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ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
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Abstract

Open source software nowadays is increasingly used outside its own ecosystem. It
is used by governmental departments and companies, for commercial projects and
as a part of critical infrastructure, like encryption libraries. This usually makes
it necessary to increase the collaboration with open source communities but it is
also required to asses new risks, which arise from using a software, maintained
mainly by volunteers. In order to achieve this we need a better understanding of
open source communities and about how they organize and structure themselves,
whether they depend on key personality and whether they form subcommunities?
How do such communities change their behavior over time, during growth and
which is the most efficient form of structuring to handle reported issues?

We collect issue tracker data and use it to create sequences of social networks
for 6007 projects present on Github.com and for 120 projects from the Apache
Software Foundation. Based on metrics to quantify the strength of subcommuni-
ties and centralization we study the general structure of open source communities
and how they might correlate, but also their behavior over time. We compare the
communities based on an efficiency metric to gain information about preferable
structures.

Our results show that the most open source communities avoid to organize them-
selves in subcommunities while they are highly dependent on a few key person-
alities. The results of both metrics do indeed correlate, which means that if a
community has strongly distinct groups it is unlikely to be highly centralized.
But neither the few in subcommunities organized projects nor any other organi-
zational type show a significantly higher efficiency. Although projects grow over
time, they show only little internal structural change.

The stability of open source communities and the strong avoidance of subcommu-
nities are unexpected results, since it highly contradicts recent related studies and
therefore requires more research to better predict the development of projects.
For the assessment of projects the dependency on strong key members for the
stability may prove helpful when it comes to indicating and analyzing major
changes.
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1 Introduction

Thesis description

We have an existing framework for crawling data from Github.com issue trackers.
Objective of this thesis is to extend the framework to also crawl Jira issue trackers
and then perform an analysis of the evolution of selected metrics from the field of
social network analysis based on a representative set of Github.com and Apache
projects. The thesis presents conclusions about the behavior of collaboration in
open source issue trackers and about evolutionary patterns of project metrics and
networks.
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2 Research

2.1 Introduction

How important Open Source Software (OSS) has become was demonstrated as
bugs in two open source libraries caused major security issues accompanied by
extensive media coverage in 2014. The OpenSSL cryptography library responsible
for the “Heartbleed” bug1 and the Unix-Shell Bash causing “Shellshock” 2, are
both usually part of a mainly open source software stack to power a webserver.
Thereby we are now long beyond the point where OSS was primarily used by the
communities themselves, which created the software. These communities have
been a part of many studies including research about the collaboration behavior
inside OSS communities. Based on collaboration networks and social network
analysis (SNA) selected OSS project communities were analyzed regarding their
self-organization. For these networks multiple different data sources served as
basis: mailing lists, revision control systems and issue tracker systems. The
studies then analyzed the organizational structure either regarding centralization
or regarding modularity, how distinct subcommunities are being formed.

Our work regards three points to extend or verify related work. Firstly the
amount of projects analyzed in these studies, which were mostly less than ten
or in the low hundreds. To get more representative data we use data collected
for 6007 projects present on Github.com and 120 projects which are supervised
by the Apache Foundation and hosted on their Jira issue tracking system. Sec-
ondly the combination of centralization and modularity. Studies found strong
centralization in OSS communities while some studies showed the formation of
strongly separated groups. We look at both to verify if both phenomena can
occur simultaneously and how their relationship might be. Lastly the temporal
aspect concerning the evolution of structures in communities. We study how fast
and how strong projects change their organizational structures between different
lifespans.

1Common Vulnerabilities and Exposures registration: CVE-2014-0160
2Common Vulnerabilities and Exposures registration: CVE-2014-6271
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For our research as well as for others there is the limitation to one system pro-
viding the collaboration data. This limits our OSS communities to people who
do active commenting in issue tracking systems. Activities in mailing lists or
source code editing is not considered as it would require to associate accounts of
multiple systems, which belong to the same person. Our research only uses rela-
tionships extracted from conversations made in issue comments. Thereby these
communities should not be considered complete but they represent a substantial
part.

2.2 Related work

OSS communities have been studied on different levels over the last years. Be-
sides collaboration in revision control systems and interactions in mailing lists
issue tracking systems have been getting more and more attention and are used
to analyze interaction behavior and collaboration. Crowston, Wei, Li and How-
ison (2006) also showed that official developer lists might not show a realistic
picture of a project’s team, therefore additional data sources should be acquired
and analyzed to get a more accurate result. Sureka, Goyal and Rastogi (2011)
surveyed work in this field of research, which includes among other things studies
to solve the problem presented by Crowston et al. (2006). They confirmed the
usefulness of SNA to investigate collaboration and showed that it could be used
in the field of risk analysis.

Most studies which approached the general structure of OSS communities based
on SNA can be generally separated in three areas: centralization, the formation
of subcommunities and network topologies. Our work will combine the first two
areas, which have been studied separately so far. We think a joint consideration
will show a more complete picture and also if both phenomena are related.

Long and Siau (2007) explored network topologies for three projects based on ex-
tracted issue tracking data. Their findings relating to core developers are similar
to Howison, Inoue and Crowston (2006). They also present empirical evidence
that the network topologies for the three networks evolve from single hubs to core
periphery networks.

