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ABSTRACT
Detecting and understanding changes between document re-
visions is an important task. The acquired knowledge can
be used to classify the nature of a new document revision
or to support a human editor in the review process. While
purely textual change detection algorithms offer fine-grained
results, they do not understand the syntactic meaning of a
change. By representing structured text documents as XML
documents we can apply tree-to-tree correction algorithms to
identify the syntactic nature of a change.

Many algorithms for change detection in XML documents
have been propsed but most of them focus on the intricacies
of generic XML data and emphasize speed over the quality
of the result. Structured text requires a change detection
algorithm to pay close attention to the content in text nodes,
however, recent algorithms treat text nodes as black boxes.

We present an algorithm that combines the advantages of
the purely textual approach with the advantages of tree-to-
tree change detection by redistributing text from non-over-
lapping common substrings to the nodes of the trees. This
allows us to not only spot changes in the structure but also in
the text itself, thus achieving higher quality and a fine-grained
result in linear time on average. The algorithm is evaluated
by applying it to the corpus of structured text documents that
can be found in the English Wikipedia.

Categories and Subject Descriptors
I.7.1 [Computing Methodologies]: Document and Text Edit-
ing; F.2.2 [Theory of Computation]: Nonnumerical Algo-
rithms and Problems; E.1 [Data]: Data Structures

General Terms
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1. INTRODUCTION
Change detection is important in many applications. It can

be used for temporal queries (when did a certain change oc-
cur in an article) or to maintain an index (just update what
we know has changed, don’t re-index). It can be used for
merging documents that have diverged from a common an-
cestor or to visualize the changes between two revisions of a
document (in version control systems). By only storing dif-
ferences between revisions, change detection algorithms can
be used to compress data, and in classification it can help
to understand the intent of an author or identify unwanted
contributions like spam.

We focus on change detection in structured text docu-
ments as generated by word processors or markup languages
like HTML, in order to help authors understand the na-
ture of changes by visualization and to automatically clas-
sify changes. Structured text documents are composed of
mainly text interspersed with formatting elements (e.g. bold
font, hyperlink, section heading) that we refer to as syntactic
markup. To detect changes between two revisions of a doc-
ument textual differencing algorithms are commonly used.
However, these tools treat structured text as a sequence of
characters, without paying special attention to its syntactic
markup. This leads to misalignment of content between the
revisions under comparison and makes it difficult to discover
the syntactic nature of changes.

These problems can be avoided by using tree-to-tree correc-
tion algorithms that are applied to the syntax tree represen-
tation of structured text documents. However, unlike textual
differencing tools, which generate fine-grained information
on the character level, available tree differencing algorithms
treat continuous blocks of text as atomic entities. Assume a
sentence in which bold formatting is applied to a word. If the
sentence was stored in a single text node previously, the text
node will be split in the new revision and in between the two
halves of the text the bold formatting node is inserted, with
the formatted word as its only child node. This and similar
changes are common in structured text, however, current tree
differencing algorithms are unable to properly address this
situation since they can only perform a one-to-one mapping
between the nodes of the old and new tree.

Another problem we face when applying tree differenc-
ing tools to structured text is the focus on speed and greedy
matching behavior and in some cases the reliance on XML
intricacies like IDs or keys to find matching nodes. Since we
aim to support humans and automatic text classification the
quality of the generated change set is important and overly
greedy behavior for the sake of speed is not constructive.
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Our main contribution is the novel treatment of text leaves.
As detailed in the following chapters we analyze unmatched
text and subdivide text nodes to achieve a fine-grained match-
ing where other algorithms report the removal and insertion
of whole text nodes. We further modify existing differencing
algorithms to perform less greedy and emphasize ancestor
relationships between nodes when searching for a matching.

Our algorithm has the following features:

• It operates on an XML representation of structured text
called WOM [6]. That is, it operates on rooted, ordered
labeled trees in which only attributes and leaves can
have values.

• It does not assume the presence of IDs or other unique
identifiers that would otherwise simplify the matching
process.

• It produces an edit script that features the operations
insert, delete, move and update.

• It computes an edit script in near linear time and space
on average.

The remainder of the paper is structured as follows. In
section 2 we discuss related work. We then introduce terms
and definitions and define the input data that our algorithm
operates on in section 3. Afterwards we present and analyze
our algorithm in section 4. Finally, we evaluate the algorithm
in section 5 and conclude in section 6.

2. RELATED WORK
Often software for describing and visualizing differences

between two versions of the same document relies on a purely
textual, line-based representation of the document. A promi-
nent example is the GNU diffutils1 package which uses an
algorithm described by Myers in [11]. Myers presents an
algorithm that solves the longest common subsequence (LCS)
problem in O(nd) time, where n is the combined lengths of
two strings A and B and d is the size of the minimum edit
script that transforms A into B.

The textual approach is appealing for its simplicity and its
broad applicability. Any document that has a textual, line-
based representation (which also includes almost any kind of
XML document) can be efficiently compared using this algo-
rithm. On the other hand, such a generic algorithm does not
consider syntactic subtleties of the document. Many docu-
ment formats in use today, however, exhibit a rich syntactic
structure either implicitly or explicitly.

