(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.

From Developer Networks to Verified Communities:
A Fine-Grained Approach

Mitchell Joblin
Siemens AG
Erlangen, Germany

Wolfgang Mauerer
Siemens AG
OTH Regensburg
Munich/Regensburg, Germany

Abstract—Effective software engineering demands a coordi-
nated effort. Unfortunately, a comprehensive view on developer
coordination is rarely available to support software-engineering
decisions, despite the significant implications on software quality,
software architecture, and developer productivity. We present a
fine-grained, verifiable, and fully automated approach to capture
a view on developer coordination, based on commit information
and source-code structure, mined from version-control systems.
We apply methodology from network analysis and machine learn-
ing to identify developer communities automatically. Compared
to previous work, our approach is fine-grained, and identifies
statistically significant communities using order-statistics and a
community-verification technique based on graph conductance.
To demonstrate the scalability and generality of our approach,
we analyze ten open-source projects with complex and active
histories, written in various programming languages. By survey-
ing 53 open-source developers from the ten projects, we validate
the authenticity of inferred community structure with respect
to reality. Our results indicate that developers of open-source
projects form statistically significant community structures and
this particular view on collaboration largely coincides with
developers’ perceptions of real-world collaboration.

I. INTRODUCTION

Software engineering is fundamentally the coordinated effort
of individuals to construct a software system. Typically, the
complexity of a software system is managed by a divide-and-
conquer strategy, in which the system whole is decomposed
into simpler sub-components [12]. Software developers are
required to coordinate their efforts to manage sub-component
dependencies and to reconcile the software’s sub-components
into a functional whole. Failure in the software to meet expec-
tations is often the consequence of insufficient coordination
between developers [7], [16], [9], [12].

Recent empirical research has demonstrated the significant
influence of developer organization on software quality [7],
[31], [27], [28]. It even suggests that evaluation methods
that are entirely based on organizational properties are more
indicative of fault proneness than traditional source-code-centric
metrics [28].

Recently, version-control systems (VCS) have been used to
construct developer networks that capture the organizational
structure [23], [24], [17], [18], [26]. Thus far, the primary
focus has been on characterizing the global network properties
that govern all developer networks, such as the small-world

Sven Apel, Janet Siegmund
University of Passau

Dirk Riehle
Friedrich-Alexander-University
Erlangen-Niirnberg
Erlangen, Germany

Passau, Germany

property.! The predominant method to construct developer
networks assumes that all developers contributing to a common
file are collaborating. We will show that this coarse-grained
view results in over-connecting the developer network, which
obscures important latent network properties, such as com-
munity structure. Additionally, we will challenge the current
working assumption that developer networks are an accurate
representation of reality.

We propose an approach to construct developer networks
from a VCS with a primary focus on identifying fine-grained
organizational features:

1) Developer-Network Construction: We propose two dis-
tinct fine-grained methods that improve on the state-of-
the-art (a) by analyzing the source-code structure at the
function level, instead of at the file level, and (b) by
analyzing the committer—author relationship, to identify
closely collaborating developers.

2) Developer-Network Analysis: We propose a statistically
sound approach of identifying and verifying developer
communities (a) by applying sophisticated community-
detection algorithms for detecting overlapping communi-
ties in directed and weighted graphs, which have not
been used before on developer networks, and (b) by
applying sound statistical methods, with carefully chosen
null models and community-quality metrics, to verify that
the developer communities arise from an organized effort
and not as an artifact of the method.

We have applied our method to empirically study ten open-
source projects, listed in Table I. We chose the projects
to demonstrate our methods’ applicability to a wide range
of projects, from a variety of domains, written in various
programming languages, and ranging in size from tens of
developers to thousands.

In summary, we make the following contributions:

o We define a general approach for automatically construct-
ing developer networks based on source-code structure
and commit information, obtained from a VCS, that is
applicable to a wide variety of software projects.

« We study ten popular open-source projects and demon-
strate that the state-of-the art method of constructing

IThe small-world property is a well understood characteristic of networks,
where the distance between nodes grows with the logarithm of the number of
nodes, and it is responsible for the small-world phenomenon [23].

developer networks is unsuitable to identify fine-grained
organizational features, while our approach is suitable.

« We demonstrate that committer—author information can be
used to automatically construct developer networks with
similar information as developer networks constructed
using the manual certificate-of-origin reporting system for
documenting the responsibility of code changes.

« We present an approach to statistically evaluate the exis-
tence of developer-network communities using state-of-
the-art machine-learning algorithms and network-analysis
techniques suitable for directed, weighted networks with
overlapping communities.

« We validate our approach by questioning 53 open-source
developers from ten different projects, and show that most
developers agree that the networks accurately capture
reality and the identified communities have real-world
meaning.

All experimental data are available at a supplementary site:
http://siemens.github.io/codeface/icse/ .

II. BACKGROUND

We begin with the introduction of VCSs as a data source for
empirical software-engineering research. Then, we formalize
developer collaboration in terms of network structure.

A. Version-Control Systems

Software engineers use version-control systems to coordinate
their incremental contributions to a common software system.
A VCS stores the entire source-code change history in the
form of atomic change sets, called commits, which contain
information about the changed lines of code and the person
responsible for the change set. Through the application of data
mining to VCSs, it is possible to glean insights about the
coordination structure from the change history [10].

Git is a popular VCS that is especially appropriate for data
mining, and it supports migration from many other VCSs [5].
Git also captures additional data that other VCSs neglect [5].
For example, in open-source projects, the author of a patch
often differs from the person who commits the patch to the main
development branch. For each commit, Git captures distinct
author-and-committer information. Git also supports a “sign-
off” (i.e., “Developer’s Certificate-of-Origin”) convention that
helps track responsibility for a patch. A sign-off tag is a self-
reported reference to anyone who authored, tested, reviewed, or
committed a patch. In Section IV, we show how this information
is useful for studying developer collaboration.

