

Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

OLEKSANDR IEFIMENKO
BACHELOR THESIS

A TOOL FOR VISUALIZING
PATCH-FLOW

Submitted on May 1st 2016

Supervisors: Prof. Dr. Dirk Riehle, M.B.A., M.Sc. Maximilian Capraro
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander University Erlangen-Nürnberg

 2

Versicherung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Erlangen, May 1st 2016

License
This work is licensed under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, May 1st 2016

 3

Abstract
Inner source is the use of open source software development practices and the establishment of
an open source-like culture within organization that helps to improve code reuse and share
knowledge where product line engineering fails (Capraro et al. 2016). We measure the inner
source collaboration by measuring the code contributions (Patch-Flow) between project bound-
aries or organizational units.
The management of software development organizations, which want to adopt the inner source
strategy in Enterprise, needs a tool for visualizing Patch-Flow, helping it to analyze the collab-
orative process and make the software development process within companies more effective.
Nowadays, the market cannot offer any product to supply the demand.
This thesis develops a software design and implementation of tool to represent the various
Patch-Flow-based metrics for quantifying code-level collaboration and stake of participants in
it. The presented tool is the first product allowing quantitative visualization of Patch-Flow. It
enables managers to evaluate and make decisions about the code-level collaboration and sup-
ports them in the inner source context.

 4

Content
Introduction ... 6	
1	 Initial Data and Objectives .. 7	

1.1	 Organizational Model ... 7	
1.2	 Visualizations .. 7	

1.2.1	 Hierarchical Organizational Summary ... 7	
1.2.2	 Force-Directed Patch-Flow Graph .. 8	
1.2.3	 OrgUnit- / Project-related Patch-Flow Chart .. 8	
1.2.4	 Contribution Ledger .. 9	

2	 Client-Server Architecture .. 11	
2.1	 REST-Architecture .. 11	
2.2	 Single Page Application .. 11	

3	 Evaluation of OSS components .. 13	
3.1	 Java-based RESTful Framework .. 13	
3.2	 JavaScript-based Framework for SPA .. 16	
3.3	 Routing with Angular UI-Router .. 17	
3.4	 Angular Smart Table ... 17	
3.5	 Angular Chart Frameworks ... 17	

4	 Software Design .. 19	
4.1	 REST-API ... 19	

4.1.1	 Resources Identification .. 19	
4.1.2	 Representation Format and Media Type ... 21	
4.1.3	 Designing URIs ... 22	
4.1.4	 Versioning ... 22	

4.2	 Processing a Client Request: Service Layer ... 23	
4.3	 Export Utility .. 23	
4.4	 Static Factory Method ... 24	
4.5	 Angular Routing .. 24	

5	 Implementation ... 26	
5.1	 Server with Jersey Framework .. 26	

5.1.1	 Setup with Maven Archetype .. 26	
5.1.2	 Example of Resource Implementation .. 26	

5.2	 Server Testing ... 28	
5.2.1	 Configuration .. 28	
5.2.2	 Unit Testing with Mocks ... 29	

5.3	 Angular Client ... 29	
5.3.1	 Application Setup .. 29	

 5

5.3.2	 Directory Layout ... 30	
5.3.3	 MVC Pattern ... 30	
5.3.4	 Routing .. 30	
5.3.5	 REST Client .. 32	
5.3.6	 Force-directed Patch-Flow Graph ... 33	
5.3.7	 Testing ... 34	

Conclusions and Future Work ... 35	
References ... 36	

 6

Introduction
The idea of inner source to apply the best Open Source (OS) methods for the internal develop-
ment process was first mentioned around the late nineties, soon after OS attracted more atten-
tion from researchers and the software industry (Argefalk et al. 2015). Adopting of OS practices
within an organization brings a lot of advantages such as a code reuse across the organization,
without complex discussions at a management level and a corporate bureaucracy, more effec-
tive testing with fewer bugs during deployment, improved quality of documentation.
Riehle et al. (2015) defined inner source as an approach to collaboration across intra-organiza-
tional boundaries for the creation of shared reusable assets.
The code-level collaboration in inner source takes place by contributing patches. Patch is an
incremental contribution to a software project. Software developers are able to send patches
(a flow) with bug fixes, new features or other additions, which can be later accepted or rejected
by owners of inner source components (Capraro et al. 2016). Patch-Flow is the flow of patches
contributed across intra-organizational boundaries such as project or organizational unit.
To enable a measurement-driven inner source management, the collaboration needs to be meas-
ured. Research Group developed a Patch-Flow crawler, which gathers the real Patch-Flow data
from various repositories. Now we need a tool to visualize the Patch-Flow and Patch-Flow-
based metrics on this basis, which enables management to be kept informed how much collab-
oration is happening, who are the contributors and receivers, what is the stake of an organiza-
tional unit in the collaboration.
In this thesis, I based on an implemented model for measuring Patch-Flow data with a prototype
of database filled with contribution records, and developed a client-side web application for its
representing. The contributions of this paper are following:

• Definition of diagrams to visualize Patch-Flow

• Evaluation of Open Source Software (OSS) components for implementing the diagrams

• Development of a client-server application implementing defined diagrams
This paper is structured as follows. Chapter 1 describes a background of application (the Patch-
Flow process) and defines the types of developing visualizations. Chapter 2 considers the client-
server architecture. In Chapter 3 I evaluate and choose OSS components that are going to be
used in the web application. Chapter 4 provides a software design. Chapter 5 focuses on an
implementation of developing tool.

 7

1 Initial Data and Objectives
The goal of this thesis is to enable the easy management of collaboration by providing several
visualizations of Patch-Flow. The preexisting SCM Crawler tool gathers the Patch-Flow data
from numerous remote repositories and stores it into a database based on PostgreSQL.

1.1 Organizational Model
In the scope of this thesis I use a preexisting organizational model. It helps to identify patches
and match them to contributors and receivers. There are few steps to determine the Patch-Flow
data within an organization:

1. Identify patches
2. Identify receiving projects
3. Identify contributing projects
4. Match projects to hosting organizational units

I illustrated the organizational model with references to the Patch class in the Figure 1.1 and
marked steps and appropriate references with different colors for the correct matching.