The SNA research field concerning centralization was examined by Crowston
and Howison (2005). They examined 120 SourceForge projects on centralization
characteristics and found that those projects vary widely in their communica-
tion centralization. We will use a similar centralization approach but a different
centrality metric for our networks. Their work was extended by Howison et al.
(2006) with a focus on the change of core contributors. They found that the
majority of projects keep key individuals over time and that the size of a project

3



is irrelevant to the rate at which those members are replaced.

Bird, Pattison, D’Souza, Filkov and Devanbu (2008) tackled the detection of
subcommunities in social networks. They studied five big OSS projects by using
social networks, created based on email data. They showed that this kind of
data could be used to detect groups inside a community. They used a modularity
based method to detect subcommunities and to quantify the separation. The
quantification, based on modularity, will be the basis metric for this kind of
structural measurement in our work as well. Therefore parts of our result are
comparable to Crowston and Howison (2005), Howison et al. (2006) and Bird
et al. (2008).

Because the community structure of OSS projects is mostly explored for specifi-
cally selected projects or only for a few characteristics in a slightly larger number
in related work, our work uses a larger data set to explore the OSS communities
and tries to find correlations between different structural characteristics.

The influence of Github.com for OSS has increased over the last few years and it
is now one of the major OSS platforms for source code and issue reports. Con-
sequently Github.com itself and the available data have become an important
source for research. Gousios (2013) and Gousios, Vasilescu, Serebrenik and Zaid-
man (2014) presented a platform, which collects data from public Github.com
projects and made them available. In the “Used data sources” section of our
work we will explain how and why we used their data. Thung, Bissyandé, Lo
and Jiang (2013) and Yu, Yin, Wang and Wang (2014) explored Github.com it-
self on a larger scale using, among other things, social network analysis to find
influential developers or network patterns beyond project borders for a better
understanding of Github.com.

2.3 Research questions

We want to make statements about community structures in OSS projects mainly
by analyzing the social network properties, centralization and modularity. There
are relative statements about a behavior: e.g. a community avoids or seeks
to form subcommunities and there are quantifying statements about how this
behavior can be numbered. To do both, we need points of comparison: the
centralization and modularity of random networks. This results in our first two
hypotheses:
Hypothesis 1a The centralization distribution for collaboration networks is sig-
nificantly different from the distribution for random networks.
Hypothesis 1b The modularity distribution for collaboration networks is signif-
icantly different from the distribution for random networks.
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Significance in this case means that the population from which random networks
are sampled is statistically different from the populations, from which our cen-
tralization and modularity results originate.

If we expect that issue tracking communities show a similar behavior as the
mailing list, we might assume, based on the work of Bird et al., 2008, that the
gained social networks will show significant modularity values, therefore a strong
tendency to form groups. However, the results by Crowston and Howison, 2005
based on SourceForge data, showed that we could expect networks with people
organized around central leaders. Both do not exclude each other, which we show
in section 2.6.2, but it seems unlikely that mostly self organized communities
create such specific structures, leading to our next hypothesis:
Hypothesis 2 Communication networks based on OSS issue tracker data show
either a high centralization or a high modularity.

The size of an society is an important factor for different communities, like com-
panies, associations or other societies where people collaborate. It is not unusual
that societies whose size increases or decreases change their structure, e.g. compa-
nies found departments. The question which arises is if OSS communities behave
similarly. We approach this question from two sides. The first is the general
relationship, meaning the bigger a network is the more central or modular it will
be:
Hypothesis 3a The modularity of issue tracker collaboration networks increases
with the network size.
Hypothesis 3b The centralization of issue tracker collaboration networks in-
creases with the network size.

The second is a temporal relationship between the changes of size and the changes
of modularity/centralization. Meaning, if more people join to work on a project
over time the more distinct the groups or the more important central people
become:
Hypothesis 4a A project’s successive change of size correlates temporally with
the change of modularity.
Hypothesis 4b A project’s successive change of size correlates temporally with
the change of centralization.

Another temporal aspect is how projects evolve, meaning if and how their struc-
tural organization changes over time leaving the network size out of considera-
tion. There are ways to argue how projects are started and develop. For instance,
OSS projects could get initiated by a group of people working directly with each
other. As the project promotes and sophisticates, membership roles could get
more sophisticated too and evolving leaders induce a stronger centralization. The
alternative could be that as new software parts and modules are included and
the software grows in volume and becomes more complex, developers split into
groups, working on parts of the project. This leads to a research question we
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want to answer:
Research question 1 Do collaboration networks show higher modularity or cen-
tralization values depending on their age?

Besides the questions about general properties and changes over time, we may
ask if we could relate efficiency to specific ranges of modularity/centralization
values, which could help to improve projects. In our case it is of interest if we
could connect communities, which have a good way to handle new issues and
resolve them without building a backlog, to specific structural properties.
Research question 2 Which organizational structures of collaboration networks
lead to efficient issue processing?

