
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

Measuring Patch-Flow at Google

Michael Dorner

submitted on 01.10.2015

supervised by Maximilian Capraro, M.Sc.

Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich
oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 01.10.2015

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license
(CC-BY 3.0 Unported), see

http://creativecommons.org/licenses/by/3.0/deed.en_US

Erlangen, 01.10.2015

iii

http://creativecommons.org/licenses/by/3.0/deed.en_US

Contents

I Front Matter 1

1 Abstract 3

2 Introduction 5

3 Acronyms 7

II Research Chapter 9

4 Introduction 11

5 Related Work 13
5.1 Mining Software Repositories . 13

5.2 Collaboration in Software Organizations 14

6 The Patch-Flow Model 17
6.1 Terminology . 17

6.2 Patch-Flow Graph . 18

6.3 Patch-Flow Metrics . 19

7 Data Acquisition 21
7.1 Constraints . 21

7.2 Tool . 22

7.3 Data Model . 23

7.4 Preprocessing . 23

7.5 Mining Chromium . 25

8 Results 27
8.1 Chromium Patch-Flow Graph . 27

8.2 Incoming Patch-Flow For Selected Orgunits 28

8.3 Outgoing Patch-Flow For Selected Orgunits 30

iv

9 Limitations 33
9.1 Google Data . 33
9.2 Chromium Data . 33

10 Future Work 37
10.1 Patch-Flow Model . 37
10.2 Clustering in Trees . 37

11 Conclusions 39

12 Acknowledgement 41

III Elaboration of Research Chapter 43

13 Metric for Clustering Orgunits without Prior Knowledge 45

IV References 47

v

Part I

Front Matter

1Abstract

In the industrial domain, software development is a highly collaborative work
involving different contributing teams. But there is not yet a way to quantify the
collaboration between organizational units within a software developing company.
However, information about this collaboration is latent in software repositories and
has not been defined yet.

We mined Google’s internal software repository and identified all commits which are
assigned to projects of organizational units the patch author does not belong to. We
call this phenomena of collaboration beyond organizational borders patch-flow. This
work introduces a graph-based metric to quantify this patch-flow. We developed a
tool that is able to crawl in Google’s repository and collected patches of 2,500 Google
developers in the years 2007, 2009, 2011, and 2013. Due to the missing historical
information about organizational unit membership of developers, we provided a
clustering approach to assign all developers to organizational units. Because the
Google internal data has not been released by now, we crawled and analyzed the
Chromium project.

Using the Chromium data we were able to apply the patch-flow metric and quantify
collaboration over organizational unit boundaries, although the used data source is
only suitable to a limited extent. The clustering approach has to be validated.

Keywords: collaboration, mining software repositories, google, orgunit, patch, flow

3

2Introduction

Changes To Thesis Goals

There were some major changes in the roadmap of this thesis, which entails some
major drawbacks:

• We were not able to determine historical data regarding the assigned organiza-
tional units of a developer.

• The internal Google data set is still hanging in the Google internal review
process. Therefore, we were forced to adapt the crawler, mine the Chromium
project, and use this data for measuring the patch-flow, although we are aware
that the Chromium data is of second quality.

When the Google data set will arrive, section 7.5 will become obsolete and chapter
8 and the consequently limitation mentioned in 9 can be adopted to the new data
set.

5

3Acronyms

CLoC Comment Lines of Code.

LoC Lines of Code.

MSR Mining Software Repositories.

orgunit organizational unit.

SCM Source Control Management.

SLoC Source Lines Of Code.

7

Part II

Research Chapter

4Introduction

„Organizations that design systems are
constrained to produce systems which are copies
of the communication structures of these
organizations.

— Melvin E. Conway

Software engineering is a complex engineering activity and often involves team
effort. In practice, commercial software development is performed by organizational
units (orgunits) consisting of a number of individuals ranging from a handful to
thousands.

But as Conway (1968) stated, communication includes also exchange of source code.
The goal of this thesis is to measure this communication between orgunits, or how
we call it, the patch-flow.

The contributions of this thesis are

• a formal definition of a patch-flow graph and the patch-flow metric,

• a clustering approach to recover historical information about the orgunit
membership of developers, and

• a tool mining the necessary data at Google and the Chromium project.

Furthermore, this thesis answers the following research questions:

1. To which extent does patch-flow exist within Google?

2. Which factors do affect or correlate with the quantity of patch-flow within
Google?

Google as one of the largest software companies in the world with about 25,000 de-
velopers opened its Source Control Management (SCM) system for us to analyze the
phenomena of patch-flow: As of January 2015 Google’s Perforce-based monolithic
code base contains about one billion files (including source files copied into branches,
files that are deleted at the latest revision, configuration files, documentation, and
supporting data files), nine million source files, two billion lines of code. 45,000

11

patches are committed every workday. 15,000 commits are committed by humans,
30,000 are committed by automated systems. The depth of the history is 35 million
commits. 1

This monolithic structure allows us to crawl easily and completely.

This thesis is structured as follows: After this introduction, we present the related
work in chapter 5. Chapter 6 defines the patch-flow graph and the patch-flow metric
from a theoretical perspective.

The data acquisition in chapter 7 considers the tooling, the data model, the con-
straints, and the necessary preprocessing of the collected data at Google and in the
Chromium project, because the information about this code-level collaboration is
latent in the SCM.

The results of this thesis are presented in chapter 8. Chapter 9 discusses potential
threats to validity and limitations of this work. The follow-up chapter 10 highlights
opportunities for future work. In the last chapter 11 we conclude the research part
with a short summary.

Because the original requested data was not released until the end of this thesis, we
were forced to use the open source project Chromium. So chapters 8, 9, and 11 are
Chromium specific.

