”{player}”
player.currentState := RadioState

}
}

class MusicPausedState {
inherit RadioPlayerState
print "In Music paused State"

method pressPlayButton (player) is override {

61

Appendix A: Grace Design Patterns

print "Play Button pressed. Play the Music"

player.currentState := MusicPlayingState
}

method pressAudioSourceButton (player) is override {
print "Audio Soure Button pressed"

player.currentState := RadioState
}

}

class RadioState {
inherit RadioPlayerState
print "In Radio State"

method pressPlayButton (player) is override {
print "Play Button pressed. Change the Radio Chanel"

player.currentState := MusicPausedState
}

method pressAudioSourceButton (player) is override {
print "Audio Soure Button pressed. Back to Standby"

player.currentState := StandbyState
}

}

The following codes demonstrate how the player works. We create a RadioPlayer
instance and set its default internal state to StandbyState.

var player := RadioPlayer(StandbyState)
player.pressPlayButton
player.pressAudioSourceButton
player.pressPlayButton
player.pressPlayButton
player.pressAudioSourceButton
player.pressAudioSourceButton

Output:
In Standby State
Play Button pressed. No Action
Audio Soure Button pressed
In Music Playing State
Play Button pressed. Pause the Music
In Music paused State
Play Button pressed. Play the Music

62

In Music Playing State
Audio Soure Button pressed
In Radio State
Audio Soure Button pressed. Back to Standby
In Standby State

A.3.9 Strategy

Definition This pattern creates a group of algorithms which are chosen at
runtime.

Standalone application Our application represents a calculator which can
add and subtract 2 numbers.

type Calculator = {
executeOperation (num1:Number, num2:Number) → done

}

class OperationAdd {
method executeOperation(num1, num2) {

return num1 + num2
}

}

class OperationSubstract {
method executeOperation(num1, num2) {

return num1 − num2
}

}

class Client (strategy) {
var strategy := strategy
method executeCalculator (num1, num2) {

return strategy.executeOperation(num1, num2)
}

}

The following codes let client choose different kind of operation at runtime.

var operationAdd:Calculator := OperationAdd
var operationSubtract:Calculator := OperationSubstract

63

Appendix A: Grace Design Patterns

var context := Client(operationAdd)
var result := context.executeCalculator (20,10)
print "20 + 10 = {result}"

context := Client (operationSubtract)
result := context.executeCalculator (20,10)
print "20 - 10 = {result}"

Output:
20 + 10 = 30
20 - 10 = 10

A.3.10 Template Method

Definition Template method pattern defines the basic flow of an algorithm,
enables multi step algorithm and changes on the individual steps.

Standalone application The application defines the basic sequence of all dif-
ferent kind of applications.

class Application {

method initialize {}

method startApplication {}

method endApplication {}

method runApplication {
initialize
startApplication
endApplication

}
}

class WebApplication {
inherit Application

method initialize is Override {
print "Initialize the Web Application"

}

64

method startApplication is Override {
print "Start the Web Application"

}

method endApplication is Override {
print "End the Web Application"

}
}

class DesktopApplication {
inherit Application

method initialize is Override {
print "Initialize the Desktop Application"

}

method startApplication is Override {
print "Start the Desktop Application"

}

method endApplication is Override {
print "End the Desktop Application"

}
}

The following codes create both WebApplication and DesktopApplication and
demonstrate how the behavior of runApplication changes on each case.

var application := WebApplication
application.runApplication
application := DesktopApplication
application.runApplication

Output:
Initialize the Web Application
Start the Web Application
End the Web Application
Initialize the Desktop Application
Start the Desktop Application
End the Desktop Application

65

Appendix A: Grace Design Patterns

A.3.11 Visitor

Definition This pattern separates an complex algorithm from an object struc-
ture it operates on.

Standalone application In this application we extend our previous composite
standalone application by adding two functionalities: Print all Employees and pay
salary to all Employees.

import "../list" as list

class Employee (name, role) {
var name is readable := name
var role is readable := role

method asString is override {
"{name}, {role}"

}

method executeTask {
print "{name}, {role} is executing a task"

}
}

class PermanentEmployee (name, department) {
inherit Employee (name, department)
def subordinates = list.with []
method addSubordinate (subordinate) {

subordinates.add(subordinate)
}

method accept (visitor) {
visitor.visitPermanentEmployee (self)
var counter := subordinates.size − 1
for (0 .. counter) do { n:Number →

subordinates.get(n).accept(visitor)
}

}
}

//Contractor cannot have any subordinates
class Contractor (name, department) {

inherit Employee (name, department)