2.4 Research approach

2.4.1 Social networks

Creating social networks

One of our aims is to have more representative results by using more extensive
data from different issue tracking sources. In order to be able to compare and
work on data from different sources, we used the uniform data model presented
by Capraro (2013). They presented how the different issue tracking data from
Github.com or systems based on Jira and Bugzilla could be unified to be used
for joint analyses. We will focus on issues associated with projects, including
their comment activity and the normalized issue state changes. The normalized
issue state changes are the events associated with a time stamp when an issue is
opened, closed or reopened.

We want to analyze the collaboration between participants in the OSS issue track-
ing communities. To determine who communicates with whom we use comments
(including the initial description) as a main indicator, because they serve as a
communication platform for bugs, new features, thoughts and other knowledge
transfers. Consequently people who are commenting on the same issue are com-
municating to each other, leading to our social network: people are nodes and if
they comment on the same issue an edge is created.

The information value of a complete network, created by all communication
events (comments) would be minimal, especially the older projects become. The
reason for that is that people who have never worked for the same project at the
same time would appear in the same network and based on SNA we would take
their relationship to one another into account. This would be a false conclusion as
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the two individuals never collaborated in reality. To prevent this and to allow us
to examine changes over time, we will look at a sequence of networks per project.

To gain a sequence of networks for each project we must divide the communication
events based on a sequence of time frames, so that we can create networks for
every time frame.

time-frame

time

1

2

3

4

is
su

e

A B C A D A

E C A C

E C D E

B D

Figure 2.1: comment selection for a project’s time frame based on multiple
issues
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(a) issue 1

A

C
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(b) issue 2

CD

E

1

1 1

(c) issue 3

DB 1

(d) issue 4

Figure 2.2: networks based on one specific issue and the activity during the
time frame, see figure 2.1

We create networks for defined time frames based on comments which have been
updated or created during a time frame. Figure 2.1 illustrates our method and
shows which comments would be selected, namely those comments, which have
been posted exactly inside a specific time-frame. It could be discussed to include
the complete comment history for an issue if one comment triggers the issue
during a time frame. The reason for this is that comments are likely refer to
relevant comments outside the time frame. We reject this approach because the
disadvantages of including inactive people during a time frame is stronger than
than the gained accuracy of a complete conversation.

So far we have defined which nodes are connected but not the strength of their
connection, the weight of the connecting edge. The weight is determined by the
amount of comments per issue and the number of issues which a person has been
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Figure 2.3: complete network for the time frame and for all issues

participating. If the same nodes are connected in multiple issue networks, the
edge weights are summed up. The Figure 2.2 presents the resulting networks per
issue and the combination of these issue networks results in the complete network
(Figure 2.3).

Time frame size

We use a quarterly time frame to create our social networks. We also used
monthly time frames to compare them to the quarterly results. In most cases the
results are similar but as monthly networks have a smaller average size and we
only use networks with a minimum of 10 nodes we would have to remove more
networks and thus more information. This is noticeable during the development
analysis as more gaps, caused by removed small networks, appear. Sometimes
the monthly results also show a few spikes, which have been canceled out in our
quarterly results.

Edge filtering

A big problem, when working with issue tracker data are one-time users. Capraro,
2013 determined that in their analyzed Github.com data most projects show that
40 to 70 per cent of all users are only active for one issue. As we are interested
in active contributors, who do more than posting on one issue, and how they
are communicating with each other and how they structure their community, we
filter our networks to reduce noise. In order to do so, we remove edges from
created social networks based on their edge weight. We define that the minimal
recognizable interaction amount between two people has to be two. In other
words, two people are only connected if both commented together at least twice
on one or more issues. This is not a very restrictive limitation for interactions
between people, especially for a long time period (three months), but it is already
very efficient for filtering one-time and inactive users.
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2.4.2 Structural metrics

To quantify structures in our social networks we will mainly use two metrics,
modularity and centralization. Both values allow us to compare different networks
based on their structure.

Modularity

Modularity is mainly used as a structural measurement which says how strong
a network can be divided into groups/clusters. It cannot be calculated for a
network directly, it can only describe the strength of connections between clusters
for a provided network clustering. The modularity value can be different for
the same network dependent on the clustering. Therefore the highest possible
modularity for a given network is considered the modularity network property. It
was introduced by Newman and Girvan, 2004 to find subcommunities in networks.
The Modularity Q is defined as (Bird et al., 2008, p. 5):

Q =
∑
i=1

(eii − a2i )

eij is the fraction of edges with one end’s node in community i and the
other in community j

ai is the fraction of ends of edges that are attached to nodes in community i

This formula is the transformed representation of the original description, where
it is described as the difference of the fraction of edges between groups and the
same fraction for a degree keeping randomly connected network.

As it is not an actual calculable property like average degree or density, algo-
rithms to find a clustering are needed. However Brandes et al., 2006 showed that
finding a clustering with the maximum modularity is NP-complete. Consequently
there are only optimization algorithms and heuristics providing a possibly not op-
timal solution. We use the very common Louvain method, a heuristic modularity
optimization method published by Blondel, Guillaume, Lambiotte and Lefebvre,
2008. The value range for modularity is from zero to one.