1Rachel Potvin at SCALE 2015, https://www.youtube.com/watch?v=W71BTkUbdqE

12 Chapter 4 Introduction

https://www.youtube.com/watch?v=W71BTkUbdqE

5Related Work

This section splits up into two subparts: After a short introduction to the field of
Mining Software Repositories (MSR), previous work which considered collaboration
in software organizations shall be described.

5.1 Mining Software Repositories

There are many different sources for mining information about the software develop-
ment process, such as e-mail (Bird, Gourley, Devanbu, Gertz, & Swaminathan, 2006;
Rigby & Hassan, 2007), defect tracking systems (Bhattacharya, Iliofotou, Neamtiu,
& Faloutsos, 2012; Canfora & Cerulo, 2005), or source code itself (Hassan, 2008).
Our work considers SCM, particularly Perforce and git. Kagdi, Collard, and Maletic
(2007) present a survey of MSR approaches in the context of software evolution.

There are many research questions regarding mining software repositories. Begel
and Zimmermann (2014) collects via survey at Microsoft 145 questions a software
repository could answer and Hassan (2008) presents several recent achievements
and results of using MSR techniques to support software research and practice. In
this paper, the focus is on collaboration on code-level base between orgunits.

But Hassan (2008) showed that mining in software repositories is faced with two
problems: Companies are not willing to give external researchers access to such
detailed and sensible information about their software systems. Only a few mid
size (Colaço Jr, Mendonça, & Rodrigues, 2009) and even less larger companies such
as Microsoft (e.g. Bird, Murphy, Nagappan, and Zimmermann (2011), Nagappan,
Murphy, and Basili (2008), Pinzger, Nagappan, and Murphy (2008), Bird, Nagappan,
Gall, Murphy, and Devanbu (2009), Zimmermann and Nagappan (2008)) or Philips
(Vanya, Klusener, Premraj, Van Rooijen, & Van Vliet, 2011) offer an insight in their
software repositories to research. Within the scope of this thesis we were able to
mine in Google’s internal repository.

The second problem for mining software repositories is technical: most repositories
are not designed with large-scale data-extraction and mining in mind (Hassan,
2006). Therefore, a bunch of tools were developed to extract these information

13

from CVS, git, and Subversion (e.g. Anbalagan and Vouk (2009), German and
Mockus (2003), Gousios and Spinellis (2012), Robles, Gonzalez-Barahona, and
Ghosh (2004), Voinea and Telea (2006), Xie, Poshyvanyk, and Marcus (2006)), but
none of them for Perforce. We solved this issue by developing a new crawling tool
for Perforce and – in the further course of the work – for git.

5.2 Collaboration in Software Organizations

In contrast to mining in protected, closed industry repositories, open source enables
research due to its public availability and easy access. Heller, Marschner, Rosenfeld,
and Heer (2011), Huang and Liu (2005), Jermakovics, Sillitti, and Succi (2013),
Ohira, Ohsugi, Ohoka, and Matsumoto (2005), Xu, Gao, and Christley (2005),
Thung, Bissyandé, Lo, and Jiang (2013), Weissgerber, Pohl, and Burch (2007) an-
alyzed collaboration in the context of open source. However, while open source
and its research considers individual developers, this thesis focuses on analyzing the
collaboration between organizational units within software developing companies in
an industrial domain, rather than open source communities. Menzies, Bird, Zimmer-
mann, Schulte, and Kocaganeli (2011) lists more differences, but also similarities
between data mining in open source and industry.

Gousios, Kalliamvakou, and Spinellis (2008) presented a model that extract process
data from software repositories and combines them in a single contribution factor.
Our work differs in three points:

• We are focusing on collaboration of orgunits. They focus on collaboration of
individual developers.

• This works considers source code repositories only. They included additionally
bug database, mailing lists, wiki and IRC participation.

• They do not provide a real world result for the proposed metric, what we will
offer by the data of Google.

Pinzger et al. (2008) used the contribution history to construct the networks of
binaries and the developers that contributed to them. They found using measures
knowing from social network analysis such as degree centrality, closeness centrality,
and Bonacich power in contribution networks had very good predictive power in
determining failure-prone binaries. Although the contribution network was the
starting point for our model of the patch-flow graph, it differs in four aspects from
Pinzger et al. (2008):

• Our pivot is an orgunit. They consider a single developer.

14 Chapter 5 Related Work

• We do not consider single binaries like they do, but projects.

• Our patch-flow graph is not a undirected bipartite graph as the contribution
network, but a directed graph, where projects and users are properties of an
orgunit represented by a node. Edges are contribution weighted by a cost
function.

• We are able to apply different cost functions to the graph, they consider the
amount of contribution only.

Similar to the proposed contribution network, Lopez-Fernandez and Robles (2004)
suggests a commiter and module network. A commiter network is graph where a
vertex corresponds to a particular committer, and an edge represents a common
module, which both committers contributed to. A vertex in a module network
represents a project and there are edges between two vertices if at least one com-
mitter contributed to both projects. As mentioned in the previous listing, we focus
on groups instead of individual developers. Ignoring the semantic and intention,
the module network is close to what we call a patch-flow graph, because of the
special case at Google where a project corresponds to an orgunit (see section 6.1).
However, this does not hold for the general case, where an orgunit can embrace
several projects. Furthermore, their work again applies the proposed approach to
open source data only.

Bird et al. (2009) observed that socio-technical network measures combined with
dependency measures were stronger indicators of failures than dependency measures
alone, but the differing aspects mentioned in paragraph before still remains.

Zerpies (2015) proposed a definition of patch-flow:

Patch Flow is a model to show and measure code-level collaboration
among different units of concern.

