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Abstract

Technical debt is a metaphor to describe the trade of quality for short term goals.
It is used to discuss the effects of short term goals on quality and productivity
thereafter.

While most research on technical debt is based on code metrics or qualitative
investigations, this thesis explores the possibility to derive a model to compute
technical debt based on project management data.

For this, metrics are calculated from the data. They are compared to a known
technical debt process to assess their suitability for prediction. Hereby, the quality
of the data plays an important role for the usability of the results.

While the use of management data promises more insights in technical debt, it
suffers from the many factors that can influence the data.
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1 Introduction

1.1 Original thesis goals

Technical debt is a concept that has attracted increased attention recently. The
donation of project management data from the SoftwareAG opened an oppor-
tunity to use this kind of data to derive a metric for technical debt.

The original goal was to use the data to construct a mathematical model on top
of it to derive a measure for technical debt. This could then be used to steer
software projects.

The assumption was that management decisions lead to a change in technical
debt. It also has an impact on measurable values like the defect rate. To model
technical debt, a bijective function that maps those values to technical debt was
sought.

1.2 Changes to thesis goals

The data had deficiencies and lacked neccessary information to build a model.
The goal then shifted to describe what can be expressed with the data and what
would be needed to create a proper model.

Instead of a mapping between the data and technical debt, some indicators for
technical debt are assessed. The combined indicators are expected to give hints
to the progress of technical debt.



2 Research

2.1 Introduction

Software metrics are a widely used tool to estimate software quality and devel-
opment progress. They serve for example as an early indicator if a project needs
more man power or time for a successful completion of a project and are thus
used as a base for management decisions. (Stark, Durst & Vowell, 1994).

Technical debt is a metric that is not based directly on source code analysis but
builds on top of other metrics. It describes the process of acquiring short term
productivity at the cost of quality. Deteriorated quality then endangers devel-
opment speed in the long term. The accrued technical debt can then be “paid
back” by investing effort onto quality improvement to ameliorate the negative
long term impacts.

With this metaphor, technical debt tries to recast a technical concept as an
economic one (Brown et al., 2010) to facilitate the value of quality to stakehold-
ers (Nord, Ozkaya, Kruchten & Gonzalez-Rojas, 2012).

Existing work on technical debt is mostly concerned with source code, but has
expanded to cover different aspects and artefacts of the software development.
This leads to definitions of, among others, architectural debt, requirement debt,
or documentation debt (Sterling, 2010; Kruchten, Nord & Ozkaya, 2012).

The data that is taken as a base, thus, ranges from source code analysis (Mayr,
Plosch & Korner, 2014; Nugroho, Visser & Kuipers, 2011) to qualitative re-
search (Klinger, Tarr, Wagstrom & Williams, 2011).

This thesis tries to evaluate, whether it is possible to use more abstract data, i.e.
management data from a bug tracker that was used to log effort spent on work
items, as a base for a technical debt model.

This debt model can help to get a better understanding of technical debt in a
software development process by giving an additional method to calculate tech-
nical debt. On the other hand, technical debt derived this way includes many



of the other technical debt deductions because all the different sources that are
taken in isolation for other approaches contribute to the management data looked
upon here.

2.2 Related work

Fenton and Neil (Fenton & Neil, 1999) discuss, that software metrics are often
introduced to obtain a quality certificate and less because of their helpfulness.
They argue, that they say less about the quality of the code but instead hint
to the amount of testing done. The metrics employed are often basic metrics
like lines of code (LOC) or cyclomatic complexity (McCabe, 1976), while more
complex metrics are often neglected.

The Technical Debt metaphor was introduced by Ward Cunningham (Cunningham,
1993) and has attracted more and more attention (Kruchten, Nord, Ozkaya &
Falessi, 2013).

According to Klinger et al. (Klinger et al., 2011), technical debt has the problem
that different people are responsible for incurring technical debt than for repaying
this debt. The technical debt metaphor therefore helps to raise awareness and
by quantifying it, provides a tool to talk about quality.

Technical debt differentiates between unintentionally and intentionally incurred
debt. While the former cannot be avoided completely and only alleviated through
better educated developers and more care while developing, the latter is a con-
scious decision (McConnell, 2008).

