

IORDANIS KOSOGLOU

MASTER THESIS

Design and Implementation of a Multi-client

API for Wahlzeit

Submitted on July 11, 2016

Supervisor: Prof. Dr. Dirk Riehle, Samir Al-Hilank

Professorship of Open Source Computer Science

Department of Computer Science, Faculty of Engineering

Friedrich-Alexander University Erlangen-Nürnberg

Friedrich-Alexander University Erlangen-Nurnberg

Faculty of Engineering, Department Computer Science

 I

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer

Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß

übernommen wurden, sind als solche gekennzeichnet.

Erlangen, July 11 2016

License

This work is licensed under the Creative Commons Attribution 4.0 International license (CC

BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, July 11 2016

 II

Table of Contents

Table of Contents .. II

List of Figures ... IV

List of Tables ... V

List of Abbreviations .. VI

Acknowledgments ... VIII

Abstract ... IX

1 Introduction .. 1

1.1 Wahlzeit’s description .. 1

1.2 Motivation... 3

1.3 Thesis conventions and outline .. 4

2 Requirements .. 5

Goal 1: Analyze the design decisions to be made when connecting clients to the service. 5

Goal 2: Extend the existing codebase by adding a headless service. ... 5

Goal 3: Implement a mobile client to interact with the service ... 5

3 Related work .. 7

3.1 Interface Structure Techniques .. 7

3.1.1 Service oriented architecture .. 8

3.1.2 Resource oriented architecture and Representational State Transfer 9

3.1.2.1 Resource design and URIs ... 10

3.1.2.2 Standard HTTP methods .. 11

3.1.2.3 Links and Hypermedia .. 13

3.1.2.4 Representation Formats ... 13

3.1.2.5 Stateless communication and scalability .. 13

3.2 Data infrastructure .. 14

3.3 Communication protocols ... 16

3.4 Android mobile OS ... 17

3.4.1 Android’s architecture ... 17

3.4.2 Android components .. 18

3.4.2.1 Android Manifest, Intents and Broadcasts .. 19

3.4.2.2 Activity ... 19

3.4.2.3 Fragments ... 19

3.4.2.4 Tasks ... 20

3.4.2.5 Resources ... 20

 III

4 Design ... 21

4.1 Design decisions .. 21

4.1.1 Interface structure technique design decisions ... 21

4.1.2 Representation format design decisions ... 23

4.1.3 Communication protocol design decisions .. 24

4.2 API Design ... 25

4.2.1 Resource identification and URIs construction ... 26

4.2.2 Assigning operations to the defined resources ... 27

4.2.3 Achieving stateless communication and defining navigation possibilities 29

5 Implementation .. 31

5.1 Selecting a technology to implement Wahlzeit’s API .. 31

5.2 Description of Google Cloud Endpoints .. 33

5.3 Essential API implementation steps ... 35

5.3.1 Setting up the environment ... 35

5.3.2 Using Google Cloud Endpoints to write the API .. 36

5.3.3 Adjusting Wahlzeit’s model classes .. 38

5.3.4 Transferring photos and images appropriately .. 39

5.3.5 Adjusting the authorization method .. 40

5.4 Essential Android client implementation steps .. 41

5.4.1 Defining the main navigation pattern and designing screens 42

5.4.2 Writing Wahlzeit’s Android client .. 43

5.4.3 Using the generated client stubs to interact with Wahlzeit’s API 45

5.4.4 Abiding to OOP and Android’s design principles. ... 47

5.4.5 Organizing code structure and conventions .. 48

6 Conclusion ... 50

6.1 Goals overview .. 50

6.2 Future work .. 51

Appendix A Wahlzeit mobile user stories .. 53

Appendix B Android client’s package structure ... 56

References ... 57

 IV

List of Figures

Figure 1.1: Wahlzeit’s main page, displaying a random picture. 2

Figure 1.2: Wahlzeit's system overview .. 4

Figure 3.1: Web service technologies ... 8

Figure 3.2: Comparison of data serialization formats .. 15

Figure 3.3: Android System Architecture. ... 18

Figure 4.1: Class diagram describing resources and their relevant URIs 30

Figure 5.1: Using Google’s API Explorer to retrieve images 34

Figure 5.2: API-scoped annotation to convert a Java class into an API class. 36

Figure 5.3: Method-scoped annotations for mapping a Java class to an API class 37

Figure 5.4: Wahlzeit's resources and their relation to application's classes 38

Figure 5.5: Overview of the authorization flow .. 40

Figure 5.6: Screen diagram for users with different access rights 43

Figure 5.7: Factory pattern used to create fragment objects. 44

Figure 5.8: Using endpoints generated libraries to make an authorized request 46

 V

List of Tables

Table 3.1: Overview of the main HTTP methods and their properties......................... 12

Table 4.1 API qualities and the reasons for choosing REST 23

Table 4.2: API user stories as extracted from the current web application 26

Table 4.3: Overview of Wahlzeit’s resources .. 29

Table 5.1: An overview of how Google Cloud Endpoints fulfills the selection criteria . 32

Table 5.2: Java packages organized by layer. .. 48

Table 6.1: Checking whether the API requirements have been fulfilled. 51

 VI

List of Abbreviations

ADAP Advances Design And Programming

API Application Programming Interface

CORBA Common Object Request Broker Architecture

CRUD Create Read Update Delete

FTP File Transfer Protocol

GAE Google App Engine

GCE Google Cloud Endpoints

GUI Graphical User Interface

HATEOAS Hypermedia As The Engine Of Application State

HTML

HTTP

Hyper Text Markup Language

Hyper Text Transfer Protocol

IDE Integrated Development Environment

JAX-RS Java API for RESTful Web Services

JSON JavaScript Object Notation

MBaaS Mobile Backend as a Service

MVC Model View Controller

OOP Object-oriented Programing

OS Operation System

POJO Plain Old Java Object

REST Representational State Transfer

ROA Resource Oriented Architecture

RPC Remote Procedure Call

SDK Software Development Kit

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

 VII

SOA Software Oriented Architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

URI Unique Resource Identifier

URL Uniform Resource Locator

UUID Universal Unique Identifier

WSDL Web Service Description Language

XML eXtensible Markup Language

 VIII

Acknowledgments

During my studies I had the chance to meet people that helped me expand my
knowledge and improve my skills. Hereby, I would like to express my gratitude to Prof.
Riehle for the idea of this thesis and his commitment to all of his students. Furthermore,
I would like to deeply thank Samir Al-Hilank for the time he invested in supervising and
guiding me all the way through this thesis.

I would also like to thank all of my friends for their support and especially Argiris Kitis
for proofreading my thesis, and Zisis Kitsikoudis for helping me design and draw
diagrams. Words are powerless to express gratitude to my parents who encouraged
and supported my studies all these years.

 IX

Abstract

Wahlzeit is a photo sharing and rating web application used for teaching at FAU. This
thesis defines an API to Wahlzeit as a headless service which provides all necessary
information to accommodate a wide array of possible clients. To achieve this, the design
decisions to be made when connecting clients to the service are analyzed and a
resulting design is defined. Appropriate technology is chosen for its implementation and
the existing codebase is adjusted accordingly. As a proof of concept, an Android mobile
client is implemented to interact with the service.

 1

1 Introduction

During the past few decades, there have been several releases of photo rating
applications that gave individuals the opportunity to submit and share pictures, either
for recreational or scientific purposes. Wahlzeit as such, is an open source web
application that allows users to upload their pictures and rate those of other users and
in this way share their opinion, socialize and have fun. As a well designed Java web
application that reflects the principles and best practices of software engineering,
Wahlzeit has initially been developed to support teaching of Advanced Design and
Programming (ADAP) at the Professorship of Open Source Software at the Friedrich-
Alexander-University of Erlangen-Nürnberg.

Wahlzeit is a web application which interface runs in all major web browsers. However,
application development might have never seen so many rapid changes and trends as
in the last few years. The recent boom in the mobile and computer industry, gave users
the opportunity to enjoy the freedom of mobile devices and interact with web
applications as if they were using their desktop. However, converting legacy or desktop
applications into workable mobile apps and simultaneously maintaining a pleasant user
experience is a challenging task. Mobile devices have limited internet bandwidth while
their screen sizes differ. Various operating systems have different implementations and
there are several protocols through which client and server may communicate with each
other.

This thesis aims to extend Wahlzeit by adding a headless service that will allow
interoperability with third parties. Headless in this context, means there will be no
Graphical User Interface (GUI). By analyzing and discussing the existing technologies
and decisions that have to be made when connecting clients to the service, the most
appropriate will be pointed out and implemented, extending the existing codebase.
Moreover, a mobile client will be implemented to interact with the extended version of
the application.

1.1 Wahlzeit’s description

Wahlzeit is an example application used for teaching principles and practices of
advanced object-oriented programming (OOP). During the ADAP lecture, students are
assigned to fork the project from Github1, and extend the software with additional
functionality by recognizing and analyzing patterns and applying advanced OOP
concepts. Instances of the application can be deployed either locally on their own
computers using the Jetty Server or directly into the cloud.

1 see https://github.com/dirkriehle/wahlzeit

 2

Every instance of Wahlzeit is meant to serve particular user groups. Hence, it is
organized around specific topics. For example, a region’s citizens may use the
application to share pictures of their city, whereas astronomers may publish photos of
outer space objects (Figure 1.1). These pictures might be related to additional
information such as the location, camera settings or the spectral range. This information
can be associated with each picture using tags. Epigrammatically speaking, Wahlzeit
allows users to upload, share and rate photos from a scale of 1 to 10. Users are able to
perform Create, Read, Update and Delete (CRUD) operations and administrate their
uploads and their relevant metadata. For irrelevant pictures, users can flag photos and
create cases which are reviewed by the administrators. In this way, a widely accessible
photo gallery could be created.

The application not only supports teaching, but also intends to fulfill its own vision. The
long term vision of Wahlzeit, is becoming a product that users can rent and adjust to
their needs (Hahmann, 2015). Other photo sharing applications like Flickr or Pinterest,
are hard to customize and meet individual needs. On the other hand, Wahlzeit could be
offered as a service, where developers could make capital out of adjusting the
application according to various requirements and deploy an instance on a server.
Another vision, is providing a solid codebase, including the respective infrastructure, to
support people who intend to develop their own photo rating application. Wahlzeit is
accessible under the GNU Affero Public License2, which embraces contribution from
the open source community, and saves time and effort to those who want to build a
photo rating application.

Figure 1.1: Wahlzeit’s main page, displaying a random picture.

2 see https://www.gnu.org/licenses/agpl-3.0.html

 3

Until recently, Wahlzeit’s 1.2 version was heavily dependent on numerous technologies.
There have been dependencies to the development environment, whereas an SQL-
based database was the underlying infrastructure to save all relevant information and
pictures. The whole application stack could have been deployed locally on a Tomcat
server while students have been using the department’s server to make the application
accessible over the internet.

Starting from 2.0, Wahlzeit has been migrated to become a Google App Engine (GAE)
application, that can be deployed either locally or to GAE’s cloud service without any
expense. Its relational database infrastructure has been migrated into a non-relational,
to comply with the standards of the GAE platform. All relevant information ranging from
user information until photos and their metadata, have been migrated from PostgreSQL
and the file system to Google Datastore and Google Cloud Storage respectively.
Integrated development environment (IDE) dependencies have been removed and
project’s structure has been adjusted to conform to Gradle’s default layout. As a result,
Gradle building tool is used to manage dependencies and deploy the application either
locally or straight into the cloud.

1.2 Motivation

During the past few years the mobile industry and application development have been
thriving, forcing the existing applications to keep up with the upcoming trends. Many
client devices have been receiving much attention, from smartphones and tablets to
promising wearable and Internet of Things gadgets. Recently, fixed internet access via
desktop was overtaken by mobile clients (Comscore, 2014).

In the era of smartphones and tablets, mobile applications are providing added value to
several industries including transport, ecommerce, travel, retail and others. (Dalmasso
et al., 2013). However, the diversity of mobile platforms and the variety of Software
Development Kits (SDKs) and other tools impose unique challenges. Mobile
applications in native code depend on the platform on which they are focused and the
terminals where these applications work. Apple’s iOS platform is based on Objective C
and Swift programming languages. Android has Java and Windows Phones .NET.
Those platforms are the most popular and posses the dominant market share.
Additionally, there are cross platform development tools which allow developers release
applications that are compatible with multiple platforms. Despite the development costs
application vendors are offering mobile solutions to better reach their audience,
personalize the audience’s user experience and reinforce brand loyalty (Subsplash,
2015).

This fact, indicates the need to extend and enforce the existing web applications, to
allow cross platform interoperability. Application Programming Interfaces (APIs) consist
of a set of functions built into an application, which can be used by other applications to
interact with it. To keep pace with the actual trends in application development and
prepare the Wahlzeit for future development, this paper analyzes the decision to be

 4

made in order to implement an API. As a result, technological and business benefits are
expected, some of which include platform independence, data integration, code
reusability and cost savings (Petcu et al., 2011). Furthermore, as a proof of concept an
Android client will be developed that will allow users to access the application from their
mobile devices. The following diagram illustrates the extended environment of Wahlzeit,
after implementing an API and an Android mobile client (see Figure 1.2).

Figure 1.2: Wahlzeit ’s system overview

1.3 Thesis conventions and outline

This thesis follows formal conventions and a concrete structure. Important definitions
are marked italic and bold, and for the links and source code the courier font is used.
The next chapter (Chapter 2) determines the requirements, Chapter 3 gives an overview
of the related literature, Chapter 4 describes the design decisions and the resulting
design of the API and Chapter 5 presents the implementation effort and details for
developing the API as well as the mobile client. The last section (Chapter 6), provides
a critical overview and summarizes the results of the thesis and makes suggestions for
future work.

 5

2 Requirements

In order to achieve Wahlzeit’s long term vision (see 1.1) a lot of effort is required. Except
from the current browser client, the application shall accommodate mobile clients and
be prepared for future changes. In this context, the following goals are set for this thesis.

Goal 1: Analyze the design decisions to be made when connecting clients to the
service.

APIs are specified by website and have the form of web services, remote procedure
calls or message passing and rely on application dependent protocols (like FTP, SNMP)
(Petcu et al., 2011). Making the correct decision between the different styles depends
on the size and nature of each application. Choosing the appropriate style upfront and
designing the API according to its guidelines is crucial for developing an efficient and
robust API for Wahlzeit.

