
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

FLORIAN SCHMITT

STUDIENARBEIT

IMPROVING DOMAIN MODELING AND
REQUIREMENTS ANALYSIS USING
GROUNDED THEORY

Submitted on 8 June 2015

Supervisor: Andreas Kaufmann, M. Sc., Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 8 June 2015

License

This work is licensed under the Creative Commons Attribute 3.0 Unported license
(CC-BY 3.0 Unported), see http://creativecommons.org/licenses/by/3.0/

deed.en US

Erlangen, 8 June 2015

i

http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Abstract

One of the key factors of the success of professional software development is
mature requirements engineering. This thesis focuses on the elicitation and ana-
lysis of requirements and addresses the process steps between the elicitation of
requirements and the gathering of the system requirements specification and do-
main model.

We consider the state-of-the-art of these aspects of requirements engineering as
suboptimal and propose an approach that implements the elicitation and ana-
lysis of requirements as an adaption of the Grounded Theory approach, which is
methodically sound at the field of social studies.

Our approach will implicate the institution of an additional artifact within the
process, the so-called code system. Furthermore this approach enables the direct
mapping from the gathered information about the target domain, represented in
the code system, into a domain model.

ii

Contents

1 Introduction 1
1.1 Original Thesis Goals . 1
1.2 Changes to Thesis Goals . 1

2 Research 3
2.1 Introduction . 3
2.2 Related Work . 5

2.2.1 Application of QDA Methods to Requirements Engineering 5
2.2.2 Domain Model Generation in Requirements Engineering . 5

2.3 Research Question . 6
2.4 Research Approach . 6

2.4.1 Outline of One Iteration 6
2.4.1.1 Execution of Interview 7

2.4.1.1.1 Selection of Interviewee 7
2.4.1.1.2 Preparation of Interview 7
2.4.1.1.3 Interview 8
2.4.1.1.4 Transcription of the Audio Record . . . 9

2.4.1.2 Analysis of the Transcript 9
2.4.1.3 Code System Revision 10

2.4.2 Extraction of Domain Model and Glossary 12
2.4.2.1 Information Representation in the Memos 12
2.4.2.2 The MaxQDA File System and the Mapping of

the Artifacts . 14
2.5 Used Data Sources . 16

2.5.1 Interviews . 16
2.5.2 Further Data Sources . 17

2.6 Research Results . 18
2.6.1 Views and Perspectives . 18
2.6.2 The Degree of Freedom in Coding 19
2.6.3 Abstraction Levels . 20
2.6.4 Shortcomings of MaxQDA 21

2.7 Results Discussion . 22

iii

2.8 Conclusions . 23

3 Elaboration of Research 24
3.1 Requirements Analysis: The State of the Art 24

3.1.1 Placement of Requirements Analysis within the Require-
ments Engineering Process 24

3.1.2 Involved People . 25
3.1.2.1 Stakeholders . 25
3.1.2.2 Project Environment 28

3.1.3 Requirements and Types of Requirements 28
3.1.3.1 Abstraction Levels 29
3.1.3.2 Functional vs. Non-Functional Requirements . . 30
3.1.3.3 Acceptance Criteria 33

3.1.4 Requirement Elicitation and Analysis 35
3.1.4.1 Requirements Discovery 36

3.1.4.1.1 Interviewing Techniques 37
3.1.4.1.2 Observance 37
3.1.4.1.3 Further Elicitation Techniques 38
3.1.4.1.4 When to Use which Technique 38

3.1.4.2 Requirements Analysis, Classification and Organ-
ization . 39

3.1.4.3 Requirements Prioritization and Negotiation . . . 39
3.1.4.4 Requirements Specification 39
3.1.4.5 Challenges and Difficulties of Requirements Eli-

citation . 40
3.1.5 Results and Products . 41

3.1.5.1 Description of the Project Environment 41
3.1.5.2 Results of the Elicitation Phase 41
3.1.5.3 The Software Requirements Document (SRS) . . 42

3.2 openETCS . 43
3.3 Grounded Theory . 44

3.3.1 Qualitative Data Analysis 44
3.3.2 Grounded Theory . 44

3.3.2.1 Coding . 45
3.3.2.1.1 Open Coding 45
3.3.2.1.2 Axial Coding 46
3.3.2.1.3 Selective Coding 46

3.3.2.2 Memos . 46
3.3.2.3 Theoretical Sampling 46
3.3.2.4 Constant Comparison 47
3.3.2.5 Theoretical Sensitivity 47
3.3.2.6 All is Data . 47
3.3.2.7 Theoretical Saturation 47

iv

Bibliography 49

v

1 Introduction

1.1 Original Thesis Goals

This thesis aims at the development and realization of an approach that imple-
ments the elicitation and analysis of requirements as an adaption of the Grounded
Theory approach, which is methodically sound at the field of social studies. The
developed approach is applied to practical execution at the openETCS project.

Originally this thesis was intended to determine the requirements for the tool
chain throughout the whole openETCS project through the exploratory applic-
ation of the newly developed method based on Grounded Theory. The intended
process steps were the execution of a series of interviews with project stakeholders,
the processing of the associated interview transcriptions with the tool MaxQDA
and the implementation of a code system that offers a direct mapping from state-
ments from the analyzed interviews and documents into a domain model which
is automatically deduct-able from the code system.

Furthermore, the code system was intended to feature a direct deduction of a
glossary with the specialized terminology of the target domain.

1.2 Changes to Thesis Goals

As it turned out that the analysis of the entire project tool chain of openETCS
would not be manageable within the time scope of this thesis, the scope of research
was confined and we focused on the analysis of requirements engineering within
openETCS and the associated tool chain.

In addition, the time restrictions forced us to resign the development of a tool that
automates the modeling. However, all necessary data structures are given and
the data representation which we developed for the domain modeling, which is
stored within the memos, was tested during the manual mapping into a domain

1

model, only the tool that features the automation of this mapping had to be
shifted to further research.

We therefore built a domain model manually, according to the memo contents.

2

2 Research

2.1 Introduction

Figure 2.1: Why software projects fail (data from (ESI, n.d.))

The quality of requirements is one of the major factors of success of any software
development nowadays (see figure 2.1). The requirements quality, however, is
greatly influenced by the techniques employed during requirements elicitation
(Hickey & Davis, 2003, p.169).

Requirements Engineering (RE) is one of the key disciplines of software develop-
ment. It covers the elicitation, analysis, and specification of requirements plus
the management throughout the development process, particularly including re-
quirements change management, as can be seen in figure 2.2. This thesis focuses
on the aspects of requirements elicitation and requirements analysis and neglects
the other aspects.

3

Figure 2.2: The subdisciplines of Requirements Engineering

Chapter 3.1 Requirements Analysis: The State of the Art introduces the details
of the process of requirements elicitation and analysis as it is currently done.
It is shown that in many aspects the analysis and the decisions which the re-
quirements analyst takes is done by intuition and with implicit knowledge, and
that the process from the starting of elicitation up to the deriving of a SRS is
insufficiently documented. Many sequences of operations are grounded more in
practical experience of the analyst than in clearly structured decision guidelines.

We propose a new approach, based on the adaption of Grounded Theory (GT)
for requirements analysis, which will implicate the institution of an additional
artifact within the process, the so-called code system.

Typically the domain analysis includes the establishment of a so-called domain
model (DM). DMs represent the key concepts and the specific vocabulary of the
domain and aim at describing and constraining the scope of the domain. This
approach enables the direct mapping from the gathered information about the
target domain, which is represented in the code system, into a DM and there-
fore features substantial improvements concerning traceability, documentation,
systematics, rigorousness and maintainability.