Many algorithms have been devised to calculate the dif-
ferences between two trees, also called the tree-to-tree cor-
rection problem [17]. One way to classify existing tree dif-
ferencing algorithms is by the type of tree they operate on
(ordered/unordered). Another way is to ask whether the al-
gorithm strictly minimizes a cost function to produce a mini-
mal edit script or if it uses a heuristic approach that orientates
itself on a cost metric but is not guaranteed to produce a min-
imal edit script for that metric. Although we want to operate
on ordered trees exclusively, it is instructive to see what al-
gorithms exist for unordered trees as well. In the following
discussion ni denotes the number of nodes, dmax,i the maxi-
mum depth and li the number leaves of tree Ti. If no index is
given, the quantities are summed up from both trees.
1http://www.gnu.org/software/diffutils/

In [17] Tai defines the distance d(T1,T2) between two trees
as the cost of the minimum cost edit sequence s, according to
a restricted cost function c(s) and presents an algorithm that
solves this minimization problem in time O(n1 · n2 · d2

max,1 ·

d2
max,2). The algorithm generates the edit operations update,

delete and change label.
In [20] Zhang and Shasha improve on Tai’s algorithm with

sequential time inO(n1 ·n2 ·min(dmax,1, l1)·min(dmax,2, l2)), while
supporting the same edit operations.

Chawathe et al. are the first to introduce a heuristic algo-
rithm called LaDiff in [3]. Instead of only considering labeled
trees they also take node values into account to deal with LATEX
documents. The finest level of subdivision that Chawathe et
al. use are sentences; the leaf nodes are therefore large text
nodes. They are also the first to propose approximate text
node matching using an edit cost function to calculate the
similarity of two text nodes. After first matching the leaf
nodes of a document using the LCS algorithm by Myers they
then propagate matches to the inner nodes, again using the
LCS algorithm.

Their heuristic assumes that input documents contain only
few identical nodes. The produced edit script is always cor-
rect, however, if the assumption does not hold the result may
be sub-optimal. They try to compensate for identical nodes
with a post-processing step and achieve an overall run time
complexity in O(ne + e2), where e is the weighted edit dis-
tance and typically e � n. The algorithm generates the edit
operations insert, delete, update and move.

In [2] Chawathe et al. assert that the change detection prob-
lem for unordered labeled tress that considers move and copy
operations is NP-hard. They propose a heuristic algorithm,
called MH-DIFF, that transforms the tree-to-tree correction
problem to the problem of finding the minimum cost edge
cover of a bipartite graph. Its worst case performance is in
O(n3) but most often requires time in O(n2).

Cobéna and Marian [4] focus on performance in terms of
speed and space. Their heuristic algorithm XyDiff makes use
of node IDs and first matches nodes that have the same ID.
Then identical subtrees are matched by computing hash val-
ues for subtrees to allow fast look-ups, always matching the
next biggest subtree first. The remaining nodes are matched
by propagating matches bottom-up similar to [3], followed
by an additional lazy-down pass. The matching rules during
the propagation pass are kept simple but greedy which can
lead to bad mappings as observed by [18], especially if there
are many small identical subtrees. The algorithm generates
the edit operations insert, delete, update and move and runs
in O(n log(n)) time. It therefore does not slow down when
faced with lots of changes.

Xu et al. [19] transform the problem of finding a match
between trees to finding a match between so-called key trees.
In a key tree each node is a label and all paths from the root
to a leaf generate a unique sequence of labels. If a label is not
unique among its siblings, it is replaced by a value from the
original node’s subtree that is expected to be unique. Their
algorithm KF-Diff+ supports the edit operations insert, delete
and update and runs in O(n). It can be extended to support
node moves among siblings (called alignment).

Wang et al. [18] implement an XML change detection al-
gorithm called X-Diff that assumes that left-to-right order
among siblings is not important and instead focuses on an-
cestor relationship. They drastically reduce the search space
by only matching nodes whose parents match as well and

http://www.gnu.org/software/diffutils/


PREPRIN
T

who have the same signature, where signature(x) = label(p1)/
label(p2)/.../label(pi−1)/type(x) and (p1, . . . , pi−1, x) is a path
from the root node p1 to node x. They achieve a run time
complexity in O(n) and support the edit operations insert,
delete and update.

Lindholm et al. [10] transform both trees into sequences of
nodes. To match the trees they slide windows of decreasing
size over the sequences and search for matches using a rolling
hash function. They achieve worst case performance inO(n2)
if both documents have nothing in common and O(n) if both
documents are identical. The supported edit operations are
insert, delete, update and move. We refer to their algorithm
under the name FcDiff.

Fluri et al. [7] apply various improvements to the LaDiff
algorithm [3] to adapt it for detecting and classifying changes
in source code. Their algorithm change distilling produces the
same edit operations as the original.

Rönnau et al. [13] present the algorithm DocTreeDiff which,
similar to the LaDiff algorithm [3], uses a leaf-based LCS to
compute an initial matching. Unlike LaDiff they operate on
hash values of leaf nodes which also incorporate the node’s
depth. Using the initial matching, strucutral changes among
the parent nodes are encoded as updates while all remaining
un-matched nodes are recorded as deletes and inserts. Their
algorithm performs in O(lD+n), where D denotes the number
of edit operations required.

Rönnau et al. analyzed requirements for version control
of XML documents produced by word processors or spread-
sheets in [14]. For a broader selection of algorithms and more
in-depth information on the individual algorithms one can
consult the survey from Peters [12] on change detection in
XML trees or the survey by Bille [1] on solutions for the gen-
eral tree edit distance problem.

3. PRELIMINARIES
In the following chapters variable names ai, s, t,u and x

refer to nodes in T1, bi, s′, t′,u′ and y refer to nodes in T2,
where T1 and T2 refer to the tree representation of the old and
new document respectively.