Wahlzeit is already designed according to the Hyper Text Transfer Protocol (HTTP)
protocol, and provides HTML responses to browser clients. In order to design a multi-
client API and accommodate more clients, there are decisions to be made based on the
interface infrastructure technique, the message representation format and the
communication protocol over which the participating parties will communicate with each
other.

Goal 2: Extend the existing codebase by adding a headless service.

After having decided which architecture style and communication technique better suit
Wahlzeit’s needs, the relevant guidelines will be followed to design a headless service.
Based on the existing infrastructure, an appropriate framework should be chosen to
implement this service. After the implementation is complete, the service should fulfill
the following requirements.

1. Accommodate as many clients as possible.
2. Expose the features and functionalities of the existing desktop application.
3. Comply with the existing infrastructure and technologies.
4. Keep the interface that runs on web browsers fully functional.
5. Be intuitive so other students/developers may use it to implement further clients.

Designing the API according the best practices suggested by each style is crucial in
order to facilitate future efforts and adjustments.

Goal 3: Implement a mobile client to interact with the service

Wahlzeit needs a mobile user interface, so that users will be able to interact with the
application from their mobile devices. This mobile client should prove the usefulness

 6

and accessibility of the API. In the end, the desktop and the mobile clients should share
the same information and work in parallel. The requirements that the application should
fulfil are summarized below:

1. Have the same features and functionalities as the browser application
2. Enhance user experience by using mobile built in features. (Optional goal)

The mobile client will be developed as a native Android application. Since Android is a
major mobile platform, the client is expected to serve a considerable amount of mobile
users. Furthermore, the Android platform allows the installed applications to interact
with each other and share information. Hence, built-in applications like camera and
email can be accessed and used to improve user experience.

 7

3 Related work

A good web API makes it easier to develop a program, by providing all the building
blocks which are then put together by the programmer (Beal, 2006). This chapter gives
an overview of the most contemporary interface structure techniques (3.1), data
infrastructure formats (3.2) and communications protocols (3.3). Furthermore, the
Android mobile OS is described (3.4).

3.1 Interface Structure Techniques

From an engineering point of view there are two API categories exposing operations of
a certain resource (Petcu et al., 2011). In-Process APIs are what an average developer
uses on a daily basis and refer to a combination of objects, methods, functions
depending on each programming language, abstracting the resources in terms of
memory usage, and pieces of machine executable code. This saves developers time
and provides the functionality that otherwise should be developed from scratch. On the
other hand, remote APIs are used to surpass a single process border and bridge
applications. Web applications providers offer remote APIs for their applications, and in
particular web services to interact with clients such as mobile devices. Web service
are based on the request-response model where a client party invokes a service
implemented by a provider party. In return, the provider processes the request and
sends a response.

In general, the client-server architecture consists of the providers of a resource or
service called servers, and the requesters called clients. According to the industry term,
clients and servers usually have different implementation characteristics. In this context,
multiple clients need to connect to a database on a central server, while the client side
software mainly contains data access and presentation logic.

Web services also comply with the paradigm of distributed systems which refers to
systems that are located at networked computers, whose components communicate
and coordinate their actions only by passing messages (Coulouris et al., 2012). In this
context, component-based applications can be deployed more easily and provide a
better alternative to the costly and cumbersome two-tier architecture, by reducing
concurrent usage of the database server (Abdaldhem & Fuhrer, 2009). A third layer
usually puts something between the presentation and data store layer such as a
business logic or service layer. This layer, moves and processes data between the two
surrounding layers and coordinates the application by processing commands and
making logical decisions. This approach provides several key benefits for software
developers such as isolation for future changes, reduces learning curve, development
tools independence, optimized security etc. (Microsoft, 2016).

Web services are self-contained, modular, distributed, dynamic applications that can be
described, published, located, or invoked over the network to create products,

 8

processes, and supply chains (IBM, 2000). The core motivation to consider using a web
service, includes decoupling of service interfaces from implementations and platform
considerations as well as the ability to move closer to cross-language and platform
interoperability (Ferris & Farrell, 2003). Some prominent examples of web service
providers are for instance eBay (auction and shopping), Amazon (retail) or FedEx
(logistics). The two prevailing architectures for web service provisioning are Service
Oriented Architecture (SOA) and Resource Oriented Architecture (ROA).

3.1.1 Service oriented architecture

SOA is component-based software architecture to create distributed applications where
basic services can be published, discovered and bound together to build more complex
composed services (Abdaldhem & Fuhrer, 2009). A service is a collection of methods
used for implementation of enterprise solutions. The service’s functionality is defined by
a service interface which gives the ability to the service to interact with any
implementation contract (Papazoglou, 2008).

There are three major roles within the web service architecture, namely the service
provider, the service requestor and the service registry whose interface should be
independent from any platform, operating system and programming language (see
Figure 3.1). Thus, applications become more flexible due to their ability to interact with
other services. In more detail:

 Service provider: creates a web service and publishes the service description in
the service registry.

 Service registry: enables online service discovery

 Service requestor: finds the service by querying the service registry. The
requestor then retrieves the service description, uses it to bind to the service
implementation, and begins interacting with it.

Figure 3.1: Web service technologies (Abdaldhem & Fuhrer, 2009)

 9

As illustrated above (Figure 3.1), the Web Service Definition Language (WSDL) is an
eXtensible Markup Language (XML) format that is designed to describe network
services as a set of endpoints (W3C, 2001). WSDL describes those endpoints
regardless of which message formats and protocols are used to communicate.
However, WSDL is used most of the times in conjunction with Simple Object Access
Protocol (SOAP) which internally uses XML and is used by the service to transfer
messages of rigid structure (for more details about SOAP, see 3.3).

3.1.2 Resource oriented architecture and Representational State Transfer

Opposed to SOA, ROA premises that the whole system is made up of resources. A
resource can be defined as a directly-accessible component, that is handled through a
standard common interface which makes resources handling possible (Lucchi et al.,
2008). A resource can also relate to other resources and provide a reference to them.
In practice, a resource is similar to an object, but with a predefined interface semantic.

Based on ROA architecture, Fielding first introduced the architectural software design

called Representational State Transfer (REST) as a way to organize resources and the
operations to perform with them. REST is a hybrid style that derives from several of the

network based architecture styles and combines additional constrains to define a
uniform connector interface. This style is applied to components, connectors and data
views within a distributed hypermedia system (Fielding, 2000).

RESTful web services may also be considered as an approach for using REST purely
as a communication technology to build SOA. In this way, services are defined using
SOA style decomposition and REST-based web services are leveraged as a transport.
Henceforth, HTTP is used to make calls between machines instead of choosing more
complex mechanisms such as SOAP (Abdaldhem & Fuhrer, 2009).

For an HTTP based REST application, the concept might be minimized to the following
5 core principles (Tilkov, 2011):

1. Resources with unique identification: Each web resource or set of resources that
is relevant for the user gets a unique identifier, namely a Unique Resource
Identifier (URI). A URI represents a global namespace and may be accessed
regardless of client or session.

2. Links and hypermedia: The control of the application flow and the connection of
resources is based on links and their description. This way the server informs the
client what actions are available.

3. Standard methods: Every resource and each URI implement the same interface
which refers to the standard HTTP methods. These methods or verbs, guarantee
a particular behavior. As a result, the functionality of an application that conforms
to the REST style is ambiguous and usable for other applications.

 10

4. Different representations: Every client that requires or generates a particular data
format, might interact with a resource that supports this format. The service
provides different representations for each resource, whereas a client might use
HTTP content negotiation to request a resource in various formats.

5. Communication without status: The server manages only resource states, no
client specific sessions. This enhances scalability and loose coupling between
the server and the client, and furthermore enables workload distribution across
servers.

A system is called RESTful to the extend it conforms to the constrains implied by the
principles mentioned above. In the next subsections the REST concepts will be
discussed in more detail.

3.1.2.1 Resource design and URIs

Resources are the central concept of REST and are uniquely identified by a URI. In the
context of an RESTful API resources might be conceived as an abstract idea. A client
might rather request and see the representations of resources. Those representations
either comprise an internal resource that is a storable element in the database, or some
instance calculated out of others (Tilkov, 2011). In this context, a resource is made out
of a set of various representation whereas both are identified by a common identifier
(URI).

Identifying resources and their associated representation is a hard, yet important task
when designing an API. When designing an API for an existing application, the core
features and software components are the main candidates in becoming resources.
Those resources are oftentimes called primary resources (Tilkov 2011, p.35).
Resources that are part of another resource, are usually called sub-resources, and
may be designed either as a separate resource entity or be embedded in the
representation of another resource. Both primary and sub-resources are identified by
unique URIs and will conform to the HTTP operations interface.

For almost every primary resource there are usually list-resources that allow handing
resources as collections (Tilkov 2011). In many applications those collections might
contain a significant amount of other resources. In this case it is quite a common
requirement for the client to be able to retrieve only a subset of the available resources.
To achieve this, REST suggests using the following techniques:

1. Filtering: This technique allows client to apply a filter criterion to a given
collection of resources. The server searches and serves only the resources that
comply to the given arguments.

2. Pagination: This mechanism is supported by the majority of modern database
technologies and also applies to the case a client only needs a restricted amount
of information. Longer list collections are divided into result sets of a limited

 11

resource amount. The correct approach for the API would be to provide the client
with mechanisms to control some aspects of a list call. In particular, the user
should be able to specify the number of results per API call (similar to results per
page) and to make subsequent calls to specify the particular page or location
from where to return the next n results. This behavior can be implemented either
by using the range header on a GET request with a resource range unit or by
providing query parameters to a resource.

3. Projection: The projection mechanism is meaningful when a client interacts with
only a subset of the information a resource offers. In this way, the amount of
information to be transferred may be significantly reduced, reducing network
overhead. Projection is meaningful and may be applied both in list or individual
resources.

4. Aggregation. In contrast to the projection contract, aggregation offers a way to
aggregate the attributes of a primary or a list resource. As a result, the required
client-server interactions might be minimized.

Except from the static resources mentioned above there are also resources that allow
interaction with functions and features of a web application. Those are called activity
resources and enable activities to be represented as resources. An activity is a
description of an action performed by the user.

3.1.2.2 Standard HTTP methods

The main idea behind REST is to use the same operation over all resources. As a result,
every resource should implement exactly the same interface which will reflect a set of
specified operations. Although Fielding does not state which interface this should be,
HTTP defines a concrete set of operations that resources should implement (Tilkov,
2011). This is the reason why REST is almost always combined with HTTP.

Those eight methods are specified since HTTP 1.1 and are the following: GET, HEAD,
PUT, POST, DELETE, OPTIONS, TRACE and CONNECT. Some methods are
characterized safe, meaning that the implementers should be aware not to allow the
requesting party to perform any action which may have an impact to themselves or
others (W3C, 1999a). In the case of REST this might be roughly translated into the fact
that safe HTTP methods do not modify resources, even if they might change things on
a server (like for example number of total resource request) or resource but definitely
not on its representation. In particular, GET and HEAD should only be used for retrieval.
Safe methods also have the particularity of being cachable, which means that they
might be cached and pre-fetched without having any impact on the resource.

Methods can also have the property of idempotence in that the side-effects of multiple
identical requests are the same as for a single request (W3C, 1999a). In the scope of
the REST style, this applies to the fact that calling the same method on a given resource
more than ones, should have the same impact on the representation of the resource.

 12

However, the resource might still be affected like for instance a timestamp parameter
that is not included in the representation of the resource. The methods GET, HEAD,
PUT and DELETE share this property. An overview of all methods and their properties
is given below (Table 3.1).

 GET HEAD PUT POST DELETE OPTIONS

Safe - - -

Idempotent -

Cachable -

Table 3.1: Overview of the main HTTP methods and their properties.

The behavior of some of the most frequent operations is described below:

1. GET: It is usually referred as the most important HTTP method and is used
to provide a representation of the resource. It is the most frequent operation
over the web, whereas the whole web is optimized around it (Tilkov 2011).
Along with the URI for identifying a resource and its relevant query
parameters, a client is able to send parameters over the header in order to
specify the representation format or even limit the amount of the resources to
be retrieved. The operation is safe, idempotent and might be cached.

2. PUT: Is usually used to modify an existing resource or create one if there is
none. The client uses the body entity of an HTTP request to describe the
status of the resource and the header content type to inform the server about
the format of the transferred information. A client expects the server to handle
its request, although he may ignore or supplement information related to the
resource. PUT is idempotent as multiple execution will have the same impact
on a resource, although it is not safe nor cachable.

3. POST: Similar to PUT it is basically used to create a new resource, or may
be abused to make some action that is not supported by other methods
(Tilkov 2011). The main difference between POST and PUT is reflected in the
different meaning of the request URI. The URI in a POST request, identifies
the resource that will handle the enclosed entity, whereas the URI in a PUT
identifies the enclosed entity itself (W3C, 1999a). Usually the URI in a POST
request is a list-resource where the enclosed entity should be added to. The
method is neither cachable, nor idempotent or safe.

4. DELETE: As expected the operation shall remove a resource. It is idempotent
and is more related to some deletion logic and attributes some delete
parameter to the resource representation, like for example cancelled or
deleted. It is not deleting a resource from the persistence layer.

 13

3.1.2.3 Links and Hypermedia

There are a lot of mixed opinions as to whether an API consumer should create links to
navigate through the resources paths, or whether links should be provided by the API.
Fielding used the phrase “hypermedia as the engine of application state”
(HATEOAS) to state that interaction with an endpoint should be defined within metadata
that comes with the output representation and not based on out-of-band information.

This way the client navigates through the resources using the links provided by resource
representations. At a particular time, every resource has a specific status which is
expressed by the links included in its representation. In this way the whole application
moves from a status to another based on hypermedia information (Tilkov, 2011, p.83).
Furthermore, a client only interacts with a link and has no insight to the server’s
implementation and infrastructure.

To conform to the HATEOAS principles an application’s API has to fulfill several
prerequisites. For example, the amount of links that are delivered over a resource
representation should determine the application’s status and reflect the navigation
possibilities of a client, so that the client should not require any external description in
order to use an API, whereas the server should serve representations that the client
understands (Tilkov, 2011). The advantages of abiding to those rules include amongst
others: loose coupling between the client and the server, eliminating the need of using
external documentation etc.