Figure 1.1: Organizational model with patch references

1.2 Visualizations
1.2.1 Hierarchical Organizational Summary
An organizational chart in Figure 1.2 provides a clear visual representation of the organization’s
units as a tree. It shows a hierarchical structure of organization in a form “parent-child” and
informs users about how many patches were contributed and received by any organizational
unit. The balance value is displayed and colored in green (more patches received), in blue (more
patches contributed) or in gray (a difference is equal to zero).

 8

Figure 1.2: Example of an organizational chart

1.2.2 Force-Directed Patch-Flow Graph
One of the most significant features which should be provided by developing tool is a force bi-
directional Patch-Flow graph (Figure 1.3). It supplies the users with a total statistics of Patch-
Flow within an organization. There are two graphs in total: one graph displays the Path-Flow
between organizational units, another one illustrates the flow between projects. Each graph
consists of nodes and bi-directional links, where the nodes map organizational units or projects
and links represent the Patch-Flow between them. It is possible for users to move or rotate the
graph as much as they would like to do.

Figure 1.3: Example of a bi-directional Patch-Flow graph

1.2.3 OrgUnit- / Project-related Patch-Flow Chart
By visualization of code-level collaboration, I distinguish between Patch-Flow for incoming
patches (received) and Patch-Flow for outcoming patches (contributed) per project or organi-
zational unit in total. All charts display metrics over a selected time range. All performed con-
tributions (commits) are displayed in gray, received patches in green and contributed patches in
blue. Example of these charts is shown below.

 9

Figure 1.4: Example of Patch-Flow charts

Normalization
The tool also provides a normalization for both metrics. The example diagrams are shown
below.

Figure 1.5: Patch-Flow normalization

1.2.4 Contribution Ledger
The contribution ledger shows all patches received and contributed by project or organizational
unit in a list like an overview. There are two views of a horizontal bar chart: a total summary
(Figure 1.6) and a grouped summary by project token (Figure 1.7). Each view displays the

 10

account’s summary consisting of an amount of received and contributed patches and their dif-
ference, the balance. There are different ways to sort or filter the listed data: by date, by amount
or by name.

Figure 1.6: Example of a contribution ledger (total)

Figure 1.7: Example of a contribution ledger (grouped by project)

 11

2 Client-Server Architecture
Delivering concepts, methods and tools to enable a measurement-driven inner source manage-
ment, sets the following questions:

• How much collaboration take place?

• Who are contributors and receivers?

• Is everything good or some actions needed?
To make it possible to answer these questions, I developed a tool called CMSuite Explorer based
on a client-server model. This distributed application structure consists of a client requesting
resources and a provider of services and resources, a server. The client-server model describes
a relationship between these two participants in the web application. Clients and servers com-
municate over HTTP protocol. A server program, for sharing their resources with clients and
for formalization of data exchange, must implement a web service. A web service enables com-
munication by applying one of the open standards such as HTML, XML, SOAP, etc. HTTP, the
web server and web services work together to serve data by clients requests. Implementations
of web services provide web APIs. One of them is a RESTful API, which doesn’t require XML-
based web service protocols such as SOAP and WDSL to access its interface. REST offers a
simple, interoperable and flexible way of writing web services.

2.1 REST-Architecture
A web server is a central part of a client-server architecture. It processes clients requests per-
formed over HTTP protocol. For effective interaction between components over a network and
data exchanging I need to implement a web service.
REST or Representational State Transfer architectural style for distributed hypermedia systems
is firstly introduced by Roy Fielding in his PhD thesis (Fielding, 2000). He defined a set of
architectural constraints such as uniform interface, stateless, cache, etc., which bring a perfor-
mance and a scalability, and enable services to work best on the Web (Oracle Documentation,
2010). However, the first specified constraints come from the client-server architectural model.
The client-server style is the most frequently encountered of architectural styles for network-
based applications (Fielding, 2000). In the following Chapters I am going to evaluate and
choose an OS framework implementing RESTful API and describe steps in its developing for
my application.

2.2 Single Page Application
The goal of this Section is to clarify an architecture of client. We should distinguish between
traditional multipage web applications and Single Page Applications (SPA). In a traditional web
application, when a client requests a server’s content or service function, the server renders a
new HTML page which caused a page refresh in the browser. Figure 2.1 illustrates the second
approach. SPA loads a single HTML page and updates the page regions with new fragments
dynamically through AJAX calls without constant page reloads. It means that much of the work
takes place on the client side using JavaScript. In the past few years SPA has become extremely
popular on the web providing a more fluid user experience with UI. In the following Chapter I
make a review of most popular JavaScript-based frameworks to make SPA development more
easily.

 12

Figure 2.1: Lifecycle of simple Single Page Application

 13

3 Evaluation of OSS components
In this Chapter, I present the comparative analysis of OSS frameworks and libraries for devel-
opment of the client-server application. I used the following criteria for selecting OSS:

• review of gathered pros and cons

• activity of OS community (Open Hub, GitHub)

• result of a benchmark test (for RESTful frameworks)

• presence of a functionality (concerning chart libraries)

3.1 Java-based RESTful Framework
A table below lists OS Java-based frameworks, which participate in this evaluation. They help
with a development of RESTful web services.

Name Specification / Routing License
Dropwizard Jersey Apache 2.0
Jersey JAX-RS + Extending API CDDL 1.0, GPL 2
Ninja Own routing with one central route file,

JAX-RS (optional)
Apache 2.0

Play Own approach with routes file Apache 2.0
RESTEasy JAX-RS Apache 2.0
Restlet JAX-RS Apache 2.0, CDDL 1.0
Spark Own route patterns Apache 2.0

Table 3.1: Java-based frameworks

For gathering of pros and cons I used a public data and documentation from official web sites
and several articles such as (Gaic, 2015), (Gupta, 2014), (Spark, 2015).
Dropwizard
Dropwizard provides stable, mature Java libraries assembled into a simple, light-weight pack-
age providing us with everything that lets us focus on getting things done. It is fast and modular
with a large community support. This framework uses the modern Java based web application
components available, packaged into an easy-to-use framework but this also makes it problem-
atic. Mixing all those libraries can cause unforeseen problems in the large projects. Another
problem is the maintenance: earlier versions are hard to update.
Jersey
Jersey provides its API that extends existing JAX-RS reference implementation with additional
features and utilities to further simplify RESTful service and client development. It is fast with
extremely easy routing and smooth JUnit integration for testing. Jersey supports true asynchro-
nous connections, has an excellent documentation with working examples and has one of the
best IDE-support, so I can achieve better productivity from tooling perspective. This OS frame-
work has a reference implementation for JAX-RS so it will continue to support any updates to
the specification. The significant advantage with a large amount of online resources is the dis-
advantage at the same time. It is related to Jersey 1.X making them unsuitable for Jersey 2.X.