Centrality and Centralization

Centralization measures the opposite, it says how tightly the graph is organized
around its most central nodes and can be used to compare networks. Centrality
refers to a value connected with a node and describes the importance of this
node inside a network. If the centrality for single nodes is high and for the
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remaining nodes small, the centralization value is much higher than in cases of
mostly equally distributed node centralities.

There are multiple common centrality methods used in social network analysis.
We use the Eigenvector centrality because it scores nodes based on their connec-
tions to influential people; therefore not only the pure value of outgoing edges
count, but it also considers whom they lead to. This is a more accurate represen-
tation for central people in a OSS community than as e.g. a Degree, Betweenness
or Closeness centrality.

The Eigenvector centrality is calculated by this equation:

Mx = λx

The centrality csi for node i of a network with n nodes is received from the
eigenvector x belonging to the biggest eigenvalue λ. The entries are normed as
follows:

csi =
xi
‖x‖2

; 1 ≤ i ≤ n

However there is an Eigenvector centrality drawback, which still exists at this
point: if disconnected subnetworks exist in a network, the Eigenvector centrality
only provides centrality values for the biggest disconnected subnetwork. To solve
this problem, we do the Eigenvector centrality calculation for all subnetworks
separately. The resulting centrality vectors, respectively the node centralities, for
each subnetwork are weighted by the fraction of number of nodes in a subnetwork:

ci = csi
m(s)

n

m(s) := size of subnetwork s

With the node centrality values we can calculate the general network centraliza-
tion as it was defined by Freeman, 1979:

C =

∑n
i=1max(c)− ci

Cmax

Cmax =
n∑

i=1

max(c∗)− c∗i for the maximal centralized network of size n

For Eigenvector centrality the maximal centralized network is a network of only
two connected nodes and all other nodes without any connection:

Cmax =
n− 2√

2
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This results in our centralization value ranging from zero to one:

C =

√
2

n− 2
∗

n∑
i=1

max(c)− ci

2.4.3 Validation of network properties

To decide if our OSS communities in general show significant signs of formed
structures, we have to analyze the network properties. We do this by comparing
centralization and modularity of the actual networks with randomly generated
networks as it was done by Bird et al. (2008).

Random networks

The two basic random graph models are Erdős-Rényi’s G(n,M) and Gilbert’s
G{n, P (edge) = p} (Bollobás, 1998). But usually, a common approach to validate
discovered network structures is the generation of a control group by a degree
keeping randomization (Molloy & Reed, 1995). Based on this approach Bird et al.
(2008) created their comparison random networks on a link switching algorithm,
which conserves a network’s degree sequence, so that a node’s activity is kept but
who is connected to whom is shuffled. This way you keep a degree of similarity
to the original network but you still get a random control group by generating
thousands of random networks for every network you have. Due to the following
limitations, randomization by link switching generates a distorted control group
for our networks.

In Figure 2.4 it can be seen that most networks have 10 to 25 nodes. The
bottom limit is created by our regulation only to use networks with a minimum
of 10 nodes. The possible high densities and the resulting high centralization
values, which should be validated, turn out to be problematic for a degree keeping
randomization.

The link switching approach results in a significant amount of networks, where
link switching is not possible or only a few isomorphic networks exist. Figure 2.6a
is an example network with 15 nodes and a typical centralization of 0.58 and the
Figures 2.6b and 2.6c are the only two possible networks, which are not isomorphic
to the original one or to themselves. Normally a network would be randomized
several thousands of times by link switching and would be added to the control
group. If we do this with networks like the example network we would bias the
random control group, because of adding the same networks multiple times or by
not adding the correct amount of randomized networks. To avoid this problem we
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generate our random networks based on an estimated probability density function
for the size and density. The probability density function is estimated by a kernel
density estimator, visualized in Figure 2.5. We explained the limitations and our
solution for simplification only for Github.com. For Apache Jira based networks
the same limitations apply. Also the Apache Jira control group was sampled
based on an estimated probability density kernel.

(a) original network (b) not isomorphic 1 (c) not isomorphic 2

Figure 2.6: An example network (15 nodes, centralization=0.58) and its only
two with link switching producible networks, which are not isomorphic.
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2.4.4 Relationships

Direct property relationships

To examine direct relationships between different network properties and to get
an understanding what might cause or influence the modularity and centralization
results we analyze scatter plots and correlation coefficients for multiple network
property pairs. For the correlation coefficients we use Spearman’s rank correlation
coefficient, since it does not require normal distributed variables and compared to
the Bravais-Pearson-Correlation we can find monotonic relationships (Fahrmeir,
Künstler, Pigeot & Tutz, 2007).

Temporal correlations

Since it is not just important whether any correlations exist, we also test on
temporal correlations by comparing the binary course of two variables. It does
not matter if it is a direct correlation, one variable increases and the other follows,
or an indirect correlation, one increases and the other decreases. Furthermore a
lag of one time frame backwards or forwards is considered. We take the variables
for comparison, create their binary course and quantify the correlation by using
the φ-coefficient (Fahrmeir et al., 2007) with time lags by one left, one right and
no lag.