Unit of concern can be an individual, open source projects, or organizational unit;
code-level collaboration refers to Source Lines Of Code (SLoC) changed.

We do not follow this definition due to two important aspects:

1. Large units of concern (in our case large orgunits) are able to contribute way
more than smaller ones in total; we are missing a normalizing factor.

2. Also other metrics than SLOC could be helpful (e.g. Lines of Code (LoC),
Comment Lines of Code (CLoC)).

5.2 Collaboration in Software Organizations 15

6The Patch-Flow Model

6.1 Terminology

Four entities play a central role in this thesis: Patch, User, Orgunit, and Project. But
the this terminology is not the only one.

In the following each entity shall be described shortly.

Patch The pivot is the entity patch. It represents a code contribution to a project.

User Users are developers who author patches. A human developer may be as-
signed to multiple users.

Project A project is a encapsulation of source code files which are belonging to a
unique product, service, or result.

Orgunit Users are belonging to and Projects are owned by orgunits.

Table 6.1 lists the different terminology coming from different perspectives, but
having the same meaning.

Patch-Flow Terminology Google’s Terminology Other’s Terminology

Patch Change Commit, Contribution

User User Developer

Orgunit
Project, Orgunit

Team, Group

Project Component, Package

Table 6.1: Terminology used in this paper and their synonyms.

Google does not distinguish between project and orgunit; every project is its own
orgunit and vice versa.

17

6.2 Patch-Flow Graph

Definition 1. A patch-flow graph G is a directed graph G = (O,P).
• O = {o1, o2, . . . , on} is a set of n nodes representing the orgunits. Each orgunit

has two attributes:

– a list of all developers belonging to this orgunit, and

– a list of all project, the orgunit owns.

• P = {(oi, oj) ∈ O×O} is a set of ordered pairs each representing a patch from
a developer of orgunit oi committed to a project of orgunit oj . A cost function
c : P → R+ weights each commit.

Figure 6.1 depicts an example patch-flow graph with three orgunits o1, o2, and o3.
All of them are exchanging code represented by weighted edges (e.g. in lines of
code), except o2 which does not contribute to projects of o3.

o1
users = {u1, u2}

projects = {p1, p2}

o3
users = {u4, u5, u6, u7}
projects = {p4, p5, p6}

o2
users = {u3}

projects = {p3}483

94

122
36

652

445 1102

569

Figure 6.1: An example patch-flow graph.

Orgunits can contain subordinate orgunits and subsume all child orgunits’ projects
and users. So we are able to handle hierarchical organizational structures.

18 Chapter 6 The Patch-Flow Model

6.3 Patch-Flow Metrics

So we can define the incoming and outgoing patch-flow:

Definition 2. For a given orgunit oi we define the incoming patch-flow as

f+(oi) =
1∑

(oj ,oi)∈P
c[(oj , oi)]

·
∑

(oj ,oi)∈P
j 6=i

c[(oj , oi)]

= 1−
c[(oi, oi)]∑

(oj ,oi)∈P
c[(oj , oi)]

(6.1)

The incoming patch-flow is the amount of patches committed by non-orgunit mem-
bers related to the total amount of patches which are committed by all committers.

Consequently, the definition for the outgoing patch-flow follows:

Definition 3. For a given orgunit oi we define the outgoing patch-flow as

f−(oi) =
1∑

(oi,oj)∈P
c[(oi, oj)] ·

∑
(oi,oj)∈P

i 6=j

c[(oi, oj)]

= 1−
c[(oi, oi)]∑

(oi,oj)∈P
c[(oi, oj)] (6.2)

The outgoing patch-flow is the amount of patches committed by orgunit members to
foreign projects related to amount of all patches the orgunit committed.

In this thesis we consider the cost function which sums up all changed, edited, and
added lines of code (including comment lines). However, there are many more cost
functions c thinkable and applicable.

If c[(oi, oi)] = c[(oi, oj)] = 1, it corresponds to the in- and out-degree of a vertex in
graph theory.

6.3 Patch-Flow Metrics 19

From this we can compute the incoming and outgoing patch-flow metric, e.g. for
the orgunit o2 presented in Figure 6.1:

f+(o2) = 1−
c[(o2, o2)]

c[(o1, o2)] + c[(o2, o2)] + c[(o3, o2)]

= 1− 1102
483 + 1102

= 0.3047

f−(o2) = 1−
c[(o2, o2)]

c[(o2, o1)] + c[(o2, o2)] + c[(o2, o3)]

= 1−
1102

94 + 1102 + 36
= 0.1055

This means in this certain orgunit o2 we have about 30% of o2’s patches are coming
from developers which are not members of o2. About 10% of the patches of o2 are
not for the own orgunit, but for o1 and o3.

Following the definitions 2 and 3 we can define the patch-flow within a given
patch-flow graph:

Definition 4. For a given patch-flow graph G = (O,P) we define the patch-flow as

F (G) = 1−

∑
oi∈O

c[(oi, oi)]∑
oi∈O

(oj ,oi)∈P

c[(oj , oi)]

= 1−

∑
oi∈O

c[(oi, oi)]∑
oi∈O

(oi,oj)∈P

c[(oi, oj)] (6.3)

Because of the is-a relationship between subordinate and superordinate orgunits, we
can apply the patch-flow metric also on organizational trees. However, at this stage
we are not able measure vertical patch-flow, meaning patch-flow from a child orgunit
to its parent or vice versa, although this could be an interesting metric, too.

20 Chapter 6 The Patch-Flow Model

7Data Acquisition

„In God we trust; all others must bring data.

— William Edwards Deming

We collected the data as follows using an automated tool:

1. Collect all patches of a selected year from the Google Perforce repository.

2. Extract all users which are authors of these patches.

3. Sample 2,500 users randomly.

4. Filter patches according to the randomly selected users in step 3.

5. Enhance patches and their containing users data with information about
orgunit memberships and seniorities coming from an internal Google system.