 14

Ninja
Ninja is a full-stack web framework for Java. Stable, fast and super productive. The benefits
also include a modularity, multiple rendering formats, a supporting of other libraries and cach-
ing. Comparing with Jersey, Ninja has a small community and a provided documentation is also
not good enough, same like with Dropwizard.
Play
Play is based on a lightweight, stateless, web-friendly architecture and makes it easy to create,
build and deploy web applications with Java or Scala. This framework is built on Netty so it
supports non-blocking I/O, excellent for RESTful applications with handling remote calls in
parallel. It also supports a modularity, MVC and has probably the largest community among
frameworks reviewed here. Some of the drawbacks are that Play 2.x is not compatible with
Play 1.x, it is not based on JAX-RS and hard to understand and configure. There are breaking
changes across releases.
RESTEasy
RestEasy may be a good choice if the environment is JBoss oriented. It provides a proprietary
caching for URL or query which could be handy for high volume applications, and asynchro-
nous HTTP abstractions. The disadvantage of this framework is a small community.
RESTlet
This is a first RESTful web framework for Java, implemented REST before it was popular.
JAX-RS was a natural extension. It offers a smart URL binding, a powerful routing and a fil-
tering system and is available for all major platforms but it is complex and has a closed com-
munity. RESTlet is not as popular as these days comparing with Play framework and Jersey.
Spark
Spark is a micro lightweight Java web framework made for a rapid development with minimal
effort. It has a minimalist core providing with all the essential features. This framework is the
most commonly used with AngularJS. In its own survey from April 2015 (Spark, 2015) re-
sponded by a couple of hundred users, most of them answered that’s Spark documentation is
not good enough. Amongst other known disadvantages Spark is not suitable for large projects
and has a small community, so this framework is mainly good for smaller projects and fast
prototyping.

One of the important factors by choosing a framework is a community. The comparison result
provided with Open Hub (Black Duck Open Hub, 2016) is listed in the following table. As we
may see, there are three active communities among these projects: Play with 855 active devel-
opers and Dropwizard followed by Jersey.

Framework All time statistics 12 months statistics
Contributors Commits Contributors Commits

Dropwizard 248 6,568 98 1,078
Jersey 116 6,327 29 410
Ninja 76 1,785 26 279
Play 855 11,431 175 1,672
RESTEasy 130 4,396 38 386
Restlet 52 8,523 6 28
Spark 81 655 32 279

Table 3.2: The comparison result of communities’ activity on Open Hub for Java-frameworks
(15.04.2016)

 15

By evaluation I also used a benchmark test of web frameworks performed by TechEmpower on
February, 25th 2016 (TechEmpower, 2016). The test was performed as follows:

• The framework’s ORM fetched all rows from a database table containing an unknown
number of Unix fortune cookie messages.

• An additional message was inserted into the list at runtime and then the list was sorted
by the message text.

• The list was delivered to the client using a server-side HTML template.
In this benchmark test (Table 3.3) Jersey with 52,801 points achieved the best result among
others participants of my review.

Table 3.3: Results of benchmark test for Java web frameworks

Abbreviations Definiton
Cls (Ful, Plt, Mcr) Classification (Fullstack, Platform, Micro)
Lng (Jav) Language (Java)
Plt (Jty, Nty, Svt, Und, vtx) Platform (Jetty, Netty, Servlet, Undertow Edge, vertx)
FE (Grz, Jty, Non, Res,
Tom, Utw, Wil)

Front-end-sever / Web server (Grizzly, Jetty, None, Resin,
Tomcat, Undertow, Wildfly)

Aos (Lin) Application operating system (Linux)
DB (Mo, My, Pg) Database (MongoDB, MySQL, Postgres)
Dos (Lin) Database operating system (Linux)
Orm (Ful, Mcr, Raw) ORM Classification (Full, Micro, Raw)
IA (Rea) Implementation approach (Realistic)

Table 3.4: Abbreviations and their definition used in the benchmark test

In summary, Jersey is one of the most popular frameworks in the REST community with a
significant performance among other frameworks. The performance is one of the most im-
portant aspects that characterizes a success of a new product. Jersey framework can it guarantee.

 16

3.2 JavaScript-based Framework for SPA
There are different OS JavaScript frameworks which make it easier to create a powerful single
web application. I chose the most popular of them listed in Table 3.5.

Name Example Applications License
AngularJS Freelancer, Netflix, Tinder,

Google Analytics etc.
MIT License

Backbone.JS Foursquare, Disqus, Airbnb MIT License
Ember Yahoo!, Groupon MIT License

Table 3.5: JavaScript-based frameworks

All the listed frameworks have a lot in common: they are open-sourced and implement SPAs
using the MVC design pattern. In this Section, I am going to compare these tree frameworks
basing on the Uri Shaked’s article (Shaked, 2014).
AngularJS
First of the comparing UI-frameworks is an AngularJS, a JavaScript-based MVC framework
for building rich client-side applications. Its benefits include two-way data binding, saving a lot
of boilerplate code, a versatility and flexibility enabling the software developers to achieve a
result by several ways, a dependency injection, easy-to-test-code. The framework provides
ready-to-use, powerful mocks for fundamental built-in services like $http. Generally,
AngularJS is perfect for smaller applications or components. Its disadvantage is the complexity
of the directives API.
AngularJS provides the automatic “dirty checking” and automatically detects all changes after
modifying any property of a scope object, and notify all the watchers for that property. But this
feature, for monitoring the changes, may also cause problems with updating an interface when
there are a large number of bindings.
Backbone.JS
Backbone.JS is a lightweight and fast MVC framework with a simple code and great documen-
tation. It has one of the largest communities of users. Another advantage is its stability and a
linear learning curve. The drawback of Backbone.JS is that it does not provide a structure and
developers have to use some basic tools to create it. Also, it could take a time to find a good
solution for some other features which Backbone.JS does not provide itself. The framework
does not support a two-way data binding comparing with other two members of my survey,
meaning developers have to write a lot of boilerplate code. Backbone directly manipulates the
DOM with views, making them really hard to unit test and less reusable.
Ember.js
The solution is also based on the MVC pattern. Ember has a steep learning curve what requires
from developers to follow a convention so it is more suitable for large-scale, more ambitious
and long-lived projects. Ember’s API has many breaking changes, a lot of the code examples
might be found online are out of date. In spite of listed disadvantages, there are some benefits
too. A major goal in design with Ember is a good performance. Ember.js is also helpful by
configuration and unlike the two other frameworks provides a powerful data module for devel-
oping and testing.