B. Network Analysis

The data stored in a VCS enable researchers to identify
collaborative relationships between developers that arise from
the software-development process. The developer relationships
can be described by a network, in which nodes represent devel-
opers and edges represent collaborations between developers.
A network can be formalized as a graph G = (V, E), where V
is a set of vertices and E is a set of edges, denoted by V(G)
and F(G), respectively. Some edge e € E with origin u € V

and destination v € V' is denoted e = {u, v}. Graph edges may
be undirected or directed. In the latter case, the two edges are
defined by ordered pairs, so that (u,v) and (v,u) are distinct.
Weights can be assigned to edges represented by a function
w : E — R. In our context, the edge weight represents the
strength of collaboration between two developers.

By formalizing developer relationships as a graph, we can use
network-analysis and visualization techniques to distill the vast
amount of data into practical insights. However, networks often
contain a substantial amount of noise that can conceal the latent
graph structures. Community-detection algorithms address this
problem by identifying topologically related groups of nodes.
A community is formally characterized by a group of nodes that
are densely connected to nodes within the group and sparsely
connected to all other nodes in the network [29]. Communities
are expected to naturally form as a result of commonalities
that exist between members of a community (e.g., a shared
responsibility to handle the development of a particular system
component; each community would represent a division of
labor and indicate an organized effort). Unfortunately, two
known problems exist: (1) Networks that arise from a random
process can exhibit community structure and (2) there is no
guarantee that the identified communities will coincide the
more abstract notions of a community (developer communities
in the real world), which have characteristics that transcend
the strictly topological domain. For this reason, identifying
meaningful communities is not trivial and requires appropriate
metrics for identifying and differentiating communities that
result from a random process from communities that result
from an organized process [20]. In Section III-B, we address
this problem for community detection in developer networks.

III. OUR APPROACH

We now present our approach to construct developer net-
works and to infer and verify developer communities using
statistical techniques. All source code that implements our
approach is available under the GPLv2 and MIT licenses on
the supplementary website.

A. Network Construction

We propose two methods for constructing developer net-
works, each of which captures different views on developer
collaboration.

1) Function-based method: To construct a developer net-
work, we use a heuristic for identifying when two developers
are engaged in a coordinated effort. Coordination theory has
established that the demand for coordination arises from
inter-dependencies between the tasks carried out by a set of
individuals [25]. Therefore, the validity of the heuristic is based
on how accurately it can identify inter-dependent developer
tasks. Previous research relied on file-based heuristic where
developers were said to be coordinated when they made a
contribution to a common file [23], [24], [18]. Advantages
of using a file-based heuristic include ease of computation,
programming-language independence, and suitability for het-
erogeneous documents (e.g., source-code and configuration

files). The file-based approach has certainly proved useful
for studying global network properties (e.g., vertex degree
distribution, average clustering coefficient, average shortest
path length) [24], however, we identified specific limitations of
the file-based approach that hinder community detection and
justify a more fine-grained method (see Section IV).

The activity of contributing code to a common file does not
always demand a coordinated effort because files often contain
a multitude of different functionalities. In our function-based
approach, we use a more fine-grained heuristic based on code
structure, where developers are considered to be coordinated
when they contribute code to a common function block.? The
rationale is that code within a function block is inter-dependent
as a result of accomplishing a relatively small task, which is
the key principle of functional and procedural abstraction, and
which indicates that the developers of that function are engaged
in a coordinated effort. A finer-grained heuristic will invariably
result in identifying a subset of the developer relationships
implied by a coarser-grained heuristic. By using the function-
based approach, we consciously sacrifice some edges between
developers in the corresponding developer network to gain
the ability to detect developer communities. In Section IV-F,
we empirically address this trade-off by testing whether the
sacrificed edges are authentic with respect to capturing real-
world collaboration. In Section IV-D, we discuss how the
file-based and function-based heuristics perform with respect
to identifying developer communities.

Software development is achieved through incremental
contributions, where one builds on previous work to introduce
or improve features or functionality through commits, which are
typically only a few lines of code [32]. We capture this notion
of incremental contributions by using the commits’ timestamp
for identifying the appropriate directions of the edges in the
network. For example, developer A creates a new function
without the need to collaborate closely with any other developer.
At a later point, when that functionality is modified, developer
B must understand and adhere to the constraints imposed by the
remaining contribution of developer A. Thus, the dependency
is unidirectional (developer A does not need to be aware of
the contribution of developer B). By using directed edges, we
enhance the graph by modeling an additional dimension of
developer coordination, which is utilized by the community
detection algorithm to more accurately identify communities.

To support numerous programming languages with our
approach, we use the source-code indexing tool Exuberant
Ctags to obtain the necessary structural information. Exuberant
Ctags supports over 40 programming languages and is able to
process thousands of files in seconds. It is necessarily based
on heuristics for recognizing function blocks, but this is not
problematic for our use case, as we discuss in Section V.

Using the author information acquired from Git, together
with structural information provided by Exuberant Ctags, we
construct a weighted and directed developer network. Vertices

2for example, the same function implemented in C or the same method or
constructor implemented in Java

of the network represent developers who authored the code,
and edges are included between two developers only when
both had made a contribution to a common function block.
We assign a weight to each edge in the network to model
the varying degrees of collaboration between two developers
from contributing to a common software artifact. For the
function-based method, we formalize the edge weight between
developers d1 and d2 collaborating on function f as

dedQ(f) = ZZ | Slocdl(iaf” + ‘SIOCdZ(ja f)|a (1)

i=1 j=1

where slocqi (i, f) is the set of source lines of code added
or modified (neglecting white space additions) by developer
dl to function f in commit 7. The commits are sorted in
time-increasing order, so that a collaboration is only assigned
between developer d1 and developers who made a previous
commit. Equation 1 defines the collaboration between devel-
opers as a function of both temporal location and amount
of contributed code made through successive changes. The
nested summation captures the consecutive nature of one
commit building upon the development work of all previous
commits. The inner summation captures the collaboration
weight between a single commit and all prior commits to that
function. The outer summation then sums over all commits
relevant to f. Equation 1 considers directionality of edges,
therefore wgi a2(f) # waz,q1(f) in general. Finally, the total
weight between d1 and d2 is

Wq1,d2 = Z wqr,a2(f), 2

fer

where F' is the set of all functions.