6. Anonymize patches by removing identifying names, etc.

7. Store patches in a JSON file.

Figure 7.1 adds the perspective of the data flow between the different processing
steps to the workflow explained above.

This was repeated for every year listed in the constraints.

7.1 Constraints

The information to be crawled are restricted to the data model presented in the
previous section 7.3.

Only patches are selected, if they

• are committed and accepted in the years 2007, 2009, 2011, and 2013,

• are committed by 2,500 Google developers, randomly selected for each year,
and

• are committed to the Google internal Perforce repository.

21

Perforce
repository

1. Collect all patches 2. Extract all users

3. Select 2,500
users randomly

4. Filter patches

5. Enhance patches
internal
Google
system

6. Anonymize patches

7. Store patches

raw data

patches

users

Figure 7.1: Crawling work flow for one selected year to collect. Circles represent external data
sources and rectangles processing steps, encapsulated in modules within the tool.

Furthermore, only Java, JavaScript, C/C++, Python, and Go source code files in a
patch are considered.

7.2 Tool

For collecting these data we developed a crawler, because no crawler for Perforce
existed, although there are many open source crawler for git, CVS, or SVN (e.g.
Anbalagan and Vouk (2009), German and Mockus (2003), Gousios et al. (2008),
Robles et al. (2004), Voinea and Telea (2006), Xie et al. (2006)), and Google uses a
non-standard version of Perforce and restricted the standard Perforce API.

The tool which crawls through Google’s Perforce repository seizes the workflow
presented in previous section and Figure 7.1 and encapsulates each processing step
into a component. This leads to an pipes and filters architectural pattern. The
tool is implemented in Python and Go. Due to the large amount of data – the
Google repository contains about 86 Terabyte of source code – the implementation
required a strong focus on performance using parallel computing and as less queries
as possible to minimize the server load footprint.

22 Chapter 7 Data Acquisition

7.3 Data Model

After gathering the data we obtained a data structure, which holds required informa-
tion about the patch-flow model (patches, users, orgunit/projects) and additional
helper container file. In general, Google does not distinguish between a project and
an orgunit. So we are not required to elaborate the semantical difference between
these entities.

A patch contains one or more files, which encapsulates information for each file
about the used programming language as well as lines of code added and removed.
Additionally, four relations are stored: authors, reviews, contains, and belongs to. The
relation is parent of can be derived from the path structure.

The tool stores all patches in a JSON file. The resulting data structure is shown in
Figure 7.2.

Patch

timestamp

File

programming language
lines added
lines removed

User

ID
seniority

Orgunit/Project

ID

∗

H contains

1

∗
J authors

1

∗
J reviews

∗

1

H is member of

∗

∗
belongs to I

1

1

J is parent of

∗

Figure 7.2: The data model as UML diagram with necessary, but not existing relation between
user and orgunit/project.

7.4 Preprocessing

Information about the membership to orgunits of a user is not available (marked
with a dotted lines in Figure 7.2). However, this information is crucial for measuring
the patch-flow.

7.3 Data Model 23

So we formulated the optimization problem for each user with a sampling period of
one month

argmax
o

wi · cu,o (7.1)

where cu,o is the amount of contribution of a user u to a project of orgunit o. So we
select the orgunit with the highest weighted costs (e.g. lines of code). The weight
wi can be one of the following:

w0 = (d+ 1)0 = 1 (7.2)

w1 = (d+ 1)−1 (7.3)

w2 = (d+ 1)−2 (7.4)

w3 = 1
σ
√

2π
e−

1
2 (x−µ

σ)2
with µ = 0, σ =

√√√√ 1
n

n∑
i=1

(d− µ)2 (7.5)

The standard deviation is estimated by the maximum-likelihood estimation (MLE)
method. If argmaxowi · cu,o does not obtain a unique orgunit, nodes deeper in the
project tree are preferred.

Figure 7.3 illustrates the different weights on a example tree, assuming a test for the
orgunit a.

a

b c

d e f

g h

0 0.5 1

0

1

2

3

4

weight w

depth dw0
w1
w2
w3

Figure 7.3: An example segment of a project/orgunit tree weighted by w0, w1, w2, and w3.

Until now, we were not able to evaluate the accuracy of the cluster approach with
these weights, because no test samples are available.

24 Chapter 7 Data Acquisition

7.5 Mining Chromium

Beyond the direct scope of this thesis we mined in a open source project Chromium.
This project is led by Google and uses a similar collaboration framework between
the developers as Google does internally1.

Instead of Perforce, Chromium uses a git based system, enhanced by a review tool
called Rietveld. So we adapted the crawler to be applicable to this new setup. The
resulting data model stored in JSON matches to the data coming from Google
internally. This enables us to use the same metrics to both data sets.

We constrained the mining to the same restrictions as we did on the Google internal
data, except the following aspects, which are now not necessary for publicly acces-
sible data: anonymizing of the dataset, random selection of users, selected years.
Instead we crawled all user with their Chromium user name and all patches since
the birth of the Chromium open source project in September 2008.

Obviously Chromium is an open source project. Some of the users are voluntaries
or are delegated from other companies. The Chromium project offers to their
contributors a @chromium.org mail address. However, we are interested in the
patch-flow within the borders of Google among orgunit borders. So we focus on
users with @google.com mail addresses.

1Personal communication with a Google employee

7.5 Mining Chromium 25

8Results

„Errors using inadequate data are much less than
those using no data at all.

— Charles Babbage

After crawling and preprocessing we are now able to apply the patch-flow metric to
the Chromium data set.