2.4.5 Efficiency

Kan, 2002 presented three categories for software quality metrics. One is called
“maintenance quality metric” and is related to the maintenance phase after prod-
uct release. The “Base on backlog management index (BMI)” measures how good
support and developers handle bugs reported by customers. In OSS projects there
usually is no clear separation of software development and a released product,
but we can still use the BMI to measure the capability of handling issues as bugs
are still reported and also additional issues such as feature requests are added to
the issue tracking system. Capraro, 2013 adapted it as an efficiency metric and
we do as well.

We slightly change the BMI to get negative values for time frames where fewer
issues are closed than new ones are opened and a worst case value of minus one
if no issues are closed at all. To get a symmetric metric, the maximum must be
one, which corresponds to closing twice as many issues as new ones are opened.
To gain this we rounded all values above one back to one as this occurs rarely and
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the lost information is rather small. The open/close-ratio (oc-ratio) is formally
defined as:

oc-ratio =


0, if (opened+ closed) = 0

1, if (closed−opened−reopened)
(opened+closed)

> 1
(closed−opened−reopened)

(opened+closed)
, otherwise

2.5 Used data sources

Capraro, 2013 developed a uniform integrated data model and presented how
to normalize and store issue tracker data from Github.com, Jira and Bugzilla
systems and developed a crawling system, which was capable of crawling issue
tracking data from Github.com. To extend the data and to get a more repre-
sentative set of data we extend his work by an additional crawler for Jira issue
tracking systems, which is used by most of the Apache OSS projects.

Crawling from Github.com is problematic because of the limited amount of re-
quests you are allowed to do, therefore you can not easily increase the amount of
crawled projects. However the GHTorrent project presented a solution, as they
are already crawling the Github.com data and made it available to the public
(Gousios et al., 2014, Gousios, 2013). To keep the uniform crawling and process-
ing system, we crawled the Github.com data by using GHTorrent data dumps
until 2015-03-29.

We now have data for 16152150 Github.com projects and for 527 Apache Jira
projects. Not all projects offer issue data, especially projects on Github.com,
because the majority of projects are data dumps, forks, personal projects, etc.,
which are not used by other people. After applying the minimum edge weight
filter (minimum edge weight of two), we only use networks with at least 10 peo-
ple. The number of projects that can provide enough data to create such social
networks are: 2037 projects providing 6007 networks for Github.com and 120
projects with 1198 networks for the Apache Jira issue tracking system. Based on
these networks we do our social network analysis.
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2.6 Research results

2.6.1 Centralization but no modularization

To make a statement about the general structure of OSS communities we study
the probability density distributions for centralization and modularity for Github.com
and the Apache Jira projects. The Figures 2.8 and 2.9 show that the centraliza-
tion distributions are shifted strongly towards bigger values. The strong shifts are
also confirmed by Mann-Whitney U tests and resulting p-values < 0.0001, so that
we can reject the Mann-Whitney U null hypothesis that both samples are from
the same population. With the rejected Mann-Whitney U null hypothesis we can
confirm our hypothesis 1a for Github.com and the Apache Jira projects having
centralization values significantly different from random projects’ centralizations.

centralization modularity
percentile 5th 25th 50th / median 95th 75th 50th / median
Github.com 0.42 0.58 0.69 0.30 0.14 0.072
Apache Jira 0.33 0.54 0.66 0.48 0.24 0.15

Figure 2.7: percentile for the centralization and modularity distributions

For a more detailed assessment we look at the 5th and 25th percentile (Fig-
ure 2.7). 95 per cent of all networks have at least a medium centralization above
0.42 (Github.com) and 0.33 (Apache) and furthermore 75 per cent are strong
centralized with values above 0.5. Thus, we can conclude that most OSS projects
form a strong centralized community around a few key people.

Also for our modularity values the Mann-Whitney U test shows a significant shift
for the Github.com and the Apache Jira projects with p-values < 0.0001 so that
we can confirm hypothesis 1b, too.

In contrast to centralization the modularity distribution is smaller, meaning that
the OSS projects are significantly trending to a lower modularity than random
networks. Generally only networks with modularity values above 0.3 show a
recognizable trend to form groups. Considered this and the 95th percentile,
which has a score of 0.3, we can conclude that Github.com projects have a very low
modularity (Figure 2.7). For the Apache Jira projects the result is not as strong as
for Github.com but also there we have 75 per cent of networks with a modularity
below 0.24. This findings conflict with related work and will be discussed later
on. In summery most of Github.com as well as Apache Jira projects do not show
a trend to distinct groups and both distributions are significantly lower than they
are for random networks. Centralization, however, is much bigger for both issue
tracking systems than for random networks, from which we can conclude that
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Figure 2.8: Github.com comparison of probability density functions
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Figure 2.9: Apache Jira comparison of probability density functions

strong centralization is a typical characteristic for OSS communities. But this is
not enough to accept hypothesis 2 and will be discussed in Section 2.6.2.