The resulting technical debt is composed from remediation costs and non-remediation
costs, which are the costs to remediate the situation and the costs that are accrued
if the debt is not remediated respectively (Mayr et al., 2014).

The question which unit is suitable is still under discussion. On the one hand,
this is a problem with the abstractness of the metaphor of technical debt that has
a lot of influencing factors and is therefore hard to derive a number to measure it.
On the other hand, the question arises, which units are best perceived and help
the evaluation of management decisions the most. There are approaches with a
star system (Nugroho et al., 2011), a traffic light system with green, yellow and
red (Eisenberg, 2012) or a monetary expression of technical debt (Mayr et al.,
2014).



2.3 Hypotheses

To derive a model for technical debt from project management data, features
are sought that prove usable. For this, hypotheses are posed that are related
to technical debt. Features of the data are selected that are tested with those
hypotheses to assess if they meet the expectations and can therefore be used as
indicators for technical debt.

1. Increased technical debt leads to an increased average effort estimation
2. Increased technical debt leads to a more unreliable estimation

3. Increased technical debt leads to more average effort per defect

4. Increased technical debt leads to more defects
5

. More work on new functionality in a part of the release leads to more work
on defects in the same part

&

More work on new functionality leads to more defects

7. The metrics calculated for the hypotheses above can be used to find a
polynomial function that maps them to a value for technical debt.

2.4 Data

The data analysed here was kindly donated from the SoftwareAG from their
internal bugtracker. They employ agile development (Kent Beck et al., 2001) and
use the bugtracker to also manage their development progress. They keep track
of the features and user stories there. Additionally, they provided information
about their release cycle and general information about three releases.

The data spans a time of 30 months. The bugtracker data ranges further back in
history. There is a small usage before the time that is relevant for the research.
For there is not further information available for this time prior to the relevant
time period, all observations falling into this time are dropped, i.e. excluded from
the further analysis.

2.4.1 Releases

For the 30 months mentioned above, there were three releases of their product.
The first release took three months, the second 18 months and the third again
three months.



The second release, which took three times the time of the other releases, was
split in three phases of six months each. The beginning was conducted in the
same way as the other releases. Then, a “hot phase” occurred where the focus
was shifted towards the implementation of new functionality. It was doubted that
otherwise the goals for this release wouldn’t have been met. In this phase, the
fixing of defects was reduced to provide more workforce for this new functionality.
In the final phase of this release, the remaining functionality was implemented
and the staff went back to a “normal” work state.

This “hot phase” is used to try to derive insights about technical debt, since it
is assumed that technical debt in some form was accrued in this phase and was
paid back in the following phase. This assumption is deduced from the reported
quality which was constant in the first and third release and the first phase of
the second release. Each release finished with the same quality it had started.
This quality statement is grounded in the agile approach which uses continuous
testing for quality assessment.

When talking about the different time periods, the term “phase” is used, where
the first phase is the first release, followed by three phases of the second release
and the final phase being the third release. When comparing high and low tech-
nical debt phases, the third and fourth phase (B2, B3) are assumed to be of
high technical debt and the rest of low technical debt. For a figure to visualize
this technical debt assumption see figure 2.1. Low quality is connected to high
technical debt.

The amount of developers working on the releases is not known but was constant
for each release.

A

assumed
technical debt

A B1 B2 B3 C

time

Figure 2.1: The assumed technical debt in the data. In the “hot phase” tech-
nical debt is accrued and afterwards paid back.



Duration G months 18 months G months
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Figure 2.2: Overview over the time that is covered by the data with the abbre-
viations that will be used to refer to different phases.

2.4.2 Bugtracker data

The data originates from a bugtracker. There are two tables available named
“issues” and “worklog”. A row in one of these tables is refered to as an “issue”
or “issue item” or “worklog item” respectively.

There are 135455 issues. These are accompanied by 233890 worklog items. Both
types will be described in more detail in the following sections.

issues

The following data is assoziated with one issue.

Type

There are three different types: “Feature”, “User Story” and “Defect”.
“User Stories” are “Features” broken into work packets. Only a minority
of projects have “Feature” issues, which speaks against the general usage
of features, so they will not be used for analysis. “Defects” mark items
that stem from the testing section that creates them to be fixed. Errors or
bugs that occur during the implementation of a feature or user story from
a developer’s mistake usually don’t find their way to the bug tracker but
are counted as time for this work unit.