 17

The comparison result provided with Open Hub (Black Duck Open Hub, 2016) is listed in the
following table.

Framework All time statistics 12 months statistics
Contributors Commits Contributors Commits

AngularJS 1,765 11,784 469 4,047
Backbone.js 330 3,306 46 378
Ember.js 698 12,181 207 2,718

Table 3.6: The comparison result of community activity on Open Hub for Java-frameworks
(15.04.2016)

A result in the table shows that AngularJS has the biggest amount of active developers among
comparing OS frameworks. As of March 2016, AngularJS is also being the 4th most starred
project of all time on GitHub (GitHub, 2016). The number of questions on StackOverflow is
bigger than by other competitors Backbone.JS and Ember together. It increases a development
time and makes a maintenance process easier. Relying on the results of this survey I chose
AngularJS framework for my client.

3.3 Routing with Angular UI-Router
Numerous developers do not use a native AngularJS’ router because of lack of advanced root-
ing. Angular UI-Router module provides an alternative solution to ngRoute module with sup-
porting multiple views and nested states. With ngRoute only one view is allowed per page, with
UI-Router there are multiple views and each can have own controller. This can be very useful
for large projects. Nested states are used, for example, for a scenario with a list/detail page,
when we need to view the details with a master list at the same time. With ui-sref directives this
routing framework allows to change URL for any state in one place. With $stateParams it is
possible to pass any information between states even if it is not a part of state’s URL.

3.4 Angular Smart Table
In the contribution ledger a table lists all received and contributed patches by project or organ-
izational unit. There are several table modules for AngularJS to easily display data with filter-
ing, sorting or other built features in a declarative way. The most popular OS developments are
UI Grid and ngTable directives but I chose the lightweight Smart Table module with less than
4Kb. It has no other dependencies, is robust, modular and extensible. Smart Table can work
with asynchronous data loading and provides all the features I need.

3.5 Angular Chart Frameworks
OS offers different libraries and frameworks to create the common Angular charts. For my app
I chose two OS chart libraries: Angular NVD3 and Angular Google Chart. For the visualization
of a contribution ledger I use an AngularJS directive for NVD3 re-usable charting library based
on D3. It provides the most popular charts and allows easily to customize all the charts through
JSON API.
Comparing to the other OS AngularJS friendly chart frameworks, Google API provides a pow-
erful organization chart. Org chart is a diagram of a hierarchy of nodes, commonly used to
portray superior/subordinate relationships in an organization (Google Developers, 2015). The
use case is to visually represent a parent-child-tree of organizational units in the nodes. Using

 18

CSS classes this is relative easy to add the additional information containing each org unit: an
amount of contributed and received patches incl. their difference value (balance) for each node.
Besides various charts, CMSuite Explorer provides a graph to visualize Patch-Flow between
organizational units and projects within an organization. Mike Bostock published an example
of directed graph in his blog (Bostock, 2016), which I took for the basis for my further imple-
mentation. This flexible force bi-directional graph is implemented in D3.js. A pseudo-gravity
force keeps nodes centered in the visible area, while links are fixed-distance geometric con-
stants (Bostock, 2015).

 19

4 Software Design
A server project consists of 3 main modules (Figure 4.1): a restservice, a service and a data-
handler. The restservice contains a Jersey implementation for REST-API. The inner layer ser-
vice is a layer between restservice and datahandler to provide further operations with retrieved
objects from database. And the last module datahandler executes queries with the database and
delivers results on the service requests.

Figure 4.1: Structure of server project

4.1 REST-API
Consider the first package restservice, which provides a RESTful API.
4.1.1 Resources Identification
One of the first steps in developing the RESTful web service is designing the resource model.
The resource model identifies and classifies all the resources the client uses to interact with the
server (Allamaraju, 2010). A resource is the key abstraction of information in REST. Any in-
formation (data or functionality) can be a resource (Fielding, 2000). To uniquely identify a web
resource and make it addressable the web provides Uniform Resource Identifier (URI). The
RESTful web services are typically based on four main HTTP methods: Create, Retrieve, Up-
date and Delete (CRUD). In my case I use only GET-method defining a reading access to the
resource and getting a representation in return. It does not change the state of associated re-
source. In response to my GET request the server sends the status code, the response headers
and the entity body as the representation in the end.
Hierarchical Organizational Tree and Patch-Flow
Considering a simple use case for the Patch-Flow web service: a user chooses any organiza-
tional unit or project and expects to see the appropriate Patch-Flow data. It is straightforward
that the server should be able to deliver the list of organizational units with assigned projects
and the list of all relevant patches after a client (AJAX) request.
OrgUnit class contains all information for building a hierarchical organizational tree with as-
signed projects. At the same time the Patch class contains enough data about a single patch.
Both these classes (Figure 4.2) should be represented in JSON format.

 20

Figure 4.2: OrgUnit and Patch classes

A JAX-RS resource is an annotated POJO providing different methods that are able to handle
HTTP requests (Jersey Documentation, 2016). Jersey framework is a reference implementation
of JAX-RS. The OrgUnit resource can provide two resource methods: getAll(), a root organi-
zational unit with all its children, and get() for retrieving data of a single org unit. These methods
produce responses with response message content to all relevant client requests. The Patch re-
source is can be composed of only one resource method with orgUnitToken parameter to re-
trieve all the relevant contributions from database. Figure 4.3 lists the example methods of both
resources.

Figure 4.3: OrgUnit and Patch resources

Accounting
In inner source accounting model two abstractions are introduced: an account and a virtual
account, where the account is an abstraction for a project and the virtual account is used for an
organizational unit.
A simple use case for an Accounting page: select a project or organizational unit and show the
chart with an amount of contributed, received patches and balance followed by a table with
detailed information about code-level collaboration. The Account and VirtualAccount classes
(Figure 4.4) contain all needed data.

 21

Figure 4.4: Accounting model

The collections of summaries can have an enormous size. Moreover, not all summaries we need
to display on the page at the same time. Accounting and VirtualAccount resources may provide
three methods for summaries, separately for each time interval. User decides which summary
should be retrieved from the server.