66

method accept (visitor) {
visitor.visitContractor (self)

}
}

//Base class for visitors of Employee class
class EmployeeVisitor {

method visitPermanentEmployee (employee) {}
method visitContractor (employee) {}

}

//Visitor 1: pay salary to all employees
class PaySalary {

inherit EmployeeVisitor
method visitPermanentEmployee (employee) is override {

print "{employee.name} has got the salary"

}
method visitContractor (employee) is override {

print "{employee.name} has got the contracting rates"

}
}

//Visitor 2: print all employees
class PrintAllEmployees {

inherit EmployeeVisitor
method visitPermanentEmployee (employee) is override {

print "{employee}"
}
method visitContractor (employee) is override {

print "Contractor {employee}"

}
}

The following codes create a hierarchical object models, pay salary to all Em-
ployee objects and finally print them all:

var headManager is public:= PermanentEmployee ("Christ", "HeadManager"
)

var headRD is public := PermanentEmployee ("Florian", "Head Research

and Development")
var headSoftwareDevelopment is public := PermanentEmployee ("Harry", "

Head Software Development")

67

Grace Design Patterns

var scientist is public := PermanentEmployee ("Fabian", "Scientist in

Research and Development")
var contractor is public := Contractor ("Andrew", "Scientist in Research

and Development")
var developer is public := PermanentEmployee ("Ben", "Developer in

Software Development")
var tester is public := PermanentEmployee ("Corey", "Tester in Software

Development")

headManager.addSubordinate(headRD)
headManager.addSubordinate(headSoftwareDevelopment)
headSoftwareDevelopment.addSubordinate(developer)
headSoftwareDevelopment.addSubordinate(tester)
headRD.addSubordinate(scientist)
headRD.addSubordinate(contractor)

headManager.accept(PaySalary)
headManager.accept(PrintAllEmployees)

Output:
Christ has got the salary
Florian has got the salary
Fabian has got the salary
Andrew has got the contracting rates
Harry has got the salary
Ben has got the salary
Corey has got the salary
Christ, HeadManager
Florian, Head Research and Development
Fabian, Scientist in Research and Development
Contractor Andrew, Scientist in Research and Development
Harry, Head Software Development
Ben, Developer in Software Development
Corey, Tester in Software Development

68

References

Begosso, L. C., Begosso, L. R., Gonçalves, E. M. & Gonçalves, J. R. (2012).
An Approach for Teaching Algorithms and Computer Programming using
Greenfoot and Python. In 2012 Frontiers in Education Conference Proceed-
ings (pp. 1–6). IEEE.

Bishop, J. (2007). C# 3.0 Design Patterns. O’Reilly Media, Inc.
Black, A. P., Bruce, K. B., Homer, M. & Noble, J. (2012). Grace: The Absence of

(Inessential) Difficulty. In Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming and software
(pp. 85–98). ACM.

Black, A. P., Bruce, K. B., Homer, M. & Noble, J. (2013). The Grace Pro-
gramming Language. Retrieved May 20, 2016, from http://gracelang.org/
applications/home/

Black, A. P., Bruce, K. B. & Noble, J. (2013). The Grace Programming Language
Draft Specification Version 0.3. 1261.

Black, A. P., Bruce, K. B. & Noble, J. (2016a). The Grace Programming Language
Draft Specification Version 0.7.0.

Black, A. P., Bruce, K. B. & Noble, J. (2016b). The Grace Standard Prelude
Draft Specification Version 0.7.0.

Black, A., Bruce, K. B. & Noble, J. (2010). Designing the Next Educational
Programming Language.

Brant, J. M. (1995). Hotdraw.
Cooper, J. W. (2002). C# Design Patterns: A Tutorial. Addison-Wesley Profes-

sional.
Cunningham, W. (1994). A CRC Description of HotDraw. Retrieved May 20,

2016, from http://www.c2.com/doc/crc/draw.html
Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S. & Abid, A. (2014). An Eval-

uation Framework and Comparative Analysis of the Widely Used First
Programming Languages. PLOS ONE, 9 (2).

Froehlich, G., Hoover, H. J., Liu, L. & Sorenson, P. (1997). Hooking into Object-
Oriented Application Frameworks. In Proceedings of the 19th international
conference on Software engineering (pp. 491–501). ACM.

69

http://gracelang.org/applications/home/
http://gracelang.org/applications/home/
http://www.c2.com/doc/crc/draw.html

REFERENCES

Gamma, E. & Eggenschwiler, T. (2007). JHotDraw as Open-Source Project. Re-
trieved May 20, 2016, from http://www.jhotdraw.org

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley.

