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Abstract

For Open Source Software (OS) projects, collaboration is a key to success, as
less collaboration between projects leads to projects with less progress. Patches
from other OS projects provide the projects with a higher code quality or func-
tionality. In literature, several papers examine the extent of collaboration on
OS projects. Yet, most of these studies do not cover the collaboration between
different projects.

To understand the collaboration between OS projects, Source Code Management
(SCM) repositories are an essential source. Between repositories exists a connec-
tion by patches, which can be obtained by data mining the projects repositories.
The measurement of the connection by patches is very difficult, because the in-
formation about where the patches go and where they come from is not stored
within a repository. Collaboration between OS projects can be expressed as so
called Patch Flow. As an example for the OS world, I use GITHUB.COM as data
source.

I present to which extent Patch Flow exists between repositories and what cir-
cumstances influence Patch Flow. Further, I introduce a model which represents
the Patch Flow in detail. Based on this model, I developed a crawler to col-
lect data from the GITHUB.COM repositories. The analysis of the gathered data
shows, that Patch Flow between OS projects exists. Numbers suggest, that col-
laboration among projects is common in OS projects.
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1 Introduction

This thesis aims to crawl SCM repositories to understand and measure collabor-
ation among repositories represented as Patch Flow. Collaboration among repos-
itories can take place either on code-level or on social networks such as mailing
lists or forums. This thesis concentrates on code-level collaboration.

The main goal of this thesis was to develop a model, that describes Patch Flow.
Based on this model, a crawler is implemented to mine SCM repositories in both,
OS and Inner Source Software (IS), to measure Patch Flow. The crawler is tested
on OS repositories, hosted on GITHUB.COM.

The collected data is filtered by specific criteria to show the existence and extent
of Patch Flow.

The remainder of this thesis is structured as follows. Chapter 2 describes the
research:

e section 2.1 introduces the field of research,

the related work is reviewed in section 2.2,

I present the research questions I answer in this thesis in section 2.3,

in section 2.4 I describe my research methods,

section 2.5 introduces the crawler, GITHUBBLE,

the model and definition of Patch Flow is presented in section 2.6,

the results are presented in section 2.7 and discussed in section 2.8,
e section 2.9 discusses the threats to validity this thesis faces and
e section 2.10 concludes and presents future work.

In chapter 3, I elaborate the research, present the hurdles this thesis faced and
how I solved them. Further I show how GITHUBBLE works in detail.



2 Research



Introduction

2.1 Introduction

In the OS world, collaboration is a key to success. Less collaboration between
projects can lead to less progress or quality. Projects can only survive because
many people are willing to share their knowledge and to contribute. Countless
developers contribute to OS projects, like Linux, but statistics that measure the
interaction between projects do barely exist. How collaboration among projects
itself can be measured is not researched deeply.

Understanding collaboration between projects is essential to understand the dy-
namics of OS. With this information it is possible to show, how OS repositories
are collaborating and interacting on code-level and what factors influence collab-
oration among projects.

Collaboration between projects can be understood as transfer of code. The code is
passed via so called patches. I call this connection between repositories by patches
Patch Flow. Some patches are just of structural or textual nature, like deleting
trailing whitespaces or refactoring code. Other patches fix bugs, introduce new
features or add documentation. Many more types of content are possible.

I gather data from GITHUB.COM. The free GIT hosting website hosts more than
6 million repositories, which are connected to each other through collaboration.
The data is freely available and therefore ideal for research. Automated pro-
cessing is the key for research on large data sets. For this purpose I present
GITHUBBLE, a JAVA based tool to gather data from GITHUB.COM.

My contributions are:
e The definition of Patch Flow.
e Showing to which extent Patch Flow exists between projects.
e Discussing the extent of Patch Flow between projects.
e The presentation of the automated tool GITHUBBLE to crawl GITHUB.COM.

In the following chapters I will mark out the field of my thesis. In section 2.2 I
show the related work. In section 2.3, I present the research questions that this
thesis answers. After that, in section 2.4, I explain my scientific method, followed
by the presentation of my tool, GITHUBBLE, that I wrote to collect the data that
is necessary to answer the research questions in section 2.5. Later, in section 2.6,
I define Patch Flow and present my results in section 2.7. In section 2.8, I discuss
the results. Finally, I show the limitations of my approach in section 2.9.



Related Work

2.2 Related Work

From the OS research field, 1 identified two important groups for this thesis:
One uses GITHUB.COM as a research source and the other concentrates on the
collaboration between OS projects. We do not use the whole universe of open
source projects, but the subset of projects hosted on GITHUB.COM.

2.2.1 Using GitHub for Research

In the following, I present a selection of the work concentrating on GITHUB.COM
as the source of data and the differences between these papers and my thesis.

As Gousios and Spinellis (2012) I crawl the GITHUB.COM repositories, but I do
not intend to make the GITHUB.COM Application Program Interface (API) pub-
licly available on a higher bandwidth, but understand the connections between
GITHUB.COM repositories.

Kalliamvakou et al. (2014) show how users on GITHUB.COM interact and use
repositories on GITHUB.COM in general, but not the way the projects hosted on
GITHUB.COM are connected. In this thesis I focus on how the repositories are
connected and how one can measure these connections.

Like Tymchuk et al. (2014), I am interested in collaboration between OS repos-
itories, but unlike them, I do not concentrate much on the users locations, but
on the collaborators’ connection to the repositories.

Heller et al. (2011) are using visualization techniques to show information about
users’ geographic location to reveal possible connections between developers. [
want to know more about collaboration between repositories based on the code,
e. g. the distribution of code among repositories, no matter where contributors
are located.

2.2.2 Collaboration between Open Source Projects

Collaboration between OS projects can be divided into two subgroups: One that
concentrates on code-level collaboration and takes into account the source code,
and a second one that sources the repository forges social networks for events,
user locations or activities beyond the code.
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Code-Level Collaboration

Research on code-level collaboration concentrates on changed code and the im-
pact it has on the repository. Collaboration between repositories based on code
is well researched. In the following paragraphs I present a selection of the related
work based on code-level collaboration and where my thesis differs from the work
in the field.

The idea of Robles et al. (2004) is that large scale retrieval and analysis of data
of software repositories is only possible with automation. Automating the data
collection is also important for crawling repositories and is one contribution of
this thesis. Further they mostly provide data about the number of Source Lines
of Codes (SLOCs) a project has over time, but not for where the patch comes
from and how the projects are connected. When implementing GITHUBBLE, [
aimed also for IS projects, which is a not yet well covered field of research. To
test it on OS projects is a first step.

Gousios et al. (2008) are presenting a model for contribution measurement. They
not only take SLOCs into account, but also the activities and events within the
repository. Their model weights the contributions of a developer with the im-
pact it has on the repository. They cut the problem of collaboration between
repositories by looking at events and changed SLOCs, but do not point out the
importance of collaboration. Further they do not provide numbers on, e. g. how
many repositories they actually examined or how the repositories are collaborat-
ing with each other. On the contrary, I will show that Patch Flow exists in the
OS world and provide numbers on the extent.