3.1.2.4 Representation Formats

APIs offer different representation formats for displaying resources’ representations.
Some allow the client to choose between more than one formats, while other offer only
a particular format. The process of requesting a particular format for a representation
when there are multiple representations available is called Content Negotiation (W3C,
1999c). Applications might either use a standardized, well known format, or invent a
new format and interact respectively (Tilkov 2011, p.83). More details about
representations formats are discussed below (see 3.2).

3.1.2.5 Stateless communication and scalability

Stateless systems can be seen as a black box, where request are treated independently
and are not related to previous requests. This type of communication is called stateless.
However, there are mechanisms that allow tracking a client’s progress and relate its
requests. Sessions for example, are defined as a series of related browser requests
that come from the same client during a certain time period (Oracle, 2016). This type of
communication where a system has a memory is called stateful.

In general, it is a better practice to avoid stateful communication, and enable each
individual request to enclose all information a server needs to process it (Tilkov 2011, p

 14

108). This approach brings the several advantages especially when the number of
clients is high. The communication is more explicit and requests are easier to interpret,
whereas the server requires fewer resources to process a request (Tilkov 2011, p.108).

Avoiding stateful communication according to the REST guidelines can be achieved by
storing the status either on the resources or in the client application. Stateless
communication is considered to have a significant impact on the API’s scalability.
Scalability describes the capacity of a system to handle greater amounts of load (Tilkov
2011). Scalability can refer to how much additional traffic a system can handle, how
easy is it to add more storage capacity or how many transactions can be processed.

3.2 Data infrastructure

Smartphones and tablets devices vary in terms of system platforms and application
programming environments (Android, Blackberry, Ubuntu linux, iOS, Amazon’s FireOS
etc). Therefore, systems use specified message formats to communicate with each
other. This variety has made data serialization format increasingly important.

Data serialization refers to the process of writing the state of an object to a stream and
rebuilding the stream back into an object (Sumaray & Makki, 2012). The two most
common modern data serialization formats are XML and JavaScript Object Notation
(JSON). Although both are well established and documented, they were developed
before the onset of smartphones. More recently, binary serialization formats have been
gaining popularity due to the effective way they can compress data. Some popular
binary data serialization formats are Google’s Protocol Buffers3 and Apache Thrift4.
These formats were developed to address shortcomings in XML and JSON. In more
detail:

 XML is a format of Standard Generalized Markup Language (SGML) that was
developed by members of the W3C. It was designed to describe data, supports
a wide variety of applications (W3C, 2008). XML is used to describe data and
uses tags similar to HTML although they are not predefined. A document may be
associated with an optional description of its grammar, which defines the
structure of the document and can be used for validation. Moreover, a document
has to have a correct syntax and be well-formed. It has a large user base, and is
used widely in various web services. SOAP protocol for example is fully based
on XML. There is also a variety of XML-based languages available.

 JSON was developed by Douglas Crockford, and is a data-interchange format
that is often referred as lightweight, easily human readable and easy for
machines to parse and generate (JSON, 2016). It is built on two structures,

3 see https://developers.google.com/protocol-buffers/
4 https://thrift.apache.org/

 15

namely arrays (list of values) and objects (name/value pairs), and its values
support most of the primitive data structures. The technology is pretty mature
and many languages offer out of the box solutions to support JSON operations
like parsing and encoding. However, JSON has a number of shortcomings, such
as extensibility drawbacks, lack of namespace support and input validation
(Nurseitov, 2008).

 Binary formats were designed to be extremely lightweight, and fast to serialize
and deserialize. Messages are serialized into a compact binary-wire format.
However, this format is not self describing and therefore positional binding is
necessary. According to this approach the name part of the name-value pairs
should be kept in a separate file (Sumaray & Makki, 2012) which should be
acquainted and stored in the client. For instance, .proto and .thrift files should be
generated for ProtocolBuffers and Thrift respectively which are then used
natively in client implementations. These files do not have to be sent over the
Internet, which can greatly decrease the size of the data to be communicated.

In many applications, clients may express their preference for a certain representation
format (see 3.1.2.4). According to the capacities of the corresponding API multiple
formats can be supported. Different formats are suitable for different implementations,
whereas each format brings its own advantages and disadvantages. Figure 3.2 provides
a comparison of some major formats based on the byte size and average serialization
and deserialization speeds, when transferring a text heavy book and a video object
which is mainly maid of numbers (Sumaray & Makki, 2012).

Figure 3.2: Comparison of data serialization formats(XML, JSON, Protobuf, Thrif t)
based on byte size (left), average serialization (middle) and deserialization(right)

time. (Sumaray & Makki, 2012)

 16

3.3 Communication protocols

In the vaguest sense, a protocol refers to a standard procedure for defining and
regulating communication. Communication between components requires reliable
transport, a common understanding of the data being exchanged and an understanding
of the sequence of exchanges (Zahir et al., 2005). Regardless of the interface structure
techniques, clients that wish to make use of a service must know the valid sequence of
message exchange expected by the provider.

Since the number of web APIs increased rapidly, agents are required to work through
these APIs and may need to discover conversations dynamically rather than based on
prior knowledge. Reaching a consensus regarding standards in a heterogeneous
environment favors interoperability between agents and might be realized by using
technologies such as HTTP, SOAP, HTTP-polling, websockets etc. At this point it is
important to point out that in this papers other internet protocols, such as User Datagram
Protocol (UDP) are not considered, because they are designed for real-time
communication like streaming and phone calls which allow outdated information to be
dropped.

HTTP is an application protocol for distributed, collaborative, hypermedia information
systems which (IETF, 1999) uses hypertext and logical links between nodes containing
text. HTTP is stateless and assumes very little about a particular system and
communication between a host and a client occurs via a request/response pair. The
requests messages are sent to the host via Uniform Resource Locators (URL) and are
associated with verbs that define the action that should be performed (see 3.1.2.2). In
the end the server responds with status codes and message payloads according to the
requested representation formats. It is the protocol for which the internet is optimized
and the foundation of data communication.

Another well known message transfer protocol is SOAP, which is frequently used in
SOA architectures (see 3.1). SOAP is designed to enable distributed computing
platforms to exchange structured information and specifies exactly how to encode an
HTTP header and an XML file so that a program in one computer can call a program in
another computer and pass along information (W3C, 2007). In fact most of the times
SOAP uses the Remote Procedure Call (RPC) communication style where services
are used as remote object on the client side which makes a procedural call without
understanding network details and the server (Yildirim, 2014). Hence, every operation
is mapped to some implementation in the backend. There are many open technologies
implementing the RPC paradigm, like for example Common Object Request Broker
Architecture (CORBA), XML-RPC, JSON-RPC etc. Despite its frequent pairing with
HTTP, SOAP was designed to take advantage of many different types of data transport
layers including synchronous HTTP/HTTPS, asynchronous queues and even over
email (such as SMTP). This capability render SOAP to be a single solution for many
heterogeneous interconnectivity problems.

 17

Web API also based communication on HTTP variations, like for example HTTP polling
and long polling (Pimentel & Nickerson, 2012). According to this protocol the client
sends a request to the server and the server replies either with a new message or with
an empty response if there is none. After a certain amount of time, called polling interval
the client polls the server again to see if any new messages are available. This is known
as HTTP polling, whereas HTTP long polling avoids unnecessary requests from the
client in which the server only responds with a new message or a timeout occurs.
Although HTTP is a synchronous protocol where there is a response for each request,
these techniques allow for some asynchronous communication in case the client is not
able or eager to wait until the server responds.

A more recent protocol is the Websocket Protocol which provides full-duplex,
bidirectional communication over a single socket (TCP connection). Its bi-directional
and full-duplex character differentiates from the request/response paradigm and allows
servers to push messages on the other side, whereas both sides communicate
asynchronously. This eliminates the need of repetitive HTTP headers in each request
from the client and each response from the server (IETF, 2011), and in this way reduces
communication overhead.

3.4 Android mobile OS

In this subsection the Android OS will be introduced. However, describing Android’s
whole set of capabilities goes far beyond the scope of this paper. Therefore, only the
most eminent components and the ones that are used in the implementation of the client
application are reviewed.

Android is a free open source mobile OS, based on the Linux kernel and designed for
touchscreen mobile devices. Android was initially developed by the Android Inc, which
was acquired by Google in 2005 (Elgin, 2005) and was officially introduced in 2007. Its
open source character is meant to enable various developers to create mobile
applications that take full advantage of all components a handset mobile device has to
offer, whereas its Linux Kernel makes the OS flexible to be adjusted to any hardware
platform (OHA, 2016).

3.4.1 Android’s architecture

Android’s system architecture is subdivided into five (Brähler, 2010): the kernel layer
and low level tools, native libraries, the Android runtime, the framework layer and on top
the applications layer (see Figure 3.3). Android’s basis is a Linux 2.6 kernel series,
which bridges the hardware with the other architecture layers containing hardware
drivers, and is modified for special needs in power management, memory management
and the runtime environment.

 18

Figure 3.3: Android System Architecture (Neumann, 2012).

Right above the kernel runs a series of libraries that are compiled to device native code
(C and C++) for performance reasons. Those libraries provide access to core features
like the surface manager, the media framework, 3D libraries etc. The Android runtime
consists of the Dalvik Virtual Machine (VM) along with the Java core libraries. Dalvik is
responsible for interpreting core libraries written in Java and compiling them to native
code. Furthermore, it is developed to efficiently execute virtual machines in parallel, and
uses low-level memory management and the optimized threading mechanisms of the
kernel.

The application framework layer is used for development and guarantees the consistent
architecture of applications. The target is to force developing applications according to
the given guidelines and in this way facilitate integrating and reusing applications. This
layer allows execution of background tasks and information sharing between
applications, and provides access to hardware modules and sensors. Of course,
access to these components is requested upon installation. In this way, Android
applications run in their own sandbox Dalvik VM and may consist of multiple
components: Activities, Fragments, Broadcast Receivers and Content Providers.

3.4.2 Android components

Android provides several means of different layers to compose, execute and manage
applications. This subsection gives an overview of several Application Framework layer
components (see Figure 3.3), that are used to develop Wahlzeit’s mobile client.

 19

3.4.2.1 Android Manifest, Intents and Broadcasts

All Android applications running in the Dalvik VM environment need a manifest file to
obtain administrative rights and organize the application’s information (Android, 2016a).
Amongst other things a manifest specifies an application’s name, organizes its
components and obtains permission for accessing core libraries and launching intents
and broadcasts. For security reasons, every time an application is installed the user is
asked to grant permission according to specifications of the manifest file.

Intents in this context, refer to asynchronously sent message objects used to request
an action from another app component (Android, 2016b). Intents are used to start other
activities and convey information. Apart from that, intents are used to start other
applications or send action broadcasts, that are received from all installed applications.
Those applications provide their resources to perform the requested action whereas the
user is able to choose his preferred application (Android, 2016c). This is known as
broadcast service. On the other hand, broadcast receivers are used within the scope of
the same application to perform some supporting operations and background tasks and
get invalidated after performing the requested action.

3.4.2.2 Activity

An activity is as a single screen of an application that contains visual elements to
present data or allow user interaction. An application consists of many related activities
(Android, 2016d). Developers define the hierarchy and the navigation possibilities
between the activities whereas the transition between the different activities is initiated
via intents.

Activities are organized in a back stack that manages the lifecycle of all activities and
is based on the “last in, first out” concept. Every newly created activity receives focus
and is placed on top of the stack, pausing the activity that was previously on top. When
a user finished interacting with an activity and leaves the activity using the back button,
the activity is ended and removed from the stack so that the preceding activity is
resumed and receives focus. For developing a flexible and organized application using
the suggested callback methods is crucial. This concept is needed for handling
multitasking and helps dealing with low memory situations (Android, 2016d).

3.4.2.3 Fragments

Fragments represent modular components within an activity, which have their own
lifecycle, receive their own input and can be added or removed while the activity is
running (Android, 2016e). Multiple fragments can be embedded in one activity. As a
result, fragments can be used to optimally fill the space of each screen and may be
reused in multiple activities.

 20

Similar to activities fragments are organized in a back stack and have their own lifecycle
and status. An activity uses a fragment manager instance to add, replace, remove and
perform other actions with fragments using so called transactions. Each transaction
can be saved to the back stack, allowing the user to navigate through fragment changes.
Fragments are usually used to adjust the UI components to various screen sizes.

3.4.2.4 Tasks

Android is a multi-threading platform that allows each application to run on its own
thread (Android, 2016f). Every application is decoupled from every other running
application and the OS. This way, in case a crush occurs no other application is affected
(known as sandbox principle). Every application is running on its own main thread
(also known as UI-Thread) which is accessible by all application’s components.

Several tasks require more time than others, like for example fetching data from the
server or from a database. To avoid blocking the main thread with tasks like these,
Android suggests executing asynchronous tasks (Android, 2016g). Those tasks are
triggered from the main thread and run on the background. When a task is complete, a
callback method on the main thread is executed which can update the UI accordingly.
This way, the UI-Thread is not overwhelmed and delays are avoided.

3.4.2.5 Resources

In Android’s environment resources refer to reusable data components that are used to
specify and construct screen layouts (Android, 2016h). Resources are either drawables
or XML files. Drawables refer to all graphical elements, from the icon that is used to
start the application to search and menu icons. XML files can be either layout files that
define the structure of each screen, values that are used to store information related to
colors, text representations etc. or menu files that that are used to extract the options
of menus within the application. All these resource files are usually part of the
applications source code, and can be easily accessed from the application’s Java
components.

 21

4 Design

The following section discusses and analyzes the design decision to be made in order
to design an API for Wahlzeit that will serve mobile clients (section 4.1). Section 4.2
presents in detail the design process according to specifications extracted from the
current web application and by following the guidelines of the architecture style decided
upon.

4.1 Design decisions

There are many different qualities that are desirable for APIs. Some of them are related
to its usability. For example, how easy an API is to learn and how productive are
programmers using it. Others are related to its power, in term of expressiveness (the
sorts of programs it can create), extensibility and evolution potential, performance
(speed, memory and other resources consumption), security and robustness (Stylos &
Myers, 2007). Although a good design does not guarantee the fulfilment of all these
qualities, it is a crucial steps towards developing a good API.

There are several decisions to be made before designing a service to connect clients
to an application such as the interface structure technique (see 4.1.1), the serialization
format (4.1.2) and the communication protocol (4.1.3). Those decisions are discussed
in the following sections and are made so that Wahlzeit’s API will fulfil as many qualities
as possible from the ones mentioned above.