3.1 Edit Script and Tree Format
An edit script generated from two documents A and B is

a list of operations that when applied to document A trans-
forms it into document B. Which edit operations an algorithm
uses in an edit script depends on its design. We are not aware
of a standardized format for presenting edit scripts and rely
on the operations introduced by Chawathe in [3].

The design of tree nodes differs between implementations.
Our algorithm is designed to expect trees similar to XML
documents that consist of two types of nodes: elements and
text nodes. An element node n has a label l(n) (called tag in
XML), a set of attributes, where an attribute is a (name,value)
pair and an ordered list of children. Elements can be leaf
nodes if their list of children is empty. Text nodes, on the
other hand, cannot have children and are therefore always
leaf nodes. They have a value v(n) but no label or attributes.
It is possible to map other tree designs onto XML trees.

3.2 Input Data Format
We use wiki articles as test corpus for our algorithm. Arti-

cles in wikis are usually written in a markup language called
wiki markup. For the wiki markup dialect used in Medi-
aWiki we have implemented a parser in [5] that produces

an Abstract Syntax Tree (AST). This representation is further
converted into a wiki independent exchange format called
Wiki Object Model (WOM) [6], which we will use as input
data in our evaluation.

A distinctive feature of the WOM is the optional support
of so-called Round Trip Data (RTD) tags. These tags preserve
the syntactic markup from the original source and guarantee
that the formatting of the original source can be restored from
WOM trees after a transformation. For illustration consider
the following piece of wiki markup:
’’’Tree’’’ differencing

which translates to the following WOM document:
<article><body><p>
<b><rtd>’’’</rtd><text>Tree</text><rtd>’’’</rtd>
</b><text> differencing </text>

</p></body></article>

Three ticks denote the use of bold font and the ticks them-
selves are stored as RTD information. As this short example
shows, the WOM format has some idiosyncrasies that require
special attention. Our differencing algorithm does not oper-
ate on the WOM directly but uses an adapter mechanism that
allows processing of various data structure designs. In the
case of the WOM the adapter hides <rtd> elements when the
algorithm asks for text nodes explicitly, however, they are re-
ported in a traversal of the tree. When traversing the tree, the
adapter reports <rtd> and <text> nodes as leaf text nodes in-
stead of elements that contain XML text nodes. Finally, it also
represents certain element attributes (e.g. the target attribute
of a link) as child nodes.

The reason for presenting attributes as elements is that our
algorithm does not consider attributes when evaluating the
similarity of nodes. This adjustment therefore guarantees
that important information that is stored in attributes is con-
sidered by the algorithm while keeping the algorithm itself
simple. The reasons for the other adjustments are explained
when the algorithm is described. All of the mentioned vari-
ations are reversible and other document formats may not
require any adaptions at all.

3.3 Challenges of Structured Text Documents
In the English Wikipedia we find the following text in the

article “Danish pastry” 2:
Danish pastry is formed of flour, milk,
eggs, and butter -- especially butter.

In the next revision an editor has turned the words “flour”,
“milk”, “eggs” and “butter” into links so that they point to
the respective articles in Wikipedia:
Danish pastry is formed of [[flour]], [[milk]],
[[egg]]s, and [[butter]] -- especially butter.

Removing or adding styles happens frequently in structured
documents as [13] note as well, and line-based diff algorithms
can cope with this change well and report only the insertion
of square brackets, however, they are unaware of the syntactic
implications.

Another common practice is the rearrangement of text
within a sentence or paragraph. Line-based diff algorithms
report the movement of text as insertion and deletion since
they often don’t support move operations. However, they
usually only report the text span that has actually changed.
They don’t report the removal or insertion of a whole sentence
if only part of it has changed.

2Revision 657740 and 1019401
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Figure 1: Distribution of text over nodes in the old and new revision of an article and the corresponding leaf strings. Only a part
of the new tree (T2) is shown for clarity. Both trees have more paragraphs than those depicted. In T1 the dashed nodes indicate
the possible splits of the text leaf.

In both of the above cases tree differencing algorithms be-
have differently. An excerpt of the corresponding WOM trees
for both revisions is shown in figure 1. The article “Danish
pastry” has more than just one paragraph (<p>) but we do not
show them for reasons of clarity. In the old revision the whole
text was contained within one text node. In the new revision
text nodes are interspersed with internal links (<intlink>)
which contain a target node (that is also the title) and two
<rtd> tags that store the syntactic markup.

If we only extract and concatenate the <text> nodes and
not the <rtd> nodes from these trees, we obtain the same
string for both documents. In other words: No changes with
regard to textual content have occurred between the two revi-
sions. Tree differencing algorithms, however, can only match
nodes one-to-one. Algorithms that perform approximate text
node matching might associate the initial “Danish pastry is
formed of” text node in the new revision with the entire
<text> node in the old revision, because it yields the smallest
edit distance between all candidates. Still all other nodes in
the new tree remain unmatched and the algorithms usually
report the complete removal of the whole paragraph and new
node insertions. While [13] identify this challenge as well,
they do not present a solution to this particular problem.

The same problem occurs when text is moved within a
text node, as shown in figure 2. In that case the number of
text nodes stays the same, however, the old and new text
nodes don’t match any more and an insertion and a removal
is reported. In the case of approximate matching the result
depends on the nature of the change within the text node.
If the edit distance between old and new text stays below a
preconfigured threshold, an update is reported. Otherwise,
insertion and removal is reported. In the following section
we describe how we address these challenges.

Figure 2: Two leaf strings ls1 and ls2, that are possibly spread
over multiple text nodes, were concatenated. The NOCS al-
gorithm found three common substrings s1, s2 and s3 that have
been rearranged by the edit. A small part of the leaf strings
is not part of a common substring and the corresponding text
node splits will not be matched.