Conklin et al. (2005) is collecting data about OS projects and puts it in an
Open Source database. This approach is practical for OS, but not for IS, OS
techniques used within corporations. I see the need for a program that even
works on repositories not hosted on OS forges. With GITHUBBLE I developed a
program which is highly modular and can be used on IS projects in the future.

Jermakovics et al. (2013) developed a collaboration graph for the users of a project
by mining the Version Control System (VCS) repository of a project and visualize
similarities between the patches. They did not measure the collaboration between
the projects. It could be extended to also measure the collaboration among
projects by taking into account other projects, but this would only work for OS
projects. My thesis also works for IS projects.

Collaboration based on Social Networks

In the following works, researchers describe the collaboration among projects
based on the social networks. 1 use another approach to show collaboration
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among OS projects. Thus, I explain how my work differs from the work in the
field.

Ohira et al. (2005) tried to set up a database on "who should I ask?" and "what
can I ask?" for OS projects on SOURCEFORGE and gathered data from their
social network. They also store information about the knowledge network among
repositories. They aim to help developers to collaborate and share knowledge. In
contrast, I compile data on the collaboration between repositories and examine
the dependencies on code level, not on knowledge level.

Lopez-Fernandez et al. (2004) mines VCS repositories and tries to get an un-
derstanding of the social structure of the repositories by extracting committer
information, building a graph and analyzing the graph using social network ana-
lysis. I do not rely on the social network for my measurement and analysis, but
on the repositories themselves.

German and Mockus (2003) presented their software with multiple modules to
crawl VCS logs, Changelog files, etc. They can extract all contributors to a
software change, but have to crawl mailing lists, ChangeLogs, VCS logs and
so forth. In contrast, I just extract data from the commits and connect the
repositories by their committers and authors. This allows me to also use the
crawler in the field of Inner Source, where, e. g. mailing lists are not common.
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2.3 Research Questions

In IS, collaboration between projects is a not yet well researched field. Therefore
models for the collaboration between projects are not common. In order to
understand the participation of users in different projects, I present a model to
describe it in detail. For that reason, I answer the following research questions.

1. To which extent does patch flow exist between OS projects?

2. Which attributes benefit or hinder collaboration among OS projects?
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The process of data handling
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Figure 2.1: The process of data handling: First I sample the repositories I want
to crawl, next I crawl the repositories and finally I run statistic evaluations with

R.

2.4 Research Method

In order to show how patch flow works and to proof that it exists, I gather data
from GITHUB.CcOM. In this chapter I describe how I select and collect the data
and how I process it to get my results.

2.4.1 Three Steps to the Data

Figure 2.1 visualizes the process of data handling. First I randomly sample the
repositories I want to crawl (1). After that, I hand the samples over to the crawler
(2). Next the crawler (3) crawls the sampled repositories and stores the resulting
data in a database. In the end, I run statistic evaluations written in R (4), a
programming language for statistic analysis. In the following paragraphs I will
describe how my process works in detail.

Data Selection

My data source, GITHUB.COM, has a large database, so I have to decide what
data I want to examine. I will have a closer look on the last three years (2012 to
2014). To get a representative data set for the forges activity during these years,
I sample the repositories randomly.

The number of randomly sampled repositories can be chosen freely. I decide to
sample 100 random repositories per month in one sampling run. This is sufficient
for this thesis to proof that Patch Flow exists. For a larger study this number can
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easily be increased. For a broad overview the sampling process can be repeated
multiple times, which results in more than 100 repositories per sampled month.
The repositories that I sample must fit one criterion: They need to be created in
the month that I sample.

The advanced GITHUB.CcOM search API has different options to search for re-
positories. The general options include searching for items from specific users,
creation date of items, specific repositories or the programming language of the
code. With the repository specific options it is possible to search for the repos-
itories with a certain amount of stars or a certain amount of forks. The search
APT also makes searching for the size in Kilobyte (KB), the last push date and
taking forks into account possible.

With these search options, I can search for repositories, which has its own diffi-
culties. Searching for a specific language would rule out too many repositories,
as the language in some cases determines the use cases of the software, e. g. C is
common for hardware based programming. Entries of a special user would also
set me on a too individual area of software.

The repository specific search for a certain amount of stars or forks serves the
most or least popular repositories, which would be reasonable, but I want an
equal distribution of all repositories within a month. Even though the size of a
repository can be measured in KB, this is not suitable for the search for repos-
itories, because a repository containing only binaries with Gigabytes (GBs) of
data might not be as important as the Linux kernel, that has a very high level of
collaboration. The last push date is only interesting, when looking for recently
active repositories. The most reasonable search criterion is the creation date,
which gives me a random collection of repositories within a month.

The sample size is reasonable in regards to performance and memory cost. Also
GITHUB.CcOM limits the API query replies to a maximum of 100 entries per
API request. In each sample run, I generate a random time span between the
beginning and the middle and the middle and the end of a month to get a random
sample of 100 repositories created within the month. I run the program several
times to get a large number of repositories within the examined time span of
three years, which gives me a very diverse set of repositories.

Data Collection

To collect data from web based repository forges, I considered three different
options: web spidering, database access and access to the data via a standardized
web APL.

The web spidering approach is not recommended, as web page designs can change
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over time and keeping track of all forges I want to crawl is hard. Also database
access is hard to obtain from the forges, if not completely impossible, as some
forges save critical personal data within their databases and anonymizing the
data is a huge effort, which not every forge is willing to make.

Some forges, such as GITHUB.coOM, offer a publicly available API that allows to
gather data from their database. In case of GITHUB.COM, the documentation
for the API is well structured. I can easily access the data needed and store them
in a suitable format for my research.

Writing a crawler, which complies with the API regulations of each forge and
obtains only the data needed is the easiest way for me to maintain. My crawler
GITHUBBLE uses the GITHUB.COM API, processes the given data and stores the
repository data in a database. It is modular so that extending it to other forges,
e. g. BitBucket, only depends on the quality of their APIs.

Data Analysis

I used the statistical programming language R to analyze the data. After crawling
a forge, I filter the data by specific aspects, using SQL statements.

First, I create a mapping, that maps a user to a repository as his/her base project.
The reasons are discussed in section 2.6.2. Therefore I select the users by the
maximum of changed SLOCs. If a user has multiple projects with the same
maximum amount of changed SLOCs, I select the first project in the list as
his/her base project.

Then, I filter all commits that are contributed to the own project. For this, I
select every commit, where the author to a base project equals the author in a
patch. For Patch Flow, I am looking for the exact opposite: All patches, that
are contributed to a foreign project.

The next step is to select all repositories which contributed to and received
patches from other repositories. Therefore I select every target repository with
its source repository that is involved in Patch Flow. After that I first select the
source repositories, count the number of repositories they contribute to and store
the data in a table. Then I do the same for the target repositories. After that, I
combine the resulting tables into a table, sorted by repository, and add the total
amount of changed SLLOCs, contributors and commits per repository.

With this information I can then select specific criteria, e. g. if the amount of
users affects the number of repositories users from the own repository contribute
to.