2) Committer—author-based method: Our second method
is inspired by earlier work that used sign-off tags on commit
messages to build developer networks [5]. In this method,
tags are used to identify relationships between all people
that contributed to a common commit, including authors,
reviewers, and testers. A tag-based network contains important
information about the software-development process, workflow,
and developers with related interests and knowledge [5]. Sign-
off tags are self-reported acknowledgments of participation
on a commit, therefore the tag-based networks undoubtedly
capture real-world collaboration. Unfortunately, only a small
number of projects currently use the tag convention.

Our solution for projects that lack the tagging convention is
to use the distinct author-and-committer information captured
by Git to construct the network. For every commit, we place a
unidirectional edge pointing from the committer to the author.
The direction is important, since relationships of this type are
not necessarily reciprocal. A weight for each edge is the sum of
the number of commits with a common author-and-committer
pair.

Since tag-based networks represent factual real-world col-
laborative structures, we use them (if available) to validate the
structures of the automatically constructed committer—author-
based networks. In Section IV-E, we show that the committer—

author network of Linux is able to capture the same information
as the corresponding tag-based network.

B. Network Analysis

We now discuss how we use network-analysis and statistical
methods to infer statistically significant communities. Addition-
ally, in Section IV-F, we validate the community’s real-world
significance by surveying the developers that participate in the
detected communities.

1) Community Detection: Community-detection algorithms
allow us to decompose an arbitrary network into commu-
nities [2], [20], [11]. However, many community-detection
algorithms are unable to handle weighted and directed graphs,
and many more are unable to identify overlapping communities.
In the case of developer networks, we expect important
developers to lie at the boundary between two or more
communities. If overlapping communities are not permitted, a
developer will be incorrectly forced to exist in one community.

For community detection, we use the order statistics local
optimization method (OSLOM), which has not been done
before on developer networks. OSLOM is one of the few
methods that is able to handle weighted and directed networks
and to form overlapping communities [20].3

2) Community Verification: The validity and interpreta-
tion of the identified communities is often unclear because
community-detection techniques inherently rely on principles
of unsupervised learning. An important step that is often
neglected is to determine whether the identified communities
are meaningful [20]. We asses the validity of the observed
communities by computing the probability of observing the
community in an equivalent class of null-model graphs that
lack a community structure. We generate the null model using
a standard approach called the configuration model for random
graphs, where nodes are joined uniformly at random under
the constraint that the degree distribution is identical to the
observed graph [15]. If it is possible to detect a statistically
significant difference between the null model and observed
graph communities, we can conclude that it is improbable that
the topological structure of the observed developer network
arose from a uniformly random process and is more likely
explained by an organized process, such as a coordinated
development effort.

Communities are evaluated according to community-quality
metrics, of which several have been proposed in the litera-
ture [1]. We avoid the commonly used modularity metric in
favor of conductance for four reasons [21]. First, modularity is
known to suffer from a “resolution limit”, meaning it is unable
to reliably measure small communities [14]. Second, modularity
is often the optimization criterion used by community-detection
algorithms. By using conductance, we avoid topological-
structure bias introduced by the optimality criterion imposed by

3We experimented with several other community-detection algorithms and
experienced generally poor performance from basic techniques, such as random-
walk or eigenvector based methods [19]. A statistical-mechanics approach
using spin-glasses had comparable performance to OSLOM, but it does not
produce overlapping communities [11].

the community-detection algorithms. Third, conductance allows
us to characterize an individual community, whereas modularity
is a global metric that considers all identified communities
and does not have a meaningful interpretation for a single
community [19]. Fourth, modularity is known to increase with
the number of communities and nodes, making it inappropriate
to compare projects of different size [13]. Although all known
community-quality metrics suffer from some type of bias,
conductance has been shown to exhibit reliable behavior for a
wide range of cases [13].

Formally, conductance ¢ € [0,1] of a community C, in
which V(C) C V(G), is defined as:

|cut(C,G\ C)]
min {deg(C), deg(G \ C)} ’

$c(C) = 3)

where cut is the cut-set of a graph cut, and deg is the total
degree of a graph [1]. Intuitively, ¢ is the probability that a
random edge leaves the vertex set that composes the community.
An isolated community, with no edges leaving the community-
vertex set, has zero conductance. Conversely, a community with
every edge leaving the community-vertex set has a conductance
of one. It is important to recognize that ¢ is a function of both
intra-cluster and inter-cluster edges.

To discriminate between identifying statistically signifi-
cant communities and purely random topological features
of the network, we employ a stochastic simulation. Given
a developer network G with N = |V(G)| vertices (devel-
opers) and £ edges (connections between developers), we
apply a community-detection algorithm to identify a set of
communities C = {C4, Cy,...,C;} where V(C;) C V(G) Vi.
Mean conductance over all communities is given by
46(€) = Yoee a(0)/IC].

Using these input data, we generate a null model that repre-
sents an equivalent developer network but with disorganized
collaboration. To generate the null model, we randomize the
original network according to a configuration model using a
graph-rewiring technique, with which the pairs of edges are
selected uniformly at random and the end points swapped,
such that an edge pair (u,v) and (s,t) is rewired to (u,t) and
(s,v) [15]. The rewiring procedure maintains the amount of
participation (i.e., number of edges) for each developer, but
destroys the preferential attachment to a particular group of
developers. The rewiring procedure is executed m times* to
generate a set R = {R1, Ry, ..., R,,} of rewired graphs with
V(R;) =V (G) Vi.

The degree distribution, which represents the
amount of participation by each developer, is given by
Pco(k) = |{c € C|deg(c) = k}|/|N|. The rewiring procedure
is intentionally designed to maintain the original degree
distribution, that is,

Pr, (k) = Fa (k)

) VR, € R. 4)

4We ensured that our choice m = 3000 was sufficiently large by checking
the convergence of all derived results.