4.1.1 Interface structure technique design decisions

Wahlzeit’s API structure should be optimized to connect mobile clients to the
application. The most common photo sharing applications over the internet (Flickr,
Pinterest, Instagram), offer APIs that are based on REST or SOAP or both. It is
important to clarify that SOAP is not a software architecture style like REST but a
protocol. However, the term is frequently used to refer to the implementation of SOAP
over HTTP in SOA architectures (see 3.1.1). This section analyzes the differences
between REST and SOAP and offers an approach that is oriented to the challenges
involved in building mobile applications for multiple platforms.

SOAP is a well-known technology that was designed before the explosion of mobile
technology. It introduces an abstraction layer that can be build on top of any transport
layer (see 3.3), which on the one hand offers extensibility and portability but on the other
hand is considered over-engineering and might not provide any real value (Wagh &
Thool, 2012). Hence, generating SOAP client code from WSDL interfaces can be quite
complex and re-coding the complex interface several times for several platforms can be
both time-consuming and error-prone. Moreover, the fact that the whole procedure is
based on parsing and generating XML messages can be notably resource-consuming
for mobile devices, it terms of power, bandwidth and computing power. Another problem

 22

imposed by SOAP is the fact that changing services often means complicated code
change on the client side. This problem is magnified for mobile devices where the
problem of application updates dissemination arises.

On the other hand, REST was designed to operate with thin clients, and is almost
always build on top of HTTP. Hence, its infrastructure is considered more friendly to
developers as it is similar to the majority of web traffic on the internet and since web
traffic is already optimized for HTTP it is also optimized for REST. REST provides
flexibility regarding the data types returned, which has impact on the resources needed
to parse and generate messages. Furthermore, REST offers mechanisms for caching
requests, which might reduce the number of necessary requests from the client and is
designed to allow stateless communication which facilitates scalability (see 3.1.2.5).

For the reasons presented above and having in mind the qualities of a good API (see
4.1), REST is considered a more suitable technique for designing Wahlzeit’s API and
accommodating mobile clients. In terms of simplicity and developer productivity, REST
does not add another abstraction layer and when used alongside HTTP, it uses common
internet concepts like operations and status codes.

The fact that there is a possibility to choose between multiple serialization formats has
an impact on overall API performance and on resource usage - clearly important to
mobile devices where battery and network data usage are valuable resources. (see
4.1.2). This fact also affects the flexibility of the API. Wahlzeit’s future clients might
require unpredictable representation formats. Hence, an API structure that allows
selecting message formats gives the opportunity to future developers to extend or adjust
the representation infrastructure if necessary.

If designed properly, a RESTful API might also take advantage of caching mechanisms
and stateless communication which will have impact on its extensibility and evolution
potential. Last but not least, assuming that the transport will be over HTTP, the security
mechanisms that are built-in the protocol will be available. Table 4.1 summarizes the
qualities of a good API and the reasons REST is considered a better choice for APIs
designed to accommodate mobile clients.

 23

API qualities Reasons for choosing REST to accommodate mobile devices

Usability (learning curve,
programmers productivity)

Does not require any additional tools and knowledge of the
WSDL interfaces and is easier to use as it uses common
networking concepts (URI, HTTP operations, status codes).

Performance (speed, power,
bandwidth consumption)

Allows choosing efficient serialization formats. Provides caching
mechanisms.

Extensibility and evolution
potential

When designed correctly it provides loosely coupled client-
server interaction allowing stateless and scalable
communication. Allows adjusting the data infrastructure to
communicate with unpredictable future clients. Changing
services in web provisioning does not require changes and
updates in mobile clients.

Robustness
Does not add an additional abstraction layer on top of the
transport layer and thus makes development in both server and
client side less error-prone.

Security Uses HTTP Security.

Table 4.1 API qualit ies and the reasons why REST is considered a better choice
for APIs designed to accommodate mobile clients.

4.1.2 Representation format design decisions

Message serialization formats allow systems with different implementations to
exchange information. Wahlzeit’s API should accommodate as many clients as possible
(according to Goal 2, Requirement 1), therefore choosing a well-established
serialization format that is supported by the native environments of most mobile
platforms is important and will facilitate the development process in the client’s side.
Furthermore, the API should allow transferring both text as well as binary data like for
example images. As described in the previous section serialization formats have an
impact on the mobile client’s bandwidth, power and resource consumption and affect
the overall performance of the API. Since the comparison of the data serialization
formats is beyond the scope of this paper, the serialization formats will be considered
according to the relevant literature (see 3.2).

Despite its widespread use, XML is considered extremely verbose and not well suited
for mobile environments. Parsing and generating XML messages is not a trivial task and
requires a serious amount of computing power. Furthermore, XML payloads have a
larger size compared to other formats which increases bandwidth consumption.

 24

On the other hand, JSON is considered as the most suitable format for mobile devices
and RESTful web services. All mobile platforms offer tools to facilitate processing JSON
messages. It requires less resources and time to be processed and its payload are
significantly smaller than its XML counterparts.

Binary formats like Google’s Protobufs and Thrift, are superior compared to XML and
perform slightly better than JSON messages (see 3.2). As a result, binary formats would
be a good choice in order to optimize performance. However, the transferred binary files
have to be re-compiled from the client application to assign the correct name-value pair
(see 3.2). As a result, using binary formats assumes that the mobile platform offers
libraries to parsed these messages. This fact could make the development process
much harder in case such libraries are not offered by the platform. Furthermore,
changing the message structure, would require updating the mobile client applications
according to the new name-value pairs.

For the reasons discussed above, JSON is considered to be the most suitable
serialization format for Wahlzeit in order to accommodate multiple clients, facilitate
development, and optimize performance. Furthermore, there are a lot lot of ways to
exchange binary data with a REST API by merely using JSON messages (details are
discussed in the implementation chapter, see 5.3.4). Hence, for simplicity reasons,
content negotiation is not necessary and JSON can be the only serialization format
which the API has to support.

4.1.3 Communication protocol design decisions

Wahlzeit is a web application that uses HTTP, to define the sequence of exchanges to
reliably transfer text and messages with web browser clients. This section, analyzes
whether it would be appropriate to use another protocol (see 3.2) for designing
Wahlzeit’s API to transfer messages and communicate with mobile clients.

For the same reasons discussed above (see 4.1.1) SOAP uses XML message encoding
which runs on top of other communication layers. However, for Wahlzeit there is no
need of using other data transport layer for transferring its context (text and images). In
order to keep things simple and be flexible in choosing the messages representation
formats, SOAP is not considered for designing Wahlzeit’s API.

WebSockets is a protocol which addresses some shortcoming of HTTP, by reducing
overhead and allowing serves push messages any time (see 3.2). This is useful for real-
time data transmission. Wahlzeit however, is not a real-time application (e.g. online
gaming, chat) that requires a persistent connection and receives updates every second.
Furthermore, WebSocket is a stateful protocol that might affect scalability, whereas
mechanisms that come along HTTP like caching, routing and compression have to be
defined on top WebSockets. Hence, the overhead produced by the requests Wahlzeit’s
case is negligible, and using WebSockets shall not bring any notable benefits.

 25

HTTP polling and long polling is another mechanism to address the fact that there is no
mechanism for the server to send data to the client without the client asking first (see
3.2). It allows asynchronous communication similar to WebSockets, though it is not a
protocol and uses known HTTP concepts. As a result, in favor of simplicity any
asynchronous communication necessary in the scope of Wahlzeit’s API could be
implemented using these techniques.

In this context, it can be inferred that Wahlzeit’s aspects do not suggest that using
another protocol than HTTP is necessary. Hence, the API’s design is expected to be
simple since there are no additional layers added on top of others and allow flexibility in
choosing message serialization formats. Last but not least, asynchronous
communication requirements could be fulfilled by using HTTP mechanisms.

4.2 API Design

After analyzing the design decisions, this section presents the process of designing the
API according to REST guidelines (see 3.1.2) and the HTTP protocol, as it has been
decided upon in the section above. The APIs message infrastructure will be discussed
later, when selecting the technology that will be used to implement the API (see 5.1).

For the design process, features and aspects of the existing web application have to be
taken into account. For this reason, user stories have been extracted by examining the
GUI and the features of the web browser client. Table 4.2 summarizes all those user
stories which are defined in the form: The API should offer a way to <do something>,
so that client applications can <achieve something>.

API US # The API should offer a way to So that client applications can

API US-1

Create client objects with different
access rights (User, Moderator).

Allow users to securely login or navigate
through the application’s content as guests.

API US-2 Modify client objects. Allow users update their profile settings
(name, gender, language, notification
settings)

API US-3 Create new photos Allow users to upload photos

API US-4 Retrieve the applications photos,
either all of them or only subset.

Retrieve the application’s photos.

API US-5 Retrieve photos that belong to a
particular client.

Allow a user to review his own uploads.

API US-6 Retrieve all image sizes associated
with a photo, or only images of some
particular size (Medium, Large etc.)

Actually display the photos of a particular
size.

API US-7 Modify a client’s photos Update the tags and visibility status of a
photo.

 26

API US-8 Delete some client’s photos Allow users to delete their uploads.

API US-9 Modify the praising value of photos Allow users to actually rate photos.

API US-10 Create photo cases Allow users to flag photos.

API US-11

Administrators to retrieve all photo
cases

Display all photo cases to the administrator .

API US-12

Administrators to modify photo
cases

Allow administrators decide on the action to
be performed in each photo case.

Table 4.2: API user stories as extracted from the current web application.

4.2.1 Resource identification and URIs construction

In this subsection the logic of defining resources from the extracted user stories (Table
4.2) will be presented. Furthermore, identifiers (URIs) have to be assigned to each
resource. The logic and naming conventions for constructing these URIs will also be
discussed. It is assumed that Wahlzeit’s API is accessible under the hypothetic path
http://www.wahlzeit.org/restApi/.

The main concepts of the web application are the main candidates for becoming primary
resources (see 3.1.2.1). Wahlzeit is a photo rating application, so photos are identified
as a primary resource. Other primary resources are the clients and the photo cases.
Primary resources are also designed as list-resources in order to manage them as
collections. For the URI of those resource plural is used, so they can be identified as
collections. An individual resource can be accessed by appending its Universal Unique
Identifier (UUID) (for example clientId, photoId etc.) to the end of each path. The following
URIs represent the paths for accessing and performing operations to the photos’
collection and an individual photo respectively.

http://www.wahlzeit.org/restApi/photos

http://www.wahlzeit.org/restApi/photos/{id}

Collection resources like photos or photo cases might contain a large amount of
resources whereas client applications might need to retrieve only a subset. For
instance, according to US 5 client applications may need to retrieve only the photos that
belong to a particular user. For retrieving subsets of primary resource, REST offers
mechanisms like filtering and pagination (see 3.1.2.1). There are many ways to
construct URIs that will reflect those mechanisms. For this design, query parameters
are preferred for their expressiveness and simplicity. For instance, an API user can
either omit query parameters and retrieve the whole list or use query parameters to
define a subset. The following URIs represent the links for accessing the photos of a
particular client (specified using his clientId) and using pagination to limit the amount of

 27

retrieved photos (limit) on each request. For pagination, an indicator parameter (cursor)
is required to help browsing through results.

http://www.wahlzeit.org/restApi/photos/?clientId={id}

http://www.wahlzeit.org/restApi/photos/?limit={resultsPerPage}& cursor={nextPageToken}

Resources can be also related to each other. Each photo for instance has various image
sizes, according to the US 6. At this point it is important to distinguish the difference
between photos and images in the scope of Wahlzeit. Images refer to the actual binary
image file that is stored in various sizes. Photos refer to all metadata and information
that make up a photo object (tags, praising, visibility status etc.). Hence, there is a one-
to-many relationship between photos and images. Images are defined as sub-resources
(see 3.1.2.1) and for this design they will be embedded in the representation of photo
resources. The reason for doing this, is to allow client applications perform operations
on photos (e.g. updating tags, praising) without having to transfer data related to the
image. The relationship between these resources is depicted in the relevant URI.

http://www.wahlzeit.org/restApi/photos/{id}/images

It is also likely that Wahlzeit’s clients might only need to work with particular image sizes,
that fit to their screen’s size. Rather than accessing the full set of fields offered by a
resource, it is possible to be very precise as to which fields are included or excluded.
For this case, REST offers the projection mechanism (as described in 3.1.2.1). For this
design, resource projection will be also represented by the URI and the relevant query
parameters. The following path provides access to images of the specified image size.

http://www.wahlzeit.org/restApi/photos/{id}/images?imageSize={size}

Except from static resources, there are also resources that are associated with actions.
According to US 10 for instance, clients should be able to rate photos. Hence, rating is
identified as an activity-resource which is not associated with a model in the
application’s persistence layer. However, this action is executed frequently and
dedicating a resource to it makes the task more explicit. The URIs for such resources
are constructed by adding a verb to describe the action. The following URI is used to
represent the rating action related to an individual photo.

http://www.wahlzeit.org/restApi/photos/{id}/rating

Following a similar process, resources are identified and URIs are constructed for the
other primary resources, namely the clients and photo cases. The following section
describes the process of assigning operations to the defined resources.

4.2.2 Assigning operations to the defined resources

Unlike other approaches, REST does not define verbs or methods to perform specific
functions. Nevertheless, HTTP operations define the type of actions to be performed by

 28

each request. This section, will present the process of allocating HTTP operations (as
described in 3.1.2.2) to the identified resources, according to the APIs user stories
(Table 4.2). The photos’ primary resource as well as its sub and activity resources will
be used as running examples.

According to US 4, client applications should be able to retrieve the applications photos.
The /photos list-resource contains all photo resources. Hence making a GET operation
to this resource should return the entire collection. By using query parameters and
defining the URIs for filtering and projection, and thereafter performing a GET, client
applications should retrieve only the photos that belong to a particular user (see US 5)
or limit the amount of returned resources respectively. Likewise, making a GET request
to sub-resources like images (/photos/{id}/images) should either retrieve all images
associated with a photo, or the image sizes specified by the request parameters (US 6).

For allowing client applications to upload photos, according to US 3, making a POST
request to /photos should create a new resource along with its associated images and
add it to the collection (see 4.2.3, for explaining this decision). Client applications might
also need to perform actions that can not be matched by any HTTP operation. Such an
action for example is rating photos (US 9). For such cases, POST is used. Hence, by
making a POST request in the rating activity-resource (photos/{id}/rating), a “rating task”
is delegated to the API. It is also important to understand that since POST is not
idempotent, performing the same request multiple times will create identical photo
resources or praise a photo multiple times with the same praising value. Last but not
least, the response to a POST request will also contain the created resource’s
representation.