Figure 4.5: Account and VirtualAccount resources

4.1.2 Representation Format and Media Type
As mentioned above a resource is an abstraction or more specific an abstract entity. A represen-
tation, on the other hand, is concrete and real since that is what my program to and operates

 22

upon in clients and servers (Allamaraju, 2010). HTTP’s message format allows different media
types and formats for requests and responses. A choice depends on a specific use case. Some
resources may require XML-formatted representations; others need a JPG-format. I choose
JSON and JavaScript as the representation formats and “application/json”, “application/javas-
cript” as Media Types. This choice matches my use case: JS format is for processing by JS-
capable clients and JSON is the most popular format nowadays.
4.1.3 Designing URIs
URIs are identifiers of resources that work across the Web. Typical URI consists of a scheme
(such as http or https), a host (such as www.example.com), a port number followed by a path
and a query string. I design URIs following common conventions and best practices listed in
(Allamaraju, 2010). For example, I use the forward-slash operator (/) in the path of the URI to
indicate a hierarchical relationship between resources:

http://www.example.com/webapi/v0.4/orgunits/orgUnitToken

http://www.example.com/webapi/v0.4/accounts/3/monthly

4.1.4 Versioning
Sometimes we need to change the server code, which can break the clients. It can be also pos-
sible that some clients have a different functionality from other clients or we need to maintain
separate versions of the server programs. Versioning may be a good solution when there are
problems to make changes compatible for all clients. There are a variety of ways to version the
REST API:

• Using detectable patterns such as v1, v2 in subdomain names, path segments, or query
parameters to distinguish URIs by their version (Allamaraju, 2010)

• Custom media types in Accept header
The table below shows the result of my web research (18.11.2015) how top API providers han-
dle versioning

API
Name

Versioning Example (source link)

Twitter URI https://api.twitter.com/1.1/users/show.json
https://dev.twitter.com/rest/reference/get/users/show

Instagram URI https://api.instagram.com/v1/users/{user-id}
https://instagram.com/developer/endpoints/users/#get_users

LinkedIn URI https://api.linkedin.com/v1/people/
https://developer.linkedin.com/docs/rest-api

Groupon URI http://api.groupon.com/v2/divisions?client_id=<your api key>
https://sites.google.com/site/grouponapiv2/api-usage

Dropbox URI https://api.dropboxapi.com/1/account/info
https://www.dropbox.com/developers-v1/core/docs

Disqus URI https://disqus.com/api/3.0/users/details.json
https://disqus.com/api/docs/users/details/

GitHub MediaType Accept: application/vnd.github.v3+json
https://developer.github.com/v3/#current-version

Amazon URI,
Parameter

/myObject?versionId=3/L4kqtJlcpXroDTDmpUMLUo
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

YouTube URI https://www.googleapis.com/youtube/v3/channels
https://developers.google.com/youtube/v3/sample_requests

Table 4.1: Versioning strategies in popular REST API's

As we may see from my short research above, a commonly used way to version API is adding
a version number into the URL. The custom MIME type or using additional parameters in
URL’s is much rarer. What to choose? The answer to this question is not that easy. A lot of

 23

articles in the web (Wood, 2014), (Paraschiv, 2013), (Zazueta, 2015) recommend using Media
Type versioning (going throw Content Negotiation) but Subbu Allamaraju in
(Allamaraju, 2010) calls to avoid introducing new media type for each version since it leads to
media type proliferation, which may reduce interoperability with other server/clients. Peter
Williams in his blog (Williams, 2012) completely disagrees with this opinion. I am supporting
the idea with using a detectable pattern in the path, e.g.: http://www.example.com/api/v0.4/

4.2 Processing a Client Request: Service Layer
The inner layer between any resource and datahandler is the service module. A resource dele-
gates a request to its own service to retrieve data from a database. After successful response
from datahandler service executes a private method getUnwantedExports() to build a set of
unwanted associations (redundant references) which should be extracted (nulled) from current
object. An example of a processing a client request to the OrgUnit resource is shown below.

Figure 4.6: Example of a processing a client request

OrgUnit object is a good example to show the problems which will occur without extraction of
redundant associations. Each exemplar of OrgUnit class contains a reference to its virtualAc-
count. At the same time, a virtual account object has a reference to the orgUnit object. Already
this one bidirectional association causes an endless recursion. Another use case is an elimination
of unused relations. For example, an information about assigned members to each organiza-
tional unit when it is used for building of a client navigation list is redundant and also should
be removed before sending it as a client response.

4.3 Export Utility
The preexisting module *.cmsuite.commons.model.util provides an implementation for the util-
ity ModelUtil to eliminate the redundant associations from a passed object. Within the scope of

 24

my work, I improved the existing development by adding two additional parameters: an asso-
ciation role and a depth, what is shown in Figure 4.7.

Figure 4.7: ModelUtil

With these parameters, it is possible to manage the entry depth of elimination for specific asso-
ciations. For example, an absence of “DailyAccountSummary.class – Account.class” elimina-
tion causes an endless recursion by Account resource. However, with the extracted association
it is not possible to match patches to their contributors and receivers. The solution is a using of
a new Association constructor and passing a name of association (role) and a depth value. It
will allow to determine the contributors and receivers and avoid the endless recursion in the
next levels of a hierarchical objects’ structure.

4.4 Static Factory Method
My implemented Java classes provide public static factory methods which return an instance
of the appropriate class. There are some advantages for a using this way to obtain an instance.
First advantage is that the static factory methods do not require to create a new instance each
time they are called. If some objects are often requested, a cache- or before created instances
can be returned. It can improve a performance significantly. With this method, it is possible to
avoid the duplicate objects: we can control what instances are existing at any given time. An-
other advantage is that a static factory method has a name what makes a class easier to use and
do less mistakes.

4.5 Angular Routing
URL Routing within a web application is a common approach for matching the content of the
appropriate templates to the specific functionality. As I mentioned in the previous Chapter, I am
going to use the alternative to the default module ngRoute, the OS routing framework Angular
UI-Router. It provides a state machine and allows us to define states and manage the transitions
between them. With help of this framework we are able to decouple nested states to build a
hierarchical tree of them. This way allows to create a layout of any complexity with a little
effort. Figure 4.8 shows a state chart with defined multiple states that describes the behavior of
a client. This behavior represents a series of events that can occur in this system.
Consider this diagram where the initial state is to be home. It represents the homepage of
CMSuite Explorer from which a user can navigate to the first composite state in this diagram,
analytics. The template of this state should contain a navigation list and include several nested

 25

states to display the various Patch-Flow graphs and diagrams: composite state graph is respon-
sible for rendering of bi-directed graphs, virtual-account and account represent Patch-Flow and
accounting charts for organizational units and projects, tree state renders a hierarchical orgchart
diagram. The transitions between states take place on click events.