4

2.2 Related Work

2.2.1 Application of QDA Methods to Requirements En-
gineering

There has not been much research up to date that investigated the application
of qualitative research methods to the elicitation of software requirements, but a
few exceptions can be associated.

(Coleman & O’Connor, 2007) used the GT method to elicit systems and user
requirements in the context of software process improvement for the Irish software
product industry as a test-bed. They both described the usage of GT in the study
and evaluated its effectiveness as a research methodology and concluded that GT
is a reliable method for this purpose.

(Kaufmann & Riehle, 2015) investigated the potential of RE-methods based on
Qualitative Data Analysis (QDA) to improve traceability and concluded that the
processes of RE and theory building are similar and the adaption of QDA methods
is a suitable method to improve the early development stages with respective to
traceability and change management.

Halaweh proposed the use of GT as an alternative approach for requirements
analysis in (Halaweh, 2012). He demonstrated the application technique through
a case study and provided a mapping from GT outputs into a class diagram and
states that GT can be used to improve the communication both between the
analyst and the stakeholders and within the development team members by the
easy transformation of GT models to standard models like UML. In addition he
particularly addressed the capability of understanding users’ needs better through
the feasibility to address the nontechnical issues.

2.2.2 Domain Model Generation in Requirements Engin-
eering

The state of the art of the process from Requirements Analysis (RA) over system
modeling up to the development of high-quality requirement specifications and
their representation in formal models like UML is presented very detailed in (van
Lamsweerde, 2009). In particular, the critical role of the requirements engineer
is discussed.

A further book which presents a detailed and high-qualitative overview of object-
oriented analysis and design is (Booch, 2006), where sections focused abstraction
levels can be found at pp.274-276 and pp.281-283.

5

2.3 Research Question

This research will address the following questions:

Is the use of a QDA-based approach an advantage for the processes of require-
ments elicitation and analysis?

Is the adaption of Grounded Theory suitable to improve the development of a
domain model of the target domain?

Which advantages and disadvantages characterize the GT-adoption in comparison
with the conventional approach?

2.4 Research Approach

To develop a new approach for domain modeling we applied traditional GT prac-
tices within an exploratory project. The purpose of this project was to understand
the needs within the openETCS project towards their tool chain. In essence we
performed requirements elicitation and analysis for the RE phase of the software
development process within the openETCS project. The applicability of different
qualitative research practices was evaluated towards their usefulness in gaining
an understanding of the domain and their impact on the creation of a domain
model.

One of the characteristics of our approach is that the elicitation of data is done
iteratively. This particularly means that instead of collecting a huge amount of
data in a first step and analyzing this afterwards in a second one, we collect and
analyze data in parallel and can iteratively decide, which pieces of information
to elicit next and where to find them. This proceeding is directly adopted from
classic GT, where it is denominated as Theoretical Sampling (see also chapter
3.3.2.3 Theoretical Sampling).

The iterative data elicitation is continued until no additional data can be found
that further develops the categories of the domain to be researched. When all
categories are saturated, the data elicitation is finished. This principle is defined
in GT as Theoretical Saturation and closer described in section 3.3.2.7 Theoretical
Saturation.

2.4.1 Outline of One Iteration

The following section aims at introducing the reader to our research process by
describing the steps of one iteration in detail. In application of the approach,

6

these steps will be executed multiple times. Within our exploratory project, we
conducted four iterations with three stakeholders from the openETCS project.

2.4.1.1 Execution of Interview

Typically, one of the main data sources when carrying out QDA is the execution
of interviews, which provide several advantages in comparison to other data eli-
citation techniques: It is possible to individually fit the course of the interview
and the researcher can directly ask questions at topics where he would like to go
more into detail. Therefore the likeliness of misunderstandings and ambiguities
is much lower than with i.e. the use of questionnaires.

2.4.1.1.1 Selection of Interviewee The most fundamental factor for a suc-
cessful data elicitation by the use of interviews is the selection of the suitable
interviewee.

Since the domain analysis process was done in an iterative way, we had to decide
multiple times which persons to interview next. However, during the exercising
our approach at the openETCS project, the concept of Theoretical Sampling
could not be fully implemented. There were two reasons for this:

• Within this thesis, the time on hand to execute the approach was very
limited. Usually, the interviewing of more people would be appropriate
to reach Theoretical Saturation. Unfortunately, only four interviews could
be carried out. This was sufficient to prove that the approach and its
concepts are basically well-suited for the intended field of application, but
more interviews would have further improved the quality of the designated
DM.

• During the analysis process concerning the openETCS requirements engin-
eering domain, it turned out that the number of available interview part-
ners was commensurately low, since some of the potential interviewees had
already left the project again and were not available any more.

The details of the interview specifics of the openETCS analysis are closer de-
scribed in section 2.5.1 Interviews.

2.4.1.1.2 Preparation of Interview To ensure an efficient interview execu-
tion and results of good quality, an interview guideline was prepared in advance.
Although it would principally also be possible to do interviews without a prepared
outline, we strongly recommend it, since it turned out that this significantly im-
proves both the time efficiency and the quality of the gathered information.

7

In two out of four cases, we mailed the interview outline to the interviewee before
the interview. In both cases, the interviewees had asked for the questions, since
they wanted to make sure that they could provide information to all requested
aspects. Yet, we conclude that the provision of interview outlines in advance does
neither affect the efficiency of the interview nor the quality of results, therefore
it can be considered as nice to have, but not necessary.

The interview questions originated in the collected data up to that point of time,
respectively:

• Gaps within the current code system were one source of questions for
the next interview . When we determined open points, the lack of deeper
information or untreated aspects within a certain topic during the analysis
of current data, this triggered additional investigation by questions in the
next interview.

• Discrepancies within the code system typically were originated in
contradictions in the statements of different interviewees. Therefore, these
aspects were detailed in upcoming interviews and more data was collected,
which either confirmed or contrasted the present statements.

• New aspects In many cases, during the analysis of existing data, we dis-
covered new topics and aspects of the target domain within the analysis
which were not at all treated up to then. Hence, they were added to the
investigation and treated in following interviews.

A special case was the initial interview, obviously. Here, the questions and in-
vestigated topics arose out of the initially analyzed official project documents,
which were provided by our industry partner to enable us to get an overview of
the project in general and the specific aspects of the scope of the research.

With hindsight, it can be stated that the gathered data from the first interview
was relatively general and superficial and therefore did not contribute very much
to a precise and object-orientated representation of the target domain. Rather, it
served us to get familiar with interconnections and interdependencies throughout
the project as a whole, which is the basis for a correct delineation of the re-
search scope and the identification of all interfaces with the domain environment.
Therefore, we consider the initial interview as not very fertile in terms of detailed
analysis, but nevertheless as essential and crucial.

2.4.1.1.3 Interview The actual interviews were all carried out as telephone
interviews, which were audio-recorded.

We used open questions to create a loose atmosphere and encouraged the inter-
viewees to talk about what came to their mind and also change the topic if they

8

wanted to. The prepared questions served more as an outline.

The intention was to let the interviewee speak freely, which is also transferred
from the traditional GT techniques. This shall ease the discovery of topics that
the analyst might not yet be aware of. However, when statements came up that
the analyst did not understand or included unclear details, or when the current
interviewee contradicted statements from earlier interviews, the analyst inquired
these points and asked for more details.

2.4.1.1.4 Transcription of the Audio Record In a next step, the audio
records were transformed into transcriptions.

In one case, this was done with the help of a foreign transcription service and
the received document was checked for correctness and completeness. The other
three interviews were transcribed by ourselves.

For the transcription, we used Winamp as one of the common media players in
combination with the add-on Pacemaker, which enabled the deceleration of the
audio record. For the text processing, Microsoft Word was used.