For each rewired graph R;, we calculate the mean conductance
qr,(C) and define the probability distribution as

_ HieLIR[| ¢r,(C) = @}
R| '

With standard hypothesis testing, we can then evaluate
whether the collaboration structure is statistically significant.
We check whether it is possible that the observed graph could
be described by the generated null model with the equivalent
degree distribution as the observed graph; if this is not the
case, we conclude that our observation is not described by a
uniformly random process.

More precisely, the null hypothesis H, that the observed
mean conductance g¢ (C) is described by the conductance distri-
bution of the rewired (null model) graphs with a nonvanishing
probability is given by,

Ho : Pr(Q = qc(C)) > €, (6)

with the alternative hypothesis given by H; : Pr(-) <.

We use a one-sample t test to evaluate the hypothesis with
the standard significance level of 0.05. Since the t test is robust
against the deviation from a normal distribution with large
sample sizes (i.e., larger than 30), we do not need to check
our data for a normal distribution. We present the results of
the statistical test for all subject projects next.

Pr(Q) o)

IV. EVALUATION & RESULTS

We now present our hypotheses and findings on the network
properties of developer networks we constructed for ten open-
source projects. To address our hypotheses, we compare
developer networks constructed using the prevalent file-based
method and the more fine-grained methods we propose. In
Section IV-F, we present the results of a developer survey to
address the validity of our approach with respect to capturing
real-world collaboration.

A. Hypotheses

In order to derive value and utility from developer networks,
previous work has largely assumed that the networks are an
accurate representation of developer collaboration [26]. We will
challenge this fundamental assumption about developer net-
works by investigating the local topological features that should
be present if the network is indeed an authentic representation
of developer collaboration. Though other views are possible,
we then validate that this particular view on collaboration aligns
with developers’ perceptions (see Section IV-F).

Software development is an organized process and, if a
developer network faithfully captures real-world developer
collaboration, it should also exhibit an organized structure.

H1—Developer networks exhibit identifiable communities that
significantly exceed the magnitude of organization that is
expected from an equivalent unorganized process.

By an equivalent unorganized process, we mean a situation
that is equivalent to the original process except that developers’
contributions to the software system are randomly distributed

across various system components, showing no particular
organized responsibility toward a particular aspect of the
system.

The standard method of constructing developer networks
relies on file-level information to identify collaborating devel-
opers. We show that this approach is insufficient for identifying
the latent community structure as a result of over-connecting
developers in the network. Dense networks are known to
hinder community-detection algorithms [6]; furthermore, prior
work has shown this problem arises for file-based developer
networks [18].

H2—Developer networks constructed using the standard file-
based approach fail to identify statistically meaningful commu-
nities, whereas a more fine-grained function-based approach
is able to identify statistically meaningful communities.

The manual process of tagging a commit is an intentional
acknowledgment of one’s participation in a commit. Each
developer only tags a commit once they have made a contribu-
tion to the code. Therefore, a developer network constructed
on the basis of commit tags can be regarded as a faithful
representation of real-world collaboration. To evaluate the
validity of the committer—author-based method, we quantify
congruence between the ground truth tag-based network and
our automatically-constructed committer—author network.

H3—Tag-based developer networks constructed from the
manual process of tagging commits are highly congruent with
automatically determined committer—author-based networks.

B. Subject Projects

We selected ten open-source projects, listed in Table I, to
evaluate the methods we proposed; the projects vary by the
following dimensions: (a) size (lines of source code from
50 KLOC to over 16 MLOC, number of developers from 15
to 500), (b) age (days since first commit), (c) technology
(programming language, libraries used), (d) application domain
(operating system, development, productivity, etc.), (e) devel-
opment process employed, and (f) VCS used (Git, Subversion).

For each project, we analyze the VCS for a 3-month
window starting in the second quarter of 2014. While window
size certainly influences the resulting network, the impact of
enlarging the window beyond 3 months is marginal [26].

C. Existence of Statistically Significant Communities

To test hypothesis H1, we used our function-based method
to construct developer networks for all subject projects. We
expected statistically significant communities to exist as a
result of an organized software-development process in, at least,
some of the subject projects, and we now evaluate whether
our method is able to identify the communities using the
community-verification procedure described in Section III-B2.

As an example, Figure 1 clearly shows the separation be-
tween the observed developer-network conductance of QEMU
and the conductance distribution for the unorganized (rewired)
network. The small p value of the t test indicates that the
observed communities are statistically significant. Table I

TABLE I: Overview of subject projects for a 90-day develop-
ment window and comparison of community conductance for
the original (observed) and randomized (rewired) networks.

Observed Rewired
Project Devs MLOC Lang Domain conductance conductance
Linux 580 16 C oS 0.05 0.88
Chromium 500 6.5 C, C++ User 0.20 0.74
Firefox 400 9.3 C++,JS User 0.11 0.79
GCC 70 6.2 C,C++ Devel 0.01 0.48
QEMU 50 0.78 C oS 0.39 0.56
PHP 50 2.2 PHP, C Devel 0.15 0.80
Joomla 30 1.3 PHP, JS Devel 0.57 0.84
Perl 30 4.5 Perl, C Devel 0.49 0.66
Apache http 15 22 C Server 0.27 0.80
jQuery 15 0.05 JS Library 0.49 0.75

summarizes the results for all the subject projects: The function-
based method identifies strong communities in several of the
subject projects and a statistically significant difference between
the original and rewired networks.

In conclusion, we reject the null hypothesis that the observed
developer networks exhibit communities that could arise from
an unorganized process. Thus, we accept HI.

|

15- J

t test: p value < 2.2e-16 !

]

= |

%10+ :
c

fo) i

e i

5- |

i

|

0- ’ !