4. CHANGE DETECTION WITH HDDiff
Most tree differencing algorithms run through a sequence

of processing phases. First a matching between the two trees
is computed. It pairs a node from the old tree with exactly
one and only one partner node from the new tree. Nodes in
the old tree that do not have a partner are reported as deleted
nodes. Nodes in the new tree that do not have a partner
are reported as inserted nodes. Nodes that are partners but
have different parent nodes (according to the matching) are
reported as moved nodes. If nodes have the same parents
but have changed position among their siblings, they are re-
ported as moved nodes as well, however, the process of find-
ing those cases is called alignment. Except for one exception
([2]) we are not aware of heuristic algorithms that support
copy operations (one-to-many mappings). Once a mapping
is computed, a list of operations called an edit script is gen-
erated that transforms the old tree into the new tree.

4.1 Matching Substrings of Text Nodes
In section 3.3 we have illustrated what happens if editors

mark up words or move text around among paragraphs.
While the textual content stays the same (the order may
change) the atomic treatment of text nodes does not allow
existing differencing algorithms to properly address the situ-
ation. As solution we introduce the split operation. This op-
eration is an auxiliary edit script operation. It is not reported
to the user since it doesn’t change the content of a document,
however, it allows us to internally operate on substrings that
originally were part of a bigger text node.

When looking at the example in figure 1 again it becomes
clear that by splitting the original and only text node into
a sequence of smaller text nodes we can match the complete
original document. We only have to report the newly inserted
links and their RTD information in the new document, but no
text will be reported as deleted or inserted. By concatenating
the splits we can restore the text from the original text node,
which is why we regard this operation as effectless.

If we have found a good splitting of text nodes that allows
us to match a greater portion of old and new content, we apply
the operation to the trees and add the necessary operations to
the edit script. The relevance of the split operations in the edit
script depends on the purpose of the edit script. If the edit
script is used to report information about changes to the user,
splits can be ignored. If the edit script is used to transform a
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document to its new revision, splits have to be applied since
other edit operations will depend on the already split nodes.

The split operation is also the reason why the WOM tree
adapter presents <rtd> and <text> elements as text leaves
and not as XML elements that contain XML text. If our algo-
rithm would split the XML text nodes and not the combina-
tion of XML element and XML text, the XML text splits would
become the children of only one <text> element. However,
in a WOM tree every XML text needs its own <text> parent
element.

4.1.1 Finding a Good Split
Our goal is therefore to find those text leaves in both doc-

uments that, when split, will allow us to precisely match
unchanged textual content in both revisions. A naive ap-
proach is to split all text nodes into individual words. This,
however, is difficult when dealing with languages that do not
support simple word segmentation (e.g. they don’t require
spaces between words) and it would also force matches by
aligning words from arbitrary locations in the document.

Instead we search for continuous substrings that are shared
by both documents and satisfy certain requirements (e.g. are
of sufficient length or contain enough words). To this end we
concatenate the text from all text leaves into the leaf strings
ls1 for T1 and ls2 for T2 as illustrated in figure 1. Between
these strings we search for non-overlapping common substrings
(NOCSs) [16]. Once we have a set of NOCSs, we examine the
text leaves from which a NOCS originates and split the nodes
in such a way that the tree-to-tree correction algorithm can
build a one-to-one mapping between the text leaves.

4.1.2 Finding all Common Substrings
To find all common substrings from which we compute the

NOCSs we use Suffix Arrays (SA) and Longest Common Prefix
(LCP) information. A suffix array sa for a string s is an array
of indices, where each index sai points to the first character
of a suffix ssai ...n in s with n = len(s). The array is ordered in
such a way that it refers to suffixes in lexicographical order.
Kärkkäinen et al. show in [8] how to compute a suffix array
in O(n).

Suffix arrays can be augmented with longest common pre-
fix (LCP) information. LCP information assigns a pair of
consecutive suffix array indices (sai−1, sai) an additional num-
ber lcpi that indicates the length of the longest common prefix
ssai−1 ...sai−1+lcpi or ssai ...sai+lcpi that both consecutive suffixes share.
When a suffix array has been computed, LCP information can
be added in O(n) as shown by Kasai et al. in [9]. By iterating
through the suffix array by decreasing LCP length, we obtain
a list of substrings ordered from longest to shortest.

Using this tool set we can compute the longest common
substrings within one string [15]. To compute the longest
common substrings between two strings s1 and s2, we con-
catenate both strings:

s1,2 = s1 . ”$1” . s2 . ”$0”
where “.” is the concatenation operator and “$0” and “$1”
are unique terminator characters. The terminator character
$0 is required by the SA algorithm. Terminator $1 is used to
separate the two strings. Since $1 cannot be part of one of
the strings it is unique within the concatenated string and
assures no substrings cross the terminator. To guarantee that
a substring is shared by both strings s1 and s2 we have to
make sure that the two associated suffixes are located to the
left and right of the separator character. This part of the
algorithm is implemented in saLcpBucketSort in listing 3. For

findNOCSs(ls1, ls2):
n1 = len(ls1); n2 = len(ls2)
input = ls1 + ’$1’ + ls2 + ’$0’
sa = computeSuffixArray(input)
lcp = computeLcp(sa, input)
buckets = saLcpBucketSort(sa, lcp, n1)
return greedyCover(buckets, n1, n2)

saLcpBucketSort(sa[], lcp[], n1):
L1: for i = 1 to len(lcp):
len = lcp[i]
# Only accept long enough substrings
if len < minLen: continue L1
start1 = sa[i-1]
start2 = sa[i]
# Skip duplicates
j = i + 1
while (j < lcp.length) and