10
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2.4.2 Extent of the Collected Data

The selection of the data has an impact on its utility, since collecting different
data sets leads to different possibilities in interpreting the data. To measure the
Patch Flow among projects, I select the collected data carefully.

My database contains all projects I crawled. As GITHUB.COM does not dis-
tinguish between repositories and projects, I assume a repository and a project
are the same. I discuss the reasons in section 2.6.1 and the consequences in
section 2.9.

The data also contains the users who contribute to or are the owner of a repos-
itory. I store the real name, username and email address of a contributor. I
consider the three tuple of real name, username and email unique, because con-
tributors can have either no username, real name or email address, or only one of
them. At the moment I have 48 141 users in my database of which 4 864 have no
username. These users all own a repository or have contributed to a repository
in the database. Table 2.1 shows a set of data from the database.

’ id ‘ real name ‘ username ‘ e mail
93 Benjamin ***#* ben*HH ok Qgmail .com
1 Ko™FF¥ ko™ ¥
3 nw**
11 De** de** github@¥crk
12 excilys
35 Ma®F R PR g [ FR R R RRRRE Qomail com
42297 | root root@ip-10-179-54-5.ec2.internal
42571 | OIF* *kkk g oK@ FFFFIFAFHFA R
52550 | cvs

Table 2.1: Example data from the user table. The names are pseudo anonymized
for data protection.

To retain a mapping which user owns which repository, I store the ID of the owner
the database gave the user and the name of the repository. Along with that, I
store the creation date on GITHUB.COM and the date the repository was last
updated within the database to only update when needed. My database contains
4 366 repositories. An example how the data is stored, can be seen in table 2.2

I also store the data of the patches of the repositories that I inspect. To have
a good understanding of whether patch flow exists and if so to which extent, I
store the patches with additional data. It contains the commit ID, the SHA-1
hash from GIT, its author and committer, represented by the ID of the user in
the database, the commit date, lines added, lines deleted, lines changed and the
repository the patch belongs to. Table 3.2 on page 45 presents the format the

11
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’ id owner ‘ repo_name creation date last updated db
11906 | 20037 | DroppyScrollView 2014-10-16 2015-05-03
23:16:50+02 10:52:03.134-02
11907 | 27199 | lenscap 2014-10-16 2015-05-03
22:35:04+02 10:52:07.817+02
11908 | 13320 | manifestreplace-plugin 2014-10-19 2015-05-03
01:47:29+02 10:52:10.533+02
10 10 ECSlidingViewController | 2012-01-25 2015-05-26
23:54:29+-01 11:24:38.71+02
83 82 orbit.js 2013-07-11 2015-05-26
22:52:50+02 11:24:42.56+02
59 59 cheat 2013-07-30 2015-05-26
03:32:12+02 11:24:45.097+02
89 88 the-little-redis-book 2012-01-23 2015-05-26
17:43:02+-01 11:24:47.095+02
21 21 FileAPI 2012-01-17 2015-05-26
07:47:39+01 11:24:55.594+02
9 9 c3 2013-07-18 2015-05-26
08:51:40+02 11:25:07.898-+02

Table 2.2: Example data from the repository table.

data is stored in the database. By the end of this thesis the database contained
2224 396 patches in total.

With the data I collect from the patches, I can derive information about the
patches. I can detect where a patch originates by looking at the authors’ ID. The
changed SLOCs help me to retain this mapping. With the commit date, I can
determine if the repository existed before its appearance on GITHUB.COM.

12
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2.5 The Application GITHUBBLE

I collect my data directly from GITHUB.COM with my crawling application GIT-
HUBBLE. In this chapter I present GITHUBBLE, describe how it is structured
and how the algorithm works.

The following graphic shows an overview over the components of GITHUBBLE
and how they are connected.

GitHubble
Persistor GithubAdapter
Persistor GithubAdapter
conn : Connection —config : Configuration
create : DSLContext —github : GitHub
+insert (...) :  InsertResult +getRepository (repository : String) : GithubRepository
t+search (authorName : String) : GithubPerson
/ serves
Configurations
to the other
modules
Crawler
ConfigManager
Crawler
ConfigManager
+crawl () : boolean
+crawl (repositories : String[]) : boolean +getConfiguration() : Configuration
+setConfiguration() : void

Figure 2.2: GITHUBBLE has four components: a CONFIGMANAGER which
manages the Configuration for the other components, a GITHUBADAPTER to
abstract the GITHUB.COM layer, a PERSISTOR to model the database and a
CRAWLER which uses the GITHUBADAPTER to crawl GITHUB.COM and the
PERSISTOR to store the gathered data in the database.

The CONFIGMANAGER provides a configuration for every module, so every mod-
ule can work properly. The PERSISTOR is the interface for the database. It
provides all needed operations to perform on a database in a simple to use inter-
face. The GITHUBADAPTER provides the interface to GITHUB.COM and makes
it easy and straight forward to crawl GITHUB.COM.

The CRAWLER. gets instances of all of those modules and crawls the repositories
given by the user. The algorithm is very easy to understand: for every repository
the CRAWLER gets the commits and stores the meta information in the database.

13
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2.6 Patch Flow between Projects

The Patch Flow is an abstract model of how collaboration between OS projects
takes place. In this section I will explain what Patch Flow is, how I define it and
how I measure it.

2.6.1 Terminology

Within this thesis, some assumptions for the terminology are made for practicality
reasons.

Projects are assumed to be the same as repositories, because my research object,
GITHUB.CcOM, does not distinguish between them. FEach repository on GIT-
HUB.COM can contain other projects, such as eclipse/jgit does. eclipse/jgit is the
repository, but it contains org.eclipse.jgit.ant, org.eclipse.jgit.junit, etc. In the
broader OS world this simplification does not hold true anymore. Bigger pro-
jects, e. g. Mozilla, can have multiple repositories, e. g. Firefox, Thunderbird and
Firefox OS. Also, in terms of IS, this assumption is no longer maintainable, as
in big companies the subdivisions have multiple projects with possibly multiple
repositories to maintain.

When talking about SCM repositories, a few other terms are important. There
are two groups of people: authors and committers. I choose to call both contrib-
utor. Both contribute code and distinguishing between them is only necessary, if
the committer is not the author. In the cases, where differentiating between the
two groups is necessary, I do so.

2.6.2 The Concept of Patch Flow

Every repository consists of files and commits saving the contributions made to
the repository over time. These commits contain patches, which are the actual
contributions to the files stored in the repository. People who contribute to more
than one project are considered to have one project, which I define as their base
project. These are the projects, the users identify with. Every other project is
a side project. People contributing to only one project got this project as their
base project.

To decide which projects are the base projects, I count the SLOCs of a user per
repository and define the one with the most changed SLOCs as their base project.
It is very likely, that many changed SLOCs are an expression of commitment to
the repository. This is important, as the direction of the Patch Flow and where a
user originates can be determined. The effort to define these terms is only needed

14
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for OS projects. IS projects have all those properties defined by design. Every
user belongs to one specific subdivision. Projects and repositories belong to, e. g.
another specific subdivision. It is very clear where a patch originates and where
it goes to.