03 0.4 05 0.6 0.7
Conductance

Fig. 1: Community significance test on the observed mean
community conductance (black dot) against the distribution
of mean community conductance for 3000 rewired graphs for
QEMU development from 14.2.2014 to 14.5.2014. Vertical
lines represent the 95% confidence intervals.

D. Comparison of File-Based and Function-based Methods

To test hypothesis H2, we performed a comparison between
the file-based method and the function-based method for
constructing developer networks (cf. Section III-Al). The
comparison draws attention to limitations of the file-based
approach that manifest as the inability to identify statistically
significant communities. In particular, we evaluated the mean
community conductance and mean community density for
two revisions of each project. Graph density is a measure
of graph connectedness, where a complete graph has density
1, and a graph with no edges has density 0. Figure 2 shows
a scatter plot of mean community conductance versus mean
community density, in which each point represents a three
month project revision. We see an approximate but distinct
separation between the file-based and function-based networks.

Method O File-based (old) % Function-based (new)

1.00-
-‘50.75- %if : O%@g o ©
Sos: ki ¥ of 0%
2o.25- * * * © o
¢ o *
o 0.2 : 0.4 0.6

Mean conductance

Fig. 2: Scatter plot of projects analyzed using both file-based
and function-based methods for two different revisions. A
clustering by crosses (left) and circles (right) is visible; the
function-based approach is able to resolve more significant
communities without compromising density.

Method ZFiIe—based (old); '?Function—based (new)

P

0.0 0.2 0.4 0.6
Mean conductance

Fig. 3: Density plot of mean community conductance computed
for each project comparing the file-based and function-based
methods.

Communities identified in the function-based network are both
internally dense and exhibit low conductance (i.e., strong
community structure). In contrast, the file-based communities
are dense, which we would expect because of the overall high
density of the network, but exhibit high conductance (i.e., weak
community structure). From this result, we can conclude that
the edges that are neglected by the function-based method are
the ones which cross community boundaries. For this reason,
we see the function-based and file-based communities exhibit
similar levels of internal density, but the conductance in the
function-based communities is lower. In Section IV-F, we
address the validity of the file-based edges that are crossing
a community boundary and ignored by the function-based
approach. In summary, this result demonstrates that the finer
granularity of the function-based method enables the discovery
of statistically significant communities, but is not excessively
fine such that it destroys the connectedness of the graph.
The probability density plot shown in Figure 3 further
illustrates the significant difference between the function-
based and file-based network communities. There is a clear
separation between the distributions where the function-based
method identifies significantly stronger communities compared
to the file-based method. We performed a paired t test

to evaluate whether the difference in the distributions is
statistically significant. Before performing the t test, we checked
the distributions for normality using a Shapiro-Wilk test. It
produced p values of 0.99 and 0.075 for the file-based and
function-based distributions, respectively. The following t test
generated a p value of 1.29x 1072, Thus, we can confidently
reject the null hypothesis that the difference between the two
measurements has a zero mean value.

We visualize the developer networks of QEMU, created
using the file-based and function-based methods in Figure 4.
It illustrates the inability of the file-based approach to identify
statistically meaningful communities with the example of the
QEMU developer network. Each bounding box represents a
single community of developers. The border color of each
box uniquely identifies each community, and pie charts are
used to represent each developer’s relative participation in a
community. A box’s background color is used to represent the
significance of each community, calculated according to the
conductance distribution (cf. Section III-B2). Green represents
a significant (strong) community and yellow represents an
insignificant (weak) community. Intra-community edges are
shown in black, and inter-community edges are shown in red.
The edge thickness represents the strength of a relationship.
We use PageRank centrality to identify important developers,
denoted by the size of each node.’

Figure 4 illustrates that a/l communities identified by the
file-based method (left side) for QEMU are insignificant. The
conductance of the communities is on the order of what is
expected from a unorganized (rewired) network, represented
by the yellow background color; it indicates that the file-based
method failed to capture the organized structure of developer
collaboration. In contrast, the function-based method is capable
of identifying several significant communities in the same
project. Notice further that the file-based method has generated
an extremely dense network, in which nearly every developer
is contributing in every community, visible by the large number
of multicolored nodes. In comparison, the developer network
constructed using the function-based method is less dense; it
has identified developers that make contributions only within
one or two communities, which is visible by the large number
of single-colored nodes.

In summary, we conclude that the file-based method fails to
identify statistically meaningful communities as indicated by
high conductance values that are statistically equivalent to the
unorganized networks. In contrast, the function-based approach
was able to identify the latent community structure that was
concealed by the file-based approach. We emphasize that we use
conductance here to evaluate whether the topological structure
exhibits statistically significant communities, but we have not
made any judgment about the communities quality beyond
strictly topological features. Thus, we accept H2.

5To reduce clutter, we filter the inter-community edges by aggregating the
edge multiplicity between two communities into a single edge, connecting
the two most important developers. The weight of an inter-community
edge represents the total collaboration between all nodes in the connected
communities.

E. Tag-Based and Committer—-Author-Based Network Similarity

To test hypothesis H3, we opt for an alternative approach
to validating the network structure because we have access
to a ground-truth network constructed using commit tags. We
constructed developer networks for three revisions of the Linux
kernel using the tag-based method (as provided by Linux’s
VCS) and the committer—author-based method (automatically
constructed by us, as described in Section I1I-A2). We chose
Linux as the sole test subject, because it enforces a strict
tagging convention for every commit, which the other subject
projects do not.

For each revision, we compute the similarity between
the tag-based and committer—author-based networks using
a graph matching strategy based on the Jaccard index [13].
Figure 5 shows the results as a density plot. We see a bimodal
distribution with peaks at 100% similarity (perfect match) and
50% similarity. The average taken over the three revisions
is 70% match between the two networks. The probability of
having a 70% match between two labeled random graphs,
with equivalent size of the committer—author-based network,
is less than a half of one percent; hence, we conclude that the
committer—author-based network is an authentic representation
of developer collaboration, and we accept H3.