Dates
There are dates for the creation, the beginn and the end of the implement-
ation, when it was fixed, when tested and when completed. The issue’s
creation date is always available.



Effort Estimation
The team estimated the effort needed for an item with story points. These
points are not normed in the way that a certain value stands for a certain
effort but they should indicate if an item has a low, moderate or high
expected effort. Only user stories’ impact was estimated with 28% of user
stories having story points. Defect and Feature effort was rarely estimated

(Defects 0.2%, Features 0.02%).

Effort
The effort of an issue, logged in seconds. Outliers, where more than a year
is logged for one issue, are removed.

Project/Project Category
Each release consists of multiple projects that are associated with project
categories. Furthermore, projects and project categories will not be used
for the analysis as there is only additional information available for the
releases as a whole.

There are additional columns such as feature key that are for internal use and
are not pursued further here.

A selection of more detailed numbers about the analysed data can be found in
section 3.1.

worklog

Worklog items describe effort done for an issue further. They always point to the
issue they are referring to via a foreign key and carry a date and the effort done.

The relationship to the issue table is a one to many relation, meaning that for
each issue, there are zero or more worklog items.

2.4.3 Deficiencies

The following paper describes the analysis of the data as if the data fulfills the
description above. However, the data has some deficiencies, that should be men-
tioned here.

From the relationship of issues to worklog items it can be reconstructed that there
are issues missing. While it is possible to have issues without worklog items, the
opposite is not true but is encountered in the data. Following the foreign key from
the worklog table, there are 91384 unresolved links. With 135455 available issues,
the known missing issues are &~ 40% of the total amount of issues. Those are only



the missing items that can be estimated, while the real number is presumably
higher.
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Figure 2.3: Number of issue items missing from the data that are referred to
from worklog items.

Figure 2.3 analyses the distribution of known missing data over time, finding that
it spans the whole analysed time.

Further, the analysed releases are not equal, which detriments the validity of
comparing them. Additionaly, they all had special circumstances that influence
their issues. The bug tracker was introduced in release A, with the developers
adopting to the new tool. Release B was longer than usual which has influenced
the way, the work was spread over the time. Release C suffers from cut off effects.

The high amount of missing data threatens the representativeness of the data
and will effect the outcoming results of this thesis. Nevertheless the approaches
show a universal character.

More properties of the data are described in section 3.2.

2.5 Method

2.5.1 Effort

The main information that the data revolves around is the logged effort. The
problem however is, that there is only one number indicating the effort for one
issue that has existed for several days or weeks. It is not known, how this effort
is distributed over an issue’s lifetime. The worklog entries can be used to help
clarify this question but it still leaves a room for interpretation.

Most issues that are available don’t have a worklog item associated with them,
followed by issues with only one.

Therefore, different assumptions, when the effort took place are evaluated.

Before exploring those approaches, it is important to elaborate on the meaning of
the effort reconstruction. With the reportet constant developer count per release,



it can be assumed that the logged effort stays constant. This is because every
developer will log the same amount of hours every day. Only the distribution of
effort onto issues changes and the percentage of how much of the total effort is
spend on defects or user stories.

This, however, is not the case. Independent of the approach used, there are times
with more and times with less effort. The approaches differ in estimating, when
an issue’s effort took place. If the effort would have been constant, all approaches
would yield the same resulting effort at each time. They, however, each shows
peaks and valleys.

There is a fixed amount of developers available but only a part of them is working
on the issues, that are analysed, and the rest is working on the issues that are
not known. In times where more effort is spend, the projects, that are analysed,
demand more attention by the developers. There is no possibility to say if those
hours spent were more or less productive at a certain time.

The logged effort is therefore used to see the effect of more work in the known
projects on the assumed technical debt.

Effort reconstruction

Method
Aggregated by ClosedDate
—— Aggregated by ComplDate

10948Q

— Aggregated by CreationDate
— Aggregated by FixedDate
— Aggregated by ImplEnd

— Aggregated by ImplStart

Effort

— Aggregated by TestedDate
— Uniform over implementation
— Uniform over lifetime

Using Number density

Aio)s Jasn

Using Point density
Using Uniform density

Figure 2.4: All effort reconstruction approaches plotted. Approaches that ag-
gregate by one of the dates fluctuate more but have the same tendencies.