According to US 7 and US 8 client application should be able to update (tags, visibility
status) and delete individual photos. This can be achieved by interacting with the
individual photo’s URI (/photos/{id}). In this case, making a PUT request should update
the relevant photo’s content, whilst a DELETE request should delete the resource from
the server. Both operations are idempotent, therefore trying to modify or delete the same
resource multiple times will not have any side effects. The response in a PUT request,
should also contain the updated resource’s representation.

Following a similar approach, HTTP operations are allocated to the other identified
resources. Table 4.3 gives an overview of all identified resources along with their
assigned HTTP operations.

 29

Resource URI Operations Usage

List of all clients /clients POST Login

Client /clients/{clientId} PUT Change profile settings

List of all photos /photos
GET Retrieve all photos

POST Upload photo

Filtered photo list /photos/?clientId GET Retrieve client’s photos

Paginated photo list /photos/?limit&cursor GET
Retrieve a subset of all
photos

Photo /photos/{photoId}

GET Retrieve a single photo

DELETE Delete a photo

PUT
Change tags and visibility
status

List of all images /photos/{photoId}/images GET
Retrieve all images for a
specific photo

Projected image list
/photos/{photoId}/images

?imageSize
GET

Retrieve images according to
the specified image size

Praise /photos/{photoId}/praising POST Rate a particulatrphoto

List of all photos
cases

/photocases/
POST Flag photos

GET Retrieve all photo cases

Photo case /photocases/{photocaseId} PUT Decide on photo cases

Table 4.3: Overview of Wahlzeit’s resources

4.2.3 Achieving stateless communication and defining navigation possibilities

REST principles suggest avoiding stateful communication and enclosing all necessary
information with each request, enabling the server to process them independently (see
3.1.2.5). Furthermore, the HATEOAS concept suggest that client agents should be able
to determine what actions can be performed based on the current application’s state
(see 3.1.2.3). This section discusses how these principles shall be fulfilled by the API.

Wahlzeit 2.0 extensively uses session instances to store various information and relate
the requests that come from a particular client. When a user uploads a photo for
example, the session stores the tags and the file’s location which are used later when
processing the request, for constructing and saving the photo object. Moreover,
sessions keep track of the photos a user has praised to avoid having the same photo
praised multiple times by the same user. To achieve stateless communication,
information about tags and praised photos will be included to the photo and the client

 30

resources respectively. This allows both the server as well as client applications to
interpret and process the information enclosed with a resource, without having to
associate any requests or use sessions.

To conform to the HATEOAS concept, resources have to enclose all the links that reflect
the navigation possibilities. Hence, client application can perform actions based on
these links. However, decisions on what requests will be sent are made when the client
applications that integrate the API are written. As a result, client applications would not
be able to handle significant API changes without breaking. Therefore, although
HATEOAS is promising, Wahlzeit’s API will not be fully implementing this concept.
Nevertheless, resources will contain resource identifiers and some navigation
possibilities in case standards and tooling will be defined around this concept in the
future. For instance, individual a photo resource should contain a link to the resource
itself (identifier) as well as links to its images and rating resources. The same applies
for the client and photo case resources.

The following diagram (Figure 4.1) describes the design of Wahlzeit’s RESTful API, by
illustrating resources as well as the relationships and paths between them. It is a hybrid
web API/information model diagram, based on Unified Modeling Language (UML) and
inspired by IBM guidelines (IBM, 2011). Classes are identifiable as resources by writing
<<Resource-Type>> above the class name. In order to model URIs, Path Dependencies
are defined by writing <<Path>> and the relevant URI next to each arrow. Path
dependencies show the direction of the relation between two resources. Each
resource’s URI can be inferred by following the path dependencies from the application
class to the relevant resource.

Figure 4.1: Class diagram describing resources and their relevant URIs

 31

5 Implementation

Having defined a design for Wahlzeit’s API, this chapter chooses a technology for its
implementation (5.1). Thereafter, the chosen technology is described (5.2) and the
process for extending and adapting the existing codebase to the defined design is
presented (5.3). Last but not least, a client application running on Android is designed
and implemented (5.4).

5.1 Selecting a technology to implement Wahlzeit’s API

APIs can be developed either by simply using a web browser and some HTTP library
or one of the numerous development frameworks available for any programming
language (Bouguettaya et al., 2013). Development frameworks incorporate many
libraries in a set of cooperating classes that make up a reusable design, and thus
facilitate the development process significantly. This section extracts decision criteria
for selecting an appropriate framework to implement Wahlzeit’s API, by taking into
account the design decisions made in the previous chapter (4.1) and the goals set for
this thesis (Goal 2). Afterwards, frameworks that fulfill these criteria are detected and
the most suitable is selected.

First of all, according to requirements 3 and 4 of the thesis’ Goal 2, the implemented
service has to comply with the existing infrastructure whereas the current interface
should remain functional. Wahlzeit 2.0 is a Java web application that conforms to GAE’s
standards and is deployed on top of Google’s infrastructure. Thus, the selected
framework should support Java programming language and be compatible with
GAE’s infrastructure. This is defined as the first selection criterion.

Secondly, according to the decision made upon the representation format (see 4.1.2),
the API has to support at least the JSON format. Any additional format supported by
the selected framework might be useful for unpredictable future clients. However,
supporting JSON is mandatory. This makes up the second selection criterion.

An important aspect that defines the quality of an API is its simplicity in being integrated
by client applications. The 5th requirement of the thesis’ Goal 2, suggests that the API
should be easy to use in order to develop future clients. As a result, the selected
framework should be adequately documented and include examples of complete
request/response examples. Moreover, several frameworks allow generating client
stubs and in this way further facilitate client-side development. In this regard,
frameworks that support client-libraries generation, for the main mobile providers will
be preferred. Last but not least, frameworks that offer additional mechanism to secure
the API and support asynchronous communication will be favored. Hence, adequate
documentation, generating client stubs for mobile platforms and providing additional
mechanisms make up the 3rd, 4th and the 5th selection criteria respectively.

 32

An overview and comparison of all framework vendors goes far beyond the scope of
this paper. For this reason, the most popular frameworks that more or less fulfill the
criteria specified above are considered as candidates. Such frameworks are Jersey,
RESTeasy, Restlet and the solution offered by GAE called Google Cloud Endpoints
(GCE). All these frameworks implement the Java API for RESTful Web Services (JAX-
RS) which is a framework that provides support for creating web services in Java, by
defining how to publish Java code as a RESTful API using annotations (Hadley, 2009).

According to the first criterion, all frameworks mentioned above support Java. However,
GCE is considered a better option for fulfilling this criterion as it is perfectly compatible
with the GAE. Any potential change in the GAE infrastructure is expected to be included
and reflected by its feature (GCE). Furthermore, according to the second criterion each
of these frameworks supports JSON representations, whereas RESTeasy supports the
largest variety of representation formats (XML, JSON, Atom etc.) compared to the
others. According to the 3rd criterion, all candidate frameworks provide adequate
documentation and examples over the internet. Hence, it is impossible to identify a
better option in this case. Moreover, according to the 4th criterion, GCE offers a feature
for generating client libraries for Android, iOS and Javascript clients, whereas other
frameworks would require using some third party library for this purpose. Finally, all
frameworks offer additional mechanism to support security and asynchronous
communication, specified in the 5th criterion.

For the reasons discussed above, GCE is considered the most suitable technology for
implementing Wahlzeit’s API. Table 5.1, summarizes the defined criteria and shortly
describes how and whether or not they are fulfilled by GCE.

Criteria Google Cloud Endpoints Fulfilled

1. Java support and GAE
compatibility

Supports Java and is actually a feature of GAE

2. JSON support For now, only JSON format is supported

3. Adequate documentation
and examples

Google’s official documentation and running
examples are accessible over the internet.

4. Auto-genereted client stubs
Offers libraries to generate client code for
Android, iOS and Javascript.

5. Additional built-in
mechanisms

Offers built-in OAuth2.0 support and Push
Notifications for asynchronous communication

Table 5.1: An overview of how Google Cloud Endpoints fulf ills the specified
selection criteria

 33

5.2 Description of Google Cloud Endpoints

Google Cloud Endpoints, consists of tools, libraries and capabilities that are used to
develop APIs from an App Engine application (Google, 2016a). It is a Mobile Backend
as a Service (MBaaS) solution offered as a GAE feature to simplify API management
and development process by offering an extensive list of features. This section
describes GCE basics and the features that have been used to implement Wahlzeit’s
API and the Android client. These features facilitate the process of converting the
existing GAE code into a backend API.

Simple annotations are used to decorate native code. As long as they are used
properly, GCE will recognize parts of the application as parts of the API. For example,
the @Api annotation is used in Java classes to expose all their public, not-static and
non-bridging methods to the public API (Google, 2016b) and define generic API
configurations. The @ApiMethod annotation is used to expose a single method and
define the HTTP operation and the path of the relevant request to be executed in order
to call this method. In this way, resources can be mapped into methods and query
parameters into method parameters. GCE supports Java’s primitive data types,
collections and Plain Old Java Objects (POJOs) and recognizes them as query
parameters. Annotations @Named and @Nullable are written before method parameters
to name a query parameter and indicate whether the parameter is optional. Last but not
least, @ApiResourceProperty annotations are used to decorate class variables and
methods, and provide more control over the way resource properties are exposed to
the API.

Assuming that the backend API is annotated properly, GCE can build Android, iOS and
Javascript client libraries as well as discovery documents, so each client application
can use similar libraries. Thus, GCE facilitates development across multiple platforms.
Client libraries contain service objects that help constructing and executing requests.
Client libraries also contain all necessary POJO files that are used in the backend’s
methods, either as method parameters or as return values. Hence, clients avoid
constructing requests using JSON directly, and focus on their native development
language. Furthermore, discovery documents describe the surface of a particular
version of an API and provide information about its resource schemata, authentication
scopes and methods (Google, 2016c).

Another feature offered by GCE, is its built-in OAuth2.0 support that secures the API
and restricts all or parts of it to be accessible only by authorized applications. By using
the Google Cloud Platform Console5, authorized clients are specified by generating
client identifiers (clientIds) using client secrets. For example, an SHA1 fingerprint is used
as a sercet to register Android clients. At runtime, a client application is granted the
authorization token it needs to send requests to the API backend if its client secret

5 https://console.developers.google.com

 34

matches a client ID within the backend's client ID whitelist (Google, 2016d). By adding
a User parameter to the API’s backend method, GCE automatically authenticates the
user by looking up its client secret in the relevant client ID list. Hence, the development
effort that would otherwise be needed to secure the API is eliminated.

To conveniently navigate and explore an API, GCE offers Google API Explorer that
allows developers read docs and execute requests against an API from a web browser.
This tool runs automatically by adding the _ah/api/explorer suffix to the website’s URL,
and works either locally or on a deployed version over the internet. Its GUI helps
constructing authorized or unauthorized request and specify the relevant query
parameters. Figure 5.1 shows the response on a request made to some photo’s images
resource (/photos/{photoId}/images?imageSize) in Wahlzeit’s API.

Figure 5.1: Using Google’s API Explorer to retrieve the images of some photo in
Wahlzeit’s API.

 35

5.3 Essential API implementation steps

Hereby, the API’s implementation process is described. The following sections reflect
phases and important steps of the development process. The first two sections (5.3.1
and 5.3.2) portray the procedure of setting up the environment and writing the API.
Sections 5.3.3 and 5.3.4 describe the process of adjusting Wahlzeit’s model classes
and transferring images over the API respectively. Finally, section 5.3.5 outlines the
migration effort for adjusting the authorization method to OAuth2.0 standards as
necessary.

5.3.1 Setting up the environment

Wahlzeit can either run locally or be deployed to GAE for broader accessibility. Gradle
building tool downloads all necessary libraries and manages dependencies for the
application to build and run properly, and is responsible for deploying the application to
the cloud. This section outlines the additional adjustments that are required to write and
deploy Wahlzeit’s API and take advantage of GCE’s features in order to secure the API
and generate client libraries (as described in 5.2).

To write and deploy the API, the Appengine Local Endpoints 1.9.8 library has been
added as a dependency to Wahlzeit’s build.gradle file. By synchronizing and building the
project, the relevant GCE libraries are added to the project. These libraries contain all
necessary GCE classes needed to write annotations and define API related
configurations.

For generating client libraries, the endpoints closure has been added within the
appengine closure and the getClientLibsOnBuild and getDiscoveryDocsOnBuild attributes
have been specified. These attributes, when set to true, download the client libraries
and the discovery documents before the war task is being called. These libraries will be
later used by the Android client to make requests to the API.

To run the API a new servlet is needed to handle the requests sent to the API. In this
regard, the SystemServiceServlet has been added to the web.xml file. This file manages
and distributes the ingoing requests to the appropriate servlets. For API calls,
applications send their request to the _ah/api path and the backend handles these
requests at the _ah/spi path. Behind the scenes, each request sent to an endpoint is
mapped by the SystemServiceServlet to a request in the endpoints service provider
(endpoints classes as described below). Hence, all API classes have to be explicitly
defined in this servlet, in order for the API requests to succeed.

To make requests and secure the API, configuring the Google Cloud Project in the
Google Cloud Console Platform is necessary. Wahlzeit 2.0, requires a cloud project to
be able to deploy an application instance to the cloud and manage its database entries,
keep track of its logs etc. For accessing the API, configuring this cloud project was
necessary. Specifically, clientIds have been created to define Android and Web

 36

applications that are authorized to make API request (as described in 5.2, OAuth2.0
support). For obtaining an Android client ID, the cloud project requires the SHA1 key to
register the Android client’s package name to the allowed clientIds whitelist. This, client
ID is later used for making authorized requests from Wahlzeit’s Android client.

5.3.2 Using Google Cloud Endpoints to write the API

Endpoint libraries do a lot of work behind the scenes to map API requests to Java code.
This section describes the process of writing Wahlzeit’s API as designed above (see
4.2). The design is implemented by writing Java classes and methods and annotating
them appropriately.

According to the defined design, three endpoint classes are written, one for each URI
path (refer to Figure 4.1). These classes contain methods to handle the requests made
to each resource. In order to map incoming API requests to be handled by these
endpoint classes, the name of each class is declared in the SystemServiceServlet so it
can be identified as a service provider from the backend.