2.6.2 From centralization to modularization

In Table 2.13 it can be seen, that there is a significant correlation between modu-
larity and centralization for Github.com and Apache Jira. If we take a look at the
scatter plots and the regression line, the big cloud for the area with modularities
below 0.3 makes the results somewhat unclear. Because of this we split the data
based on modularity below 0.3 and equal or above 0.3 and repeat the correlation
tests for both ranges.

The results in Table 2.10 show that the correlation is mainly contributed by
networks with a modularity ≥ 0.3 and is even stronger than the correlation
for all networks, although the correlation is a bit weaker for modularities <
0.3. Also the scatter and regression plots, Figures 2.33 and 2.34, for the two
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partitions do not provide any reason to reject the correlation. The regression
lines point out a slight slope for modularities below 0.3 and a higher slope for
a modularity ≥ 0.3 but in most cases with an increasing modularity causing a
centralization decrease. We can conclude that it is unlikely for an issue tracking
community to have a high modularity and high centralization at the same time,
Thus, communities are either gathered around key members or they form mainly
independent subcommunities without a strong leadership.

Modularity
≥ 0 < 0.3 ≥ 0.3

Github.com -0.31 -0.26 -0.47
Apache -0.35 -0.19 -0.46

Figure 2.10: correlations for modular-
ity and centralization
all p-values < 0.0001

It could be argued that this corre-
lation might have been foreseeable,
because both measurements could be
seen as mutually exclusive organi-
zational types. Furthermore, both
measurements are based on calcula-
tions using the same adjacency matrix.
However a high centralization does not
exclude a high modularity and vice
versa and the same applies to low val-

ues of both. Network 2.35 is an example for a highly modular and also central-
ized network. It could be explained as a flat hierarchical structure with directly
assigned workers to the head person. Quite the opposite is a fully connected
network resulting in no centralization and a modularity close to zero. These two
examples and outliers in our results show that the correlation is not dictated
by the definitions and how they are calculated. Knowing this, we can accept
hypothesis 2.

To determine if projects follow this correlation during their changes over time,
meaning if a project increases its modularity the centralization drops, we use our
approach for testing temporal correlations. The results in Figure 2.38 show no
clear indications for a correlation over time in contrary to the general correla-
tion of modularity and centralization. This phenomenon can be explained by
looking at the differences, which occur between two time frames. The differences
are rather small, mostly < 0.1 what can be seen in the Figures 2.11 and 2.12.
With these small values an unpredictable behavior, e.g. modularity increases and
centralization as well, could appear. At the same time they show that projects
usually do not change their structure rapidly, But the most interesting fact is
that apparently Apache Jira projects have considerably bigger differences be-
tween their maximum and minimum modularity and centralization values. The
median of the maximum distance between the minimum and maximum values
per project for modularity is 0.39 and for centralization 0.46. In contrast to
Apache Jira, Github.com has a median maximum change inside projects of 0.16
for modularity and 0.28 for centralization. This also reflected in the Figures 2.14
and 2.15, where the Apache Jira projects show a bigger distribution for every age.
This means most of the Apache Jira projects undergo stronger changes during

17



their total lifespan than Github.com projects do.
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Figure 2.11: Github.com projects’
change differences from one time frame
to another
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Figure 2.12: Apache Jira projects’
change differences from one time frame
to another

2.6.3 Property relationships

The independence of network size

To find relationships we calculate Spearman’s rank correlation coefficient for the
pairs listed in Table 2.13. One could conclude that the size might influence the
structure, e.g. that bigger projects tend to have a stronger community modular-
ization which turned out be a false assumption. The correlation coefficients for
size paired with modularity and centralization actually show a low correlation
(compare scatter and regression plots, Figures 2.17, 2.18, 2.19 and 2.20) in three
out of four cases. The plots show a distribution where especially for low sizes
the modularity is distributed on a large range. This creates a line leading to
small correlation values but considering the whole plot we have to discard the
correlation results. At most, what we can say is that high modularity values are
generated by smaller networks. This means we have to reject hypotheses 3a
and 3b.

In addition to a general correlation there is also the possibility of correlation over
time, meaning that if the number of participants of a project changes the project
structure changes, too. For verification we use the procedure to find temporal
correlations presented in Section 2.4.4.

The results and probability density plots for temporal correlations for size and
centralization are shown in Table 2.36. As we see the best results are achieved
without a lag, but even those results do not show a clear correlation for size
and centralization over time. In addition not enough projects show a significant
p-value to accept a correlation.
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We have already shown that modularity is not correlating with network size in
general, and also the correlation density plots and p-values for temporal correla-
tion regarding size and modularity also clearly show that there is no correlation
over time (Table 2.37).

Consequently, we have to reject hypotheses 4a and 4b, as structure given by
modularity and centralization is not changing in accordance to network size.

2.6.4 The development of projects

Slight changes in modularity and centralization

In the previous sections we showed that the organizational structure of projects
of the two issue tracking systems vary over time. Now we want to analyze if this
variation is connected to the age of a project, and whether they become more
modular or more central over time. To do so, we take all projects with at least
four quarters of activity and compare their modularity/centralization distribu-
tions at different stages in time (Figures 2.41, 2.42). Especially the distributions
for Github.com show very stable distributions over time and the distributions for
Apache Jira are only slightly less consistent. But both distributions are no indi-
cators for older projects having a stronger/weaker modularity or centralization.