There are different possibilities, how to estimate the effort that was needed at a
certain point in time. To smooth daily fluctuations, the following aggregations
are conducted over time windows of a week each. Figure 2.4 shows the results of
the different reconstruction approaches. Methods that are far below the rest of
the results suffer from less items that can be used.
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Figure 2.5: Effort logged in the worklog aggregated by the date it was logged.

The simplest and most obvious approach is to take the effort and assume, it was
done at one specific day. For worklog items it is the day, they are logged. For
issues, there are different dates, though with the exception of the creation date,
the dates are not always available.

In the graph, those results are the lines whose description start with “Aggregated
by”. They fluctuate more than the approaches presented below.

Figure 2.5 shows the aggregation of the worklog data by its logged date. This
differs from the approaches with issues because they also include possible partial
data about the missing issues.

Although the worklog is expected to be more detailed in relation to when exactly
the effort was spent and less influenced by the mere creation of an issue, the same
trends are emerging., which are an increase in user story effort in the first release,
an increase in phase B2 and a decrease in effort in phase B3. Many issues are
created in the beginning of phase B2, which influences the issue effort graphs (see
figure 2.4). The worklog graph shows no such extreme spike at the beginning of
phase B2 but a constantly high effort consumption throughout phase B2.

To improve the effort representation, the duration of an issue is taken into con-
sideration. A simple approach is to assume, the effort was distributed uniformly
over an issue’s lifetime. Figure 2.4 shows this for the uniform effort distribution
over each issue’s lifetime and implementation time.

It is unlikely that each issue was worked on with a constant effort. Assuming
issues are worked off in a similar way, the worklog items are used to derive a
density of when in an issue’s lifetime how much of its effort was done. For this,
the time is normalised with 0 being an issue’s creation date and 1 its completion
date. The densities are computed over the time from zero to three due to some
worklog items taking place after its issue was already completed.
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The three different proposed densities are depicted in figure 2.6.

“Number” describes the density that is obtained when counting when a worklog
item was logged in its issues lifetime and aggregating over this time. The amount
of worklog items is roughly constant over the issue lifetime with an increase in
the end. This is because of the fact, that the issues with a worklog item have at
least one item that is logged when the issue is closed.

This effect is even bigger in the “Point” density, which takes the percentual
amount of effort a worklog item has from its issue and aggregate over the worklog
items time in its issue’s lifetime.

If it is assumed that the logged effort of each worklog item was done in a uniform
way since the last time a worklog item was logged for the same issue or since the
issue’s creation time, the “Uniform” density results.

The effort that results if the respective density is taken to describe the effort
distribution of each issue over its lifetime is again shown in figure 2.4.

JaquinN

Effort
juiod

804-
0.03-
0.02-
0.01-
0.00-

wioyun

Time
Figure 2.6: Densities used for the effort reconstruction

For the effort created with the “uniform” density, the mean and variance over
different time windows is shown in figure 2.7.

2.5.2 Effort estimation

Story points are used to estimate the effort of an item before it is started. This
is done to understand the impact of user stories on the workload ahead of time.
More story points should indicate more effort spend on the respective issues.

Figure 2.8 shows the mean and standard deviation of story points over different
sized time windows. The mean and standard deviation are computed for every
month or every phase.
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Figure 2.7: The mean and standard deviation of the effort described by the
“uniform” density aggregated for different time windows
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Figure 2.8: Mean and standard deviation of story point values over different
sized time windows
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Figure 2.9: The correlation between the effort estimation (story points) and
the actual effort for differently sized time windows. The values are not strongly
correlated and are less correlated with advanced time.

Figure 2.9 shows the development of the correlation between effort estimation
with story points and the actual logged effort over time. It is computed over
different time windows, as well.

2.5.3 Defects
Technical debt is supposed to influence defects both in frequency as in time to
fix.

Figure 2.10 shows how many defects are created over the time aggregated by
week and phase. Interesting is the drop in the beginning of phase B3.