F. Network Validation

Goals: We now address whether the function-based
approach accurately captures real-world developer collaboration
by means of a survey. There is no need to include committer-
author networks in the survey because they are constructed
from direct references to developer collaboration. The template
of the questionnaires we used in the survey is available at the
supplementary website. Specifically, we address two research
questions (RQ):

RQ1—Do the network edges, weights, and directions, accu-
rately represent real-world collaborative relationships as they
are understood by developers in the project?

RQ2—Do the identified communities represent developer
communities that have real-world significance?

Development Cycle —3.5— 3.6- - 3.7

0.25 0.50 0.75
Vertex Neighborhood Similarity

Fig. 5: Comparison between tag-based and committer—author-
based networks. Each curve represents a single revision of
Linux. The similarity between each developer neighborhood is
shown as a density plot with a mean of 70% similarity.

(a) File-based developer network

D1 D5

(b) Function-based developer network

Fig. 4: Developer networks constructed from QEMU v1.1. All communities in the file-based network are insignificant (yellow
background color). The function-based method identified several significant communities (green background color).

Farticipants: We selected participants that made a con-
tribution to one of the projects shown in Table I within the
previous year, whose contact data we extracted from commit
messages of publicly available VCSs. For each project, we
constructed the developer networks and decomposed them
into developer communities of, at least, five developers (fewer
developers typically contain an insignificant number of collabo-
rations). From the population of 6704 developers, we randomly
selected 521 developers of different levels of involvement
(e.g., single contributor to project lead), responsibilities (e.g.,
developers from various subsystems), and roles (e.g., tester,
reviewer, bug fixer).

Experimental Material: We conducted the survey online.
It included, among others, demographic questions and the
following survey questions (SQ):

SQ1—Whom did you collaborate closely with during the
development of version X?

SQ2—Does the following network accurately represent collab-
orative relationships between developers?

SQ3—Do the developers shown in the above network represent
a developer community?

For SQ1, we provided auto-completion (obtained from
analyzing the VCS) to help with recall and correct spelling
of developers’ names. For SQ2 and SQ3, we displayed a
resizable visualization of the community network (not the entire
developer network), labeled with the developer names. Both
questions had to be answered on a five-point Likert scale [22],
ranging from strongly disagree to strongly agree. Additionally,
participants could enter a free-format response. A pilot of the
survey with ten testers did not reveal any significant issues.

Analysis: In total, 53 developers of the 521 that we
contacted completed the survey. We show the responses to
the Likert-scale questions in Figure 6.

Regarding the network-accuracy question (left in the figure):
Almost half of the participants agree or strongly agree, and
a quarter disagrees or strongly disagrees that the network
accurately captured developer collaborative relationships. We
see a similar distribution for the community-authenticity
question (right in Figure 6).

Furthermore, we received a number of written responses
for each question and categorized them manually. Regard-
ing network accuracy, 13 written responses were given: 8
referenced missing developers or collaboration, 3 referenced
incorrect collaboration, and 4 made various comments, such as,
“Interesting Survey!”. Regarding community authenticity, 14
responses were given: § stated that the network is accurate and
provided a real-world meaning to the community, 2 responses
stated that the network is accurate, 3 responses stated the
identified communities are partially accurate, and 2 responses
stated the network was inaccurate.

In Section III-A1l, we identified that the function-based
networks contain less edges than the file-based networks.
We now address whether the missing edges distort the
view on collaboration by neglecting authentic relationships.
Unfortunately, we are unable to directly compare the file-
based and function-based communities, because the file-based
networks are extremely dense and hinder community-detection
algorithms [18]. Instead, we focus our attention to the edges that
cross a community boundary, because these edges conceal the
community structure and the results of Section IV-D indicate
that most missing edges are in fact cross-community edges. We

used the responses from SQI1 to test the authenticity of cross-
community edges neglected by the function-based method. To
accomplish this test, we first identified the communities using
the function-based method. We then used the function-based
communities to identify all the edges that crossed community
boundaries in the equivalent file-based network (i.e., same
project and revision). We then removed all developers from
the network who did not answer the survey. Finally, we
calculated the percent of file-based cross-community edges
that were confirmed by survey responses. For two subject
systems (Linux and QEMU), we collected a sufficient amount
of data (148 ground-truth edges). For QEMU, we acquired
47 ground-truth edges between 25 developers. Among the
25 developers, we found 82 file-based edges that cross a
community boundary and were neglected by the function-based
method. On average, 15.3% of the edges crossing a community
boundary are authentic with a median of 7.7%. For Linux, we
acquired 101 confirmed edges, and none of the 27 file-based
edges crossing a community boundary were authentic. From
these results we conclude that most of the edges that obscure
the community structure in the file-based approach are in fact
unconfirmed by developers that answered the survey and appear
to be an artifact of the method.

Network Accuracy
B8.5%

Community Authenticity
B8.2%

P5.6%

20.6%
17.6%

Count

5-

®7 2.8%4 [12.8%
0.3%
0= 0=

! ! ! ! ! ! ! ! ! —
(&
&
e (O
& 5\‘0‘&\‘
Response

4.7%
8.8%

i
&
Y (O
& 5\‘0‘&\\
Response

o
Q\\(& a®e% @Q\\'&

R
o Qe @
SO o
BN

5\@\%

Fig. 6: Developer survey responses to questions stated in
Section IV-F (SQ2 left, SQ3 right).

Interpretation & Discussion: Both histograms in Figure 6
illustrate a substantial quantity of agreement responses for both
the network-accuracy and community-authenticity questions.
Additionally, in the written responses, we see that developers
largely agree that the networks are accurate and that the
identified communities have real-world meaning. Interestingly,
the responses indicate that our approach is precise in the sense
that the identified collaborations and communities are authentic,
but the approach has imperfect recall, because some edges are
missing. Compared to the file-based method, we noted that
the function-based method contains less edges. For Linux and
QEMU, we were able to investigate the authenticity of missing
edges that influence the community structure, and we found that
very few file-based edges that are not captured in the function-
based method were authentic. Given that our approach is fully
automated and based on a single data source, this is a very
encouraging result. To be fair, it was not to be expected that our

approach achieves perfect recall rates, since not every mode
of collaboration is manifested in the VCS. Still, despite this
lack of information, many developers agree that the identified
communities capture a logical partitioning of developers.