Figure 4.8: State diagram of web client

 26

5 Implementation
5.1 Server with Jersey Framework
5.1.1 Setup with Maven Archetype
According to the official documentation of Jersey (Jersey Documentation, 2016), the most con-
venient way for working with this framework is to create a new project from Maven archetype.
Jersey project is built using a software project management and comprehension tool Apache
Maven and runs on top of a Grizzly container (a scalable lightweight HTTP server application
in Java).
After a generation of a new project is finished, the created directory restservice contains a stand-
ard Maven project structure:

• src/main/java for all source files

• src/test/java for all unit tests
Since Apache Maven supports multiple modules, I created a parent module called analysispro-
vider and included restservice as a sub module. Additionally, I created two new packages: a
help module service and a datahandler to retrieve data from database, and also included them
to restservice. Consider the Jersey package. The source code which is responsible for bootstrap-
ping the Grizzly container, configuration and deployment of this project to the container I
placed in RestServiceApplication.java.
Next step is a configuration of JSON support. There are different modules that provide support
for JSON representations by integrating the individual JSON frameworks into Jersey (Jersey
Documentation, 2016). I registered Jackson as JSON provider in MyObjectMapperProvider
class. To overcome the cross-domain restrictions Jersey provides the support for JSONP which
can be added with an appropriate annotation. The following step is an implementation of JAX-
RS resources.
5.1.2 Example of Resource Implementation
In Section 4.1.1 I identified 4 resources: OrgUnit, Patch, Account and VirtualAccount, which
should be available for the client requests.
Consider the first resource from the list, OrgUnit. It is responsible for building a hierarchical
tree of organizational units at the client and for further navigation within a website. The code
snippet shown below is an example of OrgUnit resource implementation with Jersey frame-
work. OrgUnitResource contains two resource methods annotated with @Path, @GET, @Pro-
duces and @JSONP. A combined value of class and method @Path values builds a relative URI
path to the resource method. With @GET annotation both methods will process HTTP GET
requests. The @Produces annotation specifies the multiple media types of resource representa-
tion.
The resource delegates the client requests further to the service to retrieve data from the data-
base and provides an export. In the service class I defined the redundant associations and added
them into a set of associations (Code snippet 5.2). Then the utility export() method is invoked.

 27

Code snippet 5.1: OrgUnitResource

Code snippet 5.2: Helper method for retrieving a list of redundant associations

 28

Code snippet 5.3: OrgUnitService.java

5.2 Server Testing
For powerful testing and verifying the correct implementation of server-side components Jersey
provides its internal test tool. Jersey test framework is primarily based on JUnit and helps with
designing and running the tests.
5.2.1 Configuration
To add some advanced configuration and features to Jersey test framework, I created my own
subclass RestServiceTest to override two methods of super class JerseyTest. The short code
snippet below shows these methods. The overridden method configure() enables test traffic log-
ging as well as dumping the HTTP message entity as part of the traffic logging (Jersey
Documentation, 2016). Since I use Jackson instead of default MOXy JSON provider, I regis-
tered it in the client configuration configureClient(). Each resource test inherits this configura-
tion from RestServiceTest class.

Code snippet 5.4: RestServiceTest.java

 29

5.2.2 Unit Testing with Mocks
I used a combination of two mock frameworks for writing unit tests in Java: Mockito and
PowerMock. Mockito enables to stub method calls and mock objects to verify an object behav-
ior during a test. PowerMock extends Mockito with the powerful features and, for example,
enables to stub the static methods. The code snippet below shows an example of using both
frameworks during the unit testing of account resource.

Code snippet 5.5: Example of using mock frameworks for unit test of account resource

5.3 Angular Client
5.3.1 Application Setup
The client is based on an application skeleton, angular-seed, which is typically used for a quick
bootstrapping of new AngularJS projects. The seed is preconfigured to install the Angular
framework and various tools for development and testing. For development I used the following
tools:

• Node.js with its npm: node package manager to get the tools according dependencies

• Bower: client-side code package manager to get the angular code

• Protractor: end to end (E2E) test runner
Bower and Protractor are the standard tools in angular-seed.
There are two kinds of dependencies in this project: tools to help manage and test the applica-
tion, and angular framework code. After cloning the angular-seed repository using Git I in-
stalled dependencies: to get the tools I depend on with help of npm and the angular code via
Bower. All necessary packages for Bower configuration are similar to Node’s package.json and
defined by a manifest file bower.json. Registering packages allows to install them quickly. After
launch the preconfigured npm with other scripts I got 2 new folders in my seed project:

• node_modules containing the npm packages

• app/bower_components containing the angular framework files

 30

5.3.2 Directory Layout
Angular seed provides with a modularized structure what actually belongs to the best practices
for building scalable and maintainable AngularJS applications. I took the angular-seed project
as a basis for my working directory and applied some changes to improve it for my case. The
result is shown in the following figure.

Code snippet 5.6: Directory layout for AngularJS project

The directory structure consists of two main folders: app and test. The folder app contains all
source files for application, the folder test contains End-to-End (E2E) configuration file and
scenarios with test cases. The main html template file of the app is index.html. Consider the
folder app in detail. The components subfolder will contain all app specific modules. All Ja-
vaScript files (controllers.js, directives.js, services.js) and the main application module app.js I
decided to place into the common subfolder js.
5.3.3 MVC Pattern
The power of Angular is to make the static web pages of my application dynamic. I used the
MVC design pattern to structure the code in this app: to separate code from views. The data
model is instantiated in a simple constructor function we call a controller. It takes a $scope
parameter, a glue between model, templates and views what allows them work together. I cre-
ated a new separate file controllers.js to keep all the controllers in one module myAppControl-
lers. The first controller we are defining is AnalyticsCtrl. After his declaration we should reg-
ister it in the controllers’ module and include in our layout template. We also need to add the
name of this module to the list of dependencies of main module myApp in app.js. After provid-
ing controller with the data, it will bind the data between model and view. Whenever the model
changes, Angular updates the view. The view component is constructed from the template an-
alytics.html which is found in the folder components. I used this pattern to implement other
controllers similarly.
5.3.4 Routing
In this step I provided the routing functionality. I’m getting this framework via Bower by adding
the dependency to the bower.json and including angular-ui-router.js in my index.html. I also
have to add ‘ui.router’ to the main module’s list of dependencies. app.js holds the root module
of application and should be also added with a <script> tag to the index.html.