Figure 2.11 shows the mean effort per defect over time aggregated over different
time windows. While it is low in the beginning, it is much higher in the beginning
of release B and then decreases.

2.6 Results

This section uses the described metrics to run statistical tests in order to prove
the posed hypotheses. Figure 2.12 plots the compared metrics against each other
to visualise the findings.

Hypothesis 1 Increased technical debt leads to an increased average effort es-
timation

13



600 -

scale
400 -

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 -

Created defects

phase mean
— week
|
|
|
0- A : B1 B2 B3 c
201i—07 ZOlé—Ol 201‘2—07 ZOlé—Ol 201é—07 2014‘1—01
Time
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Figure 2.11: Average defect effort over time aggregated by the issue’s creation
time.

The correlation test between the technical debt as depicted in figure 2.1 with
the average monthly effort estimation as shown in figure 2.8 yields a p-value of
0.023 with a correlation of 0.36. There is a significant correlation with a 95%
confidence interval.

While this is a significant finding, the use of the average estimation for a model
for technical debt is severely limited by its volatility.

Hypothesis 2 Increased technical debt leads to a more unreliable estimation
The overall correlation between story points and logged effort is moderate with
0.359. The correlation in the “hot phase” is slightly smaller with 0.27 than in
the other phases that have a correlation of 0.433.

To test the hypothesis, the correlation between the technical debt as in figure 2.1
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functionality and work on defects functionality and newly created defects

Figure 2.12: Visualisation of the values compared to each other to test the
hypotheses

is compared to the correlation between story points and logged effort aggregated
for each month as in figure 2.9. With a correlation of -0.14, the correlation test

cannot confirm the hypothesis with a p-value of 0.132.

Hypothesis 3 Increased technical debt leads to more average effort per defect
Figure 2.11 shows a decrease in average effort in the phases B2 and B3 in com-
parison to phase B1, which already is a strong objection against this hypothesis.

Additionally, the correlation test of the technical debt as depicted in figure 2.1
with the average defect effort as depicted in figure 2.11 cannot confirm the hypo-
thesis with a p-value of 0.0918 and a correlation of 0.1.

Hypothesis 4 Increased technical debt leads to more defects
Performing a correlation test with the per week aggregated numbers and the
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assumed technical debt depicted in figure 2.1 supports the hypothesis with a
p-value of 2.133772e-06, where the correlation is 0.37.

While this supports the hypothesis, there are observations that speak against this
finding. There is a small trend of increased defect amount in the end of release A
as is in the end of release B. This effect can originate from the project lifecycle,
where more defects are detected and worked on shortly before the release. There
is a spike of created defects in phase B1 where constant, little defects due to the
low technical debt are assumed. Additionally, there is a trough in the graph in
the transition between phases B2 and B3, where the highest value is assumed.

Hypothesis 5 More work on new functionality in a part of the release leads to
more work on defects in the same part

The correlation test between the effort logged for user stories, i.e. new function-
ality, and defects as shown in the figure 2.4 using the uniform density returns a
p-value close to zero with a correlation of 0.47.

This means, that if the developers spend more time for a certain project, they
also spend more time to work on defects. While this is important to know for
model building, it is not directly helpful for a technical debt analysis.

Hypothesis 6 More work on new functionality leads to more defects

For this hypothesis, the effort for user stories depicted in figure 2.4 using the
uniform density, aggregated for each week, is compared to the amount of created
defects per week as depicted in figure 2.10. The correlation test does not reject
the null hypothesis with a p-value of 0.171 based on a correlation of 0.082.

Hypothesis 7 The metrics calculated for the hypotheses above can be used to
find a polynomial function that maps them to a value for technical debt.

To approximate a polynomial function, a neural net is used. The metrics elabor-
ated on above are used as input with the technical debt as in figure 2.1 is used
as the output. 3/4 of the data is used for training with the rest being used for
testing. 10 iterations with different partitioning are conducted. The mean abso-
lute error is 0.259303. With the technical debt being normalised to an interval
from 0 to 1, this mean prediction error of approx. 25% is too high to conclude a
polynomial relationship.

16



2.7 Limitations

From the existence of outliers it can be deducted that there is human error
involved. The analysis described suffers if the bookkeeping is not done properly.