Using the correct annotations allows converting the Java classes to Cloud Endpoint
classes. These classes are decorated with the @Api annotation to specify generic API
configurations. Hence, a name, a description and a version are specified. The clientIds
attribute is used to specify which clients are authorized to execute requests. In addition,
the audiences attribute is required in case the API supports requests from Android clients
(Google, 2016b). Moreover, the scope attribute is declared to specify which OAuth2.0
scopes are required to be granted, in order to access this method. Thus, client
applications request the user to grant access according to the specified scopes so they
can access the API. The following snippet depicts the @Api annotation with its specified
attributes, as used in PhotosEndpoint.class (Figure 5.2).

Figure 5.2: API-scoped annotation to convert a Java class into an API class.

@Api(name = "wahlzeitApi",

 version = "v1",

 description = "A multiclient API for Whalzeit",

 clientIds = {

 Constants.WEB_CLIENT_ID,

 Constants.ANDROID_CLIENT_ID,

 API_EXPLORER_CLIENT_ID },

 audiences = {

 Constants.WEB_CLIENT_ID,

 Constants.ANDROID_CLIENT_ID },

 scopes = {

 https://www.googleapis.com/auth/userinfo.email }

)

public class PhotosEndpoint { ... }

 37

Identical annotations are used to decorate the other two endpoint classes
(PhotosCasesEndpoint, ClientsEndpoint). Moreover, a Constants.java class is used to store
all client IDs generated in the Google Cloud Console Platform, as shown in the snippet
above.

Method-scoped annotations (see, Figure 5.3) allow mapping Java methods to API
methods (resources). The @ApiMethod annotation is used in each method to configure
the request’s parameters. The annotation’s path attribute is used to shape the URIs of
each resource to fit the defined URIs of the design (Google, 2016b). In some methods
the httpMethod attribute is specified to declare the HTTP operation that should be
enclosed with the request in order to call this method. When this attribute is omitted
GCE does some clever work behind the scenes and uses the method’s name to assign
the correct HTTP operation. Moreover, method names are declared which are then
defined in the generated client libraries and are used by the Android client to construct
requests.

Additionally, method parameters can be annotated to match request parameters. The
@Named and @Nullable are used to map query parameters to method parameters and
specify the optional character of a parameter respectively. Moreover, the injected types
User and HttpSerlvetRequest method parameters are specified, as required by GCE to
secure API methods and determine information about the request on runtime.

The snippet below (Figure 5.3) shows the signature of the API method written to handle
handle the task of retrieving some photo’s images based on the specified images sizes
(/photos/{photoId}/images?imageSize). An authorized request on this method using API
Explorer is illustrated in Figure 5.1.

Figure 5.3: Method-scoped annotations for mapping a Java class to an API class

The API methods defined in each Endpoint class instantiate and use objects of classes
that belong to the web application, to perform several tasks. For example, the images

API method depicted above accesses the single object of the PhotoManager class, to
fetch the relevant photo from the database and henceforth retrieve its images. Other,
API methods use objects in a similar way to perform CRUD operations, without directly

@ApiMethod(name = "images",

 httpMethod = HttpMethod.GET,

 path = "photos/{photoId}/images")

public Collection<Image> listAllImages (

 User user,

 @Named("photoId") String photoIdAsString,

 @Nullable @Named("imageSizes") PhotoSize[] sizes

) throws UnauthorizedException { ... }

 38

accessing the persistence layer. An overview of how API methods and the application’s
classes are related to each other is given in the diagram below (Figure 5.4), which
extends the API’s resource diagram presented above.

Figure 5.4: Class diagram describing Wahlzeit's resources and their relation to
classes of the web application.

5.3.3 Adjusting Wahlzeit’s model classes

All API methods, return objects or object collections that are converted by GCE libraries
into JSON representations. Wahlzeit’s backend services uses the POJO classes
located in org.wahlzeit.model package for this purpose. However, these objects were not
designed to be converted and used as messages. Hence, adjusting these objects
according to the API’s and Android client’s needs is necessary.

Wahlzeit’s model classes contain information irrelevant to the client applications. For
example, a Client object provides getter methods for its writeCount which is relevant to
the persistence layer. Furthermore, it exposes its httpSessionId and language
configuration which are relevant to the browser’s user session and UI template
respectively. This redundant information could lead to unnecessary overhead and

 39

increase response times. For this case, the annotation @ApiResourceProperty is used to
decorate either class variables or their getter methods, in order to omit these properties
from a resource’s representation. This annotation is extensively used in other objects
such as Photos and PhotoCases, and their related classes.

Often Wahlzeit’s model objects contain less information than needed to perform specific
tasks. As discussed during the design phase (see 4.2.3), to achieve stateless
communication and avoid the need of relating requests to each other, resource
representations have to contain all relevant information needed to perform specific
operations. For example, Photo‘s representation does not provide any information about
the rating value and the praising client. Thus, it would be impossible to determine this
information, which in the web application is stored and retrieved from the user session.
To solve this issue, relevant class variables and getter methods have been defined in
the Photo, Client and PhotoCases classes.

5.3.4 Transferring photos and images appropriately

As discussed during the resource design (see 4.2.1) photos refer to objects in the scope
of Wahlzeit which along with other metadata (tags etc.) are associated with image of
various sizes (binary data). As mentioned during the representation format design
decisions (see 4.1.2) there are many ways to transfer images that are associated with
a photo, without having to support content negotiation. To achieve this, images and
photos can either be sent in separate request or together in one request.

For sending photos and image files in separate requests, the server should be
configured accordingly. For example, when a client would like to make an upload, he
should initially send a request with the photo. For the relevant photo, the server should
generate URLs to which images could be uploaded and send these URLs in response.
Thereafter the client could post images to the specified URLs. Oppositely, when a client
would like to download a photo’s images, he should send a request with the photo and
the server should send the image’s URLs in the response, which the client could use to
download the image files. This approach would have an impact on stateless
communication as discussed during the design phase (see 4.2.3), and would require
the client and the server to associate requests.

According to the second approach images and photos could be sent in the same
request right away. The easiest and most compatible way to send all data in one
request would be to serialize a photo’s images into some binary serialization format and
include them to the resource as properties. A common binary serialization format would
be for example Base64, which is also used to save images to Google Cloud Storage.
This would allow photo resources to enclose all relevant information. However,
transforming binary data to text representation increases the size of the transferred
message.

Wahlzeit’s API uses a combination of both approaches to upload and retrieve images.
When a client application makes an upload, an image is enclosed in the photo’s

 40

resource representation, serialized in Base64 format. When the server receives the
request he is responsible for generating and saving the images in various sizes. This
way, the burden for processing and generating images is removed from the client and
an upload task can be handled by a single request. The overhead of transferring only
one image in Base64 format should be negligible.

To download a photo, clients have to initially retrieve the photo’s resource and thereafter
request and retrieve an image of their preferred size. Although, this requires the client
to associate the requests it allows retrieving only the relevant image size.

5.3.5 Adjusting the authorization method

Wahlzeit 2.0 is an application that uses the ClientLogin API to allow user to login the
application, by redirecting them to the appropriate login page. However, the technology
was deprecated and permanently disabled in May 2016. As a result, although not
relevant to the API, the login process had to be adjusted according to the suggested
OAuth2.0 standards and in this way, an outage in Wahlzeit’s ability to access the App
Engine services has been prevented.

For Wahlzeit to access Google’s Oauth2 API and retrieve information about the user
(like name, gender etc.) a standard process has to be followed (depicted in Figure 5.5).
First of all, the application should obtain client credentials from the Google Developers
Console Platform. Henceforth, by using these credentials the application would be able
to request an access token from Google’s authorization server. In case a user logs in
with his Google account and consents to grant access to the requested scopes, the
authorization server replies with an authorization code. Thereafter, this authorization
code has to be exchanged with an access token. Finally, the access token can be send
to the preferred Google’s API (Google+, UserInfoPlus) and in this way query information
about the user’s profile. The implementation of this process is described below in more
detail.

Figure 5.5: Overview of the authorization flow (Adjusted from Google, 2016e)

 41

Obtaining OAuth 2.0 client credentials from the Google Developer Console allows
Google to identify Wahlzeit as an authorized application and is required to allow the
application to send requests to the authorization server. For convenience, these
credentials have been extracted into a JSON file named client_secret, which has been

saved in the application’s source code. Furthermore, an AuthenticationUtil class has been
written to read the client secrets from the file and further support the authentication
process.

Google’s authorization server requires Wahlzeit’s users to log in their account and
thereafter a consent screen is displayed. This consent screen asks users whether
Wahlzeit is permitted to have access to specific scopes. To define which scopes will be
used in the consent screen, the relevant scope values are defined in the
AuthenticationUtil class. Hence userinfor/email and userinfor/profile are defined so that
Wahlzeit will request access to users’ email addresses and profile information
respectively. Those scopes are preferred over others since they do not require access
to sensitive information like for example list of circled people, list of installed Android
apps etc. In this way, it is less likely that suspicious users will decline permissions to
Wahlzeit.

In case a user consents to allow Wahlzeit access the defined scopes the authorization
server replies with a callback, which contains the authorization code. The server
uses the web page’s URL and the /oauth2callback suffix to send the callback to Wahlzeit.
Thus, a new AuthenticationCallbackServlet class has been written to handle this callback
and further support the authorization flow.

This class is responsible for exchanging the authorization code with an access
token, which is thereafter used to make a request to the User Info Plus API. In this
way, information about a user’s Google profile are retrieved and used to register a new
Wahlzeit client and allow him to access the restricted features of the application, which
are available only to authorized users. Since the access token has a limited lifetime for
about an hour, refresh tokens can be used to obtain new access tokens in case
additional request need to be sent.

5.4 Essential Android client implementation steps

This section gives an overview of the process that has been followed to implement
Wahlzeit’s Android client. For code editing, debugging and an instant deployment
environment, the official IDE suggested by Google (Android Studio 1.5.1) and the
Android SDK 6.0 have been used. User stories were extracted from the web
application’s features (see Appendix A) and emphasis was given in interacting with the
API and helping users quickly and intuitively discover the application’s content.

 42

5.4.1 Defining the main navigation pattern and designing screens

Applications on mobile devices are much different than web applications. Screens are
smaller and users use touch gestures instead of pointers to interact with the application.
Hence, an efficient GUI design has a major impact on the development process and the
overall performance of the application (Wasserman, 2010). By taking into account the
web application’s user interface, this section chooses an appropriate main navigation
pattern. Furthermore, the necessary number of screens is determined, and for each
screen mobile UI components are selected to match the relevant components used in
the web application. The resulting screen diagram is depicted below (see Figure 5.6).

The main navigation pattern is expected to facilitate users navigate and discover the
applications content. Wahlzeit’s web application uses a single level navigation bar menu
which populates when a user logs in according to his access rights. Since the number
of menu categories might be more than six (in case the user has administrative rights)
and there is no need to display the navigation options to the user constantly, a transient
navigation pattern is recommended (Neil, 2004). Transient in this context, means that
the navigation options are hidden and can be revealed with a tap or gesture whenever
a user needs to navigate to a different screen. Hence, a vertical sidebar (known as
navigation drawer) will be used. This sidebar will accommodate the same navigation
option as the web application, and populate accordingly.

By considering the navigation options of the web application a series of screens is
identified (show, tell, home, profile, upload, moderate). These screens should be
accessible through the navigation drawer, hence they are depicted in the same raw in
the screen diagram (see Figure 5.6). On top of these screens, a login screen is defined
as a welcome screen, to allow the users to login or continue as guests. In this way, the
access rights will be determined and thereupon the navigation options. Similar to the
web application new screens will be used when a user chooses to flag or edit a photo.
Finally, to share, take or choose existing photos the devices e-mail, camera and gallery
applications, installed in the device, will be used respectively.

The following diagram (Figure 5.6), outlines the hierarchy of the defined screens. The
arrows imply that one screen is directly reachable through the other.

 43

Figure 5.6: Screen diagram for users with different access rights

Android provides a variety of pre-built UI components that match the GUI components
used in the web application. As a result, editable text views, text views, and spinners
(dropdown boxes) will be used (Android, 2016i). Furthermore, the radio buttons used
for rating will be replaced with a ten-star rating bar, and instead of checkboxes switch
buttons will be used throughout the application.

Further mobile UI patterns have to be used in order to implement other features of the
web application. For example, the show page shows all uploaded photos one at a time,
and allows users to rate or perform actions on each photo individually. To achieve this
on the mobile client, a card stack will be used. Each card will display a single photo,
whereas only the card on top of the stack will be visible. This way, skipping will be
possible by swiping the cards off the screen towards any direction.

Last but not least, the web application provides constant access to some global settings.
In this way, users may for example modify the language settings (English, German)
from any page. For the mobile client language options will also be accessible from each
screen by using the application’s action bar. Hence, users will be able to change the
language, and the whole application will be reloaded accordingly.

5.4.2 Writing Wahlzeit’s Android client

Having defined the number of the application’s screens and how they relate to each
other, this section describes how Android components (described in the literature
review, see 3.4.2) have been used, to implement the defined screen design.

 44

In order to allow users to login the application or continue as guests a LoginActivity class
has been defined and is the first activity (see 3.4.2.2) that is launched when the
application is started. This activity is responsible for triggering asynchronous requests
(see 3.4.2.4) to Google’s authorization server and Wahlzeit’s backend API. Having
determined the user’s access rights, the activity uses an intent to launch the
MainActivity.

The MainActivity is responsible for creating and populating the navigation drawer
(sidebar) according to the relevant access rights. Android guidelines suggest using
fragments (see 3.4.2.3) to switch between screen layouts into a content area (Android,
2016j). Hence, all the screens of the second row of the defined screen hierarchy (show,
tell, home etc.), will be composed using fragments. The navigation drawer manages the
lifecycle of those fragments and displays them on top of the MainActivity’s layout. Each
of those fragments is displayed when the relevant option is selected. Moreover, the
factory pattern (Gamma, 1995) is used to create instances of Wahlzeit’s fragments, and
in this way the fragments’ creation logic is hidden from the MainActivity. Figure 5.7 gives
an overview of this implementation.

Figure 5.7: Class diagram that depicts the factory pattern used to create fragment
objects by the MainActivity.

