Agile Software Development
and Software Architectures

o) o ;‘.\
it-agile =
./

mailto:martin.lippert@it-agile.de
mailto:martin.lippert@it-agile.de

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

What does it mean?

for our daily work

Focus on Business Value

Changing Requirements

Incremental Development

Simple Solutions

Small Steps

Inspect & Adapt

Short Release Cycles
Shipping

No Big Upfront Design
Changing Code all the Time

We are agile
because we don‘t
care about
architecture - it will
emerge magically

But you are probably wrong...

e liea)

failblog.com

Instead you livel™
in great danger

\

failblog.com

Start simple and
evolve

the long version

Gall’s Law: “A complex system that works is invariably found to
have evolved from a simple system that worked.The inverse
proposition also appears to be true: A complex system designed
from scratch never works and cannot be made to work.You have

to start over, beginning with a working simple system.”
— John Gall

How do systems look
like in our daily work?

iar?

Looks fami

Let‘s talk about

Architecture

+
v
[\
Q.

%

lnllﬁﬁﬂ
o L

naa

' &% 3q ' Y

7 4
7
| /wﬁzz 2 i
, / /.-..'F i
// S RERE
. .,,;J,4 3
& o :
L) \ ‘.','
\ s,
.

-
+
-
!,
0
d
o

e . S =
- B " ‘Wb.ﬂ-“‘lqv.l'ull
7 Lael T F
LN ey

Future... 7?

'
4
|

y ,

Ty

ty
rit

,_PM ’ .,v.g_
=i, o F
. .\ - s 8

arl

i
|

23

— ..\;
i . —
ydul

exi

. 7%

We need flexibility

changing requirements
learning process
incremental development

But wait!

We already have
all this...

We have:

Object-Orientation
Patterns
Information Hiding
Encapsulation
Layers

We think our systems look like this...

We need a real

module system

<2 O0S6Gi

Alliance

IO
Dependencies

Module A » Module B

APl Module A

Private Implementation

Module A

111.
Dynamics

Where do
we go?

Loose Coupling &
High Cohesion

Think about your dependencies
every single day

Sounds good...

But how to realize?

Good old
design
principles

DIP SOC LSP ADP TDA DRY AIP

N SCP OCP IHP SRP SDP

new design
principles

Separate between

Use services =—————>p : :
interface and implementation

working but extensible

Use extensions =3
components

Guide I:
Many small modules

instead of few big ones

Guildeline 2:
Fewer connections
between modules

instead of everything is wired to everything

Guideline 3:
Less visibilities

instead of making everything public

Guideline 4:
Many small frameworks

instead of few big ones

Guideline 5:
Think about extensibility

instead of knowing everything

Guideline 6:
Desigh your architecture
every day

instead of ignoring what you have learned

Thank you
for your attention

Martin Lippert

martin.lippert@it-agile.de

" .I"\
I -agl\s /.