As explained in detail in chapter 6.3 three different metrics measuring the patch-flow
can be evaluated: The patch-flow of the whole Chromium project, the incoming
patch-flow and outgoing patch-flow of an orgunit. For the incoming and outgoing
patch-flow metric we selected the three largest projects/orgunits with respect to
number of patches: src/, src/gpu/, src/pdf/.

In general, we apply a sampling period of one month.

8.1 Chromium Patch-Flow Graph

For the patch-flow in the whole graph we compare the different weights (w0, w1, w2,
w3). As we can see in Figure 8.1 beside one peak in w3 the results are close: the
average range of the patch-flow for a given month m is given by

1
|M |
·
∑

m∈M

max{fm
w0 , f

m
w1 , f

m
w2 , f

m
w3} −min{fm

w0 , f
m
w1 , f

m
w2 , f

m
w3}︸ ︷︷ ︸

Rm

≈ 0.0289 . (8.1)

This means, in average all weights differ only in a range of 2.89 %. However, this
does not allow us to make any assumptions about the correctness; they all can be
wrong.

The large spike in November 2009 requires more investigation. A look into the data
shows, that user sehr@google.com contributed 2672 LoC to orgunit
src/third_party/npapi/ and 2882 LoC to src/. Depending on the weights, this

27

20
09

-0
4

20
10

-0
1

20
11

-0
1

20
12

-0
1

20
13

-0
1

20
14

-0
1

20
15

-0
1

20
15

-0
70

0.1

0.2

0.3
Pa

tc
h-

flo
w

w0 = 1
w1 = (d+ 1)−1

w2 = (d+ 1)−2

w3 = N
(
µ = 0;σ2)

Figure 8.1: Patch-flow for Chromium considering Google developers only with a sampling
period of one month.

user will be assigned to one of these orgunits – if we are applying weight w1 we
obtain orgunit src/ for this user.

However, 2882 LoC are 26.33 % of all contributions in this month. So the orgunit
assignment of user sehr@google.com effects the patch-flow heavily.

This proportion of 26.33 % recurs in Figure 8.5 which depicts the outgoing patch-flow
for the orgunit src/ because of the same reason.

8.2 Incoming Patch-Flow For Selected Orgunits

Figure 8.2 depicts the monthly incoming patch-flow for the three largest orgunits
with respect of amount of committed patches: src/, src/pdf/, and src/gpu/. For
practical reasons we apply the weight w1, although there are no evidences that any
of these weights are superior.

In 2014 almost 100% of all patches are coming from developers which are not
assigned to src/pdf/. But Figure 8.3 shows, that there are only 4 contributors for
this project at maximum and one developer contributes most in the sampling period
(one month). If this contributor is assigned to a different orgunit than src/pdf/, we
get this large incoming patch-flow. But this large incoming patch-flow suggests that
the applied weighting with w1 could not be appropriated.

28 Chapter 8 Results

20
09

-0
4

20
10

-0
1

20
11

-0
1

20
12

-0
1

20
13

-0
1

20
14

-0
1

20
15

-0
1

20
15

-0
70

0.2

0.4

0.6

0.8

1

In
co

m
in

g
Pa

tc
h-

Fl
ow

src/
src/pdf/
src/gpu/

Figure 8.2: Incoming patch-flow for the selected orgunits src/, src/pdf/, and src/gpu/
applying a sampling period of one month.

0

2,000

4,000

6,000

C
on

tr
ib

ut
io

ns
in

Lo
C

20
13

-0
1

20
14

-0
1

20
15

-0
1

20
15

-0
7

0

0.5

1

In
co

m
in

g
Pa

tc
h-

Fl
ow

Figure 8.3: Distribution of the contributed lines of code by all four contributors per month in
comparison with the incoming patch-flow for orgunit src/pdf/.

If we apply the same settings to orgunit src/gpu/, we see in Figure 8.4 more
contributors and contributions reduce the error.

8.2 Incoming Patch-Flow For Selected Orgunits 29

0

0.5

1

1.5

·104

C
on

tr
ib

ut
io

ns
in

Lo
C

20
13

-0
1

20
14

-0
1

20
15

-0
1

20
15

-0
7

0

0.5

1

In
co

m
in

g
Pa

tc
h-

Fl
ow

Figure 8.4: Distribution of the contributed lines of code by top five contributors per month in
comparison with the incoming patch-flow for orgunit src/gpu/.

8.3 Outgoing Patch-Flow For Selected Orgunits

The outgoing patch-flow is presented in Figure 8.5.

20
09

-0
4

20
10

-0
1

20
11

-0
1

20
12

-0
1

20
13

-0
1

20
14

-0
1

20
15

-0
1

20
15

-0
70

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

O
ut

go
in

g
pa

tc
h-

flo
w

src/
src/pdf/
src/gpu

Figure 8.5: Outgoing patch-flow for the selected orgunits src/, src/pdf/, and src/gpu/
applying a sampling period of one month.

30 Chapter 8 Results

Some effects can be recognized: There is a peak, and as in the patch-flow for the
whole graph and the incoming patch-flow we can see an increasing collaboration
between different orgunits starting in 2013.

We were not able to find a reason in the Chromium history for this large increase of
patch-flow starting in 2013.

8.3 Outgoing Patch-Flow For Selected Orgunits 31

9Limitations

„With insufficient data it is easy to go wrong.

— Carl Sagan

9.1 Google Data

If there had been the Google data set, we would have had also limitations: No
historical information about orgunit memberships of users are available. This
information has to be restored by clustering. Depending on the size and quality
of the training set this approach has varying accuracy and some samples will be
clustered wrong. So an error will be introduced.

The sample of 2,500 Google developers corresponds about 10% of all Google engi-
neers. Selecting them randomly makes this sample representative.