Activities are also used to compose the screens for editing and flagging a single photo.
All activities defined are subclasses of the BaseActivity abstract class (as shown in
Figure 5.7 for the MainActivity). This class is responsible for adding options to the action
bar and performing actions when a user makes a choice. Hence, the action bar is

 45

available throughout the application’s screen and can be used to switch the application’s
language anytime.

All activities and fragments are related to layout files in the application’s resources
directory (res) (see 3.4.2.4), which are used to specify and construct the layout of each
screen. The resources directory also contains drawables that are used to display
Wahlzeit’s logo in the login screen or decorate the navigation drawer’s options.
Moreover, in order to support both English and German, text representations in both
languages have been created.

As described above, Wahlzeit’s mobile client will use the device’s installed applications
to access mobile built-in features. To achieve this, TellFragment and UploadFragment will
send action broadcasts to delegate tasks to the e-mail, camera and gallery application.
Those applications receive the broadcasts and provide their resources to perform the
assigned tasks. Wahlzeit itself also acts as a broadcast receiver to perform operations
in response.

Last but not least, to allow the application to send broadcasts, intents, and determine
which permissions are required, in order to access the internet and protected parts of
the OS, all relevant information is declared in the application’s Android manifest file.
This file is also responsible for defining the application’s components structure. In this
way the LoginActivity is defined as the first activity to start the application and parent
activities are specified to navigate appropriately when the back button is tapped.

5.4.3 Using the generated client stubs to interact with Wahlzeit’s API

Having defined the application’s components and how they connect to each other, this
section explains how the application uses GCE generated client libraries to authorize
and interact with the backend.

The very first time the application is started, the login activity launches an AccountPicker

instance that prompts the user to choose from a list of his accounts, and thereafter
stores the account to a native file called SharedPreferences. This account will be used to
allow the application access Wahlzeit’s backend. Hence, the login activity is responsible
for constructing a Google account credential, that is used to make authorized API
request. If a user chooses to login, a request is sent to OAuth2.0 server to retrieve
information about the user’ profile. This information is used to construct a Client object,
which is then posted to the backend asynchronously (see Wahlzeit’s /clients resource in
Table 4.3).

To interact with the backend, the Android client uses the auto-generated client libraries
in Java (see 5.2). The library’s service objects are named according to the specified
method names, declared when annotating the API‘s methods (see 5.3.2). To construct
a request, the client application refers to those names. The service objects are also
used to specify the required query parameters. Hence, the Android client can interact
with the API by using native code only.

 46

By using the client libraries, synchronous requests are sent to the server, which blocks
the main thread and waits until the server responds. Since Android does not allow
blocking its main thread (see 3.4.2.4) all API calls will be executed inside asynchronous
tasks. After receiving the parsed response, the relevant information will be stored
dynamically in a utility class and the registered application component will be notified
accordingly (see 5.4.4, when describing how the singleton and observer patterns have
been used).

Figure 5.8 shows the snippets of code used in an asynchronous execution to retrieve
some specific image sizes of a photo (refer to the API methods, see Figure 5.3). To
achieve this the credential property constructed from the chosen account is used to
construct an API service handler. This handler is used to construct a Wahlzeit’s API
request object (getImagesRequest) and pass the relevant query parameters, namely the
photo’s UUID (photoId) and the relevant images sizes (large, medium etc). When the
execute() method is called, the request is sent to the server and the parsed response is
received.

Figure 5.8: Using endpoints generated libraries to make an authorized request to
Wahlzeit's API Images resource.

 /* API method */

@ApiMethod(name = "images",

 httpMethod = HttpMethod.GET,

 path = "photos/{photoId}/images")

public Collection<Image> listAllImages (

 User user,

 @Named("photoId") String photoIdAsString,

@Nullable @Named("imageSizes") PhotoSize[] sizes

) throws UnauthorizedException { ... }

 /* Snippets used in the Android client */

WahlzeitApi wahlzeitApi = new WahlzeitApi.Builder(HTTP_TRANSPORT,

 GSON_FACTORY,

 credential).build();

WahlzeitApi.Images getImagesRequest = wahlzeitApi.images(photoId)

 .setImageSizes(Arrays.asList("LARGE”);

ImageCollection getImagesResponse = getImagesRequest.execute();

 47

5.4.4 Abiding to OOP and Android’s design principles.

Wahlzeit’s web application, serves as a solid codebase to facilitate developers build
their own photo sharing applications. Similar to the web application, the mobile client is
also designed according to OOP principles. This section describes how Wahlzeit abides
to the Android platform’s design principles and uses design patters. This way the
application can be understood and extended by future developers.

All mobile application platforms organize their structures according to the Model View
Controller (MVC) behavioral pattern (Campos et al., 2015). Wahlzeit’s activities and
fragments (controllers) use XML layouts (view) to specify their screens’ structure.
Moreover, the generated client stubs provide POJO classes that are necessary to
construct requests and parse responses. For the model component of the MVC pattern,
mainly these classes are used. In addition, more POJO classes are composed to store
information temporarily in order to construct GUI elements. For instance, the classes
PhotoListItem and NavDrawerItem are used to populate the user’s photos list in the home
screen and the navigation drawer respectively.

For pulling information out of collection resources and displaying the collection on the
screen, Android principles suggest using the Adapter pattern (Gamma, 1995). In
Wahlzeit’s mobile client, adapters are used extensively for creating customized views
like the cards stack, the user’s photo list etc. For the user’s photos list for example, the
PhotoListAdapter is used to adapt the Photo objects and convert them into PhotoListItems

that can be placed into the list. Furthermore, it provides all necessary methods to
retrieve or add photos to the list. In this way, when a user retrieves photos from the
photos resource (/photos) using the API’s pagination feature (see 4.2.1), the list can
display the newly retrieved photos and populate dynamically.

At this moment the mobile client does not use a database to permanently store
information. However, during a running application session, all information retrieved
from the server by executing asynchronous tasks is stored temporarily into a class
called ModelManager. This class is used from controller classes (activities and
fragments) across the application to populate their views. To ensure that there is only
one instance across the application with a global access point, the Singleton pattern
is used (Gamma, 1995). The same pattern is used for the CommunicationManager that
manages connection details.

For sending notification across the application and notifying components about state
changes according to the Observer pattern (Gamma, 1995), Android suggests using
the LocalBroadcastManager instance. This utility is extensively used throughout the
mobile client’s implementation for operations of indeterminate time, such as reactions
to API calls. It is also used to respond to user input. For instance, the user’s photo list
uses the API’s pagination feature to make subsequent calls to retrieve parts of the
photos collection. Hence, every time a user pulls down the list, a new request is sent to
the server and the home fragment subscribes for the response (using the

 48

LocalBroadcastManager). When the server replies, the fragment is notified and the list is
populated accordingly.

5.4.5 Organizing code structure and conventions

Mobile application should be neatly organized with a clear folder structure and naming
conventions to ensure that the code is clean and maintainable. In addition, using proper
naming conventions for components and variables is equally important. This section
describes the package’s structure and the naming conventions used for developing the
Wahlzeit’s Android client.

By default, Android Studio displays project files organized by modules and file types to
simplify navigation and hides certain files that are not commonly used. Hence, the
project is separated to Gradle Scripts which contain all the files related to managing the
whole project and the app module which further splits to manifest (see 3.4.2.1), java
and resource files (see 3.4.2.5). The java directory contains the auto-generated client
stubs from the backend and the source code. The client stubs should be re-generated
every time changes are made to the API.

Java packages are usually organized by layer, reflecting the various application layers,
or by feature, reflecting the feature sets. For organizing the java source code directory,
emphasis is given to the application’s component and thus packages have been
organized by layer. Although this structure is blamed for low cohesion within the
packages and high coupling between them, keeping the folders organized like this
makes the code look logically organized and scanning through the code is a pleasant
experience. The following table (see Table 5.2) outlines all packages and describes the
corresponding components. (In Appendix B, packages are illustrated in a package
diagram).

Packages Components

com.wahlzeit.mobile.activities Activities

com.wahlzeit.mobile.adapters Lists and card stack adapters

com.wahlzeit.mobile.fragments Fragments and fragment factory

com.wahlzeit.mobile.listeners Contains all event listeners

com.wahlzeit.mobile.model Data models used in the UI

com.wahlzeit.mobile.network Asynchronous tasks

Table 5.2: Java packages organized by layer.

 49

Android components should follow particular naming conventions to indicate their
purpose. Activity and fragment class names are written using the camel case
convention and specify their type in their suffix, for example TellFragment. The same
applies to fragments, adapters, event listeners etc. Furthermore, layout files are written
using the snake case convention and use the reverse order, for example fragment_tell.

 50

6 Conclusion

In this thesis, Wahlzeit has been extended by implementing an API that provides all
necessary information to accommodate multiple clients. To achieve this, the thesis went
through the necessary design decisions to be made when designing and implementing
a web API. Cloud Endpoints has been chosen as the most appropriate technology to
implement a REST API for Wahlzeit. The API has been implemented successfully, and
allows system to interoperate by exchanging JSON messages via the HTTP protocol.
As a proof of concept an Android client has been developed to interact with the web
application.

6.1 Goals overview

In Chapter 2 the goals and requirements of this thesis have been defined. This section
reviews the means that have been used to achieve those goals, and argues whether or
not they have been accomplished.

Goal 1 concerns analyzing the design decisions to be made when connecting clients to
the service. To achieve this, Chapter 3 thoroughly reviewed contemporary interface
structure techniques, data infrastructure formats and communications protocols.
Thereafter, subsections 4.1.1, 4.1.2 and 4.1.3 analyzed the decisions in order to define
a resulting design, by taking into account the aspects of the existing application.
According to the first design decision, REST was indicated as the most appropriate style
to design the service’s interface. Furthermore, regarding the appropriate data
infrastructure and communication protocol, JSON representations and the HTTP
protocol have been chosen respectively. Thereby, the first goal is considered fulfilled.

Goal 2 concerns extending the existing application by adding a headless service.
Therefore, in section 4.2 a design for Wahlzeit’s API has been defined. To implement
this design, section 5.1 has defined selection criteria to choose an API development
framework, by taking into account the design decision (see 4.1) and the requirements
specified in Goal 2 and Goal 3. Cloud Endpoints has been chosen as the most suitable
technology according to those criteria and its features have been described in section
5.2. Furthermore, section 5.3 describes the process followed to implement the defined
API.

To answer whether or not this goal has been fulfilled, the API requirements that have
been set in this goal have to be reviewed. Table 6.1, gives an overview of those
requirements and describes how they have been fulfilled by the thesis.

 51

Requirement Solution Fulfilled?

1
Accommodate as many clients as
possible

Allow clients to communicating with
JSON message sent over the HTTP
protocol.

2
Expose the features and the
functionalities of the existing web
application

Features and functionalities have
been extracted, from the web
application (see 4.2) and the API has
been designed accordingly.

3
Cohere with the existing infrastructure
and technologies

Choose Google Cloud Endpoints
framework which is a trusted feature
for Google App Engine applications.

4
Keep the interface that runs on web
browsers fully functional

The web application’s is working
flawlessly in parallel with the API.

5
Facilitate future students to implement
additional features or client
applications

Google API Explorer can be used to
discover the API by sending
interactive requests, there is
adequate documentation accessible
over the internet, and Auto-generated
client stubs for iOS and Javascript
clients are available

Table 6.1: Checking whether the requirements set in Goal 2 have been fulf illed.

Goal 3 concerns implementing an Android client to interact with Wahlzeit’s API.
According to goal’s first requirement, the mobile application has to offer the same
features as the web application. To achieve this, user stories (Appendix A) have been
extracted based on the web application’s features to ensure that the mobile client will
offer the same features and functionalities. The process followed to develop the Android
client (see 5.4) is based on those user stories to define the application’s screens and
thereafter compose the application. Hence the first requirement is considered to be
fulfilled. The second optional requirement, aspires to enhance the user experience by
using the devices build-in features. According to the defined screen design (see 5.4.1),
the application’s screens should be able to interact with the device’s installed camera,
gallery and email applications. Section 5.4.2, outlines how the application uses
Android’s broadcast actions to delegate tasks to other installed applications and in this
way use the devices built-in features. In this regard, the second requirement is also
considered fulfilled.

6.2 Future work

Extending the application by adding a multi-client API and implementing a mobile client
are important steps to achieve Wahlzeit’s vision (see 1.1). However, there are a lot of
additional features required to make the application more attractive and more effort

 52

needs to be invested so it can be offered as a standalone solution for rating and sharing
photos.

First of all, regarding the web application, renovating the UI is recommended. To
achieve this, modifying the application’s CSS and Javascript files is necessary.
Henceforth, the handler classes which are responsible for populating the application’s
UI have to be adjusted as well. Emphasis should be given to make the web site
responsive to fit various screen sizes in order to be optimally used from web browsers
running on mobile or tablet devices. To facilitate this process, frontend development
frameworks like Twitter Bootstrap, Zurb Foundation etc. should be considered.

Secondly, relating the application to other social media platform is suggested. To
achieve this, as first step would be including sharing options that will allow users to
share photos in the most popular media platforms (Facebook, Twitter, Instagram). At
the moment the only way to share photos is via email, which is rather outdated.
Furthermore, adjusting the authorization method, to sign in using social media
platforms’ accounts should also be considered. Henceforth, the users might be given
an option to share photos from their social media accounts. As a result, populating their
Wahlzeit account would be much easier and the application would be quickly filled up
with more content.

A minor fix that is suggested, is showing another user’s profile page, when a user clicks
on the name of the uploader. At this moment the application behaves unpredictably, by
adjusting the photo filter and using the user’s name as a filter parameter.

Apart from the additional features and fixes suggested, developers may use Wahlzeit’s
API to make the application more accessible. Similar to the Android application, the
generated client stubs may help developers build iOS or Javascript. Although native
applications are more reliable and usually perform better, using a cross development
platform like Apache Cordova is recommended, to make the application reach all
different mobile platforms including Windows Phones.

Finally, regarding the API and the implemented Android client there are additional
features beyond the scope of this paper that have to be considered. For example, the
current client does not have a persistence layer to store the information retrieved from
the server.

Finally, there are features in the Android client and the Wahlzeit’s API, that have not
been addressed by this thesis. For instance, the Wahlzeit mobile does not use a local
database to save the photos and client’s details. Furthermore, Cloud Endpoints push
notifications feature should be considered to notify clients about state changes in the
backend and other relevant information. Last but not least, adjustmenting the OAuth2.0
authentication process is necessary, so that administrators’ access rights will be
assigned only to the user that deployed the application.