In the section about the data source, it was already mentioned that the data
analysed here has deficiencies. Those can have severely influenced the results.

The bugtracker captures the development at a high abstraction level. This means,
that there are many factors that can influence the data such as code quality,
managerial decisions, attitudes towards the bug tracker or experience of the de-
velopers.

These many influencing factors impede the creation of a model because many of
them are not capturable. Especially management decisions can disrupt a model
in many different ways that are hard to track.

For the data is very abstract, it is hardly possible to isolate factors that disrupt
a possible model.

2.8 Discussion

The biggest problem when analysing the data is that there is only a very basic un-
derstanding of the progress of technical debt available as well as little information
about the development process in general.

The effort done at each point in time is hard to estimate from the issue data.
Depending on the way it is derived, it provides different insights. Without more
additional knowledge of the development process, there is no possibility to valid-
ate one of the approaches. Since the bugtracker leaves space for interpretation,
the usage, that is documented in our data set, can deviate from the usage in
other companies.

Companies try to optimise their processes and therefore the process shown here
can have changed. Each release was special in some way, the first was with the
introduction of the bugtracker as a tool, the second was longer and with a special
phase in between and the last release suffers from cut off effects. It was not
possible to determine a baseline that is common among releases due to the lack
of more comparable releases.

There is also no possibility to relate user stories and defects in a way that it is
evident that a particular user story is the source for some defects. Without this
knowledge, the defect information is a detached work stream, whose relation to
the user story work can only be estimated. A possible model, that would build

17



upon the relationship between quality, user stories and defects is described in
section 3.3.

2.9 Conclusion

Some features changed in times of high technical debt. Those features were not
conclusive enough to derive some sort of measure for technical debt.

The very basic understanding of the technical debt that was present limited the
analysis. It was reported that in the releases A and C as well as in phase B1,
there was a constant quality that was held. Independent of the approach used,
effort estimation, effort logged, items created, there were spikes in these “normal”
periods. This means that either the selected features are of do not help to assess
technical debt or the reported process is wrong.

The posed hypotheses were formulated to express the expected development of
the graphs to technical debt. The data features, however, are subject to many in-
fluences, often, hard to measure, human decisions. Further exploration with more
background information has to be undertaken to better evaluate the suitability
of management data for technical debt derivation.

If those features can be used for technical debt calculations, there will still be a
big social factor that influences this data. Only people that are involved in the
process will be able to properly interpret the output.

2.10 Further work

More data with more insight into the development, e.g. in form of associated
code metrics, might help in finding a relation between management data and
technical debt. Approaches were presented here that can be extended with more
background knowledge and then analysed again to get more reliable results.

18



3 Elaboration of Research

Here, some additions to the research chapter are provided. It starts with some
numbers of issues in section 3.1 to give a better understanding of the data. Then,
some aspects of the data are further explored and emphasised in section 3.2.
Finally, in section 3.3, an approach of how to create a model to simulate technical
debt is proposed, that was not included in the main research due to a lack of
usable results.

3.1 Data numbers

3.1.1 Amount of items with story points
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Figure 3.1: The amount of items with story points over time. The number
doesn’t fluctuate too much to inhibit any findings derived from story points.

To ensure the validity of the story point analysis, the amount of issues with story

points are assessed. This is to be sure that there is no drop of the usage of story
points that endangers the analysis.
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Figure 3.1 shows how many usable items there are for each month. There is a
decrease in items in the phases B2 and B3, but no period with a lack of story
points.

3.1.2 Number of issues that have certain dates available

Time available | Features | Defects | User Stories
Any 4642 | 104475 26338
Implementation 1810 207 16124
Completion 2504 | 70053 23053

Table 3.1: Overview, how many items are available for analysis. The number
of items is given that has the respective dates set.

Table 3.1 shows how many issues there are that have certain dates available.
Any is valid if there is any of the possible dates set, which is always the case and
therefore shows the total amount of available issues.

Implementation demands the dates ImplStart and ImplEnd to be set, which is
mostly done for user stories but not for defects, which are usually just closed
without giving the implementation time.

Completion demands the ComplDate to have an end date for the issue. Especially
in the end of release C, there are many issues that are not yet completed. For
analyses that use an issue’s lifetime, the completion date is mandatory else the
issue is not used for this analysis.