(lcp[j] == len): ++j
if j > i + 1:
continue L1 with i = j

# Only accept substrings from both strings
if (start1 < n1) == (start2 < n1):
continue L1

# Correct start1 and start2
if (start2 < start1):
(start1, start2) = (start2, start1)

start2 -= n1 + 1
# Bucket sort by len
buckets[len].add(new CS(start1, start2, len))

return buckets

greedyCover(buckets, n1, n2):
# Initialize cover arrays
for i in (0, n1]: covered1[i] = false
for i in (0, n2]: covered2[i] = false
# From longest to shortest substring
for bucket in reverse(buckets):
# For every common substring
L2: for cs in bucket:
# Substring alreay covered?
if covered1[cs.start1] or
covered2[cs.start2]: continue L2

if not isValid(cs.start1, cs.len):
continue L2

L3: for j in (0, cs.len]:
k1 = cs.start1 + j
k2 = cs.start2 + j
# Substrings already partially covered?
if covered[k1] or covered[k2]:
cs.len = j
break L3

covered1[k1] = covered2[k2] = true
# Add NOCS
result.add(cs)

return result

Figure 3: Finding all non-overlapping common substrings.

computing the suffix array and LCP information please refer
to [8] and [9].

Now we found all common substrings shared by ls1 and
ls2, including substrings of substrings. Finding an optimal set
of non-overlapping common substrings for ls1 and ls2 isNP-
hard [15]. Instead we use a greedy approach. In greedyCover
in listing 3 we first accept the longest common substring.
Then we accept the next longest substring unless it overlaps.
If the next substring should overlap with an already accepted
substring, we shrink the substring until it no longer overlaps.
This process continues until no more appropriate substrings
remain. Substrings are only considered appropriate above a
certain length and structure which is checked by isValid.

4.1.3 Splitting Nodes
Once we have obtained a non-overlapping set of substrings

we can split the nodes in both trees as required. This step is
facilitated by another data structure that was built when the
two leaf strings were concatenated from the leaf nodes. In
order to locate a substring within one of the trees, we con-
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struct two arrays that for every character in the leaf strings
ls1 and ls2 contain the information from which node and from
which position in the node’s text the character came. With
this information at hand we split nodes as detailed in split-
NodesWithNocs in listing 4.
splitNodesWithNocs(nocs):
# Split nodes if nocs doesn’t start at node boundary
curNode1 = node in which nocs starts in T1
if nocs does not start at node boundary in T1:
split(curNode1, at position where substring starts)
curNode1 = right node of split

curNode2 = node in which nocs starts in T2
if nocs does not start at node boundary in T2:
split(curNode2, at position where substring starts)
curNode2 = right node of split

# Find node discontinuities in nocs
endNocs = false
L1: while not endNocs:
i = search for next position where the nocs crosses
a node boundary in T1 or T2 or where the nocs ends

# Find out which nodes we have to split
endNocs = end of nocs reached?
if endNocs:
break1 = node continues in T1 at end of nocs
break2 = node continues in T2 at end of nocs

else:
break1 = nocs crosses node boundary in T2 (!)
break2 = nocs crosses node boundary in T1 (!)

# Split nodes
leftNode1 = curNode1
if (break2 and not break1 and not endNocs) or

(break1 and endNocs):
split(curNode1, at position where string crosses
node boundary in T2 or where nocs ends)

curNode1 = right node of split
leftNode2 = curNode2
if (break1 and not break2 and not endNocs) or

(break2 and endNocs):
split(curNode2, at position where string crosses
node boundary in T1 or where nocs ends)

curNode2 = right node of split
if break1:curNode1=node in which nocs continues in T1
if break2:curNode2=node in which nocs continues in T2

# Match left parts of split
if break1 or break2 or endNocs:
match(leftNode1 , leftNode2)

Figure 4: Splitting nodes after a non-overlapping common
substring (NOCS) is found. The parameter nocs contains
information about the starting positions in the leaf strings
and the length of the NOCS.

Every time a node is split into a left and a right part within
the loop L1, the left part is matched to its partner node in
the other tree. An implementation has to make sure that the
boundary splits to the left and to the right of the substring
retain their partners, if any. This procedure guarantees that all
nodes and split nodes that are part of the common substring
are matched after this phase is over. To speed up the search
for the next discontinuity position i one can use a binary
search.

Complexity analysis: Let n be the length of the input to
the respective algorithm. The SA and LCP algorithms are
shown to require time in O(n) in [8] and [9]. saLcpBucketSort
has one loop that runs over the length of the LCP array and
requires time in O(n). In greedyCover the innermost loop runs
at most twice for every character in the shorter leaf string and
therefore runs in time O(n). Finally, in splitNodesWithNocs
the search for the next discontinuity examines at most every
character in the leaf string and runs in time O(n). Hence
the whole splitting process runs in time O(n), where n is the
length of the two leaf strings combined.

4.2 Embedding the Split Algorithm into a
Tree Differencing Algorithm

While matching substrings of nodes can be done in linear
time, it still is expensive since it is a character based process
with high constant costs and documents usually have consid-
erably more characters than leaf nodes. On the other hand,
big portions of the old and new document usually remain
unchanged between revisions. Therefore we can drastically
reduce the search space before we start looking for substrings
by identifying the unchanged portions of the documents.