V. THREATS TO VALIDITY

We applied our approach to ten manually selected subject
projects, which threatens external validity. We chose projects of
different but substantial sizes, with long and active development
histories, and from different application domains to cover a
considerable diversity of projects. Despite the diversity of our
subject projects, they still represent only a fraction of the total
diversity of software projects. Furthermore, it is unclear as to
whether our results generalize to commercial projects since all
of the subject projects are open-source. Commercial project
data is generally well protected, making such studies difficult.
For the tag-based networks, only a few projects employ a strict
tagging convention, so we cannot generalize the results.

We realize that incomplete or incorrect recollection of a
developer’s collaborative relationships could compromise the
survey responses. To help mitigate the consequences, we
displayed the labeled developer network beside the survey
questions. The compromise is that developers may only recall
the collaborative relationships that are shown in the network
and still forget others. However, this only influences the
completeness and not the correctness of the responses. Since
we already characterize our method as partially incomplete,
the consequences of displaying the developer network does not
affect our conclusions. A control group formed by including
a secondary survey with randomized networks could increase
confidence in the results, however, we recognized that the
response rate is low and a control group would further reduce
the already small experimental group size.

The use of Ctags to identify fine-grained collaborations at
the function level is based on heuristics. This leaves room for
introducing misclassified collaborations. However, this threat
to validity is minor, as only many misclassifications would
influence the outcome of the statistical analyses we applied.
As Ctags is widely used in practice, this is not to be expected.
In a sense, we accept this minor threat in exchange for an
approach that is language independent.

VI. RELATED WORK

Developer networks constructed from VCS data was first
done by Lopez-Fernandez et al., where developers were
linked based on contributions to a common module [23],
[24]. Huang et al. improved Fernandez’s work by automating
module classification using knowledge of file directories [17].
The results indicated that modules may not provide detailed
enough information to be useful. Improvements were made
by narrowing the collaboration assumption to common file
contributions to identify more fine-grained collaboration [18].
Narrowing the definition of collaboration helped to identify
more subtle features than with the module-based assumption,
but the authors noted that the networks were still too dense
to identify community structure. In our approach, we use

an even finer-grained definition of collaboration to further
reduce the density of the network, which enabled us to uncover
community structures, in the first place. Previous work mostly
applied metrics that do not produce rich visualizations, such
as degree distributions or centrality plots, and no one has
visualized community structure [24], [23], [17], [33], [26]. We
are aware of one paper focusing on visualization of developer
collaboration using a file-based approach, but community-
detection was not possible without edge filtering due to the
extreme density of the developer networks [18].

Toral et al. applied social-network analysis to investigate
participation inequality in the Linux mailing list that contributes
to role separation between core and peripheral contributors [33].
Bird et al. investigated developer organization and community
structure in the mailing list of four open-source projects and
used modularity as the community-significance measure to
confirm the existence of statistically significant communities [4].
Panichella et al. constructed developer networks based on
mailing-list and issue-tracker data to identify developer teams
and examine the driving forces behind splitting and merging
teams during system evolution [30]. Our work differs by
constructing networks from source-code contributions, instead
of communication networks based on e-mail archives or issue
trackers. Additionally, we apply our approach to a diverse
set of projects and show that our findings have real-world
significance.

Bird et al. examined the influence of code ownership on
defect proneness at the component level of two commercial
software products [3]. They operationalize ownership based
on the percentage of commits to a component made by a
single developer, however, in open-source projects component
ownership is rarely dominated by a single individual [34]. Our
work is complementary by supporting the identification of
developer communities, which can be used to study ownership
at the community level instead of the developer level.

Cataldo et al. examined the important concept of socio-
technical congruence and its impact on development produc-
tivity and software quality [8], [7]. Based on knowledge of
work dependencies and technical dependencies, they identi-
fied coordination requirements. The “fit” between the actual
coordination and required coordination was examined with
the conjecture that high congruence is a desirable property.
To establish the actual developer coordination, they used a-
priori knowledge of developer teams, manual investigation
of communication logs, and modification requests. Our work
contributes to their framework by providing a fully automated
method to identify modes of coordination using only data from
the VCS.

Previous work utilized the Linux tagging convention to
construct a developer network consisting of people involved
in reviewing, acknowledging, and testing commits [5]. We
extended this work by proposing a method to extract similar
information for projects that do not use the manual tagging
convention, to automate the approach, and we validated it
against the tag-based network for Linux.

Meneely et al. addressed the question of whether networks
constructed from VCSs using the file-based approach captured
real-world collaboration [26]. They concluded that the file-
based networks were largely representative of developer
perception, but that the networks suffered from errors in
missing collaboration and also falsely suggesting collaboration.
In contrast, our survey revealed that the more fine-grained
approach mainly suffers from missing edges. Furthermore, we
extended on the original questionnaire format by allowing the
participants to observe the developer network directly, instead
of only displaying a list of names.

VII. CONCLUSION

The ability to accurately capture collaborative relationships
in large software projects is a valuable asset to project man-
agement, developer productivity, and software quality. Despite
considerable advances, current methods fail to recognize fine-
grained organizational structures and prominent structural
features that differentiate one software project from another, or
they require developers to manually document their involvement
in a collaboration.

We proposed a fine-grained and automatic approach to
identify the community structure of a software project based
on source-code structure and committer—author information
obtained from VCSs. We used a set of statistically sound
methods to identify and verify developer communities.

We evaluated our approach (in particular, the function-based
method) on ten diverse open-source projects, with complex
and active histories, from a variety of domains, written in
various programming languages, and of different sizes. We
found that the developers of these projects form statistically
significant communities, and we were able to identify and
visualize them automatically using our approach, which has
not been accomplished in previous work.