2.4.1.2 Analysis of the Transcript

The obtained interview transcript was analyzed in the next step.

As our approach is based on qualitative data analysis, this means the processing
of the transcript with a so-called CAQDAS -software, which stands for ”computer-
assisted qualitative data analysis software”. We used MaxQDA within our re-
search, which is one of the standard tools on the market. MaxQDA is basically
capable of working with Word-Documents as well as pdfs or video/audio files.

After the import of the word-document into our project, the transcription was
analyzed by executing the coding process as it is described in chapter 3.3.2.1
Coding.

We deviated from the standard GT-approach as follows:

• The most radical modification is the modified use of memos.

In conventional GT, memos serve for the recording of the researcher’s
thoughts, like questions that come to his mind, ideas how to progress or
whom to interview next, etc. (see also section 3.3.2.2 Memos).

Within our approach, we used the memos for two purposes, which are il-
lustrated in figure 2.3:

9

The first one was the conventional role as described above. The use of
memos proved to be a valuable help to get thinkings denoted without the
necessity to do this very structured or in mature language. In addition,
the direct interconnection from the memo to the coding and its placement
within the code system plus the possibility to directly access the related
text sections from the interviews was very helpful. The upper part of figure
2.3 provides an example for such a conventional memo.

The second purpose is that we used the memos as the interfaces to denote all
informations which were necessary to derive a domain model and a glossary
out of the code system. This key aspect of the approach will be described
in detail in chapter 2.4.2.1 Information representation in the Memos. An
example can be found in the bottom part of figure 2.3.

• In contrast to the conventional approach, which primarily aims at the de-
velopment of theories that describe and explain human behavior, social pro-
cesses and patterns, our research was targeted on an object-orientated
description of the analyzed domain.

Nevertheless, one of the advantages of our approach is the possibility to
take the mentioned social aspects into account in addition. The focus on
object orientation does not require the neglect of social aspects, in fact, it
is easily possible to involve different views.

Therefore all social aspects interconnected to the domain can be explicitly
included in the code system. Hence, this information does not get lost but
is represented in the artifacts, which we consider a major benefit of our
approach.

2.4.1.3 Code System Revision

After running through the coding process, we have a new version of our code
system, which we now revise and check for quality.

• Discovered discrepancies trigger the further investigation of the related
topic in the next interview

• unification of double occurrences of codes

• consistency check of the hierarchical structure of the code system

Hence, the code system is smoothed and corrected. In addition, the memos are
updated afterwards. Arisen thoughts and questions are denoted and often serve
as the basis for discussions within the next interview.

10

Figure 2.3: The two types of memos in comparison: Conventional (above) and
new approach (beneath)

11

2.4.2 Extraction of Domain Model and Glossary

Chapter 2.4.1 Outline of One Iteration described the process of elicitation of data.
The following chapter will focus on the question how to embed this information
within the code system in a way that allows to derive a DM and a glossary in an
automated way.

Since the use of QDA for RE is rather new and the deriving of a DM out of
a QDA code system has not been done before, of course there is no optimized
software for our purposes. This might be the subject of future development, if
research to come confirms the validity and suitability of our approach or related
research. At present, we decided to go with MaxQDA, which is one of the market
leaders of CAQDAS.

The features of MaxQDA are clearly suited for conventional QDA, but not optim-
ized for our purposes. There is no designated area which is intended to serve for
the embedding of additional information which outruns codings, a hierarchically
structured code system and ”conventional” memos, being used for the denota-
tion of thoughts and questions. MaxQDA rather contains lots of powerful features
which are suited for researchers from social sciences, like for example the detailed
analysis of code frequencies or an interface to the statistics software SPSS.

We considered memos as the best option for us to encode the necessary additional
information, since they provide a free field where it is possible to store bigger
amounts of text. In addition, each text field is directly related to a code, which
facilitates the mapping of an object-oriented structure a lot.

2.4.2.1 Information Representation in the Memos

Since memos can only store plain text, we needed to develop a structure to
prepare the DM information in a way that makes an automated mapping to a
DM possible.

Figure 2.4 gives an overview of the structure we developed. It consists of four
sections, which were encapsulated with <XML >-brackets to facilitate the pars-
ing.

1. Two switches which decide if the code will be included in the
glossary and in the DM. This is necessary, since not all codes are relev-
ant. Not all codes contain object-oriented information, in fact, the majority
contains either meta-information (which is subsumed in the superordinate
glossary-entry) or information which is irrelevant for the deduction of DM
and glossary. However, these codes are kept in the code system and sup-
plement the data which is collected to a concept.

12

Figure 2.4: The Design of Memos for Domain Modeling

2. The Glossary Section includes a description of the concept. Here, the
meta-information from the subordinate codes is also presented. If no gloss-
ary entry is wished, this section can be deleted and the glossary-switch be
turned to NO.

3. The attribute-section contains the attributes of the code. Each attribute
is stored as <ATTRIBUTE >Name=” ”</ATTRIBUTE >. We decided
that for this approach the only relevant information to be stored in an
attribute is its name and that all additional attribute-values defined in
UML (initial value, property value and assurances) will be ignored.

4. The relations-section is encapsulated again with <RELATION >and
</RELATION >.

It contains four entries:

• Type defines the type of relation. Valid values were decided to be as-

13

sociation, inheritance and realization. Generally, more types would be
possible here, naturally. However, implementing some of them would
have required more complicated structures. In addition, we decided
that for a proof of concept these would be sufficient.

• Name: The name of the relation, respectively the inscription of the
edge to the target code.

• Target: The code-ID of the target-code. This ID is taken from the
exported XML file as described in section 2.4.2.2 The MaxQDA file
system and the Mapping of the artifacts.

• Target-Name includes the name of the target code. We decided to
include it, although it is not used for the parsing, since the name of
a code could be changed but its ID stays the same. This entry solely
serves to facilitate the analysts work and is more a comment, which
we want to emphasize with the ”%”-sign.

We consider this structure a compromise between usability for the analyst and
parse-ability for the software which maps the memos into the DM.

2.4.2.2 The MaxQDA File System and the Mapping of the Artifacts

Figure 2.5 shows the mapping process of the affected artifacts:

1. From MaxQDA, you can export the constituent parts of the MaxQDA pro-
ject as XML files. What you get then is a folder which consists of three
parts:

• A sub-folder which includes all the documents which you imported
into the MaxQDA project. The data format depends on the format of
the files when they were imported: .rtf-files if you imported Microsoft
Word documents or .pdfs if you imported pdfs.

• A sub-folder with all memos from the code system in it, with one
.rtf-file for each memo.

• An XML-file, named like the project, which consists of three sections:

– a ”codings”-section for each imported document. It includes a
description for each coding with the definition which text has been
coded and its assignment to a code.

– a ”codesystem”-section. Each code definition includes an ID, the
name of the code as a string, its color, the author who made the
code and a time stamp when it was made.

14

Figure 2.5: The mapping process from MaxQDA to the Domain Model

15

– a ”memos”-section which defines each memo an ID, its title as a
string, the author of the memo, a time stamp when it was made,
and a relative path to the .rtf-file where the memo is saved.

2. The memos, which are stored as .rtf-files in MaxQDA, need to be trans-
formed into XML-files, since .rtf-files cannot serve as input for a model
generator. This can be done with the help of a tool that was already de-
veloped for related research, which can be found at https://github.com/
maclomork/qda-parser

3. The relevant pieces of information (also highlighted in figure 2.5) are the
memos from the memo-folder, and two types of relations, which can be
extracted from the XML-file: the connection from code-ID to code, and the
connection from a memo to the particular .rtf-file where it is stored.