Due to a yearly re-sampling we are not able to observe the evolution of developers
within Google.

9.2 Chromium Data

There are technical constraints while mining Chromium:

• Only public patches to review are accessible. There is an unknown number of
private patches, which are restricted to reviewers and selected users.

• In Chromium C++ is widely used (95% of all patches), there are no Go source
code files. So we would not be able to make any claims about the effect of
project’s programming language.

• Only Chromium packages are considered. Many patches are directed to pack-
ages that are included in Chromium, but they are independent projects. This
reduces the amount of data available and we are not able to detect this com-
munication among open source project boundaries.

33

Furthermore, there are issues with the review software tool Rietvield:

• The code review tool Rietvield has an unexpected behavior where adding a line
can lead to a negative number stored (e.g. https://codereview.chromium.
org/api/194883004/1).

• Some users have usernames with typos (e.g. caryclark1;reed@google.com).

Filtering the Google employees by their @google.com mail address does not obtain
all contributions of the them: there are some @chromium.org users which are quite
certain Google employees (e.g. bashi@chromium.org and bashi@google.com or
ager@chromium.org and ager@google.com).

Additionally, this filtering of exclusively Google employees reduces

• the total number of users from 799 to 152,

• the total number of patches from 36271 to 6777,

• the total edited lines from 10889225 to 2618024, and

• the start month from September 2008 to April 2009.

The latter fact implies that there are many Google employees working on Chromium,
but using a @chromium.org mail address, because it is quite unlikely that no Google
developer contributes from 2. September 2008 (where the first patch was approved)
to April 2009.

We cannot preclude that Google employees use their @google.com mail address and
account to contribute as volunteers and not on behalf of their employer. Then any
assignment to a Chromium orgunit would be wrong.

Table 9.1 shows that at least 78% of all users can be assigned to one orgunit over
the whole period. This implies for the rest, that there is an uncertainty, or the
user switched his orgunit. So we have a trade-off between the flexibility of orgunit
switches and and overfitting. Investigating this issue requires test samples.

Distance
Metric

Number of users with

one orgunit two orgunits > two orgunits

w0 136 14 1

w1 126 22 4

w2 125 22 5

w3 119 25 8

Table 9.1: Number of user with one, two, or more orgunits, applying the clustering algorithm
with weights w0, w1, w2, w3 and a sampling period of one month over the whole period.

34 Chapter 9 Limitations

https://codereview.chromium.org/api/194883004/1
https://codereview.chromium.org/api/194883004/1

But 78.22% of all patches by Google employees and thereby 88.21% of all changed
lines of code are committed to the top level project src/. This large a-priori proba-
bility has a great effect on the clustering results, because assigning all users to this
top level project/orgunit will obtain a recognition rate of 78% and 88%, respectively.
A necessary normalization would even more reduce the available amount of data.

The sampling frequency implies that only month-wise orgunit changes can be cap-
tured. This introduces fuzziness.

However, we are still not able to estimate the quality of our assigning of users
to orgunits. Maybe this also differs from Chromium to Google internal software
development.

And even if we would be able to do so, the 152 developers and subset of all patches
are neither representative for Google having several ten-thousands developers nor
for the Chromium project.

Additionally, Sadowski, van Gogh, Jaspan, Söderberg, and Winter (2015) stated that
Chromium (and Android) are developed independently.

9.2 Chromium Data 35

10Future Work

In this chapter we want to outline some of our ideas for the future, we were not able
to consider within the scope of this thesis.

10.1 Patch-Flow Model

At this stage the patch-flow metrics does not capture the hierarchical structure of
the orgunit structure. It would be helpful to have a second dimension aside from
contributions: direction or distance in the orgunit tree.

Not only because we are working on Google data, a comparison to the PageRank
algorithm applied on the patch-flow graph to measure the importance of a certain
orgunit would be interesting.

There is an affinity to network theory, which is not considered in detail in this thesis.
Lopez-Fernandez and Robles (2004) presented some interesting properties for their
module network, known from the social network theory (degree, distance centrality,
betweenness centrality, etc.), which is a feasible starting point.

10.2 Clustering in Trees

Because there is no historical data available about the orgunit membership of users,
we need a clustering algorithm, based on the tree structure of the projects/orgunits
at Google. The applied approach of different metrics are rudimental steps to fit in
the hierarchical structure of orgunits and projects. Schkolnick (1977), Hambrusch,
Liu, and Lim (2000), Maravalle, Simeone, and Naldini (1997), Yuruk, Mete, Xu, and
Schweiger (2009) suggest solutions for this problem, they are not considered in this
paper.

Beside that we have to validate our clustering approach. This can be done by hand
for a suitable test sample size of 20 randomly selected users.

37

11Conclusions

In this thesis we presented a graph theory based model for measuring the phenomena
of patch-flowing among the borders of orgunits.

We mined in two different sources, the Google internal repository and the open
source project Chromium.

For both data sets there is a major drawback: No historical information about orgunit
membership of any user is available. Therefore, we developed a clustering algorithm.
However, because there are also no test samples, we are not able to estimate the
error of the applied orgunit clustering.

The Google internal data set was not released in time. So we were forced to use
Chromium data set, although it cannot be assumed to be representative, because –
beside minor issues –

• the sample size is too small (152 Google developers),

• as already mentioned the orgunit clustering has an error of unknown magni-
tude,

• the Chromium project is just one specific out of thousands of projects Google
is working on, and cannot be assumed to be representative,

• and by intention, Chromium is an open source project.

Due to this limitations we are not able to answer the initial research question to
which extent patch-flow exists within Google. Consequently, we are also not able
to answer the second research question which factors affect or correlate with the
quantity of patch-flow within Google.