Code can flow from one unit of concern to the other by a patch. If, e. g. a user
Bob from unit of concern I has some changes for unit of concern II, the patch
Bob contributed will be coming from unit of concern I, because Bob originates
from there.

2.6.3 Definition of Patch Flow

With this concept in mind, I can now define what Patch Flow is.

Patch Flow is a model to show and measure code-level collaboration
among different units of concern.

In the following parts I will explain the terms unit of concern and code-level
collaboration.

Unit of Concern

A unit of concern can be one out of the following:
e an individual
e an OS project
e an organizational unit

An individual is a project member of a project. The member will have one project
he/she originates from. This is the members’ base project.

An OS project can be everything from a repository containing the abstract im-
plementation of a website up to the concrete project with the project specific
code. Every project may or may not be divided into repositories, which contain
code and data.

An organizational unit can be a department of a company, of which one or more
members contribute to one or more repositories. For example the Firefox re-
pository belongs to the Mozilla corporation and one of their employees on the
Thunderbird team commits to the Firefox repository.
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Code-Level Collaboration

It is important to distinguish between code-level collaboration, which is just
based on contributions of code, and collaboration based on social networks, which
includes co-ordination by a forum or discussing features on mailing lists. Those
cover two different fields. One concentrates on social interactions and the other
focuses on the patches, the code that is being transferred between repositories.

The focus of this thesis lies on the code-level collaboration.

Every transfer of code between units of concern appears as a patch within the
repository. The patch has a few properties, which are interesting for the model
of Patch Flow, e. g. the author, the committer and the lines of code changed.

To determine in which direction the patch flows, a mapping of user to project is
needed. As pointed out in section 2.6.2; in IS this mapping is present by design.

In OS, the mapping has to be created by specific criteria. I can sort by four
criteria: most changed SLOCs per user in a repository, owner of a repository,
user has commit rights to the repository and sum of commits per user.

As only a few users own a repository, this criterion is not adequate. Even though
the owner might be committed to his/her repository, this can not be assumed the
default case. I myself own eight repositories on GITHUB.COM and feel committed
to only one. Having commit rights to a repository is a better measure, as users
who have commit rights to repositories are often committed to those repositories.
But this rules out the users, who only author commits for the repositories I crawl.
This happens, when a user only contributes to repositories, where he/she has no
commit rights.

Both, amount of changed SLOCs and sum of commits, are good measures, but
only the sum of changed SLOC:s is telling, because the same amount of changed
SLOCs can be achieved by a different number of commits. Also the SLOCs is
an expression of work and commitment to the repository.

Knowing from which project to what project a patch flows, a mapping of the
source project to the target project is needed. In IS it is easy to do this mapping,
as it is clear who works in what subdivision. Again, in OS this needs to be
defined. I know which user authored the patch and where the user originates, so
I can map the target repository to the repository the author comes from.
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2.7 Research Results

In this section I present my results. In section 2.8, I interpret and explain the
data and put it into context.

2.7.1 General Data

The database contains 4366 repositories, 48141 users who contributed to those
repositories, of which 3624 own at least one repository, and 2224396 patches. Of
all users, 10.1% have no username.

2.7.2 Extent of Patch Flow

In the following paragraphs I will present the results to the first research question.

Contribution to Repositories

=
o
o
o

Number of users contributing

10-

0 50 100
Number of repositories

Figure 2.3: How many contributors contribute to how many repositories.
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My data shows, that 81.98% of the contributors only contribute to one repository,
as figure 2.3 shows. The rest contributes to multiple repositories, but has one
project the users identify with, their base project, as elaborated in section 2.6.2.

The data suggests, that 18.02% of all contributors to one repository also contri-
bute to other repositories. The repositories these people contribute to, make up
for 74.62% of all repositories.

The patches contributed by Patch Flow just change 2.71% of the SLOCs in the
projects. As figure 2.4 shows, people contributing to only one repository tend to
have less commits per user than users contributing to more repositories.

10000 -

Ml

average amount of commits per user

0 50 100
amount of repos users contributed to

Figure 2.4: Average commits per user, when contributing to how many repos-
itories. The line in orange symbolizes the trend.

According to the data, people are very bound to their base repositories. They
commit 43036 SLOCs per user on average when contributing to their base pro-
ject. Just a sixth of it, 6655.9 SLOCs per user, is contributed to the side projects
by the users.
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Possession of Repositories

Also, 96.47% of the contributors to only one repository are not its owner. Looking
at my data, only 7.53% of all contributors own a repository, that they contribute
to.

2.7.3 Attributes Influencing Patch Flow

The following numbers are the results of the second research question, which
attributes benefit or hinder collaboration among OS projects.

When comparing the influencing factors of Patch Flow, the fraction of source
repositories that transfer patches to other repositories is 87.57%.

I examined four main factors with three minor factors each, which potentially
influence Patch Flow. The four main factors are: the number of repositories a
repository contributes to and receives patches from and the number of patches a
repository contributes to and receives from other repositories. Each of these four
factors can be divided into three categories, which influence Patch Flow: number
of patches, number of users and number of changed SLLOCs per repository.

Number of Repositories

The graphs in figure 2.5 on page 20 show the influence of the number of reposit-
ories a repository contributes to and receives patches from. Graphs (a) and (b) in
figure 2.5 show the influence of the number of users per repository on the number
of repositories a repository contributed to or received patches from. This minor
factor has a strong influence on the collaboration between projects, as shown in
the graphs.

The number of commits per repository only has a moderate influence on the
collaboration. The trends suggest, that the amount of commits in a repository
have a mildly stronger effect on the tendency of contributing to other repositories
(graph (c)), than on the tendency of people outside a repository to send patches

(graph (d)).

I found, that the number of changed SLOCs per repository has a minimal meas-
urable influence on the number of repositories a repository receives patches from,
as graph (f) shows. The number of changed SLOCs, however, has a stronger in-
fluence on the number of repositories people from the own repository contribute
to, as graph (e) illustrates.
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Figure 2.5: Influence of different parameters on the number of repositories
people from the own repository contribute to and the number of repositories
contributing to the own repository. The line in orange symbolizes the trend.

Number of Patches

As figure 2.6 on page 21 shows, the results are different, when comparing the
minor factors to the number of patches a repository contributed to and received
from other repositories. Graphs (a) and (b) show, that the number of users
per repository nearly have an equally strong influence on the number of patches
contributed to and received from other repositories.

While the changed SLOCs did not show a significant effect on the number of
commits a repository receives from other repositories (graph (f)), it has a valid
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impact on how many patches a repository contributes to other repositories (graph
(e)).

Also the number of patches contributed to other repositories is more telling.
The number of commits per repository has an equal effect on the number of
patches a repository receives from other repositories and the number of patches
it contributes to other repositories. The graphs (c) and (d) in figure 2.6 illustrate
this.