With the help of this information, it is feasible to derive a domain model.

Unfortunately, it was not possible to program a modeling tool which imple-
ments this function within the scope of this thesis. Nevertheless, we believe
this should be unproblematic.

2.5 Used Data Sources

Two major data sources were used for this thesis: We executed four interviews
with three openETCS stakeholders and we processed the relevant official doc-
uments from the openETCS repository on GitHub and involved them into our
coding process.

2.5.1 Interviews

The main source for collecting data within our approach was the execution of a
series of interviews with stakeholders.

The people we interviewed are directly involved in the openETCS project as
team members of the development team. Our interview series consisted of four
interviews, which were all executed in a semi-structured way:

The initial interview took place in September 2013. Our interview partner was
the project leader of openETCS. At this point, we had received an informal intro-
duction into the project and the documents repository by a previous telephone
conference with two of the project leaders and had already received an overview
of the project.

16

https://github.com/maclomork/qda-parser
https://github.com/maclomork/qda-parser

In preparation for the first interview we analyzed the currently existing require-
ments document and carved out inconsistencies, imprecise wordings and mistakes.
The discussion of these aspects served as an introduction to the different topics,
but the interview became very open and often one aspect brought up the next one.
This resulted in a proportionally long and detailed conversation which included
the whole project.

The openETCS project is split up into work packages (WPs), with each of them
focusing on one aspect of the development.

The second interview was executed in April 2015. The interviewee was the WP
leader of work package 3, which concentrates on modeling. As this WP is the main
user of the results of requirements engineering and therefore is a major stakeholder
concerning the requirements engineering within openETCS, we decided to talk
to its leader.

The third interview was carried out in May 2015. The interviewee was once
again the project leader. The reason for interviewing him again was that he also
represents the product owner from the agile development process and therefore
holds a key role from the RE point of view.

A fourth interview was executed in May 2015 with a team member that acts
in various roles within the agile development process: Scrum master, architect,
verifier and sometimes as a product owner. He can be seen more as a normal
team member than a project leader and therefore we emphasized his view and
were very interested in his daily routine and his experiences.

We would have liked to talk also to the experts who did the initial requirements
analysis at the project start. However, this task was fulfilled by partners from the
French railway company SNCF and the experts who did it had already withdrawn
from the project. Unfortunately, it was not possible to arrange an interview with
one of them.

2.5.2 Further Data Sources

One of the principles and major advantages of the Grounded Theory approach is
that almost every kind of data can be involved and processed (see also chapter
3.3.2.6 All is Data). In the case of our example project openETCS the most rel-
evant source of information besides executing the interviews was the involvement
of documents from the openETCS repository on GitHub.

We considered it useful to take these documents into account out of the following

17

reasons:

They helped a lot at the beginning of the research to get an overview of the project
in general: What are the project goals, what will be the expected challenges and
difficulties, who executes this multinational project and why, etc. Often, the
official project documents turned out to provide lots of information about the
particular topic of interest in a very well-structured, concise way.

Thus, we had the opportunity to acquaint ourselves with a particular topic before
talking about it with a stakeholder, which helped a lot to make the interviews as
precise and well-tailored as possible. This was our goal when preparing interviews
because of two major reasons: Firstly, as our interview partners were all either
WP leaders, product owners or project leaders, their availability for interviews
was limited. Therefore we wanted to fathom additional information sources. And
secondly, the transcription of an interview record and the coding and analysis of
the transcription is proportionally time consuming and laborious. Thus, we had
an interest in being well-prepared before starting a particular interview and avoid
wasting time with negligibilities.

In addition, in some cases it turned out also during or after the interview that a
certain document was the best data source for a particular issue, since the issue’s
specifics were depicted in a very good way there, where it would have taken a lot
of time and effort to receive a description of equal quality in an interview.

Sometimes, we were also explicitly directed to a certain document from stake-
holders or interview partners.

Thus, often the gathering of information was distributed on getting general in-
formation from existing documents and discussing specifics and details with the
interview partners. However, there were also lots of topics that were constituted
by our interview partners which were not described in pre-existing documents.
This affected especially the subject areas of the agile development process and the
team collaboration. Topics that were described in detail in existing documents
were, for example, the distinction of primary and secondary tool chain and the
various tool candidates.

2.6 Research Results

2.6.1 Views and Perspectives

When we started analyzing the first interview, we very much took care to let the
concepts and theories emerge out of the data and treat the data as unbiased as
possible. We tried to avoid the perspective of a conventional analyst.

18

Nevertheless, it turned out that our code system structure more and more de-
veloped into a direction which might be considered to be the expected outcome
of a conventional analysis as well; and in the end our code system was split into
sections which treated the agile development process, the tools, and the artifacts.
These categories emerged out of the codings and codes, it simply made sense to
order the codes this way.

We consider the QDA-based approach to provide techniques to elicit all domain-
related information in an extensive way. It proved to be well suited to process
structural information as well as process descriptions or non-technical aspects.
We assess our code system to provide a substantial analysis of all these aspects,
however we see the structural information better elicited than the process aspect.

But we believe that you cannot deduct a general evaluation out of this, partic-
ularly with respective to the fact that it was not possible to reach theoretical
saturation within the scope of this thesis (see also chapter 2.7 Results Discus-
sion). We think that this proportional strength of structural information is based
on the fact that we focused the interviews on these aspects as well, since we tried
to use the limited time as effective as possible and therefore preferred to i.e. ask
about which artifacts are used by which roles of the team and which tools are
used in the context, rather than let the interviewee tell us in detail what his daily
routine looks like.

Therefore we don’t think we can rate the approach on a substantial basis in this
context. Further research will be needed to enable an empirical evaluation.

2.6.2 The Degree of Freedom in Coding

Conventional GT gives the researcher very high latitudes how to develop the
codings (see also section 3.3.2.1 Coding). This section discusses whether this
high degree of freedom has to be restricted for our approach to work.

We believe that there is no necessity to limit the latitudes of the analyst. Rather,
we consider the method to work as intended only if the degree of freedom is kept
sufficiently high, since this is the basis for the capability of GT to systematic-
ally denote all types of aspects into the additional artifact code-system, also the
”soft” and non-technical ones, which we consider one of the major benefits of our
approach.

This however implies the question how to map pieces of information into the DM.

It will have to be distinguished between codes which are relevant for the DM, and
codes which are not. The latter can and should be further kept within the code
system, since they provide meta-information which is also valuable and might
prove to be useful during further analysis.

19

The parts which are to be mapped will be those which define classes, objects,
functions and attributes. It will also depend from the context and from the
desired type of domain model, which codes this will be, since it will differ how to
transform the code system, as domain representation, into a class diagram or a
state diagramm.

Other codes, which i.e. describe the reason of decision, will not be directly
represented in the DM; however, they will be denoted and are easily accessible for
the analyst when he researches this particular topic again, since he will find them
directly interrelated within a logically and hierarchically ordered data collection
of the domain.

The assignment to these categories of codes will have to be done by the analyst,
with the use of implicit knowledge of the overall domain and the skill to know
how to map the gathered information into the DM. From our point of view, this
can not be automated or regulated, it requires professional experience and human
intelligence.

Thus, the gap that we criticized, which arises through the huge amount of steps
that are done by a conventional analyst with intuition, implicit knowledge and
insufficient documentation, will not disappear completely.

However, we consider our approach as a substantial improvement, since it enables
the extensive diminution of this gap. The institution of the code system as an
additional artifact features a significant increase in traceability, maintainability
and transparency, as it directly interconnects the statements from the elicitation
sources to the concepts in the DM.