Although we are able to measure and quantify the patch-flow for the whole patch-
flow graph and selected orgunits, the used data set cannot be assumed to be repre-
sentative for the internal Google development.

39

12Acknowledgement

This work benefits heavily from the input and contributions of three person. Many
thanks to

• my supervisor Max Capraro for the uncountable hours and mails of discussions,
his remarks, contributions, and expertise,

• my anchor at Google Manuel Klimek for his comprehensive contributions to
the crawling and the data structure, the data set itself, his patience, and his
respectful, kind way of collaboration, and, last, but not least,

• my professor Prof. Dr. Dirk Riehle for his unconditional support, the pleasant
working atmosphere, the cookies, and the freedom for my work I enjoyed.

It was a pleasure to work with them, as a team and individually.

41

Part III

Elaboration of Research Chapter

13Metric for Clustering Orgunits
without Prior Knowledge

For a dataset without any information about the orgunit membership (number
of orgunits, any samples for testing), we implemented a hierarchical clustering
algorithm, based on histograms for contributions to different orgunits for all users.

The Jensen-Shannon-divergence (JSD) evaluates the similarity of such two distribu-
tions and is given by

dJSD
(
H,H ′

)
=

M∑
m=1

Hm log 2 ·Hm

Hm +H ′m
+H ′m log H ′m

H ′m +Hm
(13.1)

where H and H ′ are the histograms with M bins to be compared and Hm is the
m-th bin of the H (Deselaers, Keysers, & Ney, 2008).

Figure 13.1 illustrates this approach, whereH is a histogram of the relative frequency
of code contribution to M projects, where 0 indicates no and 1 a high divergence.

What we can see that more than 2/3 of the users have a very similar code contribution.
This main part of users are contributed to the top level project, which is at the same
time the largest project.

Beside computational challenges (O
(
N2/(2 · f)

)
for N users and f sampling fre-

quency), we would be able to cluster user with a similar contribution behavior, but
not assign them to a existing orgunit.

45

20

102

33

138

95

96

29

110

151

150

149

148

147

146

140

137

136

135

134

130

129

128

127

126

125

124

123

122

121

120

118

117

115

113

111

109

108

107

106

105

104

101

100

99

98

97

94

93

92

91

90

88

87

86

83

82

80

78

76

71

69

68

66

64

60

58

57

56

53

52

51

50

49

48

46

45

44

42

41

39

38

36

35

30

27

26

25

24

23

22

21

19

18

17

16

15

14

13

10

9

8

7

6

5

2

3

131

61

144

54

114

119

141

11

65

116

77

12

37

32

84

0

70

59

73

143

103

142

81

133

63

31

62

4

139

43

112

75

55

85

89

1

72

67

40

79

145

28

74

132

34

47

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 13.1: A hierarchical clustering approach using the Jensen-Shannon divergence for all
152 available Chromium contributors having a @google.com mail address.

46 Chapter 13 Metric for Clustering Orgunits without Prior Knowledge

Part IV

References

Anbalagan, P. & Vouk, M. A. (2009). On Mining Data Across Software Repositories. Pro-
ceedings of the 2008 International Working Conference on Mining Software Repositories,
171–174.

Begel, A. & Zimmermann, T. (2014). Analyze This! 145 Questions for Data Scientists in
Software Engineering. Proceedings of the 28th International Conference on Software
Engineering, 12–13.

Bhattacharya, P., Iliofotou, M., Neamtiu, I., & Faloutsos, M. (2012). Graph-Based Analysis
and Prediction for Software Evolution. In 34th International Conference on Software
Engineering (pp. 419–429). IEEE.

Bird, C., Gourley, A., Devanbu, P. T., Gertz, M., & Swaminathan, A. (2006). Mining Email
Social Networks. Proceedings of the 2008 International Working Conference on Mining
Software Repositories, 137–143.

Bird, C., Murphy, B., Nagappan, N., & Zimmermann, T. (2011). Empirical software engi-
neering at Microsoft Research. Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work, 143–150.

Bird, C., Nagappan, N., Gall, H. C., Murphy, B., & Devanbu, P. T. (2009). Putting It All
Together: Using Socio-technical Networks to Predict Failures. 20th International Sym-
posium on Software Reliability Engineering, 109–119.

Canfora, G. & Cerulo, L. (2005). Impact Analysis by Mining Software and Change Request
Repositories. Software Metrics, 2005. 11th IEEE International Symposium, 29.

Colaço Jr, M., Mendonça, M. G., & Rodrigues, F. (2009). Mining Software Change History in
an Industrial Environment. XXIII Brazilian Symposium on Software Engineering, 54–61.

Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28–31.

Deselaers, T., Keysers, D., & Ney, H. (2008). Features for Image Retrieval: an Experimental
Comparison. Information Retrieval, 11(2), 77–107.

German, D. M. & Mockus, A. (2003). Automating the Measurement of Open Source Projects.
In Proceedings of the 3rd Workshop on Open Source Software Engineering (pp. 63–67).
Citeseer.

Gousios, G., Kalliamvakou, E., & Spinellis, D. (2008). Measuring Developer Contribution
From Software Repository Data. Proceedings of the 2008 International Working Confer-
ence on Mining Software Repositories, 129–132.

Gousios, G. & Spinellis, D. (2012). GHTorrent: Github’s data from a firehose. In 9th IEEE
Working Conference on Mining Software Repositories (pp. 12–21). IEEE.

Hambrusch, S. E., Liu, C.-M., & Lim, H.-S. (2000). Clustering in Trees: Optimizing Cluster
Sizes and Number of Subtrees. Journal of Graph Algorithms Applications, 4(4), 1–26.