 31

The most significant benefit of this routing framework is nested states and views. We turned
the index.html template into a layout template what means we use this template as a common
template for all states in this application.
I defined the app states in the previous Chapter. Next step is an implementation of the first states
of this application: home and analytics. They both should have own view templates. The role
of added ui-view directive in index.html is to include the view template for the current state into
the layout template. Similarly, as with the default Angular routing, I used a provider of the route
service $stateProvider. With UI-Router it focuses purely on states. I set up the defined two
states in the module config as in the following:

Code snippet 5.7: Example of implemented client states

$stateProvider wires view templates, controllers and the current URL location in the browser
together. The state analytics fetches data and renders the navigation list.
The other important things are ui-sref directives. I use them instead of usual href attributes of
<a> tags. They manage state transitions and automatically generates the href attributes.
Since I have multiple metrics, it is redundant to place them all on one page analytics.html. So,
it makes sense to use the advantages of nested states. The templates I already defined can also
have their own ui-view directives. During design, except analytics state, I designed three other
combined states: graph, virtual-account and account. Of course, with ui-router it is also possi-
ble to group the nested states around their parent or abstract parent state. The abstract state is a
state which cannot get activated itself and cannot be transitioned to. However, it can have chil-
dren states and activated implicitly. To map a combined state with its children in ui-router a dot
notation in form: parent.child is used. I grouped two states for Patch-Flow graph (analyt-
ics.graph.orgunits and analytics.graph.projects) into the abstract state anayltics.graph. For de-
tailed Patch-Flow information and the accounting ledger are responsible the next four states:
analytics.account.patch-flow, analytics.account.accounting, analytics.virtual-account.patch-
flow, analytics.virtual-account.accounting. These states are also grouped and have own group
parents. I also implemented the additional state analytics.tree to display the organizational
chart. Code snippet below shows all defined states in my app.

 32

Code snippet 5.8: Client states

5.3.5 REST Client
There are different ways to fetch data from server in Angular. One of them is a low-level service
$http. It communicates with the remote HTTP servers via JSONP or other formats. The much
easier way a definition of own services that represent a RESTful client. The RESTful function-
ality is provided by Angular in the ngResource model what does not belong to the core of An-
gular. All REST services I moved to the separate file services.js.
Fist service I implemented is OrgUnitResource for analytics state. The Angular $resource ser-
vice from module ngResource allows us to create a RESTful client with a few lines of code.
OrgUnitResource service provides an access to the OrgUnitResource.java on the server and
fetches data about organizational units.

Code snippet 5.9: Example of REST client

I used Angular’s dependency injection (DI) to provide the service to the AnalyticsCtrl control-
ler. The REST client makes a JSONP request to the server to retrieve all organizational units.
The server responds by providing data in a JSON file. Angular framework detects and parses it
itself. This service returns a “future” object, which will be filled with data when the response
returns. In usual case we would assign the retrieved object to the scope controlled by this con-
troller and bind it to the template. Then, when the data arrives, the view will be automatically
updated. However, to modify the fetched data and create my own structure with it assigning to
$scope.orgUnits, I passed a callback function to handle the asynchronous response.

Code snippet 5.10: Callback function

 33

After data is ready, I need to present it in form of navigation list. Since I have a hierarchical set
of data (a list of organizational units with its projects) I need a mechanism to render it as a tree.
Ben Foster in his article (Foster, 2014) described how to do it with Angular: with so called
recursive templates and ng-include directive. So I started by displaying the top level of organi-
zational units, the root.

Code snippet 5.11: Rendering of a navigation root

To render the next levels of orgunits I used a template and rendered it recursively for each level
in the tree. In the following code snippet, I defined an inline template.

Code snippet 5.12: Inline recursive template

 For each organizational unit I displayed its name and then a nested list of its sub units by
rendering the same template using ng-include. What is lacking is a project list which I added
for each organizational unit in the next step.

Code snippet 5.13: Inline recursive template with a project list

Other RESTful services in this application have been written in the same way.
5.3.6 Force-directed Patch-Flow Graph
One of the most significant features providing by CMSuite Explorer is a force graph of Patch-
Flow between organizational units or projects.
I modified the source code and placed it to my own directive forceGraph. According to official
documentation of AngularJS (AngularJS Documentation, 2016), directives are markers on a
DOM element that tell AngularJS’ HTML compiler to attach a specified behavior to the DOM
element. When Angular bootstraps the application, the HTML compiler traverses the DOM
matching directives against the DOM elements. There are different directive types. The best
practice is using directives via tag name and attributes which I applied for forceGraph.

 34

5.3.7 Testing
There are two kinds of tests in Angular application: unit tests and End to End (E2E) tests. Due
to the time constraints, I implemented only E2E tests.
End to End Testing
The E2E tests are written in Jasmine and run with the Protractor E2E test runner. It uses native
events and has special features for Angular applications. Protractor is a Node.js program built
on top of WebDriverJS (Selenium WebDriver). It simulates a user interaction, running in a real
browser, and verifies that the application responds correctly. This E2E test framework allows
to test Angular-specific elements without any setup effort (Protractor, 2016).
Protractor needs two files to run: a configuration file protractor-conf.js and a spec file with tests
scenarious.js. The configuration file contains different information for Protractor: how to set
up the Selenium Server, which tests to run, how to set up the browsers, etc. Selenium WebDriver
supports several browser implementations or drivers. This application is tested with Google
Chrome. Protractor supports two test frameworks out of the box: Jasmine and Mocha. I used
the default test framework Jasmine without extra downloading dependencies and set up Chai
for Mocha. In my app I placed all tests in one test file scenarious.js. With growing complexity
of application, it makes sense to organize the test cases in several spec files like home-spec.js,
patch-flow-spec.js, accounting-spec.js, etc.
Separating controller from the view in MVC makes it easy to test code. The describe functions
are used for a grouping related test cases to the test suites. They are nested and define specs at
each level. it blocks are made of commands to tell the framework to do something with the
elements of application and expectations to assert. If an it block fails, Protractor does not stop
the execution of other test cases, it just marks the it and continuous on to the next block. In the
test cases I also used a global beforeEach function, which run the code before each it block.