2.6.3 Abstraction Levels

Our method is capable to process pieces of information on all levels of abstraction,
since it facilitates their hierarchical and logical ordering. An abstract concept will
be found on a high level within the code system and its details will be subsumed
in the subordinate levels.

It turned out that in general, the codes that were mapped into concepts of the
domain model could typically be found on the middle levels. The highest code
system levels provided an abstract perspective split and therefore a structural
order, like i.e. ”tools” vs. ”artifacts”, whereas the low-level codes mostly repres-
ented details of a concept.

20

2.6.4 Shortcomings of MaxQDA

During the execution of our approach it turned out that the use of MaxQDA as
the CAQDAS of our choice implied lots of problems and shortcomings, however it
has to be clearly said that they were limited to the step of mapping to a domain
model and glossary. The previous steps were possible without any noteworthy
problems at all, and during the entire process up to the implementation of data
within the memos, MaxQDA proved itself to be a valuable help.

However, in the step of transforming the elicited data into the memo structure,
we faced several challenges:

• To establish an interconnection to another concept (like i.e. associations),
you need to reference that concept with an identifier. Within MaxQDA,
every code is definition includes inter alia an ID and the name of the code as
a string (see also section 2.4.2.2 The MaxQDA file system and the Mapping
of the Artifacts). Since the name of a code is changeable (which absolutely
makes sense for QDA), the only unique identifier is the code-ID. But this
ID has to be picked over the detour of a XML export as described in section
2.4.2.2 The MaxQDA file system and the Mapping of the Artifacts, since
this ID is not specified anywhere within the tool’s front-end.

This makes the definition of interconnections very complicated, laborious
and error-prone.

• It is not possible to open a memo as part of the user interface, but only in
front of it. This makes the using once again rather circumstantial.

• It is not possible to define more than one memo per code. This would be
very useful, since you could split up between conventional memo use and
the DM-defining ones. Furthermore you could also define several memos
for several aspects, i.e. one for the glossary entry and one for the DM
interrelations and attributes.

• It is not possible to mark the status of a memo, which would help for
keeping an overview which DM memos have to be finished. Within this
approach, we used a traffic light color-code as a workaround, but this was
only a compromise; the status of a memo was coded with red (instanced but
not implemented) to green (finished) plus the color blue for empty memos
which were not relevant but helped to keep an overview within the code
system.

• In some cases, you need to keep a concept at multiple places within the code
system. For example, the concept ”stakeholder” will be itemized within the
section of the team members within the agile development process, but also
as one of the sources for requirements. It would be possible to unify these

21

codes (in this case this might be within the team member section), but this
will substantially prohibit any overview in the requirements sources section
then.

Such situations require the possibility to link codes/concepts or use a concept
similar to pointers. Since this is currently not implemented, we had to define
some concepts more than once. However, these instances have to be taken
into account in parallel when you develop a glossary entry for the concept or
when you model the interconnections. This inevitably leads to redundance
and a high error rate.

• When entering the memo of a concept, you can only see the outgoing edges,
but not the incoming ones, since they are embedded into the memo where
they start to avoid redundance. This makes it hard to keep an overview.

• In general, it is extremely difficult to keep an overview within the memos.
One reason is that you have to open each memo to see what is already
deposited in it. In addition, you need to execute changes very manually.
For example, to change the target of an edge in the domain model will
mean to look up the ID of the new target in the XML file and to change it
within the correspondent memo. It turned out that it is very hard to avoid
mistakes here, especially when the DM gets bigger and more complex.

2.7 Results Discussion

This research is intended to serve as a proof of concept whether the use of GT is
suitable for the analysis of a domain and the development of a domain model.

This thesis includes several shortcomings, which have to be taken into account:

• The number of interviews which could be carried out was very limited due
to the scope of the thesis. With only four interviews, it was not possible to
reach theoretical saturation. This can also be detected in the code system,
which still includes gaps and unclear points.

• In addition, the pool of potential interviewees was also limited and therefore
the selection of the next stakeholder to talk to was not possible as intended.
Therefore the concept of theoretical sampling could not be satisfactorily
applied.

• We consider the missing validation of our results as the major shortcom-
ing. Unfortunately, there was no possibility to let our partners from the
openETCS project validate the quality of our results, since they were not
available at the final stage of this research. The reasons were an openETCS

22

project review which had to be passed, and that all our contact persons were
on vacation afterwards.

However, we nevertheless believe that this thesis provides a proof of concept
that the theoretical concepts of GT can be applied to RA and that the use of a
QDA-based approach in domain analysis provides multiple benefits and therefore
represents a suitable method to introduce several improvements to this process.

We consider the proportionally high operating expense of this approach as its
major impediment. This is especially true when the researcher is not familiar
with GT and its concepts. Therefore we think that this approach tends to be
better suitable for bigger and more complex analysis projects, since then its
concepts will accentuate the improvements in terms of systematics, traceability
and efficiency.

It will be necessary that future research further investigates the suitability of our
approach for RA. It was not possible to exhaustively cover all affected aspects
within the scope of this thesis, and since the proposed methodology is new and
rarely researched, further effort will have to prove the value of the proposed
approach.

The most challenges we faced were grounded in the use of MaxQDA as execution
tool for our approach. However, MaxQDA cannot be blamed for this, since it
was never developed for the methodology we used it for.

In conclusion, we think that a systematic, high-qualitative and efficient analysis
would be feasible with an adequate tool. The development of such a tool, that
brings QDA-based elicitation methods and efficient, well-usable modeling features
together, will be part of our future research.

2.8 Conclusions

This thesis proposes a new approach for the elicitation and analysis of data in
the field of requirements engineering, which capable to be used with all kinds of
data sources that are based on natural language, like interview transcripts, audio
files, norms or official publications. It adopts the Grounded Theory approach,
which is well established in the field of social sciences.

We show that by the use of this approach, it is feasible to realize a higher quality
in terms of traceability, systematics, maintainability. This is reached by the
institution of an additional artifact, which directly relates the statements from
the elicitation sources to the concepts in the Domain Model.

23

3 Elaboration of Research

3.1 Requirements Analysis: The State of the

Art

3.1.1 Placement of Requirements Analysis within the Re-
quirements Engineering Process

In every software development project the requirements engineering is highly
dependent on the project’s specifics and there is no standardized, unified process
which can serve as a template. However, there are certain patterns and best
practices that are valid for almost all development processes.

Figure 3.1 provides an overview of the Requirements Engineering process. Ac-
cording to (Sommerville, 2011, p.37), four main activities can be distinguished in
the RE process:

1. Feasibility study An estimate is made of whether the identified user needs
may be satisfied, considering budgetary constraints and cost-effectiveness.
The result should inform the decision of whether or not to go ahead with a
more detailed analysis.

2. Requirements elicitation and analysis The system requirements are
derived through analyzing existing systems, talking to stakeholders and
potential users etc. This may involve the development of one or more
system models, which help the analyst to understand the system to be
specified. This thesis is focused on these activities.

3. Requirements specification The activity of translating the gathered
information from the analysis activity into a document which defines a
set of requirements. Two types of requirements are distinguished between:
User requirements and system requirements (see chapter 3.1.3.1 Abstraction
Levels).

24

Figure 3.1: The Requirements Engineering Process (from: (Sommerville, 2011,
p.38)).

4. Requirements validation This activity is about checking the require-
ments for realism, consistency and completeness. During this phase, errors
in the requirements document are most likely discovered and must be cor-
rected.

According to (Dumke, 2001, p.33), these activities, together with the require-
ments management, constitute Requirements Engineering, which is defined as
the ”systematic use of proven principles, techniques, languages, and tools for the
cost-effective analysis, documentation, and ongoing evolution of user needs and
the specification of the external behavior of a system to satisfy those user needs”
(Marciniak, 1994, p.1043).