@

100 =

h il N
W i

1l
N AWW

Number of users per repository
=
O

Number of users per repository

lOOO lOOO

Number of commits per repository contributed Number of commits received per repository

©

10000 -

Qe

100 - “‘l‘
10

Mk n..lhlr‘

\"MW i

Number of commits per repository
Number of commits per repository

I
1000

1000
Number of commlts per repository contributed Number of commits received per repository

. Av%%‘"

lOOO
Number of commits received per repository

i

0 WWW

1
1000
Number of commits per repository contributed

Number of changed SLOC per repository
Number of changed SLOC per repository

Figure 2.6: Influence of different parameters on the number of patches contrib-
uted to and the number of patches received from other repositories. The line in
orange symbolizes the trend.

The repositories contributing or receiving the most patches are rarely the same, as
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figure 2.7 on page 23 illustrates. The following table shows the top five repositories
receiving and contributing the most patches to and from other repositories.

| Place | Receiving from (amount) | Contributing to (amount) |
1 docker/docker (101) docker/docker (152)
2 facebook /react (71) postcss/postess (134)
3 sindresorhus/awesome-nodejs (55) | eBay/restcommander (112)
4 gulpjs/gulp (52) coreos/rkt (85)
5 django/django (49) django/django (79)

Table 2.3: Top five repositories receiving patches from and contributing patches
to other repositories

The sample containing the top five repositories with the most received patches
shows, that these are the repositories with the most stars on GITHUB.COM in
my database. The repositories with the most contributions to other repositories
is a mixed field.

Comparing all influencing factors on contribution among repositories I examined,
the number of users contributing to a repository is the one with most influence
on the collaboration among repositories.
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Figure 2.7: Number of repositories contributing patches to and receiving patches
from other repositories in my database, sorted by the maximum of repositories
contributing patches to or receiving patches from other repositories.
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2.8 Results Discussion

The data presented in section 2.7 will be interpreted and discussed in this section.

2.8.1 General Data

Every user in the database can be matched to one person. As pointed out in
section 2.7.1, 10.1% of the users in my database have no username. A user can
have no username in my database for three reasons:

1. the user does not exist on GITHUB.COM,

2. the user does exist, but the email used for the commit is not connected to
the profile on GITHUB.COM and there are too many other users with the
same real name,

3. the user existed on GITHUB.COM, but does not anymore.

The first reason is obvious. When a user doesn’t exist on GITHUB.COM I can’t
provide a username to the database.

In the second case I cannot unambiguously say which of the many people is the
right one, so I choose to not select any of them.

In the third case it is difficult. Even though GITHUB.COM can provide a profile
picture for the user, GITHUB.COM can not provide a profile to the user. Because
I rely on GITHUB.COM to provide me with a profile, I can not get a username
for the specific user, that used to have a GITHUB.COM profile.

Even though the users with no username are only 10.1%, this number is not totally
surprising. Not every GITHUB.COM repository did start as a GITHUB.COM re-
pository. Some projects, e. g. herbstluftwm /herbstluftwm, had their repository
on a private server and migrated the repository to GITHUB.COM or still use
a private GIT server and use GITHUB.COM as a mirror. So the chance, that
someone contributed to the repository who does not have a GITHUB.COM ac-
count is given. After the projects migrating to GITHUB.COM, these contributors
may have chosen to use some other software and are not interested in those
projects anymore. Getting a username from those people is hardly possible.

The data gathered contains commits from 2001 through 2015, even though I only
sampled repositories with a creation date on GITHUB.CcOM from 2012 to 2014.
That suggests that some repositories were migrated to GITHUB.COM.
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2.8.2 Extent of Patch Flow

Contribution to Repositories

These numbers are not surprising. In the OS community the users mostly use
the software. When someone stumbles over a bug, he/she files a bug report
and a developer deals with the issue. A few people though, apart from the core
developers, download the code and fix the bug themselves and send a patch.
After that a small part of the people stay on the project to develop it further.
The vast majority of those people stick to this single project and identify with it
very strongly.

In OS, it appears that few people do very much work and many people do less
work. This can be seen in the data, as only 18.02% of all contributors contribute
to 74.62% of all repositories.

Even though the amount of SLOCs changed by Patch Flow is - with 2.71%
- very small, this is expected. Patch Flow mostly fixes a bug or implements
a small feature. These changes are not very large. Contrary a major feature
implementation or the port to a new version of the used programming language
can cause major changes and large amounts of changed code. These tasks are
normally done by project members. This correlates with my data, as the average
amount of SLOCs per user is much higher in base projects (43036 SLOCs per
user) whereas the side projects just get 6655.9 SLOCSs per user on average.

Possession of Repositories

The people contributing to repositories mostly do not own the repository for
various reasons. The people use software and, e. g. found a bug and fixed it,
implemented a feature or did some refactoring and sent in a patch. This is a very
common phenomenon in the field of OS and does not require the ownership of a
project.

2.8.3 Attributes Influencing Patch Flow

When comparing the influencing factors of Patch Flow, the fraction of source
repositories that transfer patches to other repositories involved in Patch Flow is
87.57%. This is a surprisingly high number. It means, that the community is
very active and Patch Flow is a very important issue regarding collaboration.
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Number of Repositories

The graphs (a) and (b) in figure 2.5 on page 20 show the influence of the number
of repositories a repository contributes to and receives patches from. The strong
influence of the number of users per repository on the contributions is not sur-
prising: The more people a repository has, the more people will contribute to
other repositories and their own repository, because it has a certain importance.
Also more people can do more development jobs.

Even though one might think that the number of commits in a repository is a
strong indicator if a repository is important or not, and therefore attracts more
users to contribute, this is only a moderate factor. As the graphs (c) and (d)
show. The number of commits are often seen as the main factor to determine, if
a repository is important, which is not maintainable with these results.

The graphs (e) and (f) suggest, that the amount of changed SLOCSs per reposit-
ory has the least significance for the tendency of people from outside contributing
to the own repository or people contributing to other repositories. This is sur-
prising, as, along with the amount of commits, the changed SLOCs within a
repository usually suggest the importance of a repository. With the data gained,
I can disprove that. The reason is simple: important repositories can have small
amounts of commits and changed SLOCs and large, unimportant repositories can
have many commits with many changed SLOCs. This indicator is not defensible
with my data.

Number of Patches

Figure 2.6 on page 21 shows, the results are different, when using the commits a
repository contributes to or receives from other repositories as main factors.

The influence of the amount of users per repository also has a strong influence on
the number of patches a repository receives and contributes, as graphs (a) and
(b) illustrate. This is, as for the number of repositories, not surprising, as more
people can do more and different work and can contribute to other repositories.

While no significant influence on the number of received patches per repository by
the changed SLOCs can be explained by the fact, that also small repositories can
have many changed SLOCs, the measurably stronger influence on the contributed
commits per repository is the effect of many people in a repository with many
commits and changed code. This phenomenon can be seen in graphs (e) and (f).

Equally strong influence on the number of commits received from and contributed
to other repositories has the number of commits per repository, as the graphs
(c) and (d) show. This is not surprising, as the number of patches a repository

26



Results Discussion

receives or contributes is dependent on the attention people pay to the repository.
Repositories with many commits tend to attract more attention than repositories
with less commits.