 35

Conclusions and Future Work
In this thesis, I developed a web application for visualization of the Patch-Flow concept with
help of graph and various diagrams. I chose a client-server model and reviewed the web server-
and client architecture. I made the evaluation of various OSS components for implementing this
architecture and diagrams:

• web server framework for implementing RESTful web services in Java

• client-side framework for building SPA in JavaScript

• client-side routing framework for SPA

• table module to easily display the accounting data with a set of built-in features

• different chart frameworks
I designed the REST-API for developing web services where I identified all resources, chose
their representation formats and media types, designed URIs, chose the versioning type on the
basis of provided web research. During the development, I solved the problem with endless
recursions and redundant associations for retrieved objects from database and introduced the
design for improvements of the export utility to fix it. I defined all routing states of a web client
and illustrated them on the state chart.
I specified the configuration of Jersey test framework and described how I performed the tests
and which mocking frameworks I used. I made an example of implementation of client routing
and REST client. I also described how I implemented the Patch-Flow graph. By testing, due to
the time constraints, I focused on only E2E-tests.
In summary, the implemented tool CMSuite Explorer is a first prototype allowing visualizing
Patch-Flow and various Patch-Flow-based metrics. It enables:

• a quantification of the code-level collaboration

• a quantification of an organizational unit’s stake in the code-level-collaboration

• managers to evaluate and make informed decisions about the code-level collaboration
between organizational units or projects within an organization. This tool helps users (manag-
ers) to analyze the collaborative process and make the software development process within
companies more effective.

Future Work
In the future work, a force bi-directed Patch-Flow graph can be replaced by another type of the
graphical representation, a bi-directional Sankey diagram, in which the width of the links be-
tween nodes is shown proportionally to the flow quantity. This can be, e.g. helpful for users to
determine the dominant contributions in the flow.
With help of Angular Smart Table framework, a client side pagination for accounting can be
added. This framework also provides a powerful pipe/ajax plugin for a paging transition.

 36

References
Allamaraju, S. (2010). RESTful Web Services Cookbook. Sebastopol, CA, USA: O'Reilly

Media, Inc.
AngularJS Documentation. (2016, April 29). Guide to AngularJS Documentation. Retrieved

from AngularJS: https://docs.angularjs.org/guide
Argefalk, P. J., Fitzgerald, B., & Stol, K.-J. (2015). Software Sourcing in the Age of Open:

Leveraging the Unknown Workforce. Springer.
Black Duck Open Hub. (2016, April 15). Compare Projects (JavaScript-based frameworks).

Retrieved from Black Duck Open Hub:
https://www.openhub.net/p/_compare?project_0=AngularJS&project_1=Backbone.js
&project_2=Ember.js

Bostock, M. (2015, 05 19). Force Layout. Retrieved from d3 Wiki:
https://github.com/mbostock/d3/wiki/Force-Layout

Bostock, M. (2016, 02 8). Mobile Patent Suits. Retrieved from Mike Bostock's Blog:
http://bl.ocks.org/mbostock/1153292

Capraro, M., & Riehle, D. (2016, April). Inner Source Definition, Benefits, and Challenges.
ACM Computing Surveys.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation. Irvine, CA, USA: University of California.

Foster, B. (2014, May 4). Ben Foster's Blog. Retrieved from AngularJS recursive templates:
http://benfoster.io/blog/angularjs-recursive-templates

Gaic, D. (2015, June 9). Top 8 Java RESTful Micro Frameworks. Retrieved March 7, 2016,
from Gajotres.net: http://www.gajotres.net/best-available-java-restful-micro-
frameworks/

GitHub. (2016, March 13). GitHub search results sorted by number of stars. Retrieved March
13, 2016, from
https://github.com/search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories

Google Developers. (2015, December 1). Organization Chart. Retrieved March 14, 2016,
from Google Developers:
https://developers.google.com/chart/interactive/docs/gallery/orgchart

Gupta, V. P. (2014, September 1). Survey of restful web services frameworks. Retrieved March
7, 2016, from Slideshare: http://de.slideshare.net/vpgmck/survey-of-restful-web-
services-frameworks

Jersey Documentation. (2016, March). Jersey 2.22.2 User Guide. Retrieved from Jersey:
RESTful Web Services in Java: https://jersey.java.net/documentation/latest/index.html

Oracle Documentation. (2010). RESTful Web Services Developer's Guide. Retrieved March
09, 2016, from Oracle: https://docs.oracle.com/cd/E19776-01/820-
4867/6nga7f5ml/index.html

Paraschiv, E. (2013, July 30). Versioning a REST API. Retrieved November 18, 2015, from
Baeldung: http://www.baeldung.com/rest-versioning

Protractor. (2016, April 30). Protracotr: end to end testing for AngularJS. Retrieved from
Protractor: http://angular.github.io/protractor/#/

Riehle, D., Capraro, M., Kips, D., & Horn, L. (2015). Inner Source in Platform-Based
Product Engineering. Erlangen: Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU).

Shaked, U. (2014). Airpair. Retrieved from AngularJS vs. Backbone.js vs. Ember.js:
https://www.airpair.com/js/javascript-framework-comparison

Spark. (2015, April). Spark survey. Retrieved March 7, 2016, from
http://sparkjava.com/news.html#sparksurvey

TechEmpower. (2016, February 25). Web Framework Benchmarks. Retrieved March 7, 2016,

 37

from TechEmpower: https://www.techempower.com/benchmarks/#section=data-
r12&hw=peak&test=fortune

Williams, P. (2012, June 25). Media Types and Profiles. Retrieved November 18, 2015, from
http://barelyenough.org/blog/2012/06/media-types-and-profiles/

Wood, T. (2014, September 15). How are REST APIs versioned? Retrieved November 18,
2015, from Lexical Scope: http://www.lexicalscope.com/blog/2012/03/12/how-are-
rest-apis-versioned/

Zazueta, R. (2015, March 11). The ultimative solution to versioning REST APIs: Content
Negotiation. Retrieved November 18, 2015, from The RESTed NARWHL:
http://www.narwhl.com/2015/03/the-ultimate-solution-to-versioning-rest-apis-content-
negotiation/