From a survey of 53 open-source developers, we learned
that most developers agree that the network accurately depicts
reality and the developer communities have real-world meaning.
Furthermore, we found that the predominant source of error
was from missing collaborative links; the links that were
identified are largely accurate. We were able to show that,
while the finer-granularity of our approach inherently sacrifices
some edges, only a small percentage of edges concealing the
community structure in the file-based networks are authentic.
Given the abstract nature of a human-centric concept, such as
collaboration and community structure, and our fully automated
method of detection, we find our results encouraging and
supportive of the validity of our approach.

Since our analysis suite can process other types of socio-
technical data beyond VCSs, future work shall investigate
approaches that integrate data from heterogeneous sources,
including e-mail archives, wikis, and issue trackers.

ACKNOWLEDGMENT

We thank all participants of the online survey. This work
has been supported by Siemens and the DFG grants AP 206/4,
AP 206/5, and AP 206/6.

[1]

[2

—

[3]

[4]

[5

=

[6]

[8

=

[9

—

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

REFERENCES

H. Almeida, D. Guedes, W. Meira, and M. J. Zaki. Is there a best
quality metric for graph clusters? In Proceedings of the 2011 European
conference on Machine learning and knowledge discovery in databases -
Volume Part I, ECML PKDD’11, pages 44-59. Springer-Verlag, 2011.
L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and evolution.
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, pages 44-54. ACM,
2006.

C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t
touch my code!: examining the effects of ownership on software quality.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages
4-14. ACM, 2011.

C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent
social structure in open source projects. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, SIGSOFT °08/FSE-16, pages 24-35. ACM, 2008.

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In Proceedings of the
2009 6th IEEE International Working Conference on Mining Software
Repositories, MSR 09, pages 1-10. IEEE Computer Society, 2009.

U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering
algorithms. Algorithms-ESA 2003, pages 568-579, 2003.

M. Cataldo and J. D. Herbsleb. Coordination Breakdowns and Their
Impact on Development Productivity and Software Failures. Software
Engineering, IEEE Transactions on, 39(3):343-360, 2013.

M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical congruence:
a framework for assessing the impact of technical and work dependencies
on software development productivity. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 2—11. ACM, 2008.

C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J. Patterson.
How a good software practice thwarts collaboration: the multiple roles of
apis in software development. In Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering,
SIGSOFT ’04/FSE-12, pages 221-230. ACM, 2004.

D. Draheim and L. Pekacki. Process-centric analytical processing of
version control data. In Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, pages 131-136. IEEE, 2003.
E. Eaton and R. Mansbach. A Spin-Glass Model for Semi-Supervised
Community Detection. In AAAI, pages 900-906, 2012.

S. Eppinger, D. Whitney, R. Smith, and D. Gebala. A model-based method
for organizing tasks in product development. Research in Engineering
Design, 6(1):1-13, 1994.

S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75—
174, 2010.

S. Fortunato and M. Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36-41, 2007.
C. Gkantsidis, M. Mihail, and E. Zegura. The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. ALENEX,
2003.

J. D. Herbsleb and M. Cataldo. Architecting in software ecosystems:
interface translucence as an enabler for scalable collaboration. In
Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, pages 65-72. ACM, 2010.

S.-K. Huang and K.-m. Liu. Mining version histories to verify the
learning process of Legitimate Peripheral Participants. SIGSOFT Softw.
Eng. Notes, 30(4):1-5, 2005.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

A. Jermakovics, A. Sillitti, and G. Succi. Mining and visualizing
developer networks from version control systems. In Proceedings of
the 4th International Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE 11, pages 24-31. ACM, 2011.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497-515, 2004.

A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Find-
ing Statistically Significant Communities in Networks. PLoS ONE,
6(4):¢18961, 2011.

J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical Comparison of
Algorithms for Network Community Detection. Proceedings of the 19th
international conference on World wide web WWW 10, 30(3):631-640,
2010.

R. Likert. A technique for the measurement of attitudes. Archives of
Psychology, 22:1-55, 1932.

L. Lépez, G. Robles, Jests, and 1. Herraiz. Applying Social Network
Analysis Techniques to Community-driven Libre Software Projects.
International Journal of Information Technology and Web Engineering,
1(3):27-48, 2006.

L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-Barahona. Applying
Social Network Analysis to the Information in CVS Repositories. In st
International Workshop on Mining Software Repositories (MSR), pages
101-105. IET, IET, 2004.

T. W. Malone and K. Crowston. What is coordination theory and how
can it help design cooperative work systems? In Proceedings of the 1990
ACM conference on Computer-supported cooperative work, CSCW ’90,
pages 357-370. ACM, 1990.

A. Meneely and L. Williams. Socio-technical developer networks: should
we trust our measurements? In Proceedings of the 33rd International
Conference on Software Engineering, ICSE "11, pages 281-290. ACM,
2011.

A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures
with developer networks and social network analysis. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, SIGSOFT *08/FSE-16, pages 13-23. ACM, 2008.
N. Nagappan, B. Murphy, and V. Basili. The influence of organizational
structure on software quality: an empirical case study. In Proceedings
of the 30th international conference on Software engineering, ICSE ’08,
pages 521-530. ACM, 2008.

M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):26113, 2004.

S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto. How the evolution
of emerging collaborations relates to code changes: an empirical study.
In ICPC, pages 177-188, 2014.

M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module
networks predict failures? In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, SIG-
SOFT *08/FSE-16, pages 2-12. ACM, 2008.

D. Riehle, C. Kolassa, and M. A. Salim. Developer belief vs. reality:
The case of the commit size distribution. In Software Engineering, pages
59-70, 2012.

S. Toral, M. Martinez-Torres, and F. Barrero. Analysis of virtual
communities supporting oss projects using social network analysis.
Information and Software Technology, 52(3):296-303, 2010.

E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil
the broth? using the number of developers to enhance defect prediction
models. Empirical Software Engineering, 13(5):539-559, 2008.