By computing a mapping between old and new tree ev-
ery differencing algorithm identifies the unchanged portions
of the documents. A first outline of the complete algorithm
therefore starts by computing a mapping with an existing
differencing algorithm in phase one. In phase two we con-
catenate yet unmatched text leaves to leaf strings for which
we compute NOCSs. Using the NOCSs, nodes are split and
matched. If nodes were not matched in phase one, their par-
ents and siblings often cannot be matched in phase one either.
This requires us to complete the mapping in phase three and
four by propagating the matches found in phase one and two
to parents and siblings.

Most algorithms we are aware of are not suitable for this
task because they are computationally too expensive [2, 3, 7]
or not applicable since they make assumptions that do not
hold for our data [3, 18, 19]. The XyDiff algorithm [4] is
a good candidate since its phases two to four map well to
phases one, three and four of our outline. In the next sections
we will describe how we adapted the XyDiff algorithm to
finalize the mapping between the old and the new tree and
how we integrated the edit script building from LaDiff into
our own algorithm.

4.2.1 Phase 1 - Reducing the Search Space
In a precomputation step the XyDiff algorithm computes

weights and hash values for subtrees in both T1 and T2. We
adopt this step and compute a hash value hn for every subtree
that is rooted at node n. Text leaves compute their hash value
from the text they store. All other nodes compute a hash value
from their label and then combine this value with the hash
values of their children. The weight of a text leaf is a function
of the length l of its text. Inner nodes compute their weight
by summing up the weights of their children and adding a
constant winner for themselves. While this is subject to tuning,
we use the text length l directly as weight function and set
winner = 3.

Next XyDiff matches subtrees by comparing the hash val-
ues from T1 with the hash values from T2, starting with the
heaviest subtree. If there is more than one candidate to match
a subtree, simple and greedy heuristics help to decide which
two subtrees are matched or the subtrees remain unmatched
at this point. After matching a subtree XyDiff immediately
tries to propagate the match to the ancestor nodes of the sub-
tree. How many ancestor nodes are matched depends on the
subtree’s weight.

Greedy matching and propagation heuristics can easily
lead to mismatched node, as [18] note and as our own obser-
vations confirm. Especially when dealing with many small
subtrees or with many small identical subtrees. On the other
hand we already reach our primary goal of reducing the
search space by only considering big subtrees without dupli-
cates, that can be matched unambiguously. Hence we modify
Cobena’s algorithm and only consider subtrees without du-
plicates that are above a certain weight (we use a minimum
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Figure 5: Two document trees T1 and T2 during step 3 (propagating matches to ancestors). Large subtrees have already been
matched in step 1, and in step 2 a text node has been split into 3 smaller text nodes that were immediately matched. The
algorithm is currently examining node y, distributing the common weight wc(x, y) to all ancestors that are part of the LCS of the
paths [root(T1) . . . x] and [root(T2) . . . y]. After all candidates have been gathered, match candidates C(a2, b2), C(a3, b3), C(a4, b4)
and C(a5, b5) are assigned the combined weight of all of their respective descendant shared subtress.

weight of 12) and we do not match ancestors based on subtree
matches.

Since element attributes do not feature in the subtree hash
computation we have to check node attributes for changes
which we report as node updates in the edit script. After
checking subtrees for real equality, to deal with the possibil-
ity of hash collisions, and after recording node updates, our
algorithm will not revisit matched subtrees.

Complexity analysis: The precomputation of weights and
subtree hashes requires time inO(|T1|+ |T2|). Actually match-
ing subtrees using hash maps for fast look ups requires time
in O(|T2|). Sorting by weight requires time in O(ns · log(ns)),
where ns is the number of shared heavy subtrees (exclud-
ing subtrees of subtrees). Since usually ns � |T2|, phase one
requires O(|T1| + |T2|).

4.2.2 Phase 3 - Propagating Matches to Ancestors
In figure 5 we illustrate the situation in an exemplary pair

of documents after phase one and phase two have run. The
largest subtrees have been matched in phase one and in phase
two the text in unmatched leaves was concatenated and the
search for NOCSs has led to splits and matches between
leaves. At this point, two kinds of nodes remain unmatched:
ancestor nodes of matched subtrees and text leaves, and sub-
trees that could not be matched in phase one because they
have duplicates or their weight is too small.

This leads us back to XyDiff ’s propagation rules to match
ancestors from step one and their BULD (Bottom-Up Lazy-
Down) matching phase. To avoid mismatching nodes and
generating needless move operations we propose the follow-
ing procedure. It is motivated by XyDiff ’s propagation rules
combined with LaDiff ’s LCS breadth-first matching of inner
nodes with the same label.

Step 3.1) Assume we found two matching nodes x and y
from both trees. All pairs of ancestor nodes from T1 and T2
along the paths from the root nodes to x and y are potential
candidates for a match. In order for a pair of ancestor nodes
to be considered as partners their labels have to be equal.
Furthermore, if children have been moved between revisions,
a parent node in one tree can have multiple potential partners
in the other tree. In order to decide which pair of candidates
is matched we accumulate the weight of the already matched
descendant subtrees that the candidates share.