3.1.3 Amount of worklog items per issue

amount | frequency | percentage
0 93530 69.0
1 22375 16.5
2 10273 7.6
3 3972 2.9
4 1971 1.5
) 1037 0.8

Table 3.2: This table shows how many issues have a certain amount of worklog
items associated with them. The majority doesn’t have any, followed by issues
with one worklog entry and only a minority with more.
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Table 3.2 shows an overview, how many issues have a certain amount of worklog
items associated with them. Most of them don’t have a worklog item connected,
which limits the possibility to analyse when the effort took place. This is why
some approaches are tried for a better reconstruction of the effort.

3.2 Data elaboration

3.2.1 Project Categories
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Figure 3.2: Number of elements per project and type. Projects vary a lot in
how many issues they have accumulated. Some only have defects, some only user
stories and only very few have features
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Figure 3.3: This plot shows how many issues there are for each project category.
It should be noted that only one category has “Features”.
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Each release consists of multiple projects that are associated with project cat-
egories.

There are 161 projects for 7 categories. Figure 3.3 shows how many items of which
type are associated with each category and figure 3.2 how many are associated
with each project.

Only one category has features associated with it. Those are assigned to three
projects. This speaks against a general usage of features as they are all collected
in one spot.

3.2.2 Constant Workforce

It was reported, that there was a close to constant worker count during a release.
This number might have changed from release to release but is not available.

Figure 2.5 shows that the effort spent on defects fluctuates around a constant
value, which is lower in release A than in releases B and C. The difference between
the mean of the releases can be taken to deduct the ratio of changed workforce to
normalise the data. Following Fenton et al. (Fenton & Neil, 1999), this can only
be used to estimate the change of the size of the testing department, but not for
the developers.

3.2.3 Open items

At each point in time, there is a certain amount of issues in progress, which
means that they were created by not yet closed. From the premise that an agile
development was employed, a constant amount of open issues is expected. This
is, however, not the case.

Figure 3.4a shows, how many issues are open at each point in time. The amount
is increasing over the progress of releases with short spikes. For each release, the
amount of open items increases over time as shown in figure 3.4b. The issues
opened in one release are then slowly closed in subsequent releases.

This means, that releases are not separated units but blend into each other.

3.2.4 Percentages of work

The effort fluctuates in the part of the releases that is covered by the data. A
factor that adapts to this fluctuation is the percentage of this effort that is spend
on user story work and on defect work.
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(b) Amount of open issues that were created in the respective release.
Figure 3.4: Observation how many issues are open at each time.
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Figure 3.5: Percentage of the effort of user stories of the overall effort

The percentage is a value that can be determined by the management. Thus, it
is a way to influence the development. While a direct influence on technical debt
was not found, it should be mentioned here as another possible metric to deduct
technical debt from. Additionally, the percentage of work distribution can be
seen as a factor to influence a technical debt model as done in section 3.3.

Figure 3.5 shows which percentage of the total effort done in each week was spend
on user stories.
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3.3 Model building

This section describes a model that uses the data to build a model to calculate
technical debt. Deficiencies in the data, however, prevent the validation of the
model.

3.3.1 Theory

In order to build a model for technical debt, influencing factors are sought as
well as their reaction to technical debt and vice versa. Ideas of the relationship
between them were:

1.

While working on new functionality, errors are introduced that manifest
themselves as defects later.

. Defects are created whose size and amount correlate to the effort spent on

new functionality.

Effort spent on new functionality accrues technical debt. With a low prob-
ability, the opposite effect can take place.

. Effort spent on defects alleviate technical debt.

Increased technical debt leads to more effort spent on each issue - user
stories and defects - as it becomes more difficult to realise the same func-
tionality.

Technical debt can partially vanish with a low probability independent of
the progress. This happens when parts of the code become obsolete and
therefore the technical debt associated with this part becomes obsolete as
well.

The factor, that can be influenced from outside is the ratio, the effort is
spent on user stories to defects.