That the repositories contributing or receiving the most patches are rarely the
same, is also less surprising, because the repositories contributing many patches
to other repositories hold much knowledge and share it. The repositories with
less knowledge receive patches from the repositories with more knowledge. This
explains just one part of the phenomenon. The other part of repositories receiving
patches are simply the popular ones as table 2.3 shows.
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2.9 Threats to Validity

In this section, I will explain the limits of my work and the consequences I have
to take into account.

Forks

On GITHUB.COM many repositories have the same name and mainly the same
content, even patches with the same commit IDs, because people fork repositories.
This creates a personal branch of a repository, which results in a repository for
the person who forked a repository. In this thesis I do not distinguish between
forks and normal repositories. This might lead to duplicate data and, more
importantly, false assumptions. But looking at forks, these repositories express
the will to contribute to a project even without commit rights or to customize a
project. So the distinction between a repository and a fork is not necessary.

Direction of Patch Flow

With my mapping of users to repositories I can tell from which repository to which
other Patch Flow exists. One problem remains: The direction can not always
be determined clearly, because sometimes a patch is transferred from another
repository that a user contributed to, than his base project. These cases I can
not represent when fitting the data into my model. I also could determine the
direction of Patch Flow, when not using a base project, but I lose the ability to
tell, where a user originates. The direction of Patch Flow is not as important as
the fact that Patch Flow actually happened. So this is negligible.

Mapping Repository to Project

On GITHUB.COM, every repository represents a project. This fact is represented
in my mapping of user to repository, when I assign a user to a repository as
his base project. Multiple users can be assigned to one repository as their base
project. This simplification can be made, as the GITHUB.COM organizations
represent organizations and not projects or organizational units. I have no doubt
the GITHUB.COM organizations are misused to also represent projects. To have a
proper mapping of user to project, the GITHUB.COM organizations are worthless.
The reason is very simple: not every project uses an organization to organize their
members.
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The Dataset

An exact model is not feasible when using the complete dataset. I chose to crawl
a reduced dataset, that has a small footprint, i. e. uses a minimum amount of
GITHUB.cOM API requests and stores only relevant data. With my dataset,
I am able to draw many conclusions, although I have very little data for each
project or patch. Therefore my dataset has a reasonable format. The dataset I
chose is also very informative, as no other data is necessary for the conclusions
drawn in section 2.8.

Mapping User to Project

When mapping a user to a project, this is errorprone by design. A user can
identify with a few projects, as he/she can contribute nearly equally to each of
them. This is not represented in my mapping of the users to projects. The
reason I need this mapping is the determination of the direction of Patch Flow
and where a user originates. But as mentioned before, this is not necessarily
needed to actually show that Patch Flow is happening.
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2.10 Conclusions and Future Work

2.10.1 Conclusions

With the presented model of Patch Flow it is possible to show collaboration
among OS SCM repositories. The crawler GITHUBBLE collects data from GIT-
HUB.coOM and stores the data into a database. From the database it is easy to
analyze the data based on the model of Patch Flow. This thesis shows, that
Patch Flow exists in the OS world and is a common phenomenon.

2.10.2 Future Work

In the future, some more modules will be implemented to also use the crawler
on IS repositories and other SCM tools than GIT. Also the application will be
separated into a server and a client application.
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3.1 The Application GITHUBBLE

Automating the process of data collection is essential when crawling big amounts
of data. Fortunately, GITHUB.COM offers a great and well documented API,
that allows to collect exactly the data a researcher is interested in. This section
further explains how GITHUBBLE, my application to crawl GITHUB.COM, works,
what the challenges in implementing such a program are and what the limits of
GITHUBBLE are.

3.1.1 The Design

When designing GITHUBBLE, I made sure to make it as modular as possible, as
using the CRAWLER for OS projects was only to proof the concept of Patch Flow.
The future goal is to analyze IS projects. This requires some other modules, e. g.
for SVN.

In section 2.5, I present an overview over the modules of GITHUBBLE. The
modules are the CONFIGMANAGER for configurations, e. g. information for au-
thentication and path variables, GITHUBADAPTER for everything regarding GIT-
HuB.coM and the PERSISTOR for everything database related. The CRAWLER
uses the three modules to crawl the given repositories. The application call-
ing the CRAWLER is GITHUBBLE, which initializes the CRAWLER and calls the
respective functions from the CRAWLER to begin the crawling.

ConfigManager

In figure 3.1 I show the CONFIGMANAGER that manages the configuration for
all the modules. Every module receives information from the configuration. The
PERSISTOR, e. g. gets information about what username, server and password
the database has, the GITHUBADAPTER where to clone the repositories to, etc.
The configuration is a simple text file containing the configuration options line
by line.

GithubAdapter

Within the GITHUBADAPTER I encapsulated all functionality related to GIT-
HuB.coM and its repositories. In the following paragraphs I will describe the
parts of this module in detail.

The GITHUBADAPTER class is the interface of the functionality of GITHUB.cOM
to the other modules, in this case the CRAWLER. It serves the repositories,
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ConfigManager

Configuration

—gHUsername : String 1
—gHOAuthToken : String
—-dBUsername : String

—-dBPassword : String 1
—dBName : String
—dBURL : String

—-logFolder : String —-configuration : File

ConfigManager

-gitFolder : String - - . .
+ConfigManager (configuration : File)

+getgHUsername () : String +getConfiguration() : Configuration
+getgHOAuthToken () : String +setConfiguration() : void
+getdBUsername () : String :

+getdBPassword() : String I

+getdBName () : String i
+getdBURL() : String ‘ N
+getLogFolder () : String
+getGitFolder () : String

throws
NoConfigurationFoundException

Figure 3.1: The CONFIGMANAGER manages the authentication and path vari-
ables.

provides the ability to search for users, holds the amount of remaining API
requests and so on.

GITHUBBLE works on the GithubRepository class. It clones the repository from
GITHUB.COM to the local file system on initialization and deletes it on destruc-
tion of the object. Furthermore, it serves the commits from GITHUB.COM when
I need them to extract data. A GithubRepository also contains the LocalCommits
from the repository cloned to the local hard drive. The LocalCommits offer the
possibility to extract the committer, the author and the lines added, changed and
deleted much faster as if I used the GITHUB.cOM API for each commit, as the
API requests are limited. I explain the model of rate limiting of GITHUB.COM
in section 3.1.2.

A GithubCommit contains everything that a commit from GITHUB.COM con-
tains. From the username and real name of each, the author and the committer,
up to the deleted and added lines of code.

The GithubCommitRange is the range of commits [ want to get as a batch. This
saves memory and works as fast as just looping over all the commits themselves.