Let C(x, y) → wc be a map of candidate tuples (x, y) ∈
(T1,T2) onto a weight wc ∈ N≥0. Such a mapping implies
that the two mapped candidate nodes x and y share common
descendant subtrees that have at least a combined weight of
wc in each tree. We can see in figure 5 that after step two, if an
inner node is matched, all its descendants are matched as well
down to the leaves. Consequently the new tree T2 is traversed
pre-order until we reach a matched node y ∈ T2 and the path
p2 = (b2, b3, . . . , b j−1) from node root(T2) = b1 to y = b j is stored
as a sequence of nodes. For the old tree T1 we also build a
path p1 = (a2, a3, . . . , ai−1) from root(T1) = a1 to x = ai, where
x ∈ T1 is the matched partner of y. Myers LCS algorithm
is applied to both sequences and two nodes are considered
equal by the LCS algorithm if their labels match. We get
s = lcs(p1, p2), si ∈ (T1,T2) for 1 ≤ i ≤ |s|, the longest sequence
of nodes from both paths that share the same label. Let wc be
the weight shared by the subtrees rooted at x and y. For each
si ∈ s, if si ∈ C then update the mapping C(si) → C(si) + wc.
Otherwise add C(si)→ wc to the mappping.

After we have processed node y in the described way we
do not descend into its subtree but continue with the traversal
until we reach the next matched node.

Step 3.2) Once the traversal is complete we have a mapping
of node pairs with an associated common weight. Each pair
is a candidate to be matched. We sort the candidates by
descending common weight wc and match the heaviest pair
first. We then continue with the next heaviest pair and match
its two nodes unless one or both of the nodes have already
been matched by a previous candidate.

By now we have propagated the matches from step one
and two to ancestor nodes. We use a greedy strategy as
well, however, we make sure that it considers the weights of
all matched children of a pair of nodes instead of making a
decision by looking only at the heaviest child.

Complexity analysis: Let n = max(|T1|, |T2|). If we assume
that the trees are balanced, their maximum height can be
approximated by h = log(n). The cost for lcs(s1, s2) is O(ld),
where l = |s1|+ |s2| and d ∈ (1 . . . l) is the edit distance between
both sequences. In the worst case the LCS computation re-
quires O(l2), in the best case the algorithm finishes in O(l).
The bigger the subtrees are that were matched in step one,
the shorter the paths from the root to a subtree become and
the LCS effort approaches O(1). Sorting partner candidates
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by weight requires ns · log(ns), where ns is the number of sub-
tree candidates. Thus the ancestor pass requires time in O(n)
to O(ns · h2).

4.2.3 Phase 4 - Building an Edit Script
When looking at figure 6 we can see that some nodes and

subtrees are still not matched. Furthermore, we also have
not discussed the generation of an edit script yet. In this sec-
tion we explain how we match the remaining nodes and at
the same time build an edit script. We adapt the algorithm
by Chawathe et al. [3] and use absolute child node indices
computed from the new document instead of a context de-
pendent index that Chawathe et al. call k. This allows us to
match remaining nodes and subtrees and generate edit script
operations in the same traversal of the tree since it doesn’t
require a finished mapping of both trees up front.

The types of nodes and subtrees that remain unmatched
and the reasons therefor are explained in figure 6. The details
of the algorithm are explained in listing 7. We proceed by
traversing T2 pre-order, where n2 is the current node in T2
and n1 is its partner, if it has been matched. We then build se-
quences of unmatched children for n1 and n2 and compute the
LCS according to subtree hash equality (subtreeLCS). Pairs
of subtrees in the LCS are then matched in the same way as in
phase one. The subtree LCS step is optional, however, it im-
proves edit script quality since it prevents the following step
from matching a subtree root node with a single unmatched
node by label although a better match between two complete
subtrees would have been possible.

In the next step we test the children of n1 and n2 for proper
alignment. This can be expensive if both nodes have many
misaligned children. However, since we have to perform this
step anyway, it presents a good opportunity to also match
nodes that are aligned by label. To this end we compute
the LCS of all children of n1 and n2, where two nodes are
considered equal if they are already partners or have the
same label (matchedOrLabelLCS). In the following loop we
generate move operations for matched but misaligned nodes
and match yet unmatched nodes that occur in order and have
the same label.

Now we visit all children of n2. If a child has still no partner
in T1, an insert operation is generated. Otherwise we check
each pair of matched children for changed attributes or text
content and generate update operations accordingly. Then
we descend to the child of n2 that was just processed.

Finally, after the traversal of T2 is complete, we traverse
T1 and for every node that does not have a partner in T2 we
generate a delete operation (traverseAndDelete). This step
concludes the HDDiff algorithm.

Complexity analysis: The most expensive step is the LCS
computation over all children of both nodes. In the worst
case the majority of all nodes are children of a single parent
and have been completely replaced between old and new
revision. In this case phase four requires time inO(n2), where
n = |T1|+ |T2|. In the best case the trees are well balanced and
we can assume a constant number of children per inner node
and no alignments. Then phase four requires time in O(n).

5. EVALUATION
Our focus is better support of change detection in struc-

tured text documents and a fine-grained analysis of changes
between two document revisions in reasonable time. To val-
idate that our algorithm meets these goals, we use a sample

of articles from the English Wikipedia. Initially we have ran-
domly selected 400, 000 revisions from the English Wikipedia
that have a predecessor revision. Since the parser software
sometimes fails to parse a revision 371, 451 pairs of revisions
remain after conversion to the WOM XML format.

We have applied our HDDiff algorithm as well as the Xy-
Diff [4] and the FcDiff [10] algorithm to the data, and called
the algorithms “HDDiff”, “XyDiff” and “FcDiff” in the charts
respectively. In order to compare the algorithms’ results we
parse in the edit scripts and analyze them for the number of
character insertions and deletions they require. Sometimes
XyDiff timed out and sometimes our parser was not able to
understand FcDiff ’s edit script format. If we failed to obtain
an edit script analysis from any of the algorithms we removed
the sample for all algorithms. After this step 360, 246 pairs
of revisions remain. Furthermore our sample contains vari-
ous kinds of content from Wikipedia. We tell apart articles
from other content by only selecting revisions from the main
namespace, after which 266, 233 pairs of revisions remain.