The problem with building this model is the low correlation between work on
new functionality to work on defects. The defects logged here don’t have any
connection to the user story work, they originated from.
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Figure 3.6: Shows a possible modeling approach

3.3.2 Method

Model

Figure 3.6 shows a possible modelling approach. Each release consists of a defined
amount of user stories that describe the work that has to be done to reach the
release goal. They are stored in the “User Story stack”. Every sprint, which is an
iteration in the agile development method, a certain amount of user stories are
taken to get implemented. This is the function of the “User Story Source”. For
a simulation approach, the “User Story stack” can be omitted and user stories
are created at the source according to a certain distribution that is empirically
derived. This allows to evaluate the process in a steady state.

Each user story has a predefined effort it demands at a minimum, the base effort.
In the model, a user story also has a predefined base duration, i.e. a duration
after which it should be completed. This base duration should be matched as
closely as possible. For simulation, the base effort and the base duration are
taken from probability distributions.
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The created user stories are fed into the “work queue”, which is the queue of
actively developed on user stories. Analogous to user stories, there are defects in
the work queue. There is a total amount of effort each time step, that is divided
between the open items in the work queue. For each issue, the base effort that
is needed in order to complete it is distributed over its base duration according
to the densities depicted in figure 2.6. Issues, where the discrepancy between the
needed effort and assigned effort is big, are prioritised. If an issue was assigned
enough effort to “complete” it, it drops out of the work queue.

The percentage of available effort that is assigned to work on defects and work
on user stories is controlled with the “prioritisation” variable.

The effort that is available to be spend onto the work items is influenced by the
quality. If the quality is bad, a certain percentage of the effort does not contribute
towards the completion of the active user stories and defects, but is assigned to
them without being deducted from the still needed base effort.

Each time step, the effort spend on user stories is taken. Effort spend on features
creates new bugs. A new bug is created according to an exponential probability
function with the feature effort as the time value. Both the base effort and the
base duration are taken from probability distributions.

Effort spend on user stories has a negative impact on the quality. Effort spend on
bug fixing has a positive impact on the quality. This is only a general statement.
There should be probability functions that mend or deteriorate quality depending
on the effort spend on either issue type.

Technical debt is then the amount of effort that has to be spend without progress-
ing issues due to a deteriorated quality. To calculate the technical debt accrued
in the model at time ¢, the effort used to deduct the advancement in base effort
from the overall available effort.

technical debt(t) = available effort(¢) — advanced base effort(t)

Since this effort that is not used to advance the issues’ progress is proportional
to the quality, technical debt is proportional to quality.

technical debt o< quality

Distribution fitting

For a discrete simulation of the above described model, probability densities are
needed. Exemplary, the amount of user stories generated each day is described
in more detail to illustrate the process.
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The amount of user stories generated each day is modelled with a negative bino-
mial distribution. Here, a negative binomial with p 19.8 and size parameter 1.6
is found, which is visualised in figure 3.7.
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Figure 3.7: Example fitting for the number of created user stories each day.

For other data, the fitting should be repeated and assessed with P-P plots and
Q-Q plots as well as goodness of fit tests.

Analogous to this, the size of user stories and their duration can be fitted by a
probability function. The base effort and base duration are exponentially distrib-
uted.

If probability functions are found for all required variables, their development
over a test period has to be assessed. The amount of created bugs follows a
probability distributions, whose parameters depend on the quality. Additionally,
changes that depend on the life cycle can be tracked this way.

3.3.3 Limitations

The data analysed here didn’t contain all the information necessary to build the
described model.

There is no described connection between user stories and defects. This is because
bugs that occur while working on an user story are fixed immediately and not
entered in the data set. The defects available stem from a testing section that is
different from the developers. They only find bugs but don’t note down where
they came from.

Additionally, the quality information is very basic. A rough estimate was used
in the thesis as described in figure 2.1, where the quality is strongly related
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Appendix : Model building

to technical debt. For a model as it was described above, more information is
necessary to assess the implications of the quality on the whole development.

Also, the assumption that effort spend on defects and user stories influence quality
and defect creation in a positive and negative way can be too general. A distinc-
tion between refactoring work, i.e. quality improving work and implementation
tasks would allow for a better calculation of the impact of work on quality.

3.3.4 Conclusion

An approach to create a model based on management data was presented. This
model supports simulations of different influences and is easily extended. How-
ever, to derive the needed values, more information has to be provided. It was
therefore not yet possible to validate the model.
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