Hassan, A. E. (2006). Mining Software Repositories to Assist Developers and Support
Managers. 22nd IEEE International Conference on Software Maintanance, 339–342.

Hassan, A. E. (2008). The Road Ahead for Mining Software Repositories. In Frontiers of
Software Maintenance (pp. 48–57). IEEE.

Heller, B., Marschner, E., Rosenfeld, E., & Heer, J. (2011). Visualizing Collaboration and In-
fluence in the Open-Source Software Community. Proceedings of the 2008 International
Working Conference on Mining Software Repositories, 223–226.

48

Huang, S.-K. & Liu, K.-m. (2005). Mining Version Histories to Verify the Learning Process of
Legitimate Peripheral Participants. ACM SIGSOFT Software Engineering Notes, 30(4),
1–5.

Jermakovics, A., Sillitti, A., & Succi, G. (2013). Exploring Collaboration Networks in Open-
Source Projects. Open Source Systems.

Kagdi, H., Collard, M. L., & Maletic, J. I. (2007, March). A Survey and Taxonomy of
Approaches for Mining Software Repositories in the Context of Software Evolution.
Journal of Software Maintenance and Evolution: Research and Practice, 19(2).

Lopez-Fernandez, L. & Robles, G. (2004). Applying Social Network Analysis to the Informa-
tion in CVS Repositories. International Workshop on Mining Software Repositories.

Maravalle, M., Simeone, B., & Naldini, R. (1997). Clustering on trees. Computational Statistics
& Data Analysis.

Menzies, T., Bird, C., Zimmermann, T., Schulte, W., & Kocaganeli, E. (2011, November). The
Inductive Software Engineering Manifesto: Principles for Industrial Data Mining. In
Proceedings of the international workshop on machine learning technologies in software
engineering. ACM.

Nagappan, N., Murphy, B., & Basili, V. R. (2008). The Influence of Organizational Structure
on Software Quality: An Empirical Case Study. Proceedings of the 28th International
Conference on Software Engineering, 521–530.

Ohira, M., Ohsugi, N., Ohoka, T., & Matsumoto, K.-i. (2005). Accelerating Cross-Project
Knowledge Collaboration Using Collaborative Filtering and Social Networks. ACM
SIGSOFT Software Engineering Notes, 30(4), 1–5.

Pinzger, M., Nagappan, N., & Murphy, B. (2008). Can developer-module networks predict
failures? Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2–12.

Rigby, P. C. & Hassan, A. E. (2007). What Can OSS Mailing Lists Tell Us? A Preliminary
Psychometric Text Analysis of the Apache Developer Mailing List. Proceedings of the
2008 International Working Conference on Mining Software Repositories, 23.

Robles, G., Gonzalez-Barahona, J. M., & Ghosh, R. A. (2004). GlueTheos: Automating the
Retrieval and Analysis of Data From Publicly Available Software Repositories. In
Proceedings of the International Workshop on Mining Software Repositories (pp. 28–31).

Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., & Winter, C. (2015, May). Tricorder:
Building a Program Analysis Ecosystem. In Proceedings of the 37th International
Conference on Software Engineering. IEEE Press.

Schkolnick, M. (1977). A Clustering Algorithm for Hierarchical Structures. ACM Transactions
on Database Systems, 2(1), 27–44.

Thung, F., Bissyandé, T. F., Lo, D., & Jiang, L. (2013). Network Structure of Social Coding
in GitHub. 17th European Conference on Software Maintenance and Reengineering,
323–326.

Vanya, A., Klusener, S., Premraj, R., Van Rooijen, N., & Van Vliet, H. (2011). Identifying and
investigating evolution type decomposition weaknesses. Springer.

Voinea, L. & Telea, A. (2006). Mining Software Repositories with CVSgrab. In Proceedings of
the 2006 International Workshop on Mining software Repositories.

49

Weissgerber, P., Pohl, M., & Burch, M. (2007, May). Visual Data Mining in Software Archives
To Detect How Developers Work Together. In Proceedings of the 29th International
Conference on Software Engineering. IEEE.

Xie, X., Poshyvanyk, D., & Marcus, A. (2006, October). Visualization of CVS Repository
Information. In Proceedings of the 13th Working Conference on Reverse Engineering.
IEEE.

Xu, J., Gao, Y., & Christley, S. (2005). A topological analysis of the open souce software
development community. Proceedings of the 38th Hawaii International Conference on
System Sciences, 198a–198a.

Yuruk, N., Mete, M., Xu, X., & Schweiger, T. (2009). AHSCAN: Agglomerative Hierarchical
Structural Clustering Algorithm for Networks. Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining, 72–77.

Zerpies, M. (2015). Measuring Patch Flow on GitHub (Master’s thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg).

Zimmermann, T. & Nagappan, N. (2008). Predicting Defects Using Network Analysis on
Dependency Graphs. Proceedings of the 28th International Conference on Software
Engineering, 531–540.

50

	I Front Matter
	Abstract
	Introduction
	Acronyms

	II Research Chapter
	Introduction
	Related Work
	Mining Software Repositories
	Collaboration in Software Organizations

	The Patch-Flow Model
	Terminology
	Patch-Flow Graph
	Patch-Flow Metrics

	Data Acquisition
	Constraints
	Tool
	Data Model
	Preprocessing
	Mining Chromium

	Results
	Chromium Patch-Flow Graph
	Incoming Patch-Flow For Selected Orgunits
	Outgoing Patch-Flow For Selected Orgunits

	Limitations
	Google Data
	Chromium Data

	Future Work
	Patch-Flow Model
	Clustering in Trees

	Conclusions
	Acknowledgement

	III Elaboration of Research Chapter
	Metric for Clustering Orgunits without Prior Knowledge

	IV References