Also the Github.com projects’ quarterly deviations from their medians (Fig-
ure 2.14) give no reason to think that there is a clear course of a project’s
structural development, rather do they show that projects deviate mostly sym-
metrical around their median modularity and centralization. For Apache Jira
Projects (Figure 2.15) we can recognize that projects supervised by the Apache
Foundation are slightly below their lifetime modularity median during their first
quarters. Despite this slight increase for Apache Jira projects the answer to ques-

modularity centralization open/close-ratio

size
corr-coeff 0.17 0.07 0.19 0.26 0.02 -0.08
p-value 0.0000 0.0224 0.0000 0.0000 0.0659 0.0070

communication corr-coeff -0.21 -0.33 -0.05 0.28 -0.13 -0.14
amount p-value 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
open/close corr-coeff -0.04 0.13 0.19 -0.05
ratio p-value 0.0053 0.0000 0.0000 0.1051

centralization
corr-coeff -0.31 -0.35
p-value 0.0000 0.0000

columns: Github.com Apache Jira

Figure 2.13: network property correlations
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Figure 2.14: Github.com project’s deviations from their projects’ medians a
given age (projects with at least four quarters)
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Figure 2.15: Apache Jira project’s deviations from their projects’ medians a
given age (projects with at least four quarters)

tion 1 is that OSS collaboration networks do not increase their centralization or
modularity over time. (Note: the results for very progressed projects get blurry
because of the decreasing amount of projects.)

Growing projects

Besides the structural metrics we also look at size over time (Figure 2.16). We
recognize from Github.com and Apache Jira projects that the median increases
as well es the upper quartile does. The lower quartile is only rising slightly.
This means that the median of projects get more active contributers over time
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and therefor the size of networks increases. These results and the results from
the previous section confirm again the independence of size from modularity and
centralization, as both do not show the same behavior during the development
of a project.
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(a) Github.com size distributions depend-
ing on age
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ing on age

Figure 2.16: Github.com and Apache Jira development of size for different
project ages (projects with at least four quarters)

2.6.5 Structures and their efficiency

If efficiency could be related to network properties it would be helpful for OSS
communities to improve their organizational structure. We use two methods to
look for “good” properties. The first one includes general correlation tests for
network properties and the open/close-ratio as it was done in previous sections.
The results (Table:2.13) show small correlation coefficients for the oc-ratio and
the total communication amount for Github.com and Apache Jira. But if we take
the scatter plots (Figures 2.27 and 2.28) to validate these correlation values into
account, they reveal the meaninglessness of these correlation values as well as
the results for the open/close-ratio paired with modularity/centralization. Thus,
we are not able to relate network properties to our efficiency values with this
method.

For the second method we visually analyzed the kernel density plots for modu-
larity - centralization with different filters applied, based on the open/close ratio.
These filters are:

• the networks with the best open/close ratio for every project

• the networks with the top 100 open/close-ratios
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• the networks with the worst open/close ratio for every project

The Figures 2.39 and 2.40 show the resulting plots. There might be minimalistic
deviations but it is without any significance. Furthermore there are no significant
changes if you look directly at the modularity versus centralization probability
distributions.

Thus, both methods could not prove any relation between our efficiency metric
and:

• modularity

• centralization

• communication amount

The answer to research question 2 is that there are no organizational struc-
tures which showed a higher oc-ratio and therefore no organization type can be
recommended to gain a higher efficiency.

2.7 Discussion

We wanted to explore the organizational structures and verify if other research re-
sults can be transfered from small or manually selected data sets to a larger, more
representative one. We can confirm the findings made by Crowston and Howi-
son, 2005 about the strong centralized structure of OSS communities. Thereby
we discovered nearly no difference, whether looking at the many different kinds
of projects on Github.com or looking at the more controlled ones by the Apache
Foundation. Our results differ regarding the correlation of size and centralization.
According to our results the size of a project does not have a correlation to any
other network property, even though the average project increases its size over
time. As it has already been addressed these centralization results could be ben-
eficial for risk assessment as we can identify if key members leave a community.
But it also shows that a few people have a lot of influence on projects, e.g. any
discrepancies with one or a few people could make it impossible for developers or
companies to cooperate on a project.

As the temporal development was not a central research point in related work,
we were interested if changes of network properties are related to each other over
time. Our results show that there are no temporal correlations between network
size and any other properties like modularity and centralization. Based on these
results and that most projects show a high centralization, we can conclude that
OSS projects, regardless their size, show very similar organizational structures.

22



If we assume that collaboration behavior extracted from mailing lists is similar
to extracting it from issue tracking systems, then our results are contradicting to
the results found by Bird et al., 2008, because we found that OSS communities
rather avoid the manifestation of distinct groups. It is more likely for random
networks to form groups than it is for OSS projects, thus they even work contrary
to the formation of subcommunities. This contradiction should be part of fur-
ther research, including the influence of the divergence of our and their average
network sizes.