Gupta, D. (2004). What is a Good First Programming Language? Crossroads,
10 (4), 7–7.

Hadjerrouit, S. (1998). Java As First Programming Language: A Critical Evalu-
ation. ACM SIGCSE Bulletin, 30 (2), 43–47.

Hannemann, J. & Kiczales, G. (2002). Design Pattern Implementation in Java
and AspectJ. In ACM Sigplan Notices (Vol. 37, 11, pp. 161–173). ACM.

Hatanaka, I. & Hughes, S. C. (1999, July). Providing Multiple Views in a Model-
View-Controller Architecture. US Patent 5,926,177. Google Patents.

Homer, M. & Noble, J. (2013). A Tile-Based Editor for a Textual Programming
Language. In 2013 First IEEE Working Conference on Software Visualiza-
tion (VISSOFT) (pp. 1–4). IEEE.

Homer, M. & Noble, J. (2014). Combining Tiled and Textual Views of Code. In
2014 Second IEEE Working Conference on Software Visualization (VIS-
SOFT) (pp. 1–10). IEEE.

Homer, M. & Noble, J. (2015). Object Creation in Grace. In Proceedings of the
18th European Conference on Pattern Languages of Program (p. 21). ACM.

Homer, M., Noble, J., Bruce, K. B., Black, A. P. & Pearce, D. J. (2013). Patterns
as Objects in Grace. ACM SIGPLAN Notices, 48 (2), 17–28.

Johnson, R. E. (1992). Documenting Frameworks using Patterns. In ACM Sigplan
Notices (Vol. 27, 10, pp. 63–76). ACM.

Kaiser, W. et al. (2001). Become a Programming Picasso with JHotDraw. Java-
World, February.

Kölling, M. (1999). The Problem of Teaching Object-Oriented Programming,
Part II: Environments. In Journal of Object-Oriented Programming. Cite-
seer.

Lei, S. (2003). Towards Programming for the Non-Technical. In 2003 IEEE Sym-
posium on Human Centric Computing Languages and Environments, 2003.
Proceedings (pp. 291–292). IEEE.

Lo, C.-A., Lin, Y.-T. & Wu, C.-C. (2015). Which Programming Language Should
Students Learn First? A Comparison of Java and Python. In 2015 Interna-
tional Conference on Learning and Teaching in Computing and Engineering
(LaTiCE) (pp. 225–226). IEEE.

Metsker, S. J. & Wake, W. C. (2006). Design Patterns in Java. Addison-Wesley
Professional.

Noble, J., Homer, M., Bruce, K. B. & Black, A. P. (2013). Designing Grace: Can
an Introductory Programming Language Support the Teaching of Software
Engineering? In 2013 26th International Conference on Software Engineer-
ing Education and Training (CSEE&T) (pp. 219–228). IEEE.

70

http://www.jhotdraw.org

Papaspyrou, N. S. & Zachos, S. (2013). Teaching Programming through Problem
Solving: The Role of the Programming Language. In 2013 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS) (pp. 1545–
1548). IEEE.

Pawelczak, D. & Baumann, A. (2014). Virtual-C - a Programming Environment
for Teaching C in Undergraduate Programming Courses. In 2014 IEEE
Global Engineering Education Conference (EDUCON) (pp. 1–7). IEEE.

Riehle, D. (2000). Case Study: The JHotDraw Framework. Framework Design:
A Role Modeling Approach, 138–158.

Serrano-Laguna, Á., Torrente, J., Iglesias, B. M. & Fernández-Manjón, B. (2015).
Building a Scalable Game Engine to Teach Computer Science Languages.
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 10 (4), 253–
261.

Uehara, M. (2009). Design and Implementation of Cafe: A Programming Lan-
guage for Beginners. In 2009 29th IEEE International Conference on Dis-
tributed Computing Systems Workshops, 2009. ICDCS Workshops’ 09 (pp. 368–
373). IEEE.

Wolfgang, P. (1994). Design Patterns For Object-Oriented Software Development.
Reading, Mass.: Addison-Wesley.

71

	Introduction
	Research
	Introduction
	Related Work
	Educational programming languages
	Grace and Design Patterns

	Research Question
	Research Approach
	Grace Standalone Design Pattern Applications
	GraceHotdraw

	Research Results
	Evaluation of Grace
	Comparison of GraceHotdraw and JHotdraw

	Results Discussion
	Conclusion
	Appendices
	Appendix Grace Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioural Patterns

	References