With a GithubPerson the actual user on GITHUB.COM is represented in my class
design. It serves the username, real name and email address. When crawling, I
insert every new user into a database. In the CRAWLER I use a fuzzy matching
algorithm to insert only unique users into the database, described in section 3.1.4.
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GithubAdapter
GithubPerson
HttpRequest
—login : GHUser
1 1 —git : GithubAdapter
+getOrganisations () List<String>
+getUsername () String +getUsers (authorName : String) GithubPerson
+getName () String —-get (url : String) String
+getEMail () String
1
2
GithubSearch
GithubCommit +GithubSearch (git GiFhubAdaptér, config : Configuration)
+user (authorName : String) GithubPerson
—ghCommit GHCommit 1
+getCommitID () String
+getAuthorName () String 1
+getAuthorUsername () String
+getCommitterName () String GithubAdapter
+getCommitterUsername () String K X X
+getLinesAdded () int —c9nflg 8 Cénflguratlon
+getLinesDeleted () int “CAED 8 CHERD
+getLinesChanged () int +getRemainingAPICalls () int
+getRepository (repository : String) GithubRepository
* +search (authorName : String) GithubPerson
1
GithubCommitRange 1
-start : RevCommit
-end : RevCommit
+GithubCommitRange (start : RevCommit, end : RevCommit)
+getStart () RevCommit
+getEnd () RevCommit
*
1 LocalCommit
GithubRepository —linesAdded : int
—linesDeleted : int
-git : Git 1 -linesChanged : int
-commits : List<RevCommit> -githubAdapter : GithubAdapter
+getCommits () List<LocalCommit> — | +getCommitID () String
+getCommitsFromGithub () List<GithubCommit> 1 * +getAuthorName () String
+getCommitFromGithub (id : String) GithubCommit +getCommitterName () String
+cloneRepository (retry : int) void +getLinesAdded () int
+getLinesDeleted () int
+getLinesChanged () int
+getCommitDate () Timestamp
—getOnlyDiffLinesWithoutContext () void
+getCommitterEMailAddress () String
+getAuthorEMailAddress () String

Figure 3.2: The GITHUBADAPTER represents the functionality needed to access

the data from GITHUB.COM.

To get as many complete data sets of the users as possible, I implemented the
GithubSearch to search for a users username on GITHUB.COM. This is necessary,
if the real name and email used in the commit are different from the GITHUB.CcOM

profile.
To perform the API GET requests in the

GithubSearch, I set up an Http Request

class, which performs the requests and delivers the results of the API request.
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Persistor

On the PERSISTOR, that I show in figure 3.3 I can perform every necessary data-
base operation needed by the CRAWLER. Most components of the GithubAdapter
have a corresponding class within the PERSISTOR, to have a proper representa-
tion of the entities on GITHUB.COM.

Persistor

Persistor

conn : Connection
create : DSLContext

+insert (...) : InsertResult

+update(...) 3 InsertResult

+getRepositories() : List<Repository>

+getUser (userId : int) : Person

+getUser (username : String) : Person

tgetUserID (person : Person) : int
+getRepositoryID(name : String, ownerID : int) : int
+getRepository(name : String, ownerID : int) : Repository \\\‘~\\\\\\\\\
+getOrganisationID(name : String) : int
+deleteAllContentFromAllTables () : void +getUsername () : String
+getUserUsername (name : String) : Map<Boolean, String> +getRealName () : String
+getPatchID (commitID : String, repositoryID : int) : int +getEmail () : String
+remove (repo : Repository) : void

Person

+getAmountCommit sForRepo (repositoryID : int) : int

Repository

Patch +getOwner () : int

tgetName () : String
+getCommitId() : String +getCreationDate() : Timestamp
+getCommitterId() : int +getLastUpdatedDB() : Timestamp

+getAuthorId() : int
+getLinesAdded() : int
+getLinesChanged() : int
+getLinesDeleted() : int
+getRepositoryId() : int
+getCommitDate () : Timestamp

Figure 3.3: The PERSISTOR serves and stores data in the database.

Crawler

The CRAWLER combines the functionality of the PERSISTOR and the GithubAd-
apter. Here I insert users and repositories into the database, crawl the repositories
for patches, put the patches into the database and use my algorithm described
in section 3.1.3 to efficiently extract the needed data from the repositories us-
ing the configuration from the CONFIGMANAGER and the functionality from the
GithubAdapter. 1 sotre the extracted data in the database with the PERSISTOR.

I have two functions inside my CRAWLER to crawl repositories: One to crawl
repositories already in the database to update the repositories and a second to
crawl repositories, that are not in the database, yet. Both methods use one
procedure for the crawling mechanism, but use different approaches to get the
repositories to crawl.
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In order to crawl the repositories already in the database, I get a list of all
repositories in the database and crawl them sequentially. The method, that crawls
repositories not in the database yet, gets an array of Strings, each representing the
full repository name of a repository on GITHUB.COM. The Strings are taken and
the represented repositories from GITHUB.COM are inserted into the database.
After that, the repositories are appended to a list, which is given to the method
to crawl the repositories.

Crawler
Crawler

—githubAdapter : GithubAdapter
-persistor : Persistor
—-config : Configuration throws
+crawl () : boolean NoConﬁgurat10111.7011ndExceptlon

, . : } throws IOException
+crawl (givenRepositories : String[]) : Dboolean

throws Throwable

Figure 3.4: The CRAWLER uses the GithubAdapter and the Persistor to crawl
GITHUB.COM and store the gained data in the database.

GitHubble

GITHUBBLE is the command line application, which either takes user input,
processes it and forwards it to the CRAWLER to crawl, or instructs the CRAWLER
to get the repositories from the database and crawl those.

3.1.2 GiTHuB.coMm API RateLimit

With GITHUB.COM being one of the most popular developer platforms of the
present, the operators face an ever growing amount of API requests. To properly
handle all those requests, GITHUB.COM limits the amount of requests, depending
on what API functionality is used and whether authentication is used or not.

Using unauthenticated access, 60 requests per hour for normal API requests are
the maximum a developer can submit. Using authenticated access, the limit
is 5000 requests per hour. The search has its own rate limit with 20 requests
per minute for the authenticated user, and 10 requests per minute for the unau-
thenticated user.
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Exceeding the rate limit multiple times causes the application to be "temporarily
blocked"!. Exceeding the rate limit, causes the application to wait until the hour
is passed to send the next request. That is one of the reasons why I decided
to clone the repositories to the local hard drive and to crawl the repositories
locally. The other reason is, that I am able to crawl more repositories within
the 5000 API calls. The amount of API calls I need per repository dramatic-
ally drops from several thousand to way under one hundred for normally sized
repositories to several hundred in exceptional cases. The latter cases contain,
e. g. repositories where many people with unconnected profiles commit code. In
those circumstances I need more API calls to get all information I need, than for
normal repositories. The reduction of API calls allows me to crawl constantly,
without waiting too long between the repositories.

3.1.3 The Algorithm

To crawl GITHUB.COM with a minimum amount of API requests per repository,
which allows me to crawl more repositories within the limited amount of API
requests, using a simple but efficient algorithm is necessary.

Figure 3.5 on page 38 visualizes the algorithm. First I initialize the CRAWLER
with all necessary configuration data. After that, I get the repositories I want
to crawl either from the database or from the parameters the user provided on
the command line. If T get the repositories from the command line, at this point
I insert the repositories into the database. The following steps are executed for
every repository in the database.