The described phases are not carried out strictly sequentially, but in an iterative
way (see figure 3.2): Requirements analysis continues during the definition and
specification phases and it is likely that new requirements will come to light
throughout the process. Therefore, usually the first three phases from above are
interleaved.

Development teams that use agile methods typically develop the requirements
incrementally (from: (Sommerville, 2011, pp.37-38)).

3.1.2 Involved People

3.1.2.1 Stakeholders

Before the elicitation of requirements can be started with, it has to be clarified
who sets the requirements. It will not be sufficient to survey the orderer, who
pays the project (Balzert, 2009, p.504), since mostly the people who pay for the

25

Figure 3.2: A Spiral view of the Requirements Engineering process (from:
(Sommerville, 2011, p.99))

application are different from those who will be using it (Braude & Bernstein,
2011, p.231).

Therefore the first task must be to identify the stakeholders. This is often a step
on its own within the process of requirements analysis. Moreover, many software
projects develop a stakeholder-management-strategy explicitly.

In this context, we consider our approach to feature several benefits, since with
our elicitation technique, the problem of whom to talk to is implicitly controlled
by the concept of theoretical sampling. Therefore the identification of relevant
stakeholders is easier. In addition, we expect a higher decision quality as well,
since the decisions are iteratively taken with inclusion of all current data and the
decision reasons are implicitly documented.
A stakeholder is anybody who should have some direct or indirect influence

26

on the system requirements, also anyone who influences the development, deliv-
ery and operation of the software product, including end-users who will interact
with the system as well as engineers, business managers and domain experts
((Sommerville, 2011, p.101), (Balzert, 2009, p.455, p.504)).
The intensity that stakeholders influence the product with differs from stake-
holder to stakeholder, both in a positive and a negative manner. It may be
helpful to order and rate stakeholders concerning their relation to the product
(positive, neutral or negative)and their corporate power. Figure 3.3 proposes how
this can be done: Stakeholders are ordered by their influence and their conflict
potential. Those, who are assigned to the upper right sector, permanently need
to be monitored by the project management. If possible, it is advisable to influ-
ence these stakeholders positively.

Figure 3.3: Stakeholderportfolio (from: (Prime Minister’s Strategy Unit, 2004,
p.79))

At the start of the requirement analysis phase, typically it will not be possible
to identify all the stakeholders. Hence, it is necessary to pay attention to poten-
tially additional stakeholders throughout the development process (Balzert, 2009,
p.504f). As this is implied in our approach anyway, we consider it to be better
suited to the elicitation process than the conventional stakeholder identification
technique.

27

3.1.2.2 Project Environment

Each software system is embedded in a material and immaterial environment
and this system environment has substantial influence on the requirements of the
system (Balzert, 2009, p.461). Therefore it is important to define the system
environment and especially its boundaries to the system.

The project environment is ”the environment, in which a project is developed
and realized, which influences the project and which is influenced by the project”
(DIN, 2009-01)

This will typically be done in parallel to the discovery of stakeholders. This will
include norms, standards and related laws. Additionally, ecological, economic,
social, cultural factors may influence the project. These must be researched,
collected, commented on and stored.

The system to be developed holds a system boundary that confines it from
those parts of the environment that are not changed by the development. In this
context, data sources and sinks need to be introduced. These are interacting
with the system by the use of user interfaces and software interfaces. Thereby,
data sources provide inputs and data sinks provide outputs. The interaction
of the system with its environment is exclusively performed by using interfaces.
Examples for sources and sinks are sensors, actuators, persons or other systems
(Balzert, 2009, p.462).

Furthermore there is an environment around the system that is relevant and
needs to be considered during developing the system. This environment is called
system context. Its definition is fundamental, as it influences the way that
requirements will be interpreted (Balzert, 2009, p.462). An example for the
influence of the system context may be the bandwidth and stability of the internet
connection of the device to be developed in context to time constraints.

3.1.3 Requirements and Types of Requirements

The requirements for a system are the descriptions of what the system should
do – the services that it provides and the constraints on its operation (Balzert,
2009, p.455). These requirements reflect the needs of customers for a system
that serves a certain purpose such as controlling a device, placing an order, or
finding information. The process of finding out, analyzing, documenting and
checking these services and constraints is called Requirements Engineering (RE)
(Sommerville, 2011, p.83).

A requirement is (IEEE, n.d., p.62)

28

1. A condition or capability needed by a user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

Requirements can and should be classified in categories, considering the following
aspects:

• levels of abstraction

• functional and non-functional requirements

3.1.3.1 Abstraction Levels

It is crucial to make a consequent separation between different abstraction levels
of description. In the software industry, the term ”requirement” describes both a
high-level, abstract statement of a service or constraint of a certain system and a
detailed, formal definition of a system function (and also every level in between)
(Sommerville, 2011, p.83).

It is useful and necessary to state requirements at different levels of detail because
they are used in different ways by different users. The same requirement on
different levels gives information about the system to different types of readers:
The typical reader of user requirements will not be interested in the details of
the system’s implementation. However, a person which needs to know about e.g.
details of the system’s software architecture will find these in the much more
detailed SRS (Ludewig & Lichter, 2013, p.375f.).

We consider the code system of our approach to advantage this distinction, as
the pieces of information are explicitly brought to a hierarchical order, where the
superordinate code normally is more abstract and the subordinate codes provide
details, meta-information and concretion. We expect this hierarchy within our
code system to support the establishment of an abstraction level hierarchy within
the requirements.

At the final stage, in the SRS, requirements are usually presented on two levels
of detail: A high-level statement of abstraction, which serves for managers and
customers, and a more detailed system specification which is needed by the system
developers (Sommerville, 2011, p. 37).

Hence, a SRS is typically split into two parts (Braude & Bernstein, 2011, p.232):

29

• In the first part, high-level requirements are presented. This part is designed
to be better readable and shorter than the very precise and detailed second
part of the SRS. A stakeholder who wants to get an idea about what the
project is about can read the high-level-requirements.

In addition, this part often includes a project rationale.

• The second part provides a much more detailed and precise description of
the requirements. This part aims at being used by system designers and
implementers, who need to work with requirements which are elaborated
on a very low level of abstraction.

More details about the SRS can be found in chapter 3.1.5.3 The Software Re-
quirements Document (SRS).

Sommerville (Sommerville, 2011, p.83) names the high-level, abstract require-
ments ’user requirements’ and the detailed description of what the system should
do ’system requirements’. In this thesis, we will adopt this nomenclature:

• user requirements are statements of what services the system is expected
to provide to system users and the constraints under which it must operate.
They are expressed in natural language, often expanded with diagrams.

• system requirements are more detailed descriptions of the software sys-
tem’s functions, services and operational constraints. They aim at defining
exactly what is to be implemented. The system requirements are merged
in the SRS, which may be part of the contract between the system buyer
and the software developers.

3.1.3.2 Functional vs. Non-Functional Requirements

Requirements can be classified as either functional or non-functional require-
ments:

1. Functional requirements

Functional requirements describe what the system should do: Which ser-
vices it should provide, how it should behave in particular situations, how
to react to particular inputs. Sometimes it can also be reasonable to state
explicitly what the system should not do.

Functional requirements may be written on different levels of detail and
can be both user requirements and system requirements. When compris-
ing a user requirement, usually functional requirements are described in
an abstract way to ensure that system users can understand them. Yet,

30

Figure 3.4: An overview of types of non-functional requirements (from:
(Sommerville, 2011, p.88))

functional system requirements can also describe system properties in de-
tail, like inputs, outputs, functions, exceptions, etc. (Sommerville, 2011,
pp.84-87).