 53

Appendix A Wahlzeit mobile user stories

The following table summarizes the user stories that have been used to develop the
mobile client. User stories are organized in sections based on the application’s features.
Each user story is defined in the form: I want to <do something> so that I can <achieve
something>, to be verified by the following acceptance test <T-1: Test description>, <T-
2: Test description>.

I want to So that I can To be verified by the following
acceptance test

Login

US-1
Pr. H

Choose an email account
from Google

Provide the application a mean
to verify my identity

T-1: The app shows a list of all available
emails and let the uses choose which
email to use.

US-2
Pr. H

Sign in as user or guest Choose whether I want the
application to know my identity or
not

T-2: The login screen has two buttons
(user-guest) the user can press to sign
in, after having chosen an account.

US-3
Pr. M

Save my credentials and
language preferences

Avoid signing in every time I
open the application

T-3: The app implicitly saves the
credentials and language preferences,
and retrieves them when launched.

US-4
Pr. L

Sign in using another
account instead (Twitter,
Facebook)

Easily signing in indirectly T-4: The login screen has a button to
allow signing in via fb or twitter, etc.

Show

US-5
Pr. H

View each photo once at a
time

Evaluate each photo individually T-5: The show fragment is made of a
card stack that allows performing
action at one photo at a time.

US-6
Pr. H

Rate a photo from the scale
of 1 to 10

Express my opinion about a
photo

T-6: A rating bar is displayed
underneath each photo.

US-7
Pr. H

Skip a photo Evaluate it later T-7: A card might be skipped by
dragging it in any direction.

US-8
Pr. H

Flag a photo Express myself in case the photo
is innapropriate (copyright
violation, offensive etc.)

T-8: The card is clickable and launched
a popup to choose an action from.
T-9: In case flagging action is chosen a
new view is displayed where the user
can enter more details(explanation,
reason, address).

US-9
Pr. H

Mail a friend or the owner
about the photo

Directly contact my friends or the
owner in private

T-10: In case “mail a friend” or contact
the “owner” is chosen when the photo is
clicked, the app redirects to the tell
fragment.

US-10
Pr.H

Paginate through the whole
photos’ collection

 T-11: The application retrieves 10
photos at a time and reloads after the
user has reacted on those 10 photos. If

 54

the collection is empty a relevant
message is displayed.

US-11
Pr. H

Filter photos according to
their tags

Evaluate photos of a particular
category

T-12: The show fragment has a text box
which regulates the photos that are
being displayed.

Tell

US-12
Pr. H

Be able to send emails Share a photo or embrace users
to use the application

T-13: The tell view consist of a optional
image field, and textboxes (address,
subject, message).
T-14: A tell button launches the
preffered email service, conveying the
relevant information for the email as well
as the attachment of the picture.

Home

US-13
Pr. H

See all my uploaded photos
and profile information

So that I can administrate my
uploads

T-15: A view displays information about
the actual user (user photo, mail, name,
gender).
T-16: The home view includes a list of
all photos that belong to the user and
displays the information about each
photo(praise, status, creaton time,
tags).

US-14
Pr.H

Perform actions to
administrate each photo

 T-17: The user is able to click each
photo in the list and a popup dialog with
the relevant actions is being launched
(edit, tell, select, delete).

US-15
Pr. H

Edit a photo Correct the photo if something is
wrong or outdater, or provide
additional information.

T-18: A new view is launched allowing
the user to edit the tags and visibility of
the photo.

US-16
Pr.H

Delete a photo T-19: The photo status changes to
deleted and the is no more visible by
other users

US-17
Pr.H

Select my profile picture T-20: The select action replaces the
profile picture of the user.

Profile

US-18
Pr.H

See my profile details Administrate and edit them T-21: The home view contains
information about the user’s name,
gander, language, email and notify
about praise, which the user can edit.
T-22: An edit button is used to update
the settings throughout the application
and in the server side.

Upload

US-19
Pr.H

Have an upload-like view Upload photo entities T-23: The upload view should contain
an image view for the photo to be
uploaded and editable text view to allow
user to write tags.

 55

US-20
Pr.H

Choose images from the
gallery

So that I can share my gallery
photos using Wahlzeit

T-24: The application allows the user to
navigate through the gallery and chose
a photo. Thereafter the photo is
displayed in the upload view.

US-21
Pr.M

Capture a photo from my
camera.

Instantly add it to Wahlzeit’s
collection

T-25: The application launches the
camera and allows the user to capture a
picture which is thereafter displayed in
the upload view.

US-22
Pr.H

Upload the photo entity. Save the photo permanently and
share it with other users.

T-26: An upload button handles the
filled out upload form and upload the
entity to the backend.

Moderate

US-23
Pr.H

See all flagged photos, if I
have been granted
moderator rights.

Manage each photo individually T-27: The moderate view should be
comprised by a list view that displays all
flagged photos and their relevant
information (explanation, reason,
flagger, tags, description).

US-24
Pr.H

Perform administrative
actions on each flagged
photo

Keep the content of the photo
collection clean and fair

T-28: Each photo in the list is clickable
and allows a popup, allows performing
actions (moderate, unflag).

Miscellaneous

US-25
Pr.H

Sign out and return to the
login screen

Sign in again using a different
account

T-29: The app offers an option to sign
out

US-26
Pr.H

Switch language options
between

Get the application’s context in
English and German

T-30: The app offers an option to switch
language from any point

 56

Appendix B Android client’s package structure

A package diagram, which depicts the packages located in the java directory of the
Android project and their relationship.

 57

References

Abdaldhem & Fuhrer. (2009). Web Services Technologies: State of the Art, 43.
Retrieved from:
http://diuf.unifr.ch/drupal/softeng/sites/diuf.unifr.ch.drupal.softeng/files/file/publicat
ions/internal/WP09-04.pdf

Android. (2016a). API-Guides: App Manifest. Retrieved from:
https://developer.android.com/guide/topics/manifest/manifest-intro.html

Android. (2016b). API-Guides: Intents and Intent Filters. Retrieved from:
https://developer.android.com/guide/components/intents-filters.html

Android. (2016c). API-Guides: Broadcast Receiver. Retrieved from:
https://developer.android.com/reference/android/content/BroadcastReceiver.html

Android. (2016d). API-Guides: Activities. Retrieved from:
https://developer.android.com/guide/components/activities.html

Android. (2016e). API-Guides: Fragments. Retrieved from:
https://developer.android.com/guide/components/fragments.html

Android. (2016f). API-Guides: Tasks and Back Stack. Retrieved from:
https://developer.android.com/guide/components/tasks-and-back-stack.html

Android. (2016g). Android APIs: Asyncronous Task. Retrieved from:
https://developer.android.com/reference/android/os/AsyncTask.html

Android. (2016h). API-Guides: App Resources. Retrieved from:
https://developer.android.com/guide/topics/resources/index.html

Android. (2016i). API-Guides: User Interface. Retrieved
from:https://developer.android.com/guide/topics/ui/index.html

Android. (2016j). Training: Creating a Navigation Drawer. Retrieved from:
https://developer.android.com/training/implementing-navigation/nav-drawer.html

Beal. (2006). API- Application Program Interface. Retreived from:
http://www.webopedia.com/TERM/A/API.html

Bouguettaya, Sheng & Daniel. (2013). Web services foundations. Web Services
Foundations, 9781461475, 1–739. http://doi.org/10.1007/978-1-4614-7518-7

Brähler (2010). Analysis of the Android Architecture. Os.Ibds.Kit.Edu, 52. Retrieved
from: http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-
architecture.pdf

Campos, Kulesza, Coelho, Bonifácio, & Mariano (2015). Unveiling the Architecture
and Design of Android Applications - An Exploratory Study. Proceedings of the
17th International Conference on Enterprise Information Systems, 201–211.
http://doi.org/10.5220/0005398902010211

Comscore. (2014). The U.S. Mobile App Report. Retreived from:

 58

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-
Mobile-App-Report

Coulouris, Dollimore, & Kindberg (2012). Distributed Systems: Concepts and Design.
Computer (Vol. 4). Retrieved from http://www.amazon.com/dp/0321263545

Dalmasso, Datta, Bonnet, & Nikaein (2013). Survey, comparison and evaluation of
cross platform mobile application development tools. 2013 9th International
Wireless Communications and Mobile Computing Conference (IWCMC), 323–
328. http://doi.org/10.1109/IWCMC.2013.6583580

Elgin. (2005). Google Buys Android for Its Mobile Arsenal. Retrieved from:
http://www.webcitation.org/5wk7sIvVb

Ferris & Farrell (2003). What are Web Services? Communications of the ACM, 46(6),
31.

Fielding (2000). Architectural Styles and the Design of Network-based Software
Architectures. Building, 54, 162. http://doi.org/10.1.1.91.2433

Gamma, E. (1995). Design patterns: Elements of reusable object-oriented software.
Reading, Mass: Addison-Wesley.

Google. (2016a). Overview of Cloud Endpoints. Retrieved from:
https://cloud.google.com/appengine/docs/java/endpoints/

Google. (2016b). Endpoint Annotations and Syntax. Retrieved from:
https://cloud.google.com/appengine/docs/java/endpoints/annotations

Google. (2016c). Generating Libraries and Discovery Documents with the Endpoints
tool. Retrieved from:
https://cloud.google.com/appengine/docs/python/endpoints/endpoints_tool

Google. (2016d). Adding authorization to the API Backend. Retrieved from:
https://cloud.google.com/appengine/docs/java/endpoints/add-authorization-
backend#understanding_the_process
https://developers.google.com/+/web/api/rest/oauth#incremental-auth

Google. (2016e). Using OAuth 2.0 to Access Google APIs. Retrieved from:
https://developers.google.com/identity/protocols/OAuth2

Hadley & Sandoz. (2009). JAX-RS: Java API for RESTful WebServices (version 1.1)
Retrieved from: https://jcp.org/en/jsr/detail?id=311

Hahmann. (2015). Migrating Code Into The Cloud. Retrieved from:
https://osr.cs.fau.de/wp-content/uploads/2015/10/hahmann_2015_arbeit.pdf

IBM. (2000). Web Services Architecture Overview. Retrieved from:
http://www.ibm.com/developerworks/library/w-ovr/

IBM. (2011). Design and Implement RESTful web services with Rational Software
Architect. Retreived from:
https://www.ibm.com/developerworks/rational/library/design-implement-restful-
web-services/

 59

IETF. (1999) Hypertext Transfer Protocol. Retrieved from:
https://tools.ietf.org/html/rfc2616

IETF. (2011). The WebSocket Protocol, p.10. Retrieved from:
https://tools.ietf.org/html/rfc6455#section-1.7

JSON. (2016). Introducing JSON. Retrieved from: http://www.json.org/

Lucchi, Millot & Elfers (2008). Resource Oriented Architecture and REST. Assessment
of Impact and Advantages on INSPIRE Ispra European Communities, 16.
http://doi.org/10.2788/80035

Microsoft. (2016). Web service benefits. Retrieved from:
https://msdn.microsoft.com/en-us/library/cc508708.aspx

Neil. (2014). Mobile Design Pattern Gallery, Second Edition. O' Reilly

Neumann (2012). Entwicklung einer Android-App zur Erkennung und Übersetzung
von Worten in Kamerabildern. Retrieved from:

Nurseitov, N., Paulson, M., Reynolds, R., & Izurieta, C. (2009). Comparison of JSON
and XML Data Interchange Formats: A Case Study. Scenario, 59715, 157–162.
Retrieved from http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf

OAuth 2.0. (2016). OAuth 2.0. Retrieved from: http://oauth.net/2/

Open Handset Alliance. (2016) Android Overview. Retrieved from:
http://www.openhandsetalliance.com/android_overview.html

Oracle. (2016). Using Sessions and Session Persistence in Web Applications.
Retrieved from: https://docs.oracle.com/cd/E13222_01/wls/docs81/
webapp/sessions.html

Papazoglou. (2008). Web Services: Principles and Technology. Retrieved from:
http://icsoc2008.servtech.info/summer_school/soa_analysis.pdf

Petcu, Craciun & Rak (2011). Towards a Cross Platform Cloud API - Components for
Cloud Federation. Closer, 166–169. Retrieved from: http://dblp.uni-
trier.de/db/conf/closer/closer2011.html#PetcuCR11

Pimentel & Nickerson (2012). Communicating and displaying real-time data with
WebSocket. IEEE Internet Computing, 16(4), 45–53.
http://doi.org/10.1109/MIC.2012.64

Stylos & Myers (2007). Mapping the space of API design decisions. Proceedings -
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2007, 50–57. http://doi.org/10.1109/VLHCC.2007.36

Subsplash (2015). 6 Benefits of going mobile. Retreived from:
http://www.subsplash.com/blog/category/6-benefits-of-going-mobile

Sumaray & Makki (2012). A comparison of data serialization formats for optimal
efficiency on a mobile platform. Proceedings of the 6th International Conference
on Ubiquitous Information Management and Communication - ICUIMC ’12,
(0851912), 1. http://doi.org/10.1145/2184751.2184810

 60

Tilkov (2011). Rest und HTTP. DPunkt Verlag.

Wagh & Thool (2012). A Comparative Study of SOAP Vs REST Web Services
Provisioning Techniques for Mobile Host. Journal of Information Engineering and
Applications, 2(5), 12–16. Retrieved from
http://www.iiste.org/Journals/index.php/JIEA/article/view/2063

Wasserman (2010). Software Engineering Issues for Mobile Application Development.
ACM Transactions on Information Systems, 1–4.
http://doi.org/10.1145/1882362.1882443

Yildirim (2014). Distributed Systems. Retrieved from
http://pages.cs.wisc.edu/~remzi/OSTEP/dist-intro.pdf

W3C. (1999a). Hypertext Tranfer Protocol 1.1, 9. Method Definitions. Retrieved from:
www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

W3C. (1999b). The Content-Type Header Field. Retrieved from:
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html

W3C. (1999c). Content Negotiation. Retrieved from
https://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

W3C. (2001). Web Service Description Language 1.1. Retrieved from:
https://www.w3.org/TR/wsdl

W3C. (2007). SOAP Version 1.2 Part 1: Messaging Framework. Retrieved from:
https://www.w3.org/TR/soap12

W3C. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Retrieved from:
https://www.w3.org/TR/REC-xml/

Zahir, Malhotra & Abdelkamel (2005). Toward the Right Communication Protocol for
Web Services. International Journal of Web Services Research, p.19.