The next step is to clone the repositories from GITHUB.COM to the local hard
drive. This saves me most API requests, which are used to collect the users’
or the commits’ data. After that I get a list of all the commits of the current
repository. To save memory I get the commits in batches of 100, process these 100
and get the next 100 repeatedly. Afterwards I process the commits by extracting
all necessary information from the repositories and inserting it into the database.
After that I completed one repository and delete it from the hard drive to save
space.

'GITHUB.cOM does not tell the user how long the application is blocked, but from my
experience it is the remaining time until the hour or minute has passed and the RateLimit is
reset.
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initialize
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datab get itori arameter
atabase e .. . [<-qrepositories [« -
repositories p p
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repository
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fuzzy search, if username empty)

E ]
E }
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E ]
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|

get lines added/deleted /changed

|
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process
comimits

yes is last
‘ commit? no

is last re-
pository?

_
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Figure 3.5: First I initialize the crawler. After that, I get the repositories I
want to be crawled either from the database or the parameters the user provided
on the command line. The next steps are to clone the repository to the local
harddrive and get a list of all the commits. Afterwards I process the commits,
get all necessary information from the repositories and restart the cycle.
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3.1.4 The Challenges

When implementing a crawler like this, the programmer faces multiple challenges.
Some are easy to solve, some are very subtle and some will cause the program to
fail. The titles of this section are the assumptions I made, while implementing
that prooved to be false. The challenges are user identification, API request limit
and external libraries.

The username on GITHUB.COM is unique

Signing up to GITHUB.COM, everyone has to have a unique username to contrib-
ute to projects on GITHUB.COM. This holds true for all users on GITHUB.COM.
Representing this fact in a database, a developer would first try to make the
username in the database unique. An entry for a person could look like this:

username | real name | email
johndoe John Doe | john.doe@example.com
siegfried Roy siegfried.roy@thetiger.com

The challenge begins, when crawling a repository, which was e. g. migrated from
a private GIT server to GITHUB.COM. In this case, it is likely to get a contributor
who is not member of GITHUB.COM, thus has no username on GITHUB.COM.

At this point, there still is an easy solution: insert the user with the real name
and email provided by the GIT repository. After inserting the new user without
a username our table looks like this.

username | real name email

johndoe John Doe john.doe@example.com

siegfried Roy siegfried.roy@thetiger.com
Ronald McChutney | ron.mcchutney@peril.de

Continuing, I must assume that the repository may contain other users without
usernames. Bearing in mind the database has a unique condition for the user-
name, all such inserts must fail, as there already is a user with no username. I
assigned the empty, unique username to the first ever commit without a user-
name, erroneously blocking all other inserts of users without a username.

Thus a commit, which has a user with no username as author and/or committer
gets the first, and only, user with no username as author and/or committer.

To prevent this, the primary key must be a three tuple of username, real name and
email, where only real name and email are unique. This prevents inserting the
exact same user with the same credentials over and over again. This, however,
does not prevent inserting the same person with different credentials multiple
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times. The developer has to think of a sensible way to check if the person exists
in the database and merge his identity.

Users use a consistent profile

Contributing to repositories on GITHUB.COM, users need to connect their pro-
file with an email address, so GITHUB.COM can connect the commit with the
profile. This email address can be chosen to be invisible to the public. On GIT-
HUB.COM users can submit multiple email addresses to connect with their profile,
so commits from different computers, e. g. business computer with the business
email and the private computer with the private email, are connected to the same
profile.

In many cases the users just forget to add the email address they use on one
of their computers to their profile on GITHUB.cOM. A few users however just
refuse to do so, because the system allows it. GITHUB.COM can not map those
users to the profile they have. I developed a heuristic to map those users to their
profiles.

When a user has no username in the first run, I try to get a user, with the same
email and real name from the database first. If that fails, I try to get the user by
its real name from GITHUB.cOM. If that also fails, I resign and insert the user
to the database without a username.

The email field in a GIT repository contains a valid email

To contact a committer or author, a GIT repository also contains a field for an
email address, which should contain a valid email address.

The idea of compensating the non-uniqueness of the username with the tuple
of email and username is only a partially valid assumption. Most of the users
contributing to a GIT repository submit a valid email address. Unfortunately
GIT has no requirements on how the email address has to look like. So the field
containing the alleged email can contain whatever string comes to mind. Thus,
using this field for any valuable information is not possible.

The name field contains the real name of a user

Every GIT repository also contains a field for the real name of the committer
and the author. But here also every string that comes to mind can be inserted.
So everything from an email address or a username up to nothing or even a real
name can be found in this field. Using this field for a first orientation who the
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person might be, can be useful, but challenging as the name can be nonsense.
GITHUBBLE just inserts it into the database.

Reaching the API-Rate-Limit

As pointed out in section 3.1.2, GITHUB.COM limits the amount of requests a
user can submit. On the first glance it seems to be hard to reach the API rate
limit, that GITHUB.COM grants with OAuth authentication. But actually it is
very easy to exceed it. Using only GITHUB.cOM and the API for information
collection, the rate limit can be exceeded within a few minutes, which causes
waiting until the hour has passed to send the next requests.

A valid solution to this problem is to clone the repository to the local computer,
crawl the repository locally and just look up the parts in question, i. e. user
information.

Using external libraries

To have a standardized way of implementing requests to the GITHUB.coM API
or a local GIT repository, using external libraries is the standard approach. When
using libraries, a developer usually has to deal only with the errors the library
throws or the values it returns. Sometimes, though, it is a bit more complicated.

A developer would assume, that a library for handling GIT repositories is capable
of cloning repositories reproducibly. In case of JGIT this does not hold true. Even
though it is one of the best JAVA implementations for GIT repository handling,
it is not capable of reproducibly clone a repository. This just partially is JGIT’s
fault. The other part plays JAVA itself.

JAVA seems to have a problem when allocating large objects that need data from
the internet. When cloning a repository with JGIT, the developer has to pay
attention that the repository gets cloned correctly. Usually, when offered such a
functionality by a library, the library takes care of the correct handling of errors
and corresponding side effects.

The problem is though, that a minimal example always works, but in the field with
any kind of data the so called "inflater" for objects retrieved from the network
gets closed every now and then. The workaround is, to repeat the process of
cloning for a specified amount of times and to give up after that. Looking at
most network protocols this is good practice in the field. I filed a bug report
against JGIT? and JAVA? itself.

’https://bugs.eclipse.org/bugs/show_bug.cgi?id=463007
3http://bugs.java.com/bugdatabase/view_bug.do?bug_id=8080363
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Appendix A Tables

Number of users contributing | Number of repositories
39468 1
5622 2
1698 3
660 4
278 5
139 6
94 7
53 8
27 9
29 10
17 11
9 12
7 13
6 14
3 15
6 16
1 17
3 18
2 19
2 21
3 22
1 24
1 27
1 29
2 30
2 34
1 35
1 44
1 46
1 66
1 73
1 113
1 128

Table 3.1: How many people contribute to how many repositories.
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