Following (Balzert, 2009, p.456), functional requirements can be divided
into:

• requirements that define the statics of the system

• requirements that define the dynamics of the system

• requirements that define the logic of the system

The analyst should aim at making the collection of functional requirements
as complete and as consistent as possible. In practice, it will be extremely
difficult and time-consuming to achieve total completeness and consistency,
since the avoidance of making mistakes in an environment with a complex
system to be developed and with lots of stakeholders who have different
and inconsistent needs is almost impossible. Furthermore, the discovery of
inconsistencies itself is not trivial, since these inconsistencies are often not
obvious but come up in later development stages (Sommerville, 2011, p.87).

31

Considering this aspect, we believe that the establishment of a code sys-
tem as additional artifact plus the iterative character of our approach will
promote a faster and better recognition of gaps and discrepancies (see also
chapter 2.4.1.2 Analysis of the Transcript).

2. Non-functional requirements

Non-functional requirements do not directly deal with services or functions
of the system to be developed. Typically, non-functional requirements con-
cern the system as a whole rather than individual system features or ser-
vices. They define characteristics of the system as a whole and often sub-
stancially influence the software architecture (Balzert, 2009, p.463).

They relate to system properties like stability, reliability, accuracy, availab-
ility, safety, usability, or response times (list not complete) (Ambler, 2008,
p.64).

They can be founded in external factors like safety regulations and compli-
ance to standards or laws or arise through internal constraints, like budget
constraints, the need for interoperability with existing software or con-
straints on the development process.

Often non-functional requirements are more critical than functional ones:
If a system function contains particular shortcomings and does not meet
the needs of the system user, he will find a way to work around. But to
fail a non-functional requirement can put the whole system into question
(Sommerville, 2011, p.87). For example, if the photo application of a mobile
phone does not feature a filter function for the taken photos, this may annoy
the user, but if the usability of the main menu fails in terms of its interaction
with the touch display, this will put the whole device into question. Another
example from the context of the openETCS project might be an on-board
unit that implies severe shortcomings in terms of safety. In a highly safety-
critical environment such as openETCS, this will make the whole product
unusable.

Figure 3.4 provides an overview of non-functional requirement types. The
three main sources of non-functional requirements are (Sommerville, 2011,
p.88):

(a) Product requirements define the behavior of the software and its
characteristics. This includes i.e. reliability goals, usability, safety,
security, hardware restrictions etc.

(b) Organizational requirements come from the organization which
develops the software. Mostly they contain process- or development
environment standards to consider, further examples are operational

32

process requirements that describe in what way the system will be
used.

(c) External requirements include all those requirements that come
from external factors to the development process of the system and the
system itself. This includes mainly legislative regulations and cultural
and ethical requirements which make sure that the system will be
acceptable in its designated environment.

Where at functional requirements it is mostly possible to define which sys-
tem components implement a particular requirement, this is substantially
more difficult with non-functional requirements. Often the implementation
of a non-functional requirement can not be related to specific components,
but diffuses within the system. Reasons for this are essentially:

• Non-functional requirements are often more related to the overall sys-
tem architecture than particular components.

• A non-functional requirement may imply a number of related func-
tional requirements that involve new system services.

It has to be advised that the classification of different types of requirements is
often not clear-cut in reality. Requirements which are clearly non-functional on
user-requirement level will most likely lead to additional, functional requirements
when they are developed in more detail. Requirements always have interconnec-
tions to others, and one particular requirement may generate or constrain another
one (Sommerville, 2011, p.85)).

Since these interconnections are made explicit in a structured and systematic way
at our approach and get visualized within the DM, we consider it to help with
this complex of aspects and finally result in requirements of higher quality.

3.1.3.3 Acceptance Criteria

Stakeholders often express the desired requirements in a very general way. A
well-known example is the statement ”The software should have good usability,
and the frotend should be nice, maybe a bit like Apple”, which most requirement
analysts will have heard at least once.

Every good requirement should always come with clear acceptance criteria. It
must be clearly visible when a requirement is fulfilled. This is especially true for
non-functional requirements (Rupp & SOPHISTen, 2014, p.275).

Acceptance criteria need to be testable. During later development phases, espe-
cially the testing of the software, there must be clear acceptance criteria, and it
has to be possible to test the product against these.

33

Figure 3.5: A classification of acceptance criteria in abstraction level and range
(according to (Balzert, 2009, pp.471f.))

A requirement that does not contain clear, testable acceptance criteria is most
likely not helpful and presumably can be taken out of the specification.

Acceptance criteria can be classified in level of detail and in their range, as shown
in figure 3.5. The range of acceptance criteria can move within the validity for a
part of a particular requirement up to the validity to several requirements. Con-
sidering the abstraction level, abstract acceptance criteria do not contain concrete
values at all, whereas concrete acceptance criteria provide concrete values which
can be used for i.e. testing against.

In addition, there is a number of quality requirements to acceptance criteria
(Balzert, 2009, pp.471f.):

• Acceptance criteria need to be validate-able in an economic way, thus a
test whether the requirement is realized needs to be possible with justifiable
effort.

• Acceptance criteria needs to be testable on correctness, i.e. a testing if the
requirement is realized correctly needs to be possible.

• Acceptance criteria need to be formulated in a way that allows to use them
for regression tests.

• Acceptance criteria must not determine more or less than the related re-
quirement demands and must not imply any additional properties or per-
formance that are not defined in the requirement. Vice versa, details from

34

the requirement must not be omitted in the related acceptance criteria.

• Acceptance criteria should be minimal, but complete. They should cover
all requirements, but not multiple times because of economic reasons.

Typically, stakeholders are no experts in requirement engineering and even when
they are aware of the need of measurability, they find it difficult to translate their
ideas into measurable requirements. Besides, they often can hardly estimate what
a particular number as acceptance criteria means in terms of their everyday ex-
perience the system. Additionally, there are several non-functional requirements
which can hardly or not at all be translated into some metrics.

We believe that the explicit denotation and the covering of the statements of mul-
tiple stakeholders will substantially assist the analyst to understand the stake-
holders’ needs.

In summary, it is very challenging for the analyst to transport the theoretical
requirements of requirements and their acceptance criteria into the practical pro-
ject. Sometimes the establishment of objectively measurable requirements is in
fact possible, but very costly, and the customers who pay for the project may
doubt the justification of that costs (Sommerville, 2011, p.90).

However, providing acceptance criteria for each requirement within the RA-phase
implicates several advantages (Balzert, 2009, p.471):

• Requirements can be easily tested if being implemented correctly.

• Validation is not only grounded on the realized system.

• During formulation of the requirements it is already checked that they can
be validated. This will lead to an improvement of the requirement quality.

• The formulation of acceptance criteria leads to a better illustration and
understandability of the mostly abstract-formulated requirements.

3.1.4 Requirement Elicitation and Analysis

As described in chapter 3.1.1 Placement of Requirements Analysis within the
Requirements Engineering Process, the initial step of Requirements Engineering
can be a feasibility study, which serves to assess if the system is useful to the
business, to estimate costs and the impact of the system (Sommerville, 2011,
p.99). The step to follow is the elicitation and analysis phase, which is the scope
of our approach.

During this activity, the analysts work with customers and system end-users to
find out about the application domain, what services the system should provide,

35

Figure 3.6: The requirements elicitation and analysis process (from:
(Sommerville, 2011, p.101))

the required performance of the system, hardware constraints, etc. (Sommerville,
2011, p.99f.).

Generally, the requirements elicitation and analysis process is divided up into
four main activities (Sommerville, 2011, p.101), which are all interconnected as
can be seen in Figure 3.6. It shows that requirements elicitation and analysis is
an iterative process with continual feedback from each activity to other activities.
The analyst will understand the requirements better with each iteration.