First we examine the quality of HDDiff ’s edit script in fig-
ure 8. If mostly textual changes are performed, character-
based diff algorithms outperform conventional tree diff algo-
rithms in the number of character insertions and deletions
that the edit script requires to transform the old into the new
revision. This is due to the fact that conventional tree diff al-
gorithms cannot deal with situations in which text from one
node is spread over multiple text nodes in the new revision,
even though the textual content does not change. However,
if content is moved inside a document, tree diff algorithms
can outperform a character-based algorithm that does not
support move operations and which instead has to report the
movement of content as deletion in the old and insertion in
the new revision. Since HDDiff combines features from both
worlds, we expect it to not only outperform other tree diff al-
gorithms in the number of character insertions and deletions,
but also to outperform Myers textual diff algorithm for some
documents, which is confirmed by figure 8.

By applying the three algorithms to pairs of revisions stored
in the WOM XML format we can compare the change detec-
tion performance of the algorithms as a whole. As shown
in figure 8 our algorithm (green, finely dashed) requires sig-
nificantly less character insertions and deletions than XyDiff
(brown circles) and FcDiff (red squares) on average. This is
especially remarkable since our algorithm is specifically de-
signed to avoid move and align operations if it is not clear
whether such an operation conforms with the modification
that was actually applied to the old revision. HDDiff rather
issues insertions and deletions in such a situation, a restric-
tion that does not apply to XyDiff and FcDiff.

We further want to evaluate how well our phases three
and four, which are the part of our algorithm that solves the
tree-to-tree-correction problem, perform, compared to other
tree diff algorithms. To this end we use HDDiff to split text
nodes in each pair of revisions as required for a one-to-one
mapping of text nodes. We also attach XML IDs to pairs of
split text nodes since this mapping information is available
to our algorithm in step three as well, however, only XyDiff
can make use of this information. The algorithms XyDiff
and FcDiff are then applied to the modified WOM XML and
are called “XyDiff+” and “FcDiff+” in figure 8. While both
algorithms can improve with the split text nodes and FcDiff
almost draws even with the textual LCS algorithm, HDDiff
still outperforms the other algorithms. This supports our
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Figure 6: Two document trees T1 and T2 after step 3.2 (propagating matches to ancestors). (s, s′) and (t, t′) caused the match of
ancestors (x, y). a1, a3, b1 and b4 are all identical but were not matched earlier due to the exclusion of duplicates. b2 is inserted in
T2 and the subtrees at a2 and b3 are identical except for the deleted node a4. Since the individual nodes of the subtrees have not
enough weight none of them were matched.

claim that phase three and four of our algorithm are well
chosen.

Next we examine the performance of HDDiff in terms of
speed3. The upper chart in figure 9 gives an impression of
HDDiff ’s speed depending on the size of the input docu-
ments. However, since the speed depends on multiple fac-
tors, a clear trend is not discernible. To confirm that HDDiff
requires nearly linear time on average, we have computed
a least squares fit of a linear model that depends on (a) the
combined number of nodes from both documents, (b) the
minimum number of nodes from both documents, (c) the
number of nodes that were initially matched in phase one
nst and which are a coarse measurement of the similarity of
both documents and (d) the combined lengths of the leaf
strings from unmatched nodes nls that are used to compute
the NOCSs. The result is plotted in the lower chart of figure 9.

The R2 measure of the fit is 0.78 and our model therefore
confirms, that our algorithm works in linear time on average.
When analyzing the phases individually, precomputation,
greedy subtree matching and NOCSs computation behave
strictly linear and are well predictable. Phase three and four
are difficult to predict with the variables from our model and
are responsible for almost all the remaining variance. When
confronted with degenerated trees (e.g. long lists of items
that are all children of a single parent and many alignment
operations have taken place) phase four can lead to super-
linear behavior.

6. CONCLUSION AND FUTURE WORK
We have presented a tree-to-tree correction algorithm that

is specifically tailored to structured text documents. The al-
gorithm pays special attention to the fact that text documents
tend to feature large text leaves in which many of the mod-
ifications occur. Existing algorithms that treat text nodes as
atomic elements therefore can only report removal or inser-
tion of whole text nodes where purely textual differencing
tools can report changes on the character level. We introduce
an algorithm that offers the advantages of both approaches,
by adding a novel node splitting step which allows the sub-
sequent tree-to-tree correction algorithm to perform a fine-
grained analysis and indication of the differences.

Since we focus our efforts on the support of users in un-
derstanding changes and in the automatic classification of
changes, we take special care to avoid needless move opera-
tions by emphasizing ancestor relationships in the matching
algorithm. We prefer that insertions and deletions of mi-

3All tests were run on an Intel Xeon Processor E5-2630 (15M
Cache, 2.30 GHz) with the Oracle Java HotSpot VM 1.7.0_51

nor subtrees are reported instead of spurious moves. Unlike
other works in this domain speed is not our primary concern.
Still our algorithm delivers solid performance in near linear
time on average.

In future work we want to investigate other tree-to-tree cor-
rection algorithms that follow the text splitting phase. An-
other direction of research is the simplification of the algo-
rithm and the reduction of processing passes. To improve
classification performance we would like to investigate sup-
port for copy operations and duplicates.

The implementation of HDDiff will be made available upon
publication at http://sweble.org/projects/hddiff.
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