As we were not only focused on one structural property, but we were calculating
both, modularity and centralization, we investigated their relationships to each
other. Our results show a strong correlation of modularity and centralization,
but they do not show a temporal correlation. We trace the non-existing temporal
correlation of both attributes back to the small interim changes and especially for
Github.com to the small overall changes of the projects’ structure. These small
overall and interim changes show that OSS projects are lethargic in changing
their organizational structure and due to the mostly symmetric deviations from
a median they will likely cancel out the previously made changes later. This
unexpected behaviour should be studied more deeply in future research. Also
how strong the people inside the networks change while the community structure
stays nearly the same.

A point, which also needs further research, is the influence of low active users.
We filtered user connections based on edge weight and removed every edge with
a weight below two. If we remove the edge filter, the resulting networks show a
minor increased modularity and decreased centralization. The focus should be
how important theses users are and how exactly they influence communities.

2.8 Conclusion

We used issue tracking data from more than 2000 projects to create sequences
of social networks for every project. We found that issue tracking communities
for open source projects, central members play an important role and that they
mostly avoid to form groups. Due to the high correlation of both we found, even
if there is a high modularity it is unlikely to have a high centralization at the
same time. Despite the correlation of modularity and centralization, networks
do not follow this correlation during their temporal evolution. These findings
are also owed to small transitions between different time frames and a small
deviation of these network properties. Thus projects stay considerably stable
although the size increases on average over time. Furthermore, we could not
identify any patterns of modularity and centralization which show a significantly
better efficiency in handling issue work load for the studied projects. This does
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Appendix : Conclusion

not make any organizational structure preferable to the other.
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Appendix A Scatter plots for paired network

properties

Least Squares Linear Regression
Robust Locally Weighted Regression
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Figure 2.17: Github.com networks’
modularity and size
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Figure 2.18: Apache Jira networks’
modularity - size
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Appendix A: Scatter plots for paired network properties
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Figure 2.19: Github.com networks’
centralization and size
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Figure 2.20: Apache Jira networks’
centralization and size

1.0 0.5 0.0 0.5 1.0
Open/close ratio

0

50

100

150

200

250

300

S
iz

e

Figure 2.21: Github.com open/close
ratio size
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Figure 2.22: Apache Jira networks’
open/close ratio and size
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Figure 2.23: Github.com networks’
modularity and communication amount
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Figure 2.24: Apache Jira networks’
modularity and communication amount
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Figure 2.25: Github.com networks’
centralization and communication
amount
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Figure 2.26: Apache Jira net-
works’ centralization and communica-
tion amount
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Appendix A: Scatter plots for paired network properties
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Figure 2.27: Github.com networks’
open/close ratio and communication
amount
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Figure 2.28: Apache Jira networks’
open/close ratio and communication
amount
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Figure 2.29: Github.com networks’
open/close ratio and modularity
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Figure 2.30: Apache Jira networks’
open/close ratio and modularity
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Figure 2.31: Github.com networks’
open/close ratio and centralization
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Figure 2.32: Apache Jira networks’
open/close ratio and centralization
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Appendix A: Scatter plots for paired network properties
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Figure 2.33: Github.com networks’ modularity and centralization regression
plot
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Figure 2.34: Apache Jira networks’ modularity and centralization regression
plot
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Appendix B: Highly centralized and clustered
networks

Appendix B Highly centralized and clustered

networks

(a) central nodes, centralization: 0.65

(b) groups, modularity: 0.7

Figure 2.35: high modularity and high centralization network
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Appendix C Temporal correlations for modu-

larity, centralization and size
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Figure 2.36: size and centralization time correlations for projects with at
least 12 networks over time (Github.com: 83, Apache Jira: 41).

* S =
n∑

i=0

[pi ≥ sig]/n

[ ] Iverson brackets; p are the p-values; number of projects n
sig: significance levels: 0.05 , 0.10 and 0.15
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Appendix C: Temporal correlations for modularity, centralization and size
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Figure 2.37: Size and modularity time correlations for projects with at least
12 networks over time (Github.com: 83, Apache Jira: 41).

* S =
n∑

i=0

[pi ≥ sig]/n

[ ] Iverson brackets; p are the p-values; number of projects n
sig: significance levels: 0.05 , 0.10 and 0.15
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Figure 2.38: Modularity and centralization time correlations for projects
with at least 12 networks over time (Github.com: 83, Apache Jira: 41).

* S =
n∑

i=0

[pi ≥ sig]/n

[ ] Iverson brackets; p are the p-values; number of projects n
sig: significance levels: 0.05 , 0.10 and 0.15
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Appendix D: Modularity and centralization density kernels based on efficiency

Appendix D Modularity and centralization den-
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Figure 2.39: Github.com networks’ modularity and centralization density ker-
nels based on different open/close ratio filters
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Figure 2.40: Apache Jira networks’ modularity and centralization density ker-
nels based on different open/close ratio filters

Appendix E Modularity and centralization dis-

tributions depending on project age
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Modularity and centralization distributions depending on project age
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Figure 2.41: Github.com modularity, centralization distributions for different
project ages (projects with at least four quarters)
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Figure 2.42: Apache Jira modularity, centralization distributions for different
project ages (projects with at least four quarters)
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