The approach we propose is tailor-made for the nature of this process. This
becomes very clear when figure 3.6 is put into context with chapter 2.4.1 Outline
of One Iteration.

3.1.4.1 Requirements Discovery

When the first stakeholders are identified and the project environment is evalu-
ated, the first requirements can be determined and documented.

This phase aims at collecting as much information about the domain and the
target system as possible. During this process, requirements will be formulated
that describe the system to be developed in a manner that is as precise and as
complete as possible: How the system should behave, how it interacts with its
environment and in which context it is placed (for more details see chapter 3.1.3
Requirements and Types of Requirements). The elicitation phase aims at making
this collection of requirements as complete as possible, nevertheless in practice it
will only produce a first version which will be improved in the further process.

Generally, elicitation techniques can be divided up into interviewing techniques

36

and observance techniques. The approach which is proposed in this thesis is suited
to process all types of results of these techniques, with potential shortcomings
referring to the apprenticing technique. This will depend on the choice of the
analyst how to denote the results.

3.1.4.1.1 Interviewing Techniques This is the most used category of eli-
citation techniques. Interviews are particularly suitable to retrieve the explicit
knowledge of the stakeholders. They can be of two types (Balzert, 2009, p.507):

1. closed interviews, where the interviewees are asked a pre-defined set of
questions. Often the analyst uses requirement templates, directing the
stakeholders from visions and goals down to requesting acceptance criteria.

2. open interviews which are characterized through the lack of any pre-
defined agenda. The analyst explores a range of issues together with the
interviewee and hereby develops a better idea of their needs.

In practical elicitation work, interviews with stakeholders are mostly a mixture of
both of these. Completely open interviews typically don’t work well. The analyst
will have to direct the stakeholder to focus the interview on the system to be
developed. Typically, the analyst will ask certain questions to obtain answers to
particular aspects, but when these lead to other issues he concedes room for the
less structured discussion of those (Balzert, 2009, p.507).

Basically interviewing stakeholders is characterized by the possibility to individu-
ally fit the course of the interview, i.e. to answer inquiries, enumerate examples
or go more into detail at unclear points. Usually the use of audio recording is
helpful. The main drawback of interviews is the high costs in terms of time.
Sometimes it might also be an option to interview several stakeholders at a time
or to carry out workshops, but doing this efficiently requires lots of operating
experience (see also (Rupp & SOPHISTen, 2014, p.106ff.)).

3.1.4.1.2 Observance Sometimes it may not be possible for stakeholders to
participate in interview elicitations, i.e. because of lack of time, and sometimes
it is very hard for stakeholders to express what is in their mind explicitly in
words. In such situations, observing the stakeholder can be an appropriate way
of requirement elicitation.

At observation techniques, stakeholders are observed by the requirements engin-
eer while proceeding business processes. The stakeholder can be passive (and is
just observed) or active (and explains what he does to the analyst) during that
process. The analyst recognizes inefficient processes and proposes improvements.
Two observance techniques are often used (Rupp & SOPHISTen, 2014, p.103ff.):

37

• field observation: The work of the system user is monitored in terms of
activities and time lapses.

• apprenticing: The analyst is instructed by the user and learns to do his
work. This technique is also suitable to get an idea about work sequences
which are difficult to observe.

3.1.4.1.3 Further Elicitation Techniques Further questioning tech-
niques are:

• handing out questionnaires to the stakeholders (printed or digital)

• letting the stakeholders who are using the current system write down
memorandums which describe their activities and sequences of operations
plus their requests to the new system

• on-site customers who are constantly available by working directly with
the development team. This is typical for Agile Development.

3.1.4.1.4 When to Use which Technique It became clear that the elicit-
ation of requirements is performed in a wide variety of situations, which depend
on participants, the target domain and organizational contexts. In addition, it
is also done with many instruments, which were described in overview in this
chapter.

Many publications can be found that describe one way to perform requirements
elicitation. However, there is not the one silver bullet solution that works best
for all situations (Hickey & Davis, 2003). Consequently, almost all general re-
quirements books describe multiple requirements elicitation techniques, like i.e.
((Balzert, 2009), (Braude & Bernstein, 2011), (Rupp & SOPHISTen, 2014) or
(Sommerville, 2012)).

However, there are neither clear rules when to use which elicitation technique
nor explicit favorites from experience. The specifics of the project indicate the
appropriate ones in each case.

(Hickey & Davis, 2003) states that ”less experienced analysts often select a tech-
nique based on one of two reasons: (a) it is the only one they know, or (b) they
think that a technique that worked well last time must surely be appropriate this
time”.

She further emphasizes that the more experienced an analyst is, the more success-
ful he uncovers the user needs. Consequently, she researched the method choice
reasons of ”some of the world’s most experienced analysts” (Hickey & Davis,
2003) to find out if there are patterns or trends. She resulted that some general

38

trends can be denoted, but nevertheless different very experienced experts choose
different elicitation techniques when asked to analyze the exactly same problem
domain(Hickey & Davis, 2003).

3.1.4.2 Requirements Analysis, Classification and Organization

During this activity, the unstructured collection of requirements is taken and
organized by grouping related requirements together. Typically the requirements
are grouped by using a model of the system architecture to identify sub-systems
and to associate requirements with each sub-system. Hence, it becomes visible
that requirements engineering and system design activities are interrelated and
cannot be completely separated (Sommerville, 2011, p.101).

3.1.4.3 Requirements Prioritization and Negotiation

This activity is concerned with finding and resolving requirement conflicts that
the list of requirements will most likely include, since multiple stakeholders are
involved who have different requirements (see also chapter 3.1.4.5 Challenges and
Difficulties of Requirements Elicitation).

The finding of these conflicts is one of the core features of the approach we
propose. Our process aims at doing this implicitly, and as early in the analysis
process and as systematic as possible.

Typically, the resolution of this conflicts is done by prioritizing requirements and
finding compromises with the conflicting stakeholders (Sommerville, 2011, p.101).
This will mean that those stakeholders who defined the conflicting requirements
come together and negotiate their importance and which opinion will become
accepted.

3.1.4.4 Requirements Specification

In this phase, the requirements are transformed into well-ordered, structured and
documented lists of requirements. These documents may be formal or informal.
The elicited requirements are documented in a way that makes them helpful for
the discovery of new requirements. Additionally, it is possible to generate an early
version of the system requirements specification document (SRS) with missing
sections and incomplete requirements (Sommerville, 2011, p.102). More details
about the SRS itself can be found in section 3.1.5.3 The Software Requirements
Document (SRS).

39

3.1.4.5 Challenges and Difficulties of Requirements Elicitation

It is often difficult for the analyst to discover and understand requirements from
system stakeholders for various reasons:

1. Stakeholders often find it difficult to articulate what they want the system
to do. Unrealistic demands may be expressed, since stakeholders are often
not capable of estimating which features are feasible and which not.

2. Naturally stakeholders express requirements in their own terms and with
implicit knowledge of their own work. An analyst, without the same level
of experience of domain knowledge, my not understand these requirements.

3. Different stakeholders have different requirements, and they may express
these in different ways. Therefore it is crucial for the analyst to find all po-
tential sources of requirements and precisely inquire them for commonalities
and conflicts.

4. The analyst will have to consider political factors. Stakeholders for example
may demand requirements because these will allow them to increase their
influence.

5. The analysis takes place in a dynamically changing economic and business
environment which will change during the analysis process. As a result the
prioritization of requirements may change and new stakeholders may come
up with new requirements.

6. Technical frame conditions may be ambiguous or even