
Friedrich-Alexander University Erlangen-Nürnberg

Faculty of Engineering, Department Computer Science

LUKAS HAHMANN
MASTER THESIS

MIGRATING CODE INTO THE CLOUD
MIGRATING A SERVER APPLICATION TO GOOGLE
APP ENGINE

Submitted on 28 August 2015

Supervisor: Prof. Dr. Dirk Riehle, M.B.A.
Professorship of Open Source Software
Faculty of Engineering, Department Computer Science
Friedrich-Alexander University Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit
in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen
wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen
wurden, sind als solche gekennzeichnet.

Erlangen, 28 August 2015

License

This work is licensed under the Creative Commons Attribution 4.0 Interna-
tional license (CC BY 4.0), see https://creativecommons.org/licenses/
by/4.0.

Erlangen, 28 August 2015

i

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

Abstract

Wahlzeit is an open source Java web application that gives you a solid
software base to set up your own photo rating website. Besides that, it is
used during the lecture Advanced Design and Programming to teach agile
methods and open source software development.

In addition to the software, we want to provide Wahlzeit with the according
infrastructure for your photo rating website. Google App Engine (GAE)
is selected in this thesis as the appropriate cloud service for our needs.
Therefore we migrate Wahlzeit from a Tomcat Server application running
on our own hardware to GAE that provides Google infrastructure without
costs for smaller web projects. To run on GAE we adjusted several parts
of Wahlzeit, like the persistence layer, the session management, and the
project deployment. Furthermore we created a detailed design, to make
Wahlzeit a RESTful service that could serve several clients.

ii

Acknowledgments

In my daily work I have been blessed with a friendly and cheerful group of
fellow students. Especially, I want to thank Johannes Bayerl, for accompa-
nying and supporting me during the whole Master, and Tobias Fertig for
his useful input and support for this thesis.

I would like to express my deep and sincere gratitude to Christian A.
Hochmuth for improving my scientific English, my typesetting, and the
demand on me and my work.

My sincere thanks to Prof. Riehle for the idea of this thesis, his suggestions
and feedback.

Although computer science is not her favorite topic, my girlfriend was
a great supporter for my studying and the main reason why I came to
Erlangen.

Last but not least, I owe my loving thanks to my parents for teaching me the
value of education. Without their encouragement and support my studying
would have been impossible.

iii

Contents

List of Abbreviations vi

List of Figures viii

1 Introduction 1

2 Requirements 5
2.1 Technical setup of Wahlzeit 1.2 5

2.1.1 Students activity: deploy Wahlzeit on their own PC . 5
2.1.2 Students activity: deploy Wahlzeit online 6
2.1.3 Students activity: debug Wahlzeit online 7
2.1.4 Staff activity: maintain Wahlzeit server 7

2.2 Goals . 8

3 Related work 11
3.1 Introduction into cloud computing 11
3.2 Taxonomy of cloud migration types 14
3.3 Adapting a software for multi tenants 16

4 Design 19
4.1 Selection of a cloud service for Wahlzeit 19
4.2 Description of Google App Engine 21
4.3 Estimation of migration effort 22

4.3.1 Migrating storage components of Wahlzeit 23
4.3.2 Identify classes of Wahlzeit that have to be adjusted . 25
4.3.3 Discussion of migration effort 28

4.4 Development process in the cloud 29
4.4.1 Remove IDE dependencies 30
4.4.2 Adjust building activity 32
4.4.3 Adjust testing activity 33

iv

4.4.4 Adjust deployment activity 35
4.4.5 Collaboration of building, testing, and deployment . 35

4.5 Effort for UI renovation . 37
4.6 Design of a RESTful API for Wahlzeit 39

4.6.1 Resources with unique identification 40
4.6.2 Links and hypermedia 42
4.6.3 Standard methods . 43
4.6.4 Different representations 46
4.6.5 Stateless communication 47

5 Implementation 49
5.1 Coding guidelines . 49
5.2 Essential migration steps . 51

5.2.1 Change SQL database to Google Datastore 52
5.2.2 Migrate the photo storage 54
5.2.3 Adjust Wahlzeit to GAE session management 56
5.2.4 Replace Java tasks with GAE tasks 57
5.2.5 Adjust Java Servlets 58
5.2.6 Use custom LogBuilder and remove Log4j 59
5.2.7 Adjust email service to work with GAE 60

5.3 Convenience and security adjustments 62
5.3.1 Google user management instead of custom one . . . 62
5.3.2 Migrate unit tests to JUnit 4.12 63
5.3.3 Corrected bugs . 65

6 Conclusion and outlook 67
Appendix A GAE Java Class Checker 69
Appendix B Suggested adjustments 71
Appendix C Changes of ObjectManager 72

References 74

v

List of Abbreviations

ADAP Advanced Design and Programming

ALM Application Lifecycle Management

API Application Programming Interface

BLOB Binary Large Object

CSS Cascading Style Sheets

EC2 Amazon Elastic Compute Cloud

EJB Enterprise JavaBeans

GAE Google App Engine

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IDE Integrated Development Environment

JRE Java Runtime Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

NIST National Institute of Standards and Technology

OVF Open Virtualization Format

PaaS Platform as a Service

PC Personal Computer

REST Representational State Transfer

vi

RRZE Regional Computing Center Erlangen (German: Regionales
Rechenzentrum Erlangen)

SaaS Software as a Service

SDK Software Development Kit

SLOC Source Lines of Code

SQL Structured Query Language

UI user interface

URI Uniform Resource Identifier

WAR Web Application Archive

WLAN Wireless Local Area Network

vii

List of Figures

1.1 Main page of Wahlzeit . 1
1.2 Screenshot of Flickr showing some photo meta data 3

3.1 Google search trend for cloud computing and cloud service 11

4.1 Comparison of cloud computing services. 20
4.2 Changes of the runtime systems 24
4.3 Wahlzeit classes importing GAE incompatible classes 27
4.4 Changes in the project layout 31
4.5 Application evolution of Wahlzeit 2.0 36
4.6 Wahlzeit core and UI have to be separated 38

5.1 Decoupled storage access with an adapter 55
5.2 Logging levels of GAE . 61

6.1 Old ObjectManager . 72
6.2 New ObjectManager . 73

viii

1 Introduction

Wahlzeit is an open source web application. It offers you the possibility
to upload and praise photos on a 1–10 scale (see Figure 1.1). To upload a
photo, you have to login. In a personal area, you can manage your photos.
Wahlzeit is a yet complete Java web application.

Figure 1.1: Main page of Wahlzeit showing a random photo

The main intend of Wahlzeit is teaching agile methods and open source
software development in the course Advanced Design and Programming
(ADAP) offered by the Professorship of Open Source Software at the
Friedrich-Alexander University Erlangen-Nürnberg. During the lessons

1

students fork Wahlzeit on GitHub1 to analyze and extend the software
with own functionality. The so extended version of Wahlzeit can either be
deployed on their own computer via Tomcat Server2 or on the department
server where their Wahlzeit version is accessible in the Internet.

The long-term vision of Wahlzeit is, to deliver it as an own product that
you can rent and adjust to your needs. Then you can build up your own
photo rating page based on Wahlzeit. In the following we elucidate the
motivation behind this vision.

When surfing through the Internet lots of subject areas with very different
photos and meta data exist. Most of them are presented on self-build web-
sites that are often technically outdated. This shows that the corresponding
website owners do not want to use social networks or predefined homepage
building sets for sharing and rating their photos because of special technical
needs or personal reasons. Whatever their motivation might be, they
decided to create own websites dedicated for their subject area and their
photos. This decision is comprehensible when you want special additional
photo informations or functions social networks or homepage building sets
do not offer. Lets list two examples:

First, inhabitants of a city want to see photos of their city and their near
environment. Special information of such photos might be the camera and
its settings, the location and the name of the photographer. Flickr by this
time allows entering such information, but it does not offer a rating function
(see Figure 1.2). If you want such a function, adjusting Flickr is not that easy.
There exist more subject areas that have very special photo information.

Astronomers are the second example, they work with photos of outer space
objects. For them the spectral range of the photo and the position of the
outer space object are important informations. As common (earth-) photos
are taken in the visible spectral range, nearly none of the social networks
or homepage building sets offers adding such information for photos. An
even more complicated task is specifying outer space coordinates, because
they can be expressed by lots of coordinate systems (Karttunen, Kröger, Oja,
Poutanen & Donner, 2007; Majewski, 2014). There even exist libraries3 to
calculate coordinates from one of the many coordinate systems to another.
Hence getting the coordinates of all photos only in the favorite coordinate

1see https://github.com/dirkriehle/wahlzeit
2see https://tomcat.apache.org
3see http://aa.usno.navy.mil/software/novas/novas info.php

2

https://github.com/dirkriehle/wahlzeit
https://tomcat.apache.org
http://aa.usno.navy.mil/software/novas/novas_info.php

Figure 1.2: Flickr shows the name of the photographer, the camera with its
settings, and the location of the photo.

system, no matter how they have been entered, would be a nice feature for
an astronomy website.

Efficiently supporting those people who decide to build an own photo
rating webpage is the second target of Wahlzeit. The vision is to deliver
Wahlzeit as a base system including the according infrastructure, so you
can directly start adapting it to your needs. This would drastically reduce
your time to build the photo rating page you want. But there is a lot to do
until this vision can become reality.

For this thesis we use the following conventions. Important words or
phrases are marked bold. Paths or names of files are written italic. For
Sourcecodewe use courier font. The current version of Wahlzeit running
on the own infrastructure is Wahlzeit 1.2, the new version running at Google
App Engine (GAE) is Wahlzeit 2.0.

3

With this thesis Wahlzeit will come a step closer to its vision. It is developed
from the current version Wahlzeit 1.2 to the new major version Wahlzeit 2.0.
Besides that we give an outlook for further development. Chapter 2
determines the requirements, and Chapter 3 gives an overview of the
related literature. Chapter 4 describes the design of the changes done to
Wahlzeit in order to get closer to its vision, while Chapter 5 summarizes the
actual implementation effort. The last chapter, summarizes the activities of
this thesis and gives an overview of the next steps towards the Wahlzeit
vision.

4

2 Requirements

As already described in Chapter 1, there is much to do, in order to achieve
the Wahlzeit vision. In this chapter the current usage of Wahlzeit during
the lesson is described. We want to improve this situation, as well as
doing some steps in the direction of the vision. The tasks for the latter are
formulated in Section 2.2.

2.1 Technical setup of Wahlzeit 1.2

To understand the necessity of this thesis for the lecture, the current technical
setup of Wahlzeit 1.2 has to be described. It is divided into the following
4 activities that arise during the ADAP lessons:

1. students activity: deploy Wahlzeit on their own PC,

2. students activity: deploy Wahlzeit online,

3. students activity: debug Wahlzeit online, and

4. staff activity: maintain Wahlzeit server.

These activities are explained in detail in the following subsections.

2.1.1 Students activity: deploy Wahlzeit on their own PC

Activity 1 involves all activities for you starting with an unprepared com-
puter until you can run Wahlzeit on your local machine. Therefore the
following setup tasks are necessary:

1. install git (see https://git-scm.com),

2. clone Wahlzeit from GitHub ,

5

https://git-scm.com

3. open it with your Integrated Development Environment (IDE) and
resolve the dependencies,

4. install PostgreSQL (see http://www.postgresql.org),

5. create a PostgreSQL user for Wahlzeit and a database,

6. download Tomcat Server and start a server, and

7. run Wahlzeit on Tomcat Server.

Experience from ADAP has shown that these tasks took between 1 hour
for experienced developer facing Wahlzeit the first time until 3 or more
hours for students that are not very familiar with either git, PostgreSQL,
Tomcat, or their IDE. These setup tasks arise every year for twenty or more
students who attend ADAP.

When the setup tasks are done, you can start exploring the Wahlzeit
source code and extend it. After you have extended and tested Wahlzeit
on your local machine, deploy it on the department server to make your
Wahlzeit version accessible online. This activity is explained in the following
subsection.

2.1.2 Students activity: deploy Wahlzeit online

The main intent of ADAP is to teach good object-oriented design and
programming. Wahlzeit helps to achieve both, to show a good object-
oriented design, and to offer an extensible platform where students can show
what they have learned. To present the results of your adjustments deploy
Wahlzeit on the department server that is accessible online (Activity 2). A
basic service with a user interface is hosted on that server. There you log
in to upload and deploy the Web Application Archive (WAR) of Wahlzeit.
Therefore execute the following tasks:

1. Adjust the hard coded Structured Query Language (SQL) user name
and password in Wahlzeit to the credentials for the database of the
department server.

2. Export Wahlzeit WAR.

3. Open the web interface of the server to upload your Wahlzeit WAR.

4. Deploy it.

6

http://www.postgresql.org

In case you have adjusted the credentials of your local SQL database to the
one on the department server, the first task can be skipped. The other steps
have to be done for each version you want to publish, which are at least ten
times per student per semester.

As Wahlzeit might behave a little different when being deployed on the
department server, you need to debug Wahlzeit in case of an error. How
this is done is explained in the next subsection.

2.1.3 Students activity: debug Wahlzeit online

When an error arises on the department server that did not arise on your
local machine you have to do Activity 3, debug Wahlzeit on the server. As
a student you have the following two possibilities:

• Analyze error messages generated by Wahlzeit for the user.

• Download and analyze log files from the server.

The user of Wahlzeit is usually not the developer hence the error messages
shown to the user in the user interface (UI) are either errors done by the user
itself, like entering the wrong password, or fatal errors that prevent Wahlzeit
from a regular operation, like inaccessible database. But those messages
are usually not helpful to find bugs in your adjustments of Wahlzeit which
might be, adding additional attributes to photos. Therefore only the second
possibility remains, analyzing the log files.

About twenty students operate on the same department server. Therefore
it is quite likely that this server might quit its service during the semester.
In such a case the department stuff has to revive the server. This and all
the other department maintaining activities are explained in the following
subsection.

2.1.4 Staff activity: maintain Wahlzeit server

To deploy Wahlzeit online a dedicated server is maintained by the de-
partment stuff. This comes along with the following initial and ongoing
maintaining tasks for Activity 4:

1. Rent a server dedicated for Wahlzeit.

2. Install custom Wahlzeit WAR upload service and PostgreSQL.

7

3. Install Tomcat Server.

4. Create an upload service user account for each student.

5. Create SQL user and database for each student.

6. Monitor server and repair it in case of a savage Wahlzeit instance.

The Tasks 1–3 are initial tasks that usually have to be done only once. The
Tasks 4 and 5 have to be done every semester when new students want to
deploy Wahlzeit online. Task 6 has to be done during the semester, mostly
on demand of the students that could not reach the server.

Beside using Wahlzeit as learning object during lectures, we have a vision
to deliver Wahlzeit with the according infrastructure to users that want to
build their own photo rating page. The goals to come closer to this vision
are explained in the following section.

2.2 Goals

To bring Wahlzeit a step closer to its vision and to reduce configuration
overhead that arises during the lecture the following goal is defined:

Mandatory Goal 1: migrate Wahlzeit into the cloud.

Jamshidi, Ahmad and Pahl (2013, p. 150) list general motivations for mi-
grating an application into the cloud: cost saving, scalability, efficient resource
utilization, elasticity to fluctuation, interoperability, and maintainability. Cost
saving and maintainability are relevant for Wahlzeit, too. The concrete
motivation to migrate Wahlzeit into the cloud for teaching during ADAP is
to reduce effort for the activities mentioned in Section 2.1:

1. Reduce initial effort to deploy Wahlzeit on students own PC.

2. Reduce effort to deploy Wahlzeit online.

3. Improve debugging possibilities for Wahlzeit online.

4. Reduce maintaining effort for the department staff.

Furthermore Wahlzeit in the cloud would bring it a step closer to its vision
(see Chapter 1). Currently Wahlzeit is only a software that has to run on a
client server with operating system, database, and other software. If you
do not own such infrastructure or do not want to pay for, Wahlzeit will not
be your choice to create a custom photo rating page. But if Wahlzeit would

8

run in the cloud, it would no longer be necessary to maintain and pay a
server.

For Mandatory Goal 1 to be achieved in the intended way, Wahlzeit in the
cloud should furthermore fulfill the following requirements:

5. The infrastructure should be costless for the usage during the lecture.

6. Wahlzeit in the cloud should have at least all the existing functionality.

7. Performance in the cloud should not be significantly slower.

This results in 7 requirements that have to be fulfilled to reach Goal 1.
Besides the mandatory goal, there exist two optional goals that can be
targeted afterwards:

Optional Goal 1: analyze the application evolution (building, testing,
deploying) of a cloud application.

Some cloud services offer a close interaction with source code repositories
and allow to monitor and update automatically in case of updated repository
(Google, 2015l). The applicability of this process for Wahlzeit should be
analyzed.

Furthermore there exists another optional goal that would help all students
who want to adjust the UI of Wahlzeit:

Optional Goal 2: UI renovation.

The current Wahlzeit UI is generated out of predefined Hypertext Markup
Language (HTML) files. They are combined by Java code and extended with
site specific functions. The HTML files are language dependent (currently
German and English) which makes changes to the UI more sophisticated
than technically necessary. Furthermore adding a new language generates
more effort than just translating some text files with the language specific
content. A new UI that is created automatically out of Java code, would
reduce the effort for adjustments to Wahlzeit and would make the project
more attractive for developers.

Mandatory Goal 2: analyze multi-tenant ability for Wahlzeit.

If Wahlzeit is migrated to the cloud it could be offered as an own product.
What stays for the user is to register at the cloud service, and to setup an
instance of Wahlzeit. To avoid that effort for the user, the cloud service
could be rented by the Wahlzeit developers. If an user wants an own
Wahlzeit flavor, a new tenant could be created by the developers. They give
the credentials to the user. You get a running instance that you can adjust

9

to your needs. If making Wahlzeit a multi-tenant software is a suitable goal
for Wahlzeit, should be analyzed in this thesis.

Optional Goal 3: analyze extending Wahlzeit to a framework that can be
adjusted by plug-ins to theme specific flavors.

When Wahlzeit runs in the cloud, adjusting it on the fly with custom plug-
ins to get your own flavor sounds like a goal worth reaching. To achieve
that, it would be necessary to extract a Wahlzeit core that can be adjusted by
plug-ins. In this case only one Wahlzeit core would run on a GAE instance,
that serves several theme specific sites. Extracting such a core causes new
questions: How to secure plug-ins from each other? How to allocate the
resources to the tenants? How to encapsulate a plug-in to avoid that it is
attacking the Wahlzeit core? Those question indicate that this will get a
greater task, that need its own special research.

The basic literature research that is relevant for evaluating those goals is
presented in the next chapter.

10

3 Related work

This chapter gives an overview about the relevant literature and examines
the necessary facts, that lead to the design, described in Chapter 4. We start
with an introduction into cloud computing.

3.1 Introduction into cloud computing

Cloud computing is a highly discussed buzzword in the recent years (Höfer
& Karagiannis, 2011; Tran, Keung, Liu & Fekete, 2011). The Google search
trend for cloud computing and cloud service (see Figure 3.1) shows that the
topic of cloud computing arises in the end of 2007 (cloud service also
contains meteorologic interests hence it started a little earlier).

Figure 3.1: Google search trend for the buzzwords cloud computing (blue)
and cloud service (red) since 2005.

In one of the first publications about cloud computing, Hayes (2008, p. 9)
describes it as the second incarnation of the service bureaus and time sharing

11

systems that provided access to a mainframe computer for everyone back
in the 1960s and 1970s. Although there are some similarities between cloud
services and the then service bureaus, a cloud is not a single mainframe
computer. Buyya, Yeo, Venugopal, Broberg and Brandic (2009, p. 601)
aggregate a definition of the term Cloud out of others:

”A Cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers
that are dynamically provisioned and presented as one or more
unified computing resource(s) based on service-level agreements
established through negotiation between the service provider
and consumers.”

Besides that the National Institute of Standards and Technology (NIST)
defines Cloud Computing as ”a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (networks, server, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or
service provider interaction” (Mell & Grance, 2011, p. 6). This describes the
process of using the cloud. There are 5 essential characteristics for cloud
computing (Mell & Grance, 2011, p. 6):

• on-demand self-service,

• broad network access,

• resource pooling,

• rapid elasticity, and

• measured service.

Buyya et al. (2009, p. 601) list additional but not equal terms: Grid and
Cluster. While Clusters denote huge amounts of high end computers mostly
used for scientific computing, grids are smaller collections of commodity
computers for nearly all purposes. Both Clusters and Grids operate with
one operating system, while the Cloud is build on virtual machines with
different operating systems. This offers to secure the cloud by the accesses
to the virtual machines. Grid and Cluster have to draw on a lower support
for privacy. For this theses we only work with the Cloud as Buyya et al.
(2009, p. 601) define it.

In the recent years, both, the interest in cloud computing, and the amount of
cloud computing services has been growing quickly. As it is quite a new
field within computer science several classification approaches for cloud

12

services exist (Höfer & Karagiannis, 2011). Nearly all of them divide cloud
services into the following 3 categories, which are also defined by the NIST
(Mell & Grance, 2011; Höfer & Karagiannis, 2011; Beimborn, Miletzki &
Wenzel, 2011):

• Infrastructure as a Service (IaaS),

• Platform as a Service (PaaS), and

• Software as a Service (SaaS).

These categories are described as follows.

IaaS: The core idea of Infrastructure as a Service is to sell computing power
and storage. As customer you get (mostly virtualized) server instances that
you pay per use of resources. You can rent them as long as you want. On
these virtual servers you can deploy own software. Although you have
much freedom with this kind of cloud service, you have to maintain all
that custom software like operating system and middleware. Usually you
monitor your service via a web interface. Popular examples of IaaS are
Amazon Elastic Compute Cloud (EC2) (Sadiku, Musa & Momoh, 2014),
GoGrid, and the Rackspace Cloud (Höfer & Karagiannis, 2011).

PaaS: Platform as a Service abstracts server instances including hardware
and operating system. It provides a software platform to the user. Although
it includes IaaS, the infrastructure is completely hidden from the user. The
typical users of PaaS offerings develop and run own web applications.
The higher abstraction compared to IaaS comes at its price: when you
use PaaS, you are limited on programming languages, tools, and runtime
environments supported by your provider. But on the other side, the
provider cares about hardware, operating system and middleware, which
makes you more efficient in developing and deploying your application to
the cloud. Popular examples of PaaS are Google App Engine, Microsoft
Azure, and Force.com (Höfer & Karagiannis, 2011).

SaaS: The third category Software as a Service puts another abstraction
layer above PaaS, it provides complete online applications from web mail
to business software. The offered software is already created and runs
in the cloud. To run this software in the cloud PaaS offerings are a very
popular basis. As a user you are limited in your customization to what
the corresponding software offers. This reduced customization ability is

13

the price for accessing a finished software without much effort. Popular
examples for SaaS offers are Salesforce.com, Appian Anywhere, and the
Google Apps like GMail, Calender, and Contacts (Höfer & Karagiannis,
2011).

Besides the three main cloud service models Höfer and Karagiannis (2011)
list two new developments. First, games that are completely hosted in the
cloud, and second, dedicated services that support smart phones either
with additional cloud storage or processing power. Within this thesis the 3
main categories will be relevant.

For all those cloud services, different business models emerged. They are
specified by the NIST as 4 deployment models (Mell & Grance, 2011, p. 7):

• Private cloud: one organization offers the cloud exclusively to its
customers.

• Community cloud: dedicated for a an exclusive community of users,
managed by several organizations with different concerns.

• Public cloud: provided by one ore more organizations for public use.

• Hybrid cloud: a combination of at least two distinct deployment
models.

In this section we analyzed the types of cloud services that may be a
target platform for Wahlzeit. In the following section the migration process
described in the literature is analyzed.

3.2 Taxonomy of cloud migration types

Running software in the cloud offers advantages, because the infrastructure
is hidden behind a nice interface. But not every software is cloud ready.
To run an application that is not originally designed to be deployed into
the cloud, migration tasks have to be done. No matter which cloud
computing type you choose — IaaS, PaaS, or SaaS — adjustments for the
new environment are necessary (Vu & Asal, 2012, p. 270).

Jamshidi et al. (2013, p.150–151) list 4 types of cloud migration:

1. Replace: Data and business (logic) tiers are migrated into the cloud,
the presentation tier is kept as it is. Therefore adjustments in the

14

migrated parts of the software as well as in the collaboration of the
components are necessary. This type is rarely used.

2. Partially migrate: Move some of the software components to the cloud.
As for Type 1 this needs adaption for each migrated component and
for the collaboration of components.

3. Migrate the whole application stack: Run the software as it is in one or
more virtual machines in the cloud (see IaaS). This simulates the old
environment and is therefore the easiest cloud migration type. But
this comes at its price; it exhausts the advantages of the cloud like
elasticity very little.

4. Cloudify: Adjust the complete application to the new cloud environ-
ment (see PaaS or SaaS). This type is similar to Type 2, but it is not
limited to some components. It is considered to generate the most
effort, but utilized the cloud service and its advantages best.

These types are specified by the degree of migration and their implementa-
tion. But this is not the only categorization in the literature. Binz, Leymann
and Schumm (2011) list only 3 types which all describe the migration of the
complete application into the cloud. The types are specified only by their
implementation:

1. Standardized format migration: A software running in a standard
format container is migrated either between two instances of the same
software that support this standard form or between instances of
different software. Examples for such runtime container formats are
Open Virtualization Format (OVF), Enterprise JavaBeans (EJB), and
Java WAR.

2. Component format migration: The format of the corresponding com-
ponent is transformed into another one, e.g., transforming a virtual
machine image, or enable execution of scripting language in PaaS
offerings.

3. Holistic migration: A software out of multiple components is adjusted
to become a cloud application whereby each component is migrated
and adapted individually to its new environment.

The overview and comparison of both categorizations is shown in Table 3.1.
Binz et al. (2011) describe only complete migrations which means that the
first two types of Jamshidi et al. (2013) do not find an equivalent. Jamshidi
et al. (2013) does not mention the format explicitly which allows to assign

15

Migration types of Jamshidi et al. (2013) Migration types of Binz et al. (2011)

Replace

Partially migrate

Migrate the whole application stack Standardized format migration
Migrate the whole application stack Component format migration

Cloudify Holistic migration

Table 3.1: Comparison of the different migration types. The first two
types mentioned by Jamshidi et al. (2013) describe partial migrations and
hence do not have an equivalent described by Binz et al. (2011). Type 3
of Jamshidi et al. (2013) may be mapped to both the standardized and the
component format migration. The least type of both sources describe the
same, migration and complete adaption of each component to the cloud.

the first two types of Binz et al. (2011) to Migrate the whole application stack.
Only the last type of both categorization matches.

3.3 Adapting a software for multi tenants

SaaS provider develop or purchase software to adjust and host it for
their customers. In recent time those provider tend to sell more and
more multi-tenant software. A tenant is an user, an organization, or a
company. Multi-tenant software offers each tenant its own service (copy of
the software) in a way that you could think to be the only user (Guo, Sun,
Huang, Wang & Gao, 2007, p. 551).

Guo et al. (2007) list two types of multi-tenant software, first, multiple
instances. Each user of multiple instance software has its own instance of
software running on shared hardware. In some cases operating system and
middleware is shared, too. The second type is native multi-tenancy. Such
software supports itself several tenants, so minimal overhead is created
per tenant. We focus on the latter type, native multi-tenancy. It supports
much more tenants than the first variant. This comes along with massive
resource sharing (Guo et al., 2007, p. 551).

Multi-tenant software offers several advantages. Guo et al. (2007) list first,
an improved profit margin for providers and second, decreased service costs
for clients. This win-win situation is a result of simplified administration
and provisioning of tenants, e.g., distribution of updates. But it is always a

16

trade-off between cost efficiency and flexibility for the tenants (Walraven,
Truyen & Joosen, 2014, p. 670).

Beside the advantages major challenges arise when adjusting software
to support multi tenants: new complexities in application development,
deployment and management. Multi-tenant software needs strict isola-
tion between each tenant in almost all parts of the architecture design.
Furthermore it should offer tenants customizing options for their own
service without disturbing others (Guo et al., 2007, p. 551–552). The term
service describes the part of a multi-tenant software that is sold to a tenant.
Therefore it is important to manage and monitor tenants in a fine-grained
way (Walraven et al., 2014, p. 670).

There are 5 multi-tenant specific core features of a software (Guo et al., 2007,
p. 553):

• security isolation – secure against other tenants,

• performance isolation – limit resource consumption by service levels,

• availability isolation – avoid that tenant faults harm others,

• administration isolation – adjustments limit to the own service, and

• on the fly customization – offer self service for each tenant.

To build and distribute multi-tenant software PaaS offerings are getting
more and more attractive as infrastructure. But not every PaaS offering is a
good basis for hosting multi-tenant software (Walraven et al., 2014, p. 671).
In the eyes of SaaS developer, there are 3 types of PaaS offerings (Walraven
et al., 2014, p. 671–675):

1. offer Application Programming Interfaces (APIs) of popular enterprise
application servers an their middleware platforms (e.g. Windows
Azure and Red Hat Open Shift),

2. hosting of specific cloud application types (e.g. GAE and Giga Spaces’
XAP Elastic Application Platform), and

3. driven by meta data with the focus on SaaS applications (e.g. Force.com
and WOLF).

In the eyes of a SaaS provider an attractive PaaS offering should support
portability between SaaS and on-premise implementation. A software is
considered portable when the costs for porting it are less than the cost
for redeveloping a new application (Mooney, 1990, p. 59). Portability
is achieved by the usage of standard middleware like Java EE or .NET.

17

Beside portability, creation and management of multi-tenant applications
should be supported. This requires data isolation for databases, the ability
to automatically specify the tenant for each user request, tenant specific
customization and tenant specific application management facility like
billing and metering. Last but not least, a good tool support is essential: an
IDE, a local development server with database, and a testing framework
(Walraven et al., 2014, p. 671–675).

Defining the ideal PaaS offering by the degree of portability of the according
software and the support for multi-tenant SaaS there is yet no ideal offering.
While Microsoft Azure (Microsoft, 2015) offers a great portability it totally
lacks of support for multi-tenant software. Force.com offers great support
for multi-tenant software but the according software could be more portable.
GAE (Google, 2015e) offers some kind of compromise between the last two
offerings: a quite good portability and some support for multi-tenant SaaS
(Walraven et al., 2014, p. 712).

In the next chapter the design of Wahlzeit in the cloud is presented, based on
the research of the current chapter. Among others the topic multi-tenancy
is discussed for Wahlzeit.

18

4 Design

Vu and Asal (2012, p. 170) list as first important question ”Is it possible
as well as practical to migrate a specific application to the cloud?”. To
answer this question, first, we have to check if it is possible at all to migrate
Wahlzeit. Difficult obstacles for the cloud migration are specific hardware
requirements (Vu & Asal, 2012, p. 271). Wahlzeit has no special requirements
to processor or storage, and it does not need a special piece of hardware.
There are also no specific privacy or security requirements for Wahlzeit
which are some weak points of cloud computing (Tran et al., 2011, p. 27).
Hence we can answer the first part of the question with ”yes”.

For answering the practicability part of the question, a specific target
platform has to be selected and its individual environment and parameters
have to be analyzed. In the Sections 4.1 and 4.2 the target cloud service is
selected and described in detail. Section 4.3 then answers the second part of
the initial question ”is it practical to migrate Wahlzeit into the cloud instead
of redeveloping it for the new environment?”

4.1 Selection of a cloud service for Wahlzeit

Wahlzeit currently runs on the department server, which is provided by the
Regional Computing Center Erlangen (German: Regionales Rechenzentrum
Erlangen) (RRZE). Hence Wahlzeit is already based on a IaaS. To get rid
of infrastructure maintenance mentioned in Section 2.1, the next, more
abstract cloud service model is PaaS (see Section 3.1). This answers the next
question, ”IaaS or PaaS?” (Vu & Asal, 2012, p. 271)

We need to find a PaaS offering that limits our degree of freedom only where
it not hurts and enables us to be more efficient and scalable while having a
more abstract layer on top of the infrastructure (see Figure 4.1). This is also

19

PaaS

IaaS

own HW de
gr

ee
of

fr
ee

do
m

ab
st

ra
ct

io
n

sc
al

ab
ili

ty

effi
ci

en
cy

Figure 4.1: Comparison of cloud computing services.

the next step Vu and Asal (2012, p. 271) proposes. As the maintenance of
the infrastructure should be outsourced, only a public cloud provider can
be selected (see deploy models in Section 3.1). Furthermore Wahlzeit is a
Java application, hence only a public cloud provider offering to host Java
applications could come into the closer selection. With these parameters in
mind 10 popular PaaS offerings have been compared. The result is shown
in Table 4.1.

PaaS offering Java supported? Free trial Free storage
(months) (GB)

Google App Engine
√

∞ 6
OpenShift

√
∞ 1

AWS Elastic Beanstalk
√

12 –
Pivotal Cloud Foundry

√
2 –

Microsoft Azure
√

1 –
OutSystems Platform

√
1 –

Jelastic
√

– –
Oracle Cloud

√
– –

IBM Bluemix proprietary ∞ 20.5
Salesforce1 proprietary 1 –

Table 4.1: Overview of 10 selected public PaaS offerings hosting Java
applications. The importance of the compared properties decreases from
left to right.

This list is not an entire market analysis, but it covers a great part of
potential candidates that are mentioned in the relevant literature. Google
App Engine (Google, 2015e) offers a temporal unlimited trial, among two
others: OpenShift and IBM Bluemix (redhat, 2015; IBM, 2015). Some sort of
costless trial is necessary because of Requirement 5. Therefore Jelastic and

20

https://cloud.google.com
https://openshift.com
https://aws.amazon.com
https://pivotal.io
https://azure.microsoft.com
http://outsystems.com
https://jelastic.com
https://cloud.oracle.com/java
https://bluemix.net
https://salesforce.com/en/salesforce1

the Oracle Cloud are not suitable candidates, because they do not offer a
trial at all (Jelastic, 2015; Oracle, 2015). The offerings Pivotal Cloud Foundry,
Microsoft Azure, OutSystems Platform, and Salesforce1 also do not match
this requirement, although they offer a free trial (Pivotal, 2015; Microsoft,
2015; OutSystems, 2015; Salesforce.com, 2015). Using a PaaS for ADAP
requires at least a free trial for 4 months. Furthermore an unlimited trial
is preferable, because students can continue their work after the lecture is
over and this costless infrastructure is offered to customers of Wahlzeit.

After that only 3 offerings are shortlisted. To avoid unnecessary adjustments
specific to one offering, only providers matter that host standard Java
applications which is not the case for IBM Bluemix. The decision between
the 2 remaining ones Google App Engine and OpenShift is made by the
amount of free storage that is necessary for all the photos and other data. As
the result of this analysis Google App Engine is selected as target platform
for Wahlzeit. This service is described in detail in the following section.

4.2 Description of Google App Engine

As already mentioned, Google App Engine is a platform for web applications
classified as PaaS. You can use it to develop and run own web applications
on top of Google’s infrastructure (Ciurana, 2009, p. 1). It is available
since 2008 (Buyya et al., 2009, p. 602). Within limitations you can use the
application free of charge. The paradigm of a PaaS to abstract the underlying
runtime, applies here, too. You get load balancing and automatic scaling
out of the box. When you need additional resources, automatic clones of
your application are created (Walraven et al., 2014, p. 681). Your application
runs within a secure sandbox without harming others (Ciurana, 2009, p. 1).

GAE is one of the most popular PaaS offerings. Google (2015c) lists
important customers of GAE on their website like

• Coca Cola – used GAE for their Happiness Flag1, the worlds largest
mosaic flag.

• Udacity – offers massive open online courses. They build most of
their services on GAE.

• Song Pop – a mobile app to guess a song’s artist or title. They build
their backed on GAE.

1http://www2.happinessflag.com

21

https://www.cceag.de
http://www2.happinessflag.com
https://www.udacity.com
http://www.songpop.net/
http://www2.happinessflag.com

Starting with Python as the first supported programming language, GAE
now also supports Java, PHP, and Go (Google, 2015e). To work with them,
download the according Software Development Kit (SDK). It contains the
program appcfg to upload and manage your application (Google, 2015n).

Besides the runtime environment GAE offers lots of cloud services like
user and mail service (Walraven et al., 2014, p. 682) and several storage
possibilities like

• Google Datastore for Java objects with 1 GB free quota (Google, 2015h),

• Google Cloud Storage for Binary Large Objects (BLOBs) with 5 GB
free quota (Google, 2015m), and

• SQL database without free quota (Google, 2015a).

You control your application via a web interface, the Developer Console. It
offers an overview of the ongoing activities with, logs, traces and different
kind of dashboards. You have direct access to your source code. Logs and
stack traces are linked to it, like IDEs offer it. You can look inside Google
Cloud Storage or Google Datastore to add, modify and remove items. To
log in the Developer Console use your Google Apps account (Ciurana, 2009,
p. 2). There are a lot more features, but they are less relevant for Wahlzeit.

Applications on GAE are hosted by default under the appspot.com domain2

(Ciurana, 2009, p. 2). Now the target platform and its restrictions are fixed.
The following section estimates the migration effort to GAE.

4.3 Estimation of migration effort

As already mentioned in the previous section, using a GAE SQL database
would cost money from the first query and dataset and is therefore not
applicable for Wahlzeit during the lessons. Hence a new data store with
a free quota has to be found. How this will be solved is explained in
Subsection 4.3.1. Subsection 4.3.2 analyzes what other classes of Wahlzeit
have to be adjusted, while Subsection 4.3.3 estimates the total migration
effort and finally answers the question whether it is faster to migrate
Wahlzeit to GAE or to redevelop it from scratch.

2You find an instance of the migrated Wahlzeit at wahlzeit2.appspot.com

22

appspot.com
https://wahlzeit2.appspot.com

4.3.1 Migrating storage components of Wahlzeit

As mentioned in the previous section, GAE offers SQL databases, but not a
free quota for them (Google, 2015a). Legacy Wahlzeit uses a PostgreSQL
database to store data like user information, tags, and photo meta data.
Hereafter this data except the photos is just called Wahlzeit data. Photos
are stored directly on the file system. We will treat both type of data, the
Wahlzeit data and the photo BLOBs different.

Google offers the schemaless NoSQL database called Google Datastore. We
will use this for the Wahlzeit data (without photos). Its important features
for Wahlzeit are (Google, 2015h):

• No planned downtime — a highly reliable database for the Wahlzeit
data.

• No fixed entity schema — adding or removing properties of existing
entities will become a lot easier.

• Automatic scaling — you do not have to care about setting up additional
databases and synchronizing them.

• 1 GB free quota — enough for hundreds of users, tags and other data.

The main drawback of this new storage system is the non trivial migration
(Binz et al., 2011, p. 2). SQL statements have to be replaced by read/write
operations for the Datastore. Operations like joins or aggregated queries
are not possible (Google, 2015h). The concept of a database connection has
to be removed and no table layout is predefined. But, despite this migration
effort, it is feasible to migrate from SQL to Google Datastore. As already
mentioned it will bring some essential advantages beside just recreating
the old functionality. Hence what currently is stored in PostgreSQL will be
migrated to Google Datastore (see Figure 4.2). This is the first big migration
task.

Beside the Wahlzeit data there are the photos. Figure 4.2(a) shows the
photos of Wahlzeit 1.2 are stored directly on the file system without any
database. This has to be changed because you can not write files on the
GAE file system after uploading your application. You can only read static
data (Vu & Asal, 2012, p. 276). Hence the place for photos has to be changed
to some GAE compatible technology. Uploading and therefore storing new
photos is an essential feature of Wahlzeit that has to be kept in the cloud,
too.

23

Apache TomcatApache Tomcat

File systemFile system

PostgreSQLPostgreSQL

Wahlzeit coreWahlzeit core

PhotosPhotos

Wahlzeit dataWahlzeit data

(a) Wahlzeit 1.2 runtime system

Jetty ServerJetty Server

Google Cloud StorageGoogle Cloud Storage

Google DatastoreGoogle Datastore

Wahlzeit coreWahlzeit core

PhotosPhotos

Wahlzeit dataWahlzeit data

(b) Wahlzeit 2.0 runtime system

Figure 4.2: Changes of the runtime systems between Wahlzeit 1.2 and
Wahlzeit 2.0.

Although you might argue to save the photos in the Google Datastore, too;
this is out of several reasons not the best idea. First, the quota of 1 GB has
to be split up on both, the Wahlzeit data and the photos, where the latter
might consume 2 MB or more for each. Second, Google offers a dedicated
space to store BLOBs like photos, the Google Cloud Storage (Google, 2015g).
This technology offers several benefits for Wahlzeit as a photo storage:

• 5 GB free quota — perfectly fine for ∼2500 photos (Google, 2015m).

• Access control lists — limit access only to the ones that are allowed.

• Resume upload feature — a robust way to upload photos to Wahlzeit.

24

Because of these features Google Cloud Storage will be the new place for
Wahlzeit photos in GAE (see Figure 4.2(b)). This is the second big migration
task.

Beside the adjustments of the storage systems, there are other migration
tasks left, that are systematically analyzed in the following section.

4.3.2 Identify classes of Wahlzeit that have to be adjusted

Although GAE offers a Java Virtual Machine (JVM) it does not support all
classes of the Java Runtime Environment (JRE) (Vu & Asal, 2012; Weisbecker,
Falkner & Höß, 2014). Therefore Google provides a list of all supported
classes, the JRE Class White List (Google, 2015j). This is a good basis to
check where to adapt Wahlzeit in order to migrate it to GAE. But manually
searching through all the 124 classes of Wahlzeit (without test classes) and
comparing them with the 1422 entries of the JRE Class White List is very
inefficient and takes a lot of time. Nevertheless we need the information
which classes have to be adjusted and which part of them. This is necessary
to answer the question, ”is it practicable to migrate Wahlzeit to GAE?”

To identify classes of Wahlzeit that have to be adjusted we developed the
GAE Java Class Checker. It is a python program that searches in your
Java source code for GAE incompatible Java classes (see Appendix A)3. The
program uses the JRE Class White List as basic amount of supported classes
for the cross check. You can extend the list by additional packages/classes
that you have tested successfully on GAE like third party libraries. There
exist several libraries that work on GAE (Frey, Hasselbring & Schnoor, 2013,
p. 1113). Furthermore you can exclude supported classes of the JRE because
of own requirements.

Although the GAE runtime environment would throw exceptions, if you
use an unsupported class and even the IDE does some checks on the JRE
Class White List4 we decided to develop an own program because of several
reasons:

• There is no support by the compiler to check the compatibility at
compile time. Hence you have to deploy your program, and wait
for the first exception. To do this comprehensively you have to make
sure that you pass all classes of your program with your test. This is

3Github project: https://github.com/tfrdidi/GAE-Java-Class-Checker
4At least IntelliJ Ultimate

25

https://github.com/tfrdidi/GAE-Java-Class-Checker

an sophisticated, manual and therefore an error-prone process. The
GAE Java Class Checker provides the same information even before
compile time and hence saves you a lot of testing time and errors
when forgetting to test a certain class.

• Although some IDEs provide a feature to cross check the JRE Class
White List, this list can not be adjusted. The GAE Java Class Checker
provides more than just a compatibility check for GAE, you can
customize it to your own needs, e.g., for Wahlzeit the SQL classes
should be blacklisted.

• If you have successfully tested third party libraries you can add them
to the GAE Java Class Checker which is not possible when relying on
the according IDE feature.

GAE Java Class Checker crawls the all imports of your Java code, to
check if GAE it contains unsupported classes. As a result you get a list of
unsupported but yet used classes you have in your code, and the place
where they are used. GAE Java Class Checker requires your source code to
fulfill two properties, first, no unnecessary imports and second, no wildcard
imports. Unnecessary imports would cause unnecessary hints for changes.
Wildcard imports would make your life harder to find the concrete class
that has to be replaced by pointing only to its package. Hence adjust your
imports like follows:

import java.package.*→ import java.package.Class1.

To do this exhaustive and efficiently make use of your IDE 5. This has been
done for Wahlzeit as one of the first adjustments. The intermediate stage
where unnecessary imports of Wahlzeit have been removed and wildcards
have been replaced is tagged in the git repository with optimizedImports6.
The result of running GAE Java Class Checker 1.0 on the mentioned code
base are 38 different, potentially unsupported, imported classes. They are
used within 25 Java files. The files contain between 1 and 11 unsupported
classes. The complete list of the 25 Wahlzeit classes that have to be adjusted
is visualized in Figure 4.3.

We could extend the list of GAE supported classes by deploying Java test
projects on GAE in order to test the possible implementations of single
functions like uploading a picture or storing information in the Google

5IntelliJ IDEA: https://www.jetbrains.com/idea/help/optimizing-imports.html
6see https://github.com/tfrdidi/MigrateWahlzeitIntoTheCloud

26

https://www.jetbrains.com/idea/help/optimizing-imports.html
https://github.com/tfrdidi/MigrateWahlzeitIntoTheCloud

Figure 4.3: Wahlzeit classes importing GAE incompatible classes.

Datastore. The following can be added to the list of GAE supported
packages:
com.google.common

com.google.api

com.google.appengine

com.googlecode.objectify

org.apache.commons.fileupload

org.apache.http

Furthermore, the java.sql package is blacklisted although it is supported
by GAE. Using GAE SQL would not fulfill the no cost requirement
(see Subsection 4.3.1). Therefore, SQL statements have to be replaced by
corresponding Google Datastore queries.

Besides migrating the storage systems of Wahlzeit — 1. Datastore for
Wahlzeit data and 2. Cloud Storage for photos (see Section 4.3.1) — the
results of GAE Java Class Checker show further construction sites:

3. replace java.awt photo management by GAE compatible library,

4. use Java Servlet 2.5, higher is not supported (Google, 2015i), and

5. adjust the sending of emails.

Beside the already mentioned 5 migration tasks, some literature research
on other pitfalls has been done.

Wahlzeit is based on sessions, i.e., information is saved on a UserSession
object that is valid for the communication between one client within a

27

certain time period. By contrast GAE is by default stateless, i.e., it does
not use sessions (Jonge, 2011, p. 78). But it is able to support sessions at
the cost of using Google Datastore and Memcache for session handling.
This will consume both free quota and performance. It furthermore comes
along with the requirement that all objects being stored in a session have
to implement the java.lang.Serializable interface (Jonge, 2011, p. 36).
Although using GAE sessions comes along with a major refactoring effort,
this task will be the 6. migration task of Wahlzeit in order to run on GAE.

Further construction sides are sending emails to user in a regular interval
and tidying up the Datastore. Using GAE in its intended way it is difficult
to execute tasks asynchronously or in a regular interval, e.g. once a day.
Usually a Hypertext Transfer Protocol (HTTP) request is processed and a
respond is sent within few seconds or less. Google used this mechanism as
a basis for their Task Queue service, that allows you to create a small set
of tasks that run in the background (Malawski, Kuźniar, Wójcik & Bubak,
2013, p. 51 ff.). This service can be used for the long running processes of
Wahlzeit like sending emails to all subscribed users in a regular interval
and tidying up the Datastore by removing outdated sessions. This is the 7.
migration task of Wahlzeit.

For long running tasks that arise when processing an HTTP request, the
Task Queue can be used, too. One candidate is uploading a photo that has
to be scaled and saved for each of the offered sizes. Adjusting this process
is not an essential migration step, but a nice performance optimization for
the user.

Whether the effort of migrating Wahlzeit is smaller than redeveloping it for
GAE or not, is discussed in the following section.

4.3.3 Discussion of migration effort

As identified in the previous subsection, there are 7 essential migration
tasks. To solve them the analysis of the GAE class checker showed, that
25 of the 124 Java classes (without unit tests) have to be adjusted. These
numbers do not indicate that there would be challenges when migrating
Wahlzeit that result in so much effort that creating a new GAE Wahlzeit
from scratch would be a better solution. According to Mooney (1990, p. 59)
Wahlzeit is portable. That means it will be migrated and not redeveloped
for GAE.

28

Beside the effort estimation, we check the requirements for Mandatory
Goal 1, the migration into the cloud (see Section 2.2). You see the result in
Table 4.2.

Requirement Solution Fulfilled?

Reduce initial effort to
deploy Wahlzeit on own
PC

Gradle wrapper reduces this to checking out
the repository and executing a single
command

√

Reduce regular effort to
deploy Wahlzeit online

Gradle wrapper reduces this to executing a
single command

√

Improve debugging for
Wahlzeit online

GAE offers cloud debugging, live logging
linked to source code, and traces

√

Reduce maintaining effort
for the department staff

No effort at all necessary because each
student has its own infrastructure

√

Costless infrastructure
during the lecture

Generous, temporal unlimited free quota,
enough for medium web sites

√

Migration of all existing
functionality

There is no feature of Wahlzeit that could
not be migrated to GAE

√

Same performance in the
cloud

No reason why Google infrastructure
should be slower than own server

√

Table 4.2: All the requirements necessary for successfully migrating
Wahlzeit to GAE are fulfilled.

The migration effort will be significant smaller than redeveloping all 127
class of Wahlzeit, the requirements for Wahlzeit in the cloud can be fulfilled,
hence we migrate Wahlzeit to GAE.

As the cloud is a new environment for Wahlzeit we check in the following
section how the development process changes in this new environment.

4.4 Development process in the cloud

Under the term development process we understand the following activities,
programming, building, testing, and deploying. This covers for Wahlzeit
not the complete Application Lifecycle Management (ALM) (Rossberg,
2009) that starts already with requirements engineering.

29

The activity of programming does not really change in the cloud. Hence
we focus in this section on the latter three activities especially with regard
to continuous integration. These activities are at least triggered by the IDE,
which therefore plays an important role.

When you search for the best Java IDE you find very versatile answers
and lots of ongoing debates as they are known for computer science. We
therefore do not want to focus on one IDE. Our claim is to completely
remove all IDE dependencies, to support the most developers possible,
even those working without an IDE. Beside that we analyze in this section
how building, testing, and deploying change in the new cloud environment,
and how they collaborate.

4.4.1 Remove IDE dependencies

Google (2015p) introduces Apache Maven as software project management
tool to speed up development of GAE projects. It is able to manage
dependencies, build your application, start the local development server,
and deploy your application to GAE. Anyway a software management tool
is the right step towards IDE independence, because you do not need an
IDE at all for the mentioned activities by using such a tool.

On top of Maven, there is Gradle (Muschko, 2014, p. 23):

”Gradle is the next evolutionary step in JVM-based build tools.
It draws on lessons learned from established tools like Ant and
Maven and takes their best ideas to the next level.”

As Gradle is an advancement of Apache Maven, it is our first choice. There
is a GAE plug-in for Gradle, the gradle-appengine-plugin7. It supports all
GAE related tasks like starting local test environment or deploying your
application to GAE. It is used for Wahlzeit 2.0 in version 1.9.22. Gradle
offers lots of advantages compared to Maven. We want to list three of them
(Muschko, 2014, p. 26–28):

• reduced build script size,

• better readability, and

• it can use Maven archives but also others.
7see https://github.com/GoogleCloudPlatform/gradle-appengine-plugin

30

https://github.com/GoogleCloudPlatform/gradle-appengine-plugin

Gradle projects have a typical layout. Hence, we adjusted the layout of
Wahlzeit 2.0 accordingly. You can see the detailed changes in Figure 4.4.

Wahlzeit 1.2

.settings

resources

docs

src

web

testgj

long dummy node

(a) Old project layout

Wahlzeit 2.0

long dummy node

docs

gradle

src

main

java

webapp

test

java

(b) New project layout

Figure 4.4: Comparison of the old and the new project layout of Wahlzeit.
The directories resources and .settings have been removed. The gradle
directory has been added. The source code directories are now grouped
below the src directory.

The directories .settings and resources are removed, because they contain
Eclipse specific stuff and old logging configurations respectively. All the
source code is moved into the src directory, divided in main and test.

Gradle offers a wrapper that allows you — no matter if you have installed
Gradle or not — to run the Gradle build script. To enable the user to
start Wahlzeit directly after checking it out of GitHub, we have to put
the Gradle wrapper in the repository. It is located in the directory gradle
(see Figure 4.4(b)). For Eclipse 4.5.0, you just have to install the Buildship
plug-in8 to run Gradle tasks directly out of the IDE.

Another advantage of the new project layout: IDEs like Eclipse 4.5.0, or In-
telliJ IDEA Ultimate 14.1.4 recognize it properly. Importing the Wahlzeit 1.2
project the first time, leads to lots of errors, because the path to the web-
parts package is not recognized properly. Furthermore main instead of
org.wahlzeit was interpreted as root folder, which has to be adjusted in
the project structure of the IDE manually. Now the user experience when

8see http://projects.eclipse.org/projects/tools.buildship, tested version 1.0

31

http://projects.eclipse.org/projects/tools.buildship

importing the Wahlzeit 2.0 project the first time is much better and no errors
are thrown.

After importing the project you usually first build the software to check if
this process works before extending the software. This process is described
in the following subsection.

4.4.2 Adjust building activity

When importing Wahlzeit 1.2 the first time in your IDE you have to add all
the dependencies to the IDE project manually in order to build it properly.
For Wahlzeit 2.0 we have the Gradle build file and a new local GAE test
environment which does all the work out of the box. When you clone
Wahlzeit 2.0 from GitHub, open it with your IDE or just open a terminal
and navigate to the Wahlzeit directory. There execute gradle war, and
Gradle builds the WAR file. For deploying it locally and uploading it to
GAE we do not need this step, there are two Gradle tasks that do this for
us. They include the building process (see Subsection 4.4.4).

The magic of Gradle to include the Wahlzeit dependencies out of the box
and to provide the necessary tasks is hidden in the Gradle build file9. It
is a Groovy file with configuration objects. It uses three plug-ins to build
Wahlzeit 2.0: java, war, and appengine. They provide the necessary Gradle
tasks to build a Java application, to export a WAR file, and to deploy it to
GAE respectively.

Thereafter in the buildscript object the external dependencies10 are
defined. For Wahlzeit 2.0 this is the gradle-appengine-plugin. Fur-
thermore the current gaeVersion is set in order to have only one place in
this build script where it is defined. As you can see it is used to keep all the
dependency versions consistent.

What follows is a check for the environment variable JAVA_HOME. It has to
be set to a valid Java installation in order to execute the mentioned Gradle
tasks. It is checked here explicitly because otherwise only a ”could not
find tools.jar” message is displayed which does not give a hint for a novice
developer, that JAVA_HOME is the problem and not something with tools.jar.

Afterwards the repository for the dependencies is set to mavenCentral.
They follow thereafter. As the dependencies are declared in this file

9build.gradle in the root of the project folder.
10https://docs.gradle.org/current/userguide/organizing build logic.html

32

https://docs.gradle.org/current/userguide/organizing_build_logic.html

explicitly you do not need to maintain them in your IDE project manually.
For executing local unit tests special testing dependencies are necessary
which are only used to compile the tests.

After the dependencies the test object follows. It offers you a filter to
specify exactly what classes are tested when executing gradle test. This
makes test suites redundant which is described in Subsection 4.4.3.

For the GAE configuration you can specify the port of the local test envir-
onment within the according appengine object. You can specify whether to
download the GAE SDK or to use an already installed one. Furthermore
you can specify the port for debugging the local test instance and the
authorization method to deploy a new version.

The next step after building Wahlzeit 2.0 is executing the unit tests. How
this process will change is described in the following subsection.

4.4.3 Adjust testing activity

Wahlzeit comes along with 13 JUnit test classes containing 54 test cases
within 24 Java files. They are based on the outdated version JUnit 3. Hence
at least the testing framework has to be updated to the current version of
JUnit 4.12 (effective August 2015). The in-between updates come along with
some nice new features.

The 13 JUnit test classes within 24 Java files suggest that there is some kind
of overhead, necessary or not. Hence let us have a deeper look at the test
package org.wahlzeit.handlers. It contains 6 files, but only one of them
is a JUnit test class. There is an interface defining a method necessary
for setting up the test environment, 2 test suites, one super class for the
JUnit test class, and the JUnit test class TellFriendTest itself. The other
packages have more JUnit test classes, but they still have at least one test
suite.

What has been created after best practices for code reuse and single respons-
ibilities has its limitations:

• only code reuse between classes with the same super class is possible,

• inherit from two sources is impossible, and

• the code for one unit test is spread above several files.

33

We have to keep in mind that the great part of Wahlzeit developers today
are students that have about four months to understand and learn from
Wahlzeit and afterwards extend it with own functionality. Hence the unit
tests, which are an important part of good software development, have to
be up to date and easy to understand.

The current version of JUnit offers rules. A rule is setup or tear-down
code encapsulated in a Java class. It can be executed, before a test class,
before each test case, after a test class, or after each test case, or an arbitrary
combination of them. One test class may use several rules. For rules with
dependencies between each other, you can specify the order of execution
with rule chains. This maximizes the principle of single responsibility
and strongly reduces duplicated code. Setup code is only written once,
encapsulated in a rule, and used wherever it is necessary. Adjusting the
existing unit tests to use rules and rule chains properly is the first task
in order to update them to the current JUnit version. Rules can be used
from each test class, hence they should be placed in one dedicated package
org.wahlzeit.testEnvironmentProvider.

Beside the proper encapsulation of setup and tear down tasks with rules,
we have to think about the test suites. Each package has its own test suite.
Their only purpose is to bunch the execution of all unit tests in one package.
All test suites are themselves bunched in another global test suite. This was
intended to easily execute all unit tests or only a selection of them. But
those manually maintained test suites are sources of errors. Each time a
unit test is deleted completely, the test suite has to be adjusted, otherwise
you get a compile error. Every time you add a new unit test, you have to
make sure to add it to the corresponding test suite, otherwise it will not be
executed. The same applies to new or removed packages in the test project.

If a cascade of test suites would be the only possibility to get the mentioned
functionality you could easily argue to hazard the consequences of manually
maintaining them. But IDEs like Eclipse or IntelliJ IDEA offer the same
functionality with a single right click on the corresponding package without
a test suite. Furthermore, you can create JUnit run configurations where
you can select arbitrary combinations of test cases. Even Gradle offers the
possibility to write tasks that execute a specified amount of test cases (see
Subsection 4.4.2). Hence we simply remove all those test suites.

After the JUnit tests are executed successfully the next activity in the
development process is the deployment to GAE which is described in the
following subsection.

34

4.4.4 Adjust deployment activity

The deployment activity contains both, deploy Wahlzeit locally and deploy
it to GAE. The GAE SDK offers a local test environment, including fully
functional Datastore and Cloud Storage mocks. Starting this test environ-
ment with Wahlzeit 2.0 is one command, gradle appengineRun. This starts
a local web service that you can reach under localhost:8080. To look
inside the Datastore or the Cloud Storage go to localhost:8080/_ah, the
admin interface. You can add, modify or remove elements of both Datastore
and Cloud Storage. You can also debug the local instance of Wahlzeit 2.0.
IDEs like Eclipse or IntelliJ IDEA offer remote debug run configurations
that can be uses to connect to localhost via port 8000. You can debug
Wahlzeit like a normal Java application.

Deploying Wahlzeit online is also manged by the Gradle. Therefore execute
gradle appengineUpdate, that uploads Wahlzeit to GAE. To authorize for
uploading an application we use OAuth 2.0. The first time you deploy an
application you have to allow this deployment by accepting the process
in an new browser window that is triggered by the upload process. You
can also use your SSH key to authorize, then the deployment needs no
interaction at all. This one liner is much simpler and faster than logging in
the web service of the department server to upload and deploy the WAR.

In the following subsection we want to analyze how those three activities
work together.

4.4.5 Collaboration of building, testing, and deployment

After the concept of continuous integration it should be assured that
building, testing, and deployment are always executed in this order (Fowler,
2000). This assures that each deployed version has successfully passed
the testing phase. For Wahlzeit 2.0 this has to be analyzed in detail. The
unit test do not cover every aspect of Wahlzeit especially not the HTML
creation and the UI. Therefore a manual test is necessary for both, Wahlzeit
deployed in the local test environment and deployed to GAE. The complete
workflow is visualized in Figure 4.5.

After building and during each test phase, errors may occur that trigger
adjustments and hence start the workflow from the beginning. As local
computer and GAE are different environments, a manual test should be
done for both. GAE for example keeps the content of the Google Datastore

35

Figure 4.5: Wahlzeit 2.0: collaboration of building, testing, and deployment.

and the Google Cloud Storage when deploying a new version, in contrast
to the local testing environment. Uploading and deploying an application
to GAE takes some time, therefore upload only a locally tested version.

The advantage of a build server to have a convenient build environment for
all developers is nearly disappeared due to the new Gradle setup. It could
support the workflow only in the latter part. A build server makes sure that
every time a new version has been uploaded the unit tests are successfully
passed, otherwise the new version will not be deployed. When you have
executed the unit tests before running Wahlzeit locally as it is intended,
the build server only causes additional effort. Furthermore setting up a
build server requires a virtual machine. This infrastructure is provided by
Google, but without a free quota. Hence every time a build server is used,
you have to pay for it (Google, 2015l).

All in all a build server would infringe Requirement 5 (no costs) and create
additional effort for the staff or the students. As already mentioned the
manageable additional value of a build server is not worth infringing two
requirements. As a Wahlzeit developer you are free to set up your own
build server, but no central build server will be provided for the lecture.

In the following section we want to analyze the effort which is necessary to
develop a new Wahlzeit UI.

36

4.5 Effort for UI renovation

The UI of Wahlzeit 1.2 is inflexible for greater changes. It is created out of
HTML templates and smaller modules, which themselves are dependent
on the language. Currently German and English are supported. Adjusting
the UI doubles the effort compared to one language independent UI with
references to a list of translations. Fundamental changes in the UI affect
several HTML files and the according Java handler classes.

Beside the inflexibility for the developer, the UI itself is not ready for the
growing variety of devices. Google’s mobile-friendly test11 indicates that
Wahlzeit is not mobile ready. The text is too small to read, the links are too
close together, and there is no mobile viewport set. Visiting Wahlzeit with
a bigger desktop screen (≥ 1920×1080) only a quarter of the possible space
is used with the default settings.

To support the mobile users we have plans for developing a Wahlzeit app.
We have to keep this in mind when reworking the UI because then different
clients have to be supported. In this case data and logic layer have to serve
at least two different UIs. In the following we name data and logic layer
the Wahlzeit core.

There are about 20 handler classes (package org.wahlzeit.handlers). These
classes are the connection between the Wahlzeit core and its UI. A hand-
ler itself typically has two methods doMakeWebPart and doHandlePost.
The first one is used to put page specific information into the result of
a get request. The second handles the changes of an incoming post re-
quests. These methods have no information about how the UI is generated.
They only provide Strings and handle post requests. This separation
is the result of a nice design that concentrates all methods for actually
generating the UI in their super classes AbstractWebFormHandler and
AbstractWebPartHandler. But this inheritance is the tight connection
between the current Wahlzeit core and its UI (see Figure 4.6(a)).

The directories webapp.config.static and webapp.config.templates contain all the
HTML templates and modules that are used to create a complete webpage.
They contain only UI specific stuff.

Now we want to define the target state. The core is the part of Wahlzeit that
contains model and logic. It provides Strings12 and photos as the result of

11see https://www.google.com/webmasters/tools/mobile-friendly
12Their format is discussed later.

37

https://www.google.com/webmasters/tools/mobile-friendly

(a) Current UI and core are tightly coupled.

(b) Distinct components with a defined interface is the target.

Figure 4.6: The current UI is tightly coupled with the Wahlzeit core. Both
have to be separated in order to extend Wahlzeit by additional clients like
an Android app.

HTTP requests. The Wahlzeit UI should only serve UI specific stuff, like
Cascading Style Sheets (CSS), HTML files, language dependent strings like
descriptions of values, and UI specific pictures like the header picture. Java
Script or another technology is served (in HTML files) by the UI component
to the client. Once loaded, it loads the actual data from the Wahlzeit core.
With this concept we could clearly separate core and UI and make massive
use of caching UI components, which is not done in Wahlzeit 1.2. In this
version e.g. each request also downloads the Wahlzeit CSS file.

The first step for the UI renovation is to uncouple user interface and logic
layer. That affects especially the handler classes. The result is a Wahlzeit
core that only contains the data and the logic layer, and a dedicated package
that contains all stuff necessary for the UI creation. In a further step the
UI itself can be reworked and additional clients like a mobile app can be
created.

As all of the three tasks (uncoupling, UI renovation, and app creation) are
quite comprehensive. We focus in this thesis on the first one. To support

38

different UIs for Wahlzeit, like mobile app and desktop website we plan to
transform the core of Wahlzeit into a RESTful service. The necessary tasks
are described in the following section.

4.6 Design of a RESTful API for Wahlzeit

As described in the previous section, the Wahlzeit core and its user interface
have to be separated and the core should offer a flexible interface for more
than the current website UI. Fielding (2000) first introduced the architectural
software design for called Representational State Transfer (REST). It is
intended for distributed software systems, that provide static content and
dynamic information for a global information system in a standardized
way. Exactly what we want for Wahlzeit.

There are 5 core principles for an HTTP based REST application (Tilkov,
Eigenbrodt, Schreier & Wolf, 2015, p. 11–19):

1. Resources with unique identification: each resource or set of resources
that is relevant for the user gets an unique identifier. Each resource
can be accessed independent of client or session.

2. Links and hypermedia: the control of the application flow and the
connection of resources is based on links and their description. The
server implementation or the workflow may change but the client
still stays stable. Complete new functionalities indeed are not yet
available without an update of the client.

3. Standard methods: implement the HTTP protocol with its standard
methods correctly and use only these methods. This has the advantage
that whatever resource you work with, you know what operations
you can use.

4. Different representations: provide different representations of your
resources for each requirement. This enables each client that can
process a resource in a specific format to use your API. This client
does not necessarily have to be offered by you.

5. Communication without status: the server manages only resource
states, no client specific sessions. This helps enormous to scale your
application, shut down one of the server or to distribute the load
between servers.

39

The necessary tasks to achieve those core principles for Wahlzeit are
described in the rest of this section. For the discussion about REST we take
Wahlzeit 2.0 as basis and describe the required changes from this version
and not from Wahlzeit 1.2 as it was the case in the previous sections.

4.6.1 Resources with unique identification

Resources are the central concept of REST. They decide what is visible via
the API and how you can change things. To clearly identify the resources,
each of them should have an unique Uniform Resource Identifier (URI).

A resource itself is an abstract idea of one of your business objects. What
you can request and see are representations of a resource (Tilkov et al.,
2015, p. 35), for example an HTML representation of a user or a JavaScript
Object Notation (JSON) representation. Internally a resource does not have
to be an element in the database, it can also be generated dynamically, or
calculated out of others.

Identifying all resources and structure them properly is a hard task. We
want to describe a first resource design for Wahlzeit. To support this process
Tilkov et al. (2015, p. 37–40) list several resource types which help us to
identify all Wahlzeit resources. Indeed all of them are resources itself.
Hereafter the resource types are named and the corresponding Wahlzeit
resources are listed with their representation formats.

Primary resources are the core components of the software. For Wahlzeit
the following primary resources with their representations for the web UI
have been identified:

• REST resource 1: photo (HTML, image/jpeg),

• REST resource 2: user (HTML),

• REST resource 3: photo case (HTML),

• REST resource 4: settings (HTML), and

• REST resource 5: about, contact/imprint, and terms (HTML).

If only a certain part of a resource is used, it is called a sub resource.
For Wahlzeit this is REST resource 6: photo meta data including the rat-
ing (HTML).

Often not only single resources are necessary but, lists of resources. This is
the third resource type. For Wahlzeit there are:

40

• REST resource 7: the list of all visible photos (HTML),

• REST resource 8: the list of deleted photos (HTML), and

• REST resource 9: the list of all open photo cases (HTML).

For the case you do not want the whole list, but only a filtered subset, filter
can be seen as a special type of list. Wahlzeit offers the function to filter
photos by user name, and/or tag (HTML). This is REST resource 10.

Longer lists are divided into result sets of about 10–20 per website. This
mechanism of pagination is another subtype of the resource type list. The
current version of Wahlzeit does not offer a list using pagination, but the
list of all photos uploaded by a user can be a potential candidate or the
future usage of pagination.

For the case you want to show only a subset of the information a primary
resource offers, a projection can be created. This is useful for lists, where
only some important information for each list element are shown. To distin-
guish this type from sub resources, here mostly aggregation of information
is done, whereas sub resources are just a subset of information of the actual
resource. Projections could be used for the Wahlzeit main page, where the
rating (REST resource 11) of the previous photo is shown.

All those mentioned resources are quite static. When Wahlzeit should have
a proper REST API all sites and functions have to be provided by the API
and hence have to be represented by resources. What is missing until now
are activity resources, the next resource type Tilkov et al. (2015, p. 39) is
listing. For Wahlzeit this are the following activity resources:

• REST resource 12: upload a photo (HTML),

• REST resource 13: flag a photo (HTML),

• REST resource 14: process a photo case (HTML),

• REST resource 15: tell a friend (HTML), and

• REST resource 16: administer (HTML).

For a complete REST API these 16 REST resources all need an unique
identification with the corresponding URI. But without a connection they
have no real value. How they are connected is described in the following
subsection.

41

4.6.2 Links and hypermedia

A REST application has to fulfill the following properties:

• The amount links of an application represents the total amount of
navigation possibilities for the user. You as a user do not have to enter
an URI manually.

• You do not need an external description to use the application. All
necessary information is contained, even for machines (hypermedia).

• The server uses a format that the client understands.

• The application status is based on the resource representations of the
client and the resource state of the server, not on session information.

If those properties are fulfilled you get the following advantages:

• you decouple client and server,

• changes in the resource model are transparent for the client,

• the server defines the workflow, and

• external meta data is reduced.

HTTP websites are a good example for the implementation of those prop-
erties. All the information necessary to use it, is (mostly) contained. It
changes, when the server decides to change and it can be interpreted by
the client. In this case the client is the browser which understands the used
formats and therefore can use the website, even if the website creator is
not the browser creator. But websites are created for human users. They
mostly do not implement the property of hypermedia — providing a self
describing website that can be interpreted by machines.

Beside the website we have the plan to develop a Wahlzeit app. One
exclusive motivation for developing a mobile app, is to cache and preload
content for times the mobile device has no Internet connection. The
argument to have a mobile app for a better user experience does not
hold. There are lots of good examples for mobile websites that offer the
same functionality than the desktop website, but with a much better user
experience of the mobile device13.

Hypermedia means that all the navigation possibilities are listed as links
and described in a way the client can interpret them without external

13http://qz.com, http://maps.google.com, or http://huffpost.com

42

http://qz.com
http://maps.google.com
http://huffpost.com

knowledge. How this is achieved is not specified. Hypermedia will become
important for developing an app. Instead of having a fixed workflow hard
coded in the app, it should be able to change the workflow from the server
side. Beside that the app should give the user (in contrast to a website) the
possibility to use it offline, at least until all downloaded photos are viewed
and rated.

Links between resources suggest that you can follow them without problems.
This means executing a get request on the link target. What other methods
are offered by HTTP and how they should be used is described in the
following subsection.

4.6.3 Standard methods

Fielding (2000) only specifies that there exists a limited amount of standard
methods for REST, but he does not mention concrete methods. As Wahlzeit
is based on the HTTP protocol, a selection of the methods defined by
HTTP 1.1 will be used for Wahlzeit. They are described below.

• get: provides a representation of a resource. It is safe (does not change
a resources state) and idempotent (can be executed several times
without without changing the result). Each resource should have a
get operation. This supports finding bugs, and makes your API more
transparent (Tilkov et al., 2015, p. 53–55).

• head: provides only the header information that would be part of the
corresponding get methods result. Hence it is safe and idempotent,
too. This method is useful to check changes of a resource or its
existence before actually downloading it (Tilkov et al., 2015, p. 55–56).

• put: creates a new resource specified by the URI, or changes an
existing resource. This method is not safe, as it is intended to change
a resources, but it is idempotent. This makes it unproblematic to send
the request again if a previous one did not lead to an answer (Tilkov
et al., 2015, p. 56).

• patch: modifies the resource specified by the URI. If the resource
exists the server may create a new resource. In contrast to put, patch
describes only the changes and does not contain the complete new
resource (Dusseault & Snell, 2010).

• post: creates a new resource, too, but specifies only the resource that
creates the new resource, not the URI of the new resource. As it can

43

neither be cached, nor it is save or idempotent it is often abused for
something that can not be done with one of the other methods (Tilkov
et al., 2015, p. 57).

• delete: removes a resource specified by the URI. It is idempotent.
Often deleting is only a logical delete, not a delete in the persistence
layer (Tilkov et al., 2015, p. 57–58).

• options: returns meta data about a resource. Among others the
supported operations of the resource are part of the result. It is
idempotent and save. If not explicitly defined you may not cache an
answer of an options request. A server should support this operation
(Tilkov et al., 2015, p. 58).

get head put patch post delete options

save
√ √

– – – –
√

idempotent
√ √ √

– –
√ √

cacheable
√ √ √

*
√

* –
√

*
√

*

Table 4.3: Overview of the seven HTTP standard methods and their
properties that are relevant for Wahlzeit 2.0. * The result is cacheable only if
it is explicitly defined.

HTTP 1.1 furthermore defines the methods trace and connect but they are
not relevant for the development for the Wahlzeit REST API. You can
see an overview of the seven relevant HTTP standard methods and their
properties in Table 4.3.

The current handling of standard methods in Wahlzeit 2.0 is as follows:
the class AbstractServlet is the primary servlet of Wahlzeit. Nearly all
requests are routed to this class. It extends the HttpServlet defined by
the JRE. It implements 2 of the mentioned HTTP standard methods, doGet
and doPost. Both methods only do some basic operation like setting the
session and the character encoding. If the Wahlzeit system is not shutting
down, both methods redirect the request to myGet/myPost of the class
MainServlet. Both methods search the proper handler for the request,
calculate the processing time and generate some log messages. Then the
corresponding handler for the URI handles the actual request.

Now we analyze the 6 standard HTTP methods in order to specify the
target state for Wahlzeit.

The get method, is save, hence no writing access to any REST resource
visible to the user is allowed. Logging messages or other server side

44

analyses are allowed (Tilkov et al., 2015, p. 55) because they are not visible
for the user. Beside that we have to check if all get methods are idempotent.
The third task to make the get methods REST ready, is to ensure every
REST resource listed in Section 4.6.1 has its own get method. This means
that the structure of handlers where currently one serves a site has to be
reconsidered. But this only comes along with adjustments in the UI.

The head method has the same properties as get. Its result is even a subset
of the corresponding get method. For Wahlzeit with its current functionality
and its own UI there is no suitable use case where a head method would
have a real benefit. Hence an implementation of the head method is not
essential necessary for making Wahlzeit 2.0 REST ready. But the head
method gets several use cases when a mobile app for Wahlzeit is developed.
For the mobile app, the generated traffic has a great impact. Hence head can
be used to check the size of a certain picture, without actually downloading
it. Depending on the current Internet connection (Wireless Local Area
Network (WLAN) or mobile network) a larger version can be downloaded
or a smaller one. Furthermore the status of already downloaded (cached)
photos can be checked, because the may have been deleted or flagged.

Currently the put method is not implemented at all. Changes to resources
are solely done by post. This makes sense for uploading a photo, where
the URI of the new photo is not known to the client because the server
generates a unique ID which is part of the URI. But for all the other changes,
like adjusting user settings, flagging or rating a photo, the put method
should be used. This has the advantage that the client gets the promise of
an idempotent method. This is especially useful for the case the answer
to the rating of a photo does not reach the client. Now the client does not
know if the rating reached the server. If this is implemented with a put
method, sending the request again is no problem. Like for the head method,
this is not essential necessary for the web UI but it has to be implemented
for the mobile app.

In contrast to put patch is not idempotent and only cacheable if explicitly
defined. If so, a cached response may only be used for a following get or
head request, not for other methods (Dusseault & Snell, 2010). This makes
it to a less reliable method for updating resources. Patch has its advantages
when greater resources have to be updated and only few changes to this
resources have to be done. In this case only the changes are transferred
instead of the whole resource. Wahlzeit has only small resources that may
be changed by the user14, hence this advantage can not be used. It may be

14Images may not be changed once uploaded.

45

interesting for future use cases where bigger resources will be introduced
and modified.

Like for post, the delete method has only one use case: deleting an own
photo. This method should be used even for the current UI in order to
make proper use of the REST principles.

The last method that is relevant for Wahlzeit is called options. It delivers
only meta data about a resource. Hence it will be useful for the mobile app
in order get information about a resource, without actually downloading it.
Also the list of allowed methods per resource are interesting informations
for the mobile app, in order to make it as generic as possible.

This makes three essential necessary adjustments for a RESTful Wahlzeit
API: rework get methods to match the requirements, use more put methods
for adjusting resources, and use delete for deleting photos.

Beside the standard methods of the resources the according representation
of the resources is important to decide. This is described in the following
subsection.

4.6.4 Different representations

The question for the right representation formats can not have a right
or wrong answer (Tilkov et al., 2015, p. 87–110). Hence we first want to
describe the different resources of Wahlzeit and hereafter think about their
proper representation formats.

The main resource of Wahlzeit are photos. In terms of formats we speak
about JPEG, PNG, WEBP, GIF (including animated GIF), BMP, TIFF and
ICO (Google, 2015f). All those formats can be uploaded and processed
since Wahlzeit 2.0. When serving photos, only JPEG is used for convenience
reasons. Hence, for photos we have at least two representations, first,
image/jpeg, and second HTML. The latter is used to get the according
website to show it in the browser. Currently an URI for a photo looks
like https://wahlzeit2.appspot.com/x1ac4.html. The target should
be, only to have https://wahlzeit2.appspot.com/x1ac4 whereas the
accepted media type, either HTML or JPEG decides if the whole website is
served or only the photo15.

15Indeed the website contains the photo, so the photo is requested for both.

46

https://wahlzeit2.appspot.com/x1ac4.html
https://wahlzeit2.appspot.com/x1ac4

All other resources work only with HTML representations. Although there
is currently no handler for all resources the current UI works quite well with
the existing ones. For creating a mobile app or another UI, this decision
will not hold anymore. For both variants, it should be possible to get the
actual content of a site (e.g. the imprint) without the header and the footer.
The same applies for a more complex site like the main page, where left
and right of the actual content additional informations and functions are
shown.

To make Wahlzeit 2.0 REST ready, the .html ending has to be removed
from the URIs, and the actual format should be defined in the according
HTTP header. Furthermore the two representations for photos have to be
implemented.

A bigger construction site will be the removal of the status which is described
in the following subsection.

4.6.5 Stateless communication

Communication without status means, that the server should not store a
clients status or a session16. This has the advantage that the client is able
to access Wahlzeit from an arbitrary number of devices without a break
in its view of Wahlzeit. Even for one device an expired session will be no
problem anymore. Furthermore the server does not need to persist a client
session which spares the free quotas of Google Datastore.

Wahlzeit 2.0 makes intense use of the class UserSession which wraps
an HttpSession. The latter is managed and persisted automatically by
GAE. These classes save the clients status on GAE which objects the REST
principles.

The class UserSession of Wahlzeit 2.0 has about 360 Source Lines of Code
(SLOC). Its 8 members including a HashSet for further parameters and the
according methods have to be moved to the identified REST resources (see
Subsection 4.6.1) to be persisted. The target of this task is to completely
remove the class UserSession and the according GAE session handling,
but keeping all the functionality. Beside bringing us a step closer to a
RESTful Wahlzeit core, this would solve several existing inconsistencies of
Wahlzeit:

16Except log messages or other server internal stuff that is not visible to the client.

47

• The praised photos and the current photo are part of the UserSession.
That means if you come back to Wahlzeit after some days and the
session has been expired, you get photos to rate that you have already
rated. This is not only annoying it offers the possibility to abuse it, in
order to distort the rating.

• Accessing Wahlzeit from two devices, even if you are logged in,
means you get the same photos twice to rate. Each device has its own
UserSession with the according photos to rate. This has the same
disadvantages than already mentioned in the previous point.

• If you login and set some preferences like the language or your
preferred photo size, this information gets lost when the session is
expired or you login from another device.

This shows that removing the client sessions does not only help to get a
RESTful Wahlzeit core, but also makes it more stable and better to use.

Although we want to remove the class UserSession the functionality of
Wahlzeit has to be kept. Hence it has to be moved to other classes. For lots
of members like prior photo, the photo size, the photo filter, the praises
photos, and the language configuration the new target class will be the
Client. This is identified as REST resource and hence will be persisted. For
the uploaded image the new class will be the User because Guests can not
upload photos. The heading will be moved to the according page handler.
It should always be the same for one resource. In case it is not, the REST
resource should be separated (e.g. into two activity resources) where each
of them has an own static heading. The same applies for the message.

The last task to completely remove the UserSession is a way to
identify the actual user. For a logged in user this is done by
com.google.appengine.api.users.UserServiceFactory automatically.
But for guests which are not logged in, we have to think about an own
solution. Tilkov et al. (2015) suggest to create an own resource. As Guests
are already resources, we should use this and create URIs that support this
concept.

48

5 Implementation

In this chapter we describe the implementation details of the designs
mentioned in the previous chapter. Therefore we start with the coding
guidelines for Wahlzeit in Section 5.1. It is followed by a detailed analysis
of the essential Wahlzeit migration steps from a Tomcat application on the
own server to a GAE application with the same functionality. The chapter
is completed by other adjustments of Wahlzeit in order to make it more
secure and apply good software engineering principles in Section 5.3.

5.1 Coding guidelines

As the source code of Wahlzeit is intended to be evaluated and extended by
lots of students every semester, a compact and speaking documentation is
necessary. Riehle (2000b) lists 3 general method types for Java programs,
query methods, mutation methods and helper methods. Query methods
give you informations about the object, but do not change its state. This
can be seen as the opposite of mutation methods. They change the state of
the object but do not return anything. Helper methods neither change the
object state nor give you informations about it. They encapsulate repeating
operations in order to reduce code redundancy. A popular example are
factory methods (Riehle, 2000b, p. 22–25).

All methods should only have one identifiable task (Beck, 1996). Hence,
take it as a hint to rethink your method design, when you have problems
to classify it with one of the 3 general method types. These types can be
subdivided like follows:

Query method types:

• getter methods (get. . .) — return a value,

49

• boolean query methods (is. . . , has. . .) — return a boolean value,

• comparison methods (equals) — compare two objects, and

• conversion methods (as. . . , to. . .) — return representation of the
object.

Mutation method types:

• setter methods (set. . .) — change one field,

• command methods (handle. . . , execute. . .) — potentially change
several fields, or encapsulate more complicated commands, and

• initialization methods (init. . . , initialize. . .) — called for initialization
or for re-usage.

Helper method types:

• factory methods (new. . . , create. . .) — create and return an object,
and

• assertion methods (assert. . . , check. . . , test. . .) — make sure a certain
condition is hold, returns silently if so, otherwise throws an exception.

In Wahlzeit 2.0 we use these method types in the documentation of each
new or adjusted method. They are classified with the corresponding tag,
for a getter method this is @methodtype getter.

Method types are especially relevant when you want to document a class
that can be used by others, for example as part of an API. Wahlzeit is
intended to be extended by programmers on potentially every part of the
software. Therefore it is also important to document methods of abstract
super classes and interfaces, to make sure they are properly implemented.
Therefore we use method properties. In contrast to a method type (one
type per method) one method can have several method properties (Riehle,
2000a, p. 62).

For implementing a superclass or an interface method properties are
important. There exist 2 Java specific and 4 general method properties:

Java specific method properties (Riehle, 2000a):

• accessibility with the possible values public, protected, etc. and ,

• evolution with the possible values, deprecated and final.

General method properties (Riehle, 2000a):

50

• Class implementation (primitive, composed, regular) describes the
structure of its implementation. Primitive methods have only one
task and do not call others, composed methods have a more complex
task and call other methods.

• Inheritance interface (hook, template, regular) describes the inher-
itance behavior. Hook methods have a distinct functionality that
may/should be overridden by subclasses. Template methods define
how to compose hook methods. They should not be overridden.

• Class/instance level distinction (class, class-instance, instance) a
method is either allocated to a class, a class-instance, or an instance.
Java class methods are all static methods. Class-instance methods
only exist in java.lang.Class, they are allocated to a class object. All
other methods are instance methods.

• Convenience methods (convenience or not) encapsulate another
method calls as a wrapper or to make the call easier with default
parameters.

Like the type of a method, the general method properties are docu-
mented in the comments of each methods with the according tag, e.g.,
@methodproperty primitive, hook.

Beside the mentioned guidelines for documentation, we want to avoid
code redundancy, keep Wahlzeit 2.0 extensible and understandable, and
we want that each component (class or method) should have only one
distinct task.

With these coding guidelines in mind we focus in the next section on the
essential changes in order to migrate Wahlzeit to GAE.

5.2 Essential migration steps

In this section we summarize the migration steps that are essentially
necessary to migrate the whole functionality of Wahlzeit 1.2 to GAE. This
migrations already provides a lot of benefits like a scalable infrastructure,
cloud debugging possibilities, and an easier deployment.

We start this section with the changes of the persistence layer, followed
by the migration of the session management. Hereafter the changes of
the asynchronous tasks are described and the adjustments of the Java

51

Servlets. The section is finished by the migration of the logging and the
email functionality.

5.2.1 Change SQL database to Google Datastore

Although Google offers MySQL databases in the cloud, we not use it for
Wahlzeit because there is no free quota (Google, 2015a). Instead we use the
Google Datastore. The ”Datastore is no relational database, which requires
complex changes to the Java Web service. A human developer will do the
required code changes” (Binz et al., 2011, p. 2).

To make the required code changes easier and to offer other developers a
simple way to communicate with the Datastore, we decided not to choose
the low level Datastore API. Google (2015h) lists Objectify (Schnitzer, 2015)
as a very simple an convenient interface for Google Datastore. It hides
most of the complexities of the low level Datastore API. Therefore we use
Objectify for Wahlzeit.

Each class whereof an object is written to the Google Datastore has to be
registered to ObjectifyService, more specific its factory. This is done in
Wahlzeit 2.0 by the new class OfyService. Objectify works a lot with Java
annotations. Besides the mentioned registration, a class that should be
persisted has to be annotated as @Entity or as @Subclass of an @Entitiy.
Wahlzeit entities are Photo, Globals, Tag, Client, and PhotoCase, sub-
classes are User, Administrator, Moderator, and Guest. In the following
we name all those classes that are stored in the Datastore entities.

For entities there is no need to have a specific structure (that matches to
the SQL table). You can add or remove attributes from an entity or create
one just from scratch in the code. In contrast to SQL where you find your
object by the according table and the primary key, Google Datastore is like a
huge persistent HashMap. To find your entity you need a unique key that is
either a Long or a String and an entity type. Hence all entity classes have
to be adjusted to have such a unique key. You only have to annotate an
according Long or Stringmember with @Id. If you do not specify a value
for this member, Objectify creates a new unique one when saving it.

For each member you can define to persist it or not. Helper variables,
that serve only as cache during runtime do not have to be stored, e.g., the
uploadedImage of the User that is only used from the time an Image is
uploaded until it is stored in the Google Cloud Storage.

52

All classes that have been stored in Wahlzeit 1.2 at the SQL database
implement the interface org.wahlzeit.services.Persistent. It defines
the methods to load and store the objects in the SQL database and to
manage their state (changed since the last write operation or not). For
Wahlzeit 2.0 this interface can been reduced by all SQL related methods, all
its implementations accordingly. We use Persistent now only to indicate
whether an object has been changed, since it has been saved the last time to
the Datastore to save unnecessary write operations.

Besides that changes all constructors of entity classes that get a SQL
ResultSet as parameter can be removed without substitution. An entity
loaded from the Datastore is created automatically, there is only an explicit
constructor with no arguments necessary. This constructor does not need
to have any logic.

One big advantage of Google Datastore is, that all its commands are plain
Java and no String encoded statements like

getReadingStatement("SELECT * FROM photos");

It has the advantage, that Datastore operations can be checked already at
compile time in contrast to SQL statements which are created and checked
at runtime. Changing the statements has impact on all manager classes
like the PhotoManagerwhere most of the adjustments for Wahlzeit 2.0 have
been done.

The class DatabaseConnection, which implemented the pool pattern
(Kircher & Jain, 2002) to cache common SQL statements can be deleted
without substitution. Google Datastore has not concept of database connec-
tion.

In the context of reworking all entity classes, we have to find a solution for
the so called ”globals”. These are the last photo ID, the last user ID, the last
session ID, and the last case ID. All of them are used, to make sure an ID is
not used twice. To store them in the SQL database, there was of course an
according table, but no Java class to encapsulate those globals. We decided
to create an according Java class for several reasons:

1. There is one place in the code where all globals are saved. Once one
of them is added or removed (which will be the case for the session
ID) this only affects this class. Other code that references this class is
recognized by the compiler or the IDE in case of a change.

2. Loading and storing each ID on its own in the Google Datastore,
would increase the read and write count and reduce our free quota.

53

One object containing all, only costs as much as storing one ID on its
own.

3. For a new developer it is now clear out of the design of the class
Globals that there are these global variables. Nowhere was docu-
mented that those are managed by the class ModelMainwhich loads
them from the SQL database and puts them into the according man-
ager class and the other way round.

These were the main implementation tasks in order to store the Wahlzeit
entities in Google Datastore. In the following subsection the migration of
the photos is described.

5.2.2 Migrate the photo storage

In Wahlzeit 1.2 the photo metadata (owner, tags, praise, etc.) is stored in
the SQL database. For each photo size an own image file is saved on the
file system without a database. One such file is represented in Java as
java.awt.Image. We already identified in Subsection 4.3.2 that this class
and most other awt classes are not included in the JRE Class White List
(Google, 2015j).

In GAE Google (2015f) offers an advancement of java.awt.Image:
com.google.appengine.api.images.Image. It is able to support much
more formats than its awt equivalent. Therefore we use it for the represent-
ation of a photo in a certain size. In the following we distinguish photo,
that contains meta data, name, and references to Images for each available
size, and image which represents one photo in a certain size.

In contrast to Wahlzeit 2.0 we save the Images in the Google Datastore or
the Google Cloud Storage respectively. Binz et al. (2011, p. 2) suggest to use
Adapter for such migrations. We follow this suggestion and use the Adapter
design pattern (Gamma, Helm, Johnson & Vlissides, 1995, p. 133–143). It
is visualized in Figure 5.1. This design helps us to reduce dependencies
on storage specific code and offers us the flexibility of two Google storage
options and to store Images elsewhere, e.g., at another cloud provider like
Dropbox1.

Due to the adapter we can easily switch the storage, either the Datastore or
the Cloud Storage. The images are managed by the class ImageStorage. It
is a technology and provider independent super class for the adapters. It

1A new adapter would be necessary for another cloud provider but no other changes.

54

Wahlzeit

ImageStorage

+ writeImage
doWriteImage
+ readImage
doReadImage
+ doesImageExist
doDoesImageExist

GcsAdapter

- gcsService

doWriteImage
doReadImage
doDoesImageExist

DatastoreAdapter

doWriteImage
doReadImage
doDoesImageExist

Figure 5.1: Adapter design pattern for decoupling Wahlzeit functionality
and storage specific code.

contains methods that already check parameters and log the corresponding
operations. The ImageStorage provides abstract hook methods (Riehle,
2000a) that do the actual work, implemented in the adapters. Those adapters
implement the vendor and technology specific part of managing Images.
In our case we have two adapters, one for the Google Cloud Storage, the
GcsAdapter, and one for the Datastore, the DatastoreAdapter. During the
lecture we use the Datastore, because this does not require to enable billing
with a credit card. To change the storage, just create the according adapter
in ModelMain.startup().

To stay as much vendor independent as possible, the ImageStorage only
works with Serializables, not with Images. They are casted only when
they are need. This abstraction makes it very easy to use for example a
third party image library or to migrate Wahlzeit to another cloud provider
that does not support the Google image classes.

Requests for Images are handled by the StaticDataServlet. It is intended
to serve static data like Images and provide them without overhead. Hence
this functionality is not implemented as a handler.

55

Beside Images, the session handling has to be changed for Wahlzeit 2.0. This
is describe in the following subsection.

5.2.3 Adjust Wahlzeit to GAE session management

GAE offers automatic session management if you enable it. Therefore you
just have to put the tag <sessions-enabled>true</sessions-enabled>
onto the app engine configuration file appengine-web.xml (Google, 2015b).
Only if this is done you can get the HttpSession object directly out
of the HttpServletRequest like it was the case for Wahlzeit 1.2 (see
ensureUserSession() in AbstractServlet.java).

So far the things that behave equivalent, now we look at the changes. GAE
automatically persists HttpSessions in the Google Datastore when the first
request is done. This is done to support scalability. With a persisted session
entity each GAE instance can manage a request no matter what instance
managed the previous request. Sessions are stored as _ah_SESSION entities
with the prefix _ahs (Google, 2015b). Furthermore it is persisted whenever
you call the method setAttribute().

In Wahlzeit 1.2 the UserSession is an attribute of HttpSession. As the
latter is not persisted and the getAttribute()method returns a writable
reference to the UserSession member, this enables you to modify the
UserSessionwithout using setAttribute().

For Wahlzeit 2.0 we have to call .setAttribute() every time UserSession
is changed, otherwise the changes get lost. Therefore the UserSession is
changed to become a wrapper class for HttpSession. It stores its internal
state completely in the HttpSession. This ensures that every change of the
UserSession is persisted immediately. The interface of UserSession nearly
stays the same. This minimizes the necessary changes of other classes using
the UserSession.

Although the handling of the UserSession stays nearly the same, the
classes that are persisted have to be adjusted. To persist a Java object
in the HttpSession the corresponding class and all its members have to
implement the java.io.Serializable interface. Therefore classes like
PhotoId, Client, and ModelConfig implement the Serializable interface
in Wahlzeit 2.0.

56

Although you can define when HttpSessions expire, deleting them from
the Google Datastore requires a custom task. The SessionCleanupServlet2

offered by Google only removes the sessions, but not other entities which
expire with the session. For Wahlzeit this are the Guest entities. If the
HttpSession is expired and deleted, the Guest entities have to be deleted,
too. Therefore we decided to take the SessionCleanupServlet as a model
to create our own tidy up servlet for both Guests and HttpSessions, the
Wahlzeit class SessionCleanupServlet.

Its execution is triggered by a Cron job, currently every 3 hours (see
webapp/WEB-INF/cron.xml). How asynchronous tasks or recurring tasks like
deleting expired sessions are handled in GAE is explained in the following
section.

5.2.4 Replace Java tasks with GAE tasks

Both environments, the Tomcat Server and GAE handle each user request
in an own task. Therefore no adaption is necessary. But in Wahlzeit 1.2
there is one functionality that actively creates Java tasks: sending emails in
an regular interval to all users that have subscribed themselves. To migrate
this functionality we have to get active, because creating standard Java
tasks, is not allowed in GAE. But there is an alternative.

As already mentioned in Subsection 4.3.2, GAE has a Task Queue API
that offers developers to execute a set of tasks asynchronously in the
background. In contrast to a web request, those tasks may need up to 10
minutes (Malawski et al., 2013, p. 51); enough for all our tasks. Each of
them is triggered by an HTTP request. You can pass parameters for the
task in the HTTP get method of the request (Malawski et al., 2013, p. 52).

We use the Task Queue API to send email notifications in Wahlzeit 2.0. The
according functionality is implemented in NotifyUsersAboutPraiseAgent.
The mechanism how to identify praised photos has been adapted, in order
to decouple the PhotoManager and the NotifyUsersAboutPraiseAgent.
Now each photo remembers the praise count of the last notification. Once
a day, all photos are checked if they got praised since the last notific-
ation. If so, an email is generated and send. The according Cron job
triggers the AgentServlet. This servlet processes the request and starts the

2see https://github.com/GoogleCloudPlatform/appengine-java-vm-runtime/

blob/master/appengine-managed-runtime/src/main/java/com/google/apphosting/

utils/servlet/SessionCleanupServlet.java

57

https://github.com/GoogleCloudPlatform/appengine-java-vm-runtime/blob/master/appengine-managed-runtime/src/main/java/com/google/apphosting/utils/servlet/SessionCleanupServlet.java
https://github.com/GoogleCloudPlatform/appengine-java-vm-runtime/blob/master/appengine-managed-runtime/src/main/java/com/google/apphosting/utils/servlet/SessionCleanupServlet.java
https://github.com/GoogleCloudPlatform/appengine-java-vm-runtime/blob/master/appengine-managed-runtime/src/main/java/com/google/apphosting/utils/servlet/SessionCleanupServlet.java

NotifyUsersAboutPraiseAgent via the AgentManager. In contrast to Java
Threads, a running Cron job can not be stopped. Besides sending mails,
two other functionalities work with the Task Queue API.

Scaling an uploaded photo to each offered size and storing it in the Google
Cloud Storage takes longer than scaling and saving it directly on the file
system as it was the case in Wahlzeit 1.2. To avoid unnecessary waiting
time for the user, this process is done asynchronously in the background
after the upload process is completed. The according functionality is
implemented in the PersistPhotoAgent and the PhotoManager. This is the
second functionality that works with the Task Queue API.

The third function that uses the Task Queue API is tidying up the Datastore.
It is implemented in the SessionCleanupServlet. Although you can define
a time span after that an HttpSession is expired, the according entity in
the Datastore is not removed automatically. Furthermore we have to care
about expired guest entities in the Datastore, too. A Guest is found by the
according session ID. Hence, if the session is expired, the Guest is expired,
too.

The mentioned jobs are triggered by HTTP requests handled by servlets.
In the next subsection we have a detailed look on how servlets have to be
adjusted for GAE.

5.2.5 Adjust Java Servlets

GAE uses the Java Servlet 2.5 standard for web applications (Google,
2015i). Wahlzeit 1.2 utilizes the Java Servlet 3.0 with annotations, e.g., in
the class MainServlet. The class is annotated with @MultipartConfig, the
Servlet 3.0 support for file upload. This feature and annotations at all are
not supported in the 2.5 standard and hence in GAE.

Nevertheless file upload is possible in GAE. Google (2015d) suggests to
implement it with the Apache Commons FileUpload package. This is
what we do in Wahlzeit 2.0, too.

The main change in the photo upload process is creating an Image object
instead of a file on the file system (see Wahlzeit 2.0 MainServlet). This object
is associated to the current user for scaling and storing it asynchronously in
the Datastore or the Cloud Storage.

Besides that, the web.xml has to be adjusted for GAE. This file manages
the distribution from ingoing user requests to the servlets. In Wahlzeit 1.2

58

web.xml has 4 tasks. It defines org.wahlzeit.apps.Wahlzeit as the main
listener. Second, it redirects requests for static files like HTML and CSS to
the org.apache.catalina.servlets.DefaultServlet which just serves
the according files as result. Third, other requests are redirected to the
MainServlet of Wahlzeit. Forth, a list of welcome files is defined.

As already mentioned in Subsection 5.2.4, persisting photos is triggered,
after the upload process is completed. As asynchronous tasks are handled
by GAE by HTTP requests and an according task queue, this is processed
in an own servlet, the PersistPhotoAsynchronousServlet. The mapping
to the servlet is also managed by the web.xml.

Photos are served in Wahlzeit 2.0 by the StaticDataServlet, hence those
request are directed to this servlet. This is an own class, because it requires
some logic to load a photo either from the PhotoManager, the Cloud Storage,
or the Datastore.

Also the mapping to the SessionCleanupServlet is introduced. Every 3
hours a Cron job triggers this servlet to search in the Google Datastore
for expired session and guest entities. This servlet has a special security
constraint to avoid the access of unauthorized users. Furthermore once
a day the sending of user notifications is triggered. Those requests are
redirected to the AgentManager.

Finally, Objectify requires a filter that cleans up thread local transac-
tions and asynchronous operations at the end of a request. Hence the
ObjectifyFilter is added at the end of web.xml.

To analyze the correct behavior of the servlets, we make intense use of
logging. How logging changes in Wahlzeit 2.0 is described in the following
section.

5.2.6 Use custom LogBuilder and remove Log4j

The self made management tool of Wahlzeit 1.2 that you use to upload
and deploy Wahlzeit on the department server, offers the possibility to
download the recent log files. Once downloaded you have only a text file.
In case of an exception with a stack trace there is no link to the according
source. Furthermore you have to manually download a new one, every
time you create new log entries. Debugging like this is a cumbersome task.

GAE offers a much better logging management. In the developer console
(Monitoring – Logs) you have a live stream of your application logs. You

59

can filter them, either by the application version, the log level, the time
span, or custom buzz words. Once connected to a repository, you have
links to your source code, too. This makes the debugging process more
efficient.

Wahlzeit 1.2 creates log messages with several additional information, like
the user/service level, the session id, and the client name. Java offers a
Formatter that you can extend to add those information to each log message.
When using a Formatter you only have to call log.info("test message")
and you get

level=sl, session=dkf149KhdFklsw3, client=anon, test message.

But it is not intended and allowed by GAE to adjust this live logging
by an Formatter3. To achieve those log messages without placing those
information into each log message manually, we decide to create a Builder
(Gamma et al., 1995, p. 153–161) for this purpose. It is the LogBuilder with
two factory methods, one for system and one user messages. User messages
(abbreviated with ul) are the direct result of user interactions, like pressing
a button or following a link. System messages (abbreviated with sl) are all
other messages that give you informations about the internal processing of
the Wahlzeit system. Beside the factory methods, there are several methods
that offer extensions to the log message, like adding parameters with their
name, actions, or custom messages.

GAE offers 5 logging level, whereas Java has 7. When creating a log message
in the code we have to define the Java logging level. In the developer
console we se the according GAE logging level. How they are mapped, and
how they are used in Wahlzeit 2.0 is visualized in Figure 5.2.

The last great essential adjustment of Wahlzeit is the email service. It is
described in the following subsection.

5.2.7 Adjust email service to work with GAE

There are two use cases in Wahlzeit when an email is send, first, when
you register, a confirmation mail is send to you, and second, when one of
your photos gets praised and you want to get notifications, once a day an
according email is send. Therefore Wahlzeit 1.2 uses the javax.mail classes.
GAE supports them, too. Hence the overall structure of the Wahlzeit
package services.mailing does not have to be adjusted.

3see https://stackoverflow.com/questions/30345665

60

https://stackoverflow.com/questions/30345665

Java logging level GAE logging level Wahlzeit logging level

Severe

Warning

Info

Config

Fine

Finer

Finest

λ

i

!

!!

!!! Critical

Error

Warning

Info

Debug

Debug

Debug

Debug

GAE critical error

uncompensable error

compensble error

important events

debug stuff

—

—

—

Figure 5.2: Mapping of Java to GAE logging levels and their usages in
Wahlzeit 2.0.

The main changes are necessary in SmtpEmailService. For initializing this
service in Wahlzeit 1.2 host address, port, user name, and password are
necessary. In Wahlzeit 2.0 you only need host and protocol. Usually you do
not have to change them which means you can use the default ones.

GAE offers 3 possibilities for the sender email address (Google, 2015k):

1. Gmail/Google Apps Account of current user,

2. Any address of the own name space: *@appname.appspotmail.com
or *@appalias.appspotmail.com, or

3. Any email address in the Email API Authorized Senders list.

We send emails from a Cron job that has no signed in Google user, hence
Possibility 1 is dropped. We can get appname or appalias dynamically from
the according GAE SystemProperty and therefore do not need adjustments
for a new Wahlzeit instance in order to send emails with Possibility 2.
Possibility 3 requires at least adjustments in the list of authorized senders
for each new Wahlzeit instance. To minimize the effort for setting up a new
Wahlzeit instance, we select possibility 2 for sending Wahlzeit 2.0 emails.

61

We furthermore do not need a special Authenticator for sending emails,
hence the custom SmtpAuthenticator class is dropped.

Beside the essential necessary adjustments of Wahlzeit to run in GAE, we
did some convenience and security adjustments of Wahlzeit, which are
described in the following section.

5.3 Convenience and security adjustments

In addition to the complete migration of Wahlzeit 1.2 to GAE, we made
Wahlzeit 2.0 more secure (see Subsection 5.3.1), updated and extended its
unit tests (see Subsection 5.3.2), and corrected the Wahlzeit 1.2 bugs that
we identified during the migration (see Subsection 5.3.3). Furthermore we
found inconsistencies in Wahlzeit 2.0, some of them were already present in
Wahlzeit 1.2. We describe and suggest a solution for them in Appendix B.

5.3.1 Google user management instead of custom one

In Wahlzeit 1.2 the complete user management is self made. For a new
Wahlzeit instance an administrator is created automatically with a default
password4. Each time a new user registers, an according object is created and
persisted. This includes both, the user name and the plain text password.
This self made user management has several critical disadvantages:

• A new Wahlzeit instance has an administrator with known password.

• Each person with access to the Datastore sees all passwords.

• Each person with access to the Datastore can modify all passwords.

• The custom login mechanism has potentially errors that allow attacks.

GAE offers the Users Java API that works with Google accounts (Google,
2015o). The API offers a login screen with the according login mechanism.
In the local test environment, arbitrary user name password combinations
can be used. Once deployed to GAE, you need a valid Google account to
sign in. Using this Google user management eliminates all of the previously
mentioned disadvantages. Furthermore we do not have to care about the
registration process. The only disadvantage of the Google user management

4The default password is documented in the readme file.

62

is that you need a Google account. There exist persons that do not want to
create accounts in services of Internet giants like Google. In order to protect
the ones better that work with Wahlzeit 2.0, we use the Users Java API from
Google.

The class UserService creates the login screen and the Users Java API cares
about the registration process. Hence we can remove the Wahlzeit login
screen LoginForm.html and the SignupFormHandlerwith its SignupForm.html.
Furthermore we can remove the confirmationCode in the User and the
according functionality. Another member of User that can be removed is
the password. It stays completely at Google. Wahlzeit 2.0 only gets the
email address, the nickname, and the login status of a user.

The UserService also creates a logout functionality, which does not fully
replaces the Wahlzeit LogoutHandler but in the AbstractModelConfig the
according logout link has to be adjusted to trigger the logout functionality
of the UserService. Another problem that is now solved is the creation
of the default administrator. This creation is removed completely. When
a new Wahlzeit 2.0 instance is created, it starts with no users. To get an
administrator account you either have to login with the account of the one
that deployed the Wahlzeit instance, or another administrator that is listed
in the Developer Console of the Wahlzeit instance.

To automatically test the new and the old functionality of Wahlzeit we
updated the JUnit tests to the current version of the test framework and
extended them by tests of the new functionality. This is described in the
following subsection.

5.3.2 Migrate unit tests to JUnit 4.12

As already mentioned in Subsection 4.4.3 all TestSuites have been removed
in Wahlzeit 2.0 because their functionality is contained in most of the IDEs
and within the Gradle build file. Furthermore redundant code of several
test cases is no longer encapsulated in super classes where it is limited to
the single inheritance of Java. It is now within own classes that can be used
in arbitrary test classes.

We start with the package org.wahlzeit.handlers. In Wahlzeit 1.2 it
contains five Java classes and one interface. One of the classes is the JUnit
test case of this package, TellFriendTest. The class HandlerTestSetup for
example ensures that the SessionManager provides a mock session. This
functionality is used in other test cases, too. Hence we have here code

63

duplication, because other test cases have own super classes. This setup
task is implemented in Wahlzeit 2.0 by the class UserSessionProvier. It
can be used via @Rules in the test cases of other packages, UserManagerTest
and LogBuilderTest, too.

The TellFriendTest defines its dependencies by @Rules and @ClassRules.
Two @ClassRules are setting up SysConfing and WebFormHandler before
the execution of the unit tests. They have no dependencies between each
other, hence no RuleChain is necessary. Before each test case the @Rules
are executed to provide an empty local Datastore, a registered Objectify
environment, and a UserSession. As these @Rules are dependent on each
other, their execution order is defined by a RuleChain. Hereafter the
setUp() method is executed. After the execution of a test case, first the
tearDown() method, then the @Rules, and at the end of the test class the
@ClassRules are executed.

In the package org.wahlzeit.modelwe made use of the expected property
to explicitly define what has been implemented in Wahlzeit 1.2 like follows:

try {
2 AccessRights.getFromInt(5);

fail("getFromString() method did not throw

IllegalArgumentException");

4 } catch (Throwable ex) {
assertTrue(ex instanceof IllegalArgumentException);

6 }

We now have

@Test(expected = IllegalArgumentEsception.class)

at the beginning of the according test case. The expected property is used
in AccessRightTest and GenderTest, too. Now the test cases of the regular
and the ones of the error behavior are clearly separated. We applied the
same for VersionTest in the package org.wahlzeit.utils.

In the models.persistence package we introduce DatastoreAdapterTest
and GcsAdapterTest. They test the functionality of the ImageStorage
adapters to load and persist images. As both adapters implement the same
interface a super test class is quite useful.

In the package org.wahlzeit.serivces we created a new test class, the
LogBuilderTest. It tests the functionality of the class LogBuilder in-
troduced in Wahlzeit 2.0. To set up the proper test environment five

64

@ClassRules are necessary. They are interconnected by a RuleChain be-
cause they are dependent on each other.

The new package org.wahlzeit.testEnvironmentProvider contains all
classes that are used as Rules or ClassRules in other test cases. They are put
into an own package, because they do not belong directly to one package,
they can be used by all unit tests.

Besides the test cases we corrected some bugs and inconvenient behavior
that is already present in Wahlzeit 1.2. They are described in the following
subsection.

5.3.3 Corrected bugs

In the following we describe bugs and inconvenient behavior of Wahlzeit 1.2
that is corrected in Wahlzeit 2.0.

Deploying a new Wahlzeit version deletes all session information. Ses-
sions are not persisted in Wahlzeit 1.2, hence deploying a new version
removes the information about the login status of all active users; as a
result they get logged out and their changed settings get lost. Due to the
persistence of sessions in Wahlzeit 2.0 this behavior is corrected. You only
recognize that your request might take several seconds if the deployed
Wahlzeit instance is currently setting up. Even this can be avoided. There-
fore deploy the adjusted Wahlzeit with a new version, wait until it is ready,
and then switch the default version, that is provided to the customer, to the
new version.

The selected language shown at the bottom of the page and in the settings
are not synchronized. In Wahlzeit 1.2 the language is saved in both,
UserSession and User. Their synchronization is not very consistent, hence
you can easily generate the status that the language shown in the settings
and the one shown at the bottom of the page are not the same. In Wahlzeit 2.0
some properties are already moved from the UserSession to other classes
in order to remove sessions completely (see Section 4.6). The language
is one of them. It is now solely saved in the User class. This means no
inconsistencies anymore.

65

Refreshing the current page loads a new random photo. In Wahlzeit 1.2
pressing F5 loads a new photo. But refreshing a page means loading the
same page with the same content again. Hence we corrected this behavior.
In Wahlzeit 2.0 pressing F5 loads the current page with the current photo
again, instead of a new photo. This is important, if you have no stable
Internet connection and the page did not arrived completely at your device.
When reloading the page you do not want to see another photo. Therefore
use the skip functionality.

The previous photo gets lost when another Wahlzeit site is loaded.
When you rate Photo A, Photo B is loaded as a new photo. The thumbnail
of Photo A is shown at the left side of the page as the previous photo. If you
go now to the settings page to change some preferences and come back to
Photo B, the information about the previous Photo A is lost in Wahlzeit 1.2.
It is saved in the UserSession and removed, when a new page is loaded.
In Wahlzeit 2.0 the order of photos is managed by the PhotoManager, so
you always get the same previous photo, no matter what page you visit in
between. This is also a step towards a RESTful API. The result of a request
should always be the same, independent of the client session.

The first gender is shown in the profile, not the current. Wahlzeit offers
you to select between two genders in your settings. The first in the list is
male, the second female. When you select female and return to the settings
page, male is shown. Indeed the gender is set correctly in Wahlzeit, but the
HTML page that you get, always comes with the first gender selected. This
behavior is corrected in Wahlzeit 2.0 with https://github.com/tfrdidi/
MigrateWahlzeitIntoTheCloud/commit/5512a577c0c45f6c208bc.

66

https://github.com/tfrdidi/MigrateWahlzeitIntoTheCloud/commit/5512a577c0c45f6c208bc
https://github.com/tfrdidi/MigrateWahlzeitIntoTheCloud/commit/5512a577c0c45f6c208bc

6 Conclusion and outlook

In Section 2.2 we list the goals of this thesis. Now we analyze if they are
fulfilled.

Mandatory Goal 1 is to migrate Wahlzeit into the cloud. We selected Google
App Engine as target cloud service and migrated Wahlzeit with all its func-
tionalities to this new platform. In Subsection 4.3.3, especially in Table 4.2
we verified the necessary requirements as fulfilled. The implementation is
described in Chapter 5. Thereby the most important goal is reached.

Although the next goal is optional (analyze the application evolution) we
fulfilled it, as described in Section 4.4. We removed IDE dependencies,
adjusted the building activity with Gradle, we furthermore updated the
tests. Because of cost reasons we do not change the deployment activity.
Furthermore we analyzed the collaboration of all these activities. This
optional goal is reached, too.

For the next optional goal, the UI renovation, we laid the foundations in
this thesis. As described in Section 4.5 the first step is a clear separation of
UI and Wahlzeit core. To make the core as flexible as possible for different
clients, we suggest to transform it into a RESTful service (see Section 4.6).

The second mandatory goal is to analyze the multi-tenant ability for Wahlzeit.
As described in Section 3.3 multi-tenant software offers some advantages
for SaaS providers. But such a software must also have some core features
that are not yet present in Wahlzeit and need a great effort to implement.
Examples are security isolation, performance isolation, and on the fly
customization. Besides that great effort, a multi-tenant Wahlzeit running
on one GAE instance does not profit from the free quotas of several GAE
instances. One multi-tenant instance increases effort and cost and therefore
infringes our requirements for the migration. Unless it is foreseeable to sell
Wahlzeit in a great extend, we recommend to use the multi-tenancy of GAE
instead of implementing an own in Wahlzeit. Also this goal is fulfilled.

67

Appendix :

The last optional goal is analyzing the extension of Wahlzeit to a framework
that can be adjusted by plug-ins. Similar to the multi-tenant ability, this
would mean one Wahlzeit core provides different theme specific extensions.
One main advantage of a plug-in framework would be a faster deploy
process. As the effort of deploying a new Wahlzeit version to GAE is not
that big (< 1 minute with standard Internet connection), this goal has first
of all scientific character. Its application would be, running several tenants
that can only adjust a limited part of Wahlzeit. It saves resources, because
only one Wahlzeit core runs on the system. But great effort is necessary
to secure the plug-ins from each other, and to enable the users to adjust
Wahlzeit to their needs. Hence we suggest to not extend Wahlzeit to such a
framework unless the general conditions for Wahlzeit change drastically.

In addition to the fulfillment of all goals, we corrected bugs and inconvenient
behavior (see Section 5.3.3) and made suggestions for the remaining open
ones (see Appendix B).

For the future development we recommend to make Wahlzeit a RESTful
service as described in Section 4.6. Afterwards the UI should be renovated.
During this process a special focus should be a responsive web site, that can
be used on both, a mobile device and a desktop Personal Computer (PC)
without limitations. If this is implemented correctly, the need for an
additional mobile app is gone from the current point of view.

68

Appendix A GAE Java Class Checker

import fnmatch, os, re, urllib2, collections
2 from collections import defaultdict

4 sourceDirectory = "/home/didi/Projekte/legacyWahlzeit/
MigrateWahlzeitIntoTheCloud/src/main/java"

6 packageName = "org.wahlzeit"

8 # empirical list, based on the migration experience of wahlzeit ,

there are more for other projects

10 gaeSupportedPackages = ["com.google.common", "com.google.api",
"com.google.appengine", "com.googlecode.objectify",

12 "org.apache.commons.fileupload", "org.apache.http"]

14 blacklistPackages = ["java.sql"]

16 GAEWhitelistPath = "https://cloud.google.com/appengine/docs/java
/jrewhitelist"

18 pathOffsetLen = len(sourceDirectory) + len(packageName) + 2

20 def downloadGAEJavaWhitelist():
packageLinePattern = re.compile("[a-z|A-Z|\.]+")

22 pageSource = urllib2.urlopen(GAEWhitelistPath).read()
packageLines = re.findall(packageLinePattern , pageSource)

24 GAEJavaWhitelist = []
for packageLine in packageLines:

26 newClass = packageLine[4:-5]
appendNewClass = True

28 for blacklistPackage in blacklistPackages:
if blacklistPackage in newClass:

30 appendNewClass = False
if appendNewClass:

32 GAEJavaWhitelist.append(newClass)

return GAEJavaWhitelist
34

def isImportSupported(importLine):
36 result = False

for supportedPackage in gaeSupportedPackages:
38 if supportedPackage in importLine:

result = True
40 if result == False and packageName in importLine:

result = True
42 return result

44

69

Appendix A: GAE Java Class Checker

importPattern = re.compile("import .+;")
46 GAEJavaWhitelist = downloadGAEJavaWhitelist()
print "whitelist length: " + ‘len(GAEJavaWhitelist)‘

48 filesToAdjust = defaultdict(list)
unsupportedPackages = []

50

for root, dirnames , filenames in os.walk(sourceDirectory):
52 for filename in fnmatch.filter(filenames , ’*.java’):

path = os.path.join(root, filename)
54 for line in open(path).readlines():

for match in re.finditer(importPattern , line):
56 if not isImportSupported(line):

lineSplit = line.split()
58 package = lineSplit[len(lineSplit)-1][:-1]

if package not in GAEJavaWhitelist:
60 shortPath = path[pathOffsetLen:len(path)-5]

filesToAdjust[shortPath].append(package)

62 if package not in unsupportedPackages:
unsupportedPackages.append(package)

64

66 print ‘len(unsupportedPackages)‘ + " diffent potentially
unsupported imported classes:"

unsupportedPackages.sort()

68 for element in unsupportedPackages:
print element

70

print "\n" + ‘len(filesToAdjust)‘ + " files to adjust:"
72 orderedFilesToAdjust = collections.OrderedDict(sorted(

filesToAdjust.items(), key=lambda t: t[0]))
for k, v in orderedFilesToAdjust.items():

74 print(k + ’ includes ’)
for w in v:

76 print("\t" + w)

70

Appendix B Suggested adjustments

Beside the already corrected inconsistencies and bugs listed in Subsec-
tion 5.3.3 one task raised at the end of the Wahlzeit 2.0 development, and
two old inconsistencies have not been corrected, because correcting bugs
is not the focus of this thesis. We list them in the following for future
development.

Remove or correct dead links to a Wahlzeit blog. The page footer and the
page shown when all photos have been praised, contain a link to a Wahlzeit
blog. Both lead to a non existing site. We suggest either to correct those
links to lead to an existing Wahlzeit blog, or to remove them completely.

Adjust the authorization method. In Wahlzeit 2.0 use the OpenID au-
thorization method for users. But we recognized it right at the end of
the development, that it is declared as deprecated. Google suggest to use
OAuth 2.0 instead (Google, 2015o, 2015q).

Implement a user page showing the profile of another user. For each
photo in Wahlzeit the name of the owner is shown as a link, but against the
intuitive expectation the link does not lead to the user page of the owner.
Instead the link silently adjusts the photo filter. Afterwards only photos
of the owner are shown and a new photo from the owner is loaded, if
there is one left. The user does not get any visible feedback about what is
happening. Neither the URI changes, nor a message is shown that only
photos from this owner are shown. Only when you click on the link to
toggle the filter, you see that the owner is used as filter.

There are three options to solve that inconsistency:

• remove the link completely, only show the owner name,

• when clicking on the link show a message that only photos of the
owner are shown, and unfold the filter without an additional click, or

• create a user page for other users that includes a list of all uploaded
photos of this user.

We suggest to implement the last option.

71

Changes of ObjectManager

Appendix C Changes of ObjectManager

ObjectManager

- databaseConnection : DatabaseConnection

+ getReadingStatement(String) : PreparedStatement
+ readObject(PreparedStatement, int) : Persistent
+ readObject(PreparedStatement, String) : Persistent
+ readObjects(Collection, PreparedStatement) : void
+ readObjects(Collection, PreparedStatement, String) : void
+ createObject(Persistent, PreparedStatement, int) : void
+ createObject(Persistent, PreparedStatement, String) : void
+ getUpdatingStatement(String) : PreparedStatement
+ updateObject(Persistent, PreparedStatement) : void
+ updateObjects(Collection, PreparedStatement) : void
+ updateDependents(Persistent) : void
+ deleteObject(Persistent, PreparedStatement) : void
+ assertIsNonNullArgument(Object) : void
+ assertIsNonNullArgument(Object, String) : void
createObject(ResultSet)

Figure 6.1: Old ObjectManager

72

ObjectManager

+ readObject(Class<E>, Long) : E
+ readObject(Class<E>, String) : E
+ readObject(Class<E>, String, Object) : E
+ readObjects(Collection<E>, Class<E>) : void
+ readObjects(Collection<E>, Class<E>, String, Object) : void
+ updateObject(Collection<? extends Persistent>) : void
+ updateObject(Persistent) : void
+ updateDependents(Persistent) : void
+ writeObject(Persistent) : void
+ deleteObject(E) : void
+ deleteObjects(Class<E>, String, Object) : void
+ assertIsNonNullArgument(Object, String) : void
+ assertIsNonNullArgument(Object) : void

Figure 6.2: New ObjectManager

73

References

Beck. (1996). Smalltalk best practice patterns. Prentice-Hall.
Beimborn, Miletzki & Wenzel. (2011). Platform as a service. Wirtschaftsin-

formatik, 53(6), 371–375. doi: 10.1007/s11576-011-0294-y
Binz, Leymann & Schumm. (2011). Cmotion: A framework for migration

of applications into and between clouds. In Service-oriented computing
and applications (pp. 1–4). doi: 10.1109/SOCA.2011.6166250

Buyya, Yeo, Venugopal, Broberg & Brandic. (2009). Cloud computing
and emerging it platforms. Future Generation Computer Systems, 25(6),
599–616. doi: 10.1016/j.future.2008.12.001

Ciurana. (2009). Google app engine. In Developing with google app engine
(pp. 1–10). Apress. doi: 10.1007/978-1-4302-1832-6 1

Dusseault & Snell. (2010). Patch method for http. Online: https://tools
.ietf.org/html/rfc5789. (visited 24.08.15)

Fielding. (2000). Architectural styles and the design of network-based software
architectures (dissertation, University of California, Irvine). Retrieved
from https://www.ics.uci.edu/˜fielding/pubs/dissertation/

fielding dissertation.pdf

Fowler. (2000). Continuous integration. Online: http://www.martinfowler
.com/articles/originalContinuousIntegration.html. (visited
06.24.15)

Frey, Hasselbring & Schnoor. (2013). Automatic conformance checking for
migrating software systems to cloud infrastructures and platforms.
Journal of Software, 25(10), 1089–1115. doi: 10.1002/smr.582

Gamma, Helm, Johnson & Vlissides. (1995). Design patterns – elements of
reusable object-oriented software. Addison-Wesley.

Google. (2015a). Cloud sql. Online: https://cloud.google.com/sql.
(visited 06.30.15)

Google. (2015b). Configuring appengine-web.xml. Online: https://
cloud.google.com/appengine/docs/java/config/appconfig. (vis-
ited 08.08.15)

74

http://dx.doi.org/10.1007/s11576-011-0294-y
http://dx.doi.org/10.1109/SOCA.2011.6166250
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/978-1-4302-1832-6_1
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc5789
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.martinfowler.com/articles/originalContinuousIntegration.html
http://www.martinfowler.com/articles/originalContinuousIntegration.html
http://dx.doi.org/10.1002/smr.582
https://cloud.google.com/sql
https://cloud.google.com/appengine/docs/java/config/appconfig
https://cloud.google.com/appengine/docs/java/config/appconfig

Google. (2015c). Customers. Online: https://cloud.google.com/
customers. (visited 06.10.15)

Google. (2015d). Google app engine for java questions. Online: https://
cloud.google.com/appengine/kb/java. (visited 08.11.15)

Google. (2015e). Google app engine: Platform as a service. Online: https://
cloud.google.com/appengine/docs. (visited 07.14.15)

Google. (2015f). Images java api overview. Online: https://cloud.google
.com/appengine/docs/java/images. (visited 08.07.15)

Google. (2015g). Java client for google cloud storage. On-
line: https://cloud.google.com/appengine/docs/java/

googlecloudstorageclient. (visited 07.24.15)
Google. (2015h). Java datastore api. Online: https://cloud.google.com/

appengine/docs/java/datastore. (visited 07.09.15)
Google. (2015i). Java runtime environment. Online: https://cloud.google

.com/appengine/docs/java. (visited 08.11.15)
Google. (2015j). The jre class white list. Online: https://cloud.google.com/

appengine/docs/java/jrewhitelist. (visited 06.19.15)
Google. (2015k). Mail java api overview. Online: https://cloud.google

.com/appengine/docs/java/mail. (visited 08.15.15)
Google. (2015l). Push-to-deploy with jenkins. Online: https://cloud.google

.com/tools/repo/push-to-deploy. (visited 07.02.15)
Google. (2015m). Quotas. Online: https://cloud.google.com/

appengine/docs/quotas. (visited 07.14.15)
Google. (2015n). Uploading and managing a java app. Online: https://cloud

.google.com/appengine/docs/java/tools/uploadinganapp. (vis-
ited 06.29.15)

Google. (2015o). Users java api overview. Online: https://cloud.google
.com/appengine/docs/java/users. (visited 08.17.15)

Google. (2015p). Using apache maven. Online: https://cloud.google.com/
appengine/docs/java/tools/maven. (visited 06.29.15)

Google. (2015q). Using oauth 2.0 with the google api client library for java.
Online: https://developers.google.com/api-client-library/

java/google-api-java-client/oauth2. (visited 08.24.15)
Guo, Sun, Huang, Wang & Gao. (2007). A framework for native multi-

tenancy application development and management. In E-commerce
technology (pp. 551–558). doi: 10.1109/CEC-EEE.2007.4

Hayes. (2008). Cloud computing. Communications of the ACM, 51(7), 9–11.
doi: 10.1145/1364782.1364786

Höfer & Karagiannis. (2011). Cloud computing services: taxonomy and
comparison. Journal of Internet Services and Applications, 2(2), 81–94.
doi: 10.1007/s13174-011-0027-x

75

https://cloud.google.com/customers
https://cloud.google.com/customers
https://cloud.google.com/appengine/kb/java
https://cloud.google.com/appengine/kb/java
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs
https://cloud.google.com/appengine/docs/java/images
https://cloud.google.com/appengine/docs/java/images
https://cloud.google.com/appengine/docs/java/googlecloudstorageclient
https://cloud.google.com/appengine/docs/java/googlecloudstorageclient
https://cloud.google.com/appengine/docs/java/datastore
https://cloud.google.com/appengine/docs/java/datastore
https://cloud.google.com/appengine/docs/java
https://cloud.google.com/appengine/docs/java
https://cloud.google.com/appengine/docs/java/jrewhitelist
https://cloud.google.com/appengine/docs/java/jrewhitelist
https://cloud.google.com/appengine/docs/java/mail
https://cloud.google.com/appengine/docs/java/mail
https://cloud.google.com/tools/repo/push-to-deploy
https://cloud.google.com/tools/repo/push-to-deploy
https://cloud.google.com/appengine/docs/quotas
https://cloud.google.com/appengine/docs/quotas
https://cloud.google.com/appengine/docs/java/tools/uploadinganapp
https://cloud.google.com/appengine/docs/java/tools/uploadinganapp
https://cloud.google.com/appengine/docs/java/users
https://cloud.google.com/appengine/docs/java/users
https://cloud.google.com/appengine/docs/java/tools/maven
https://cloud.google.com/appengine/docs/java/tools/maven
https://developers.google.com/api-client-library/java/google-api-java-client/oauth2
https://developers.google.com/api-client-library/java/google-api-java-client/oauth2
http://dx.doi.org/10.1109/CEC-EEE.2007.4
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1007/s13174-011-0027-x

References

IBM. (2015). Ibm bluemix. Online: https://console.ng.bluemix.net.
(visited 06.06.15)

Jamshidi, Ahmad & Pahl. (2013). Cloud migration research: A systematic
review. Cloud Computing, IEEE Transactions on, 1(2), 142–157. doi:
10.1109/TCC.2013.10

Jelastic. (2015). Jelastic unlimited PaaS and container-based IaaS. Online:
https://jelastic.com. (visited 06.06.15)

Jonge. (2011). Essential app engine. Pearson Education. Retrieved from
https://books.google.de/books?id=59ltM nz048C

Karttunen, Kröger, Oja, Poutanen & Donner. (2007). Fundamental astronomy.
Springer. doi: 10.1007/978-3-540-34144-4

Kircher & Jain. (2002). Pooling. In Europlop (pp. 497–510).
Majewski. (2014). Coordinate systems. Online: http://www.astro.virginia

.edu/class/majewski/astr551/lectures/COORDS/coords.html.
(visited 06.24.15)

Malawski, Kuźniar, Wójcik & Bubak. (2013). How to use google app
engine for free computing. Internet Computing, IEEE, 17(1), 50–59. doi:
10.1109MIC.2011.143

Mell & Grance. (2011). The nist definition of cloud computing. On-
line: http://www.nist.gov/manuscript-publication-search.cfm
?pub id=909616. NIST. (visited 06.23.15)

Microsoft. (2015). Microsoft azure. Online: https://azure.microsoft.com.
(visited 06.07.15)

Mooney. (1990). Strategies for supporting application portability. Computer,
23(11), 59–70. doi: 10.1109/2.60881

Muschko. (2014). Gradle in action. Manning Publications Co.
Oracle. (2015). Oracle java cloud service. Online: https://cloud.oracle

.com/java. (visited 06.06.15)
OutSystems. (2015). Rapid application delivery platform for the enterprise.

Online: http://www.outsystems.com. (visited 07.07.15)
Pivotal. (2015). Home — pivotal. Online: https://pivotal.io. (visited

07.07.15)
redhat. (2015). Openshift by red hat. Online: https://openshift.com.

(visited 07.06.15)
Riehle. (2000a). Method properties in java. Java Report, 5(5), 62–77. (On-

line: http://dirkriehle.com/computer-science/industry/2000/
jr-2000-method-properties.html)

Riehle. (2000b). Method types in java. Java Report, 5(2), 22–26. (On-
line: http://dirkriehle.com/computer-science/industry/2000/
jr-2000-method-types.html)

76

https://console.ng.bluemix.net
http://dx.doi.org/10.1109/TCC.2013.10
https://jelastic.com
https://books.google.de/books?id=59ltM_nz048C
http://dx.doi.org/10.1007/978-3-540-34144-4
http://www.astro.virginia.edu/class/majewski/astr551/lectures/COORDS/coords.html
http://www.astro.virginia.edu/class/majewski/astr551/lectures/COORDS/coords.html
http://dx.doi.org/10.1109MIC.2011.143
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909616
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909616
https://azure.microsoft.com
http://dx.doi.org/10.1109/2.60881
https://cloud.oracle.com/java
https://cloud.oracle.com/java
http://www.outsystems.com
https://pivotal.io
https://openshift.com
http://dirkriehle.com/computer-science/industry/2000/jr-2000-method-properties.html
http://dirkriehle.com/computer-science/industry/2000/jr-2000-method-properties.html
http://dirkriehle.com/computer-science/industry/2000/jr-2000-method-types.html
http://dirkriehle.com/computer-science/industry/2000/jr-2000-method-types.html

Rossberg. (2009). Application lifecycle management. In Pro visual studio
team system application lifecycle management (pp. 23–41). Apress. doi:
10.1007/978-1-4302-1079-5 2

Sadiku, Musa & Momoh. (2014, Jan). Cloud computing: Opportunit-
ies and challenges. Potentials, IEEE, 33(1), 34–36. doi: 10.1109/M-
POT.2013.2279684

Salesforce.com. (2015). Data integration tools: Platform enterprise solutions. On-
line: https://salesforce.com/en/salesforce1. (visited 07.07.15)

Schnitzer, J. (2015). Objectify. Online: https://github.com/objectify/
objectify. (visited 06.26.15)

Tilkov, Eigenbrodt, Schreier & Wolf. (2015). Rest und http. Dpunkt Verlag.
Tran, Keung, Liu & Fekete. (2011). Application migration to cloud. In

Proceedings of the 2nd international workshop on software engineering for
cloud computing (pp. 22–28). ACM. doi: 10.1145/1985500.1985505

Vu & Asal. (2012). Legacy application migration to the cloud: Practicability
and methodology. In Services, 2012 ieee eighth world congress on (pp.
270–277). doi: 10.1109/SERVICES.2012.47

Walraven, Truyen & Joosen. (2014). Comparing paas offerings in light of
saas development. Computing, 96(8), 669–724. doi: 10.1007/s00607-
013-0346-9

Weisbecker, Falkner & Höß. (2014). Integrationsszenarios und -plattformen
für die migration von anwendungssystemen in die cloud. Praxis der
Wirtschaftsinformatik, 51(2), 119–130. doi: 10.1365/s40702-014-0018-z

77

http://dx.doi.org/10.1007/978-1-4302-1079-5_2
http://dx.doi.org/10.1109/MPOT.2013.2279684
http://dx.doi.org/10.1109/MPOT.2013.2279684
https://salesforce.com/en/salesforce1
https://github.com/objectify/objectify
https://github.com/objectify/objectify
http://dx.doi.org/10.1145/1985500.1985505
http://dx.doi.org/10.1109/SERVICES.2012.47
http://dx.doi.org/10.1007/s00607-013-0346-9
http://dx.doi.org/10.1007/s00607-013-0346-9
http://dx.doi.org/10.1365/s40702-014-0018-z

	List of Abbreviations
	List of Figures
	Introduction
	Requirements
	Technical setup of Wahlzeit1.2
	Students activity: deploy Wahlzeit on their own PC
	Students activity: deploy Wahlzeit online
	Students activity: debug Wahlzeit online
	Staff activity: maintain Wahlzeit server

	Goals

	Related work
	Introduction into cloud computing
	Taxonomy of cloud migration types
	Adapting a software for multi tenants

	Design
	Selection of a cloud service for Wahlzeit
	Description of Google App Engine
	Estimation of migration effort
	Migrating storage components of Wahlzeit
	Identify classes of Wahlzeit that have to be adjusted
	Discussion of migration effort

	Development process in the cloud
	Remove IDE dependencies
	Adjust building activity
	Adjust testing activity
	Adjust deployment activity
	Collaboration of building, testing, and deployment

	Effort for UI renovation
	Design of a RESTful API for Wahlzeit
	Resources with unique identification
	Links and hypermedia
	Standard methods
	Different representations
	Stateless communication

	Implementation
	Coding guidelines
	Essential migration steps
	Change SQL database to Google Datastore
	Migrate the photo storage
	Adjust Wahlzeit to GAE session management
	Replace Java tasks with GAE tasks
	Adjust Java Servlets
	Use custom LogBuilder and remove Log4j
	Adjust email service to work with GAE

	Convenience and security adjustments
	Google user management instead of custom one
	Migrate unit tests to JUnit 4.12
	Corrected bugs

	Conclusion and outlook
	Appendix GAE Java Class Checker
	Appendix Suggested adjustments
	Appendix Changes of ObjectManager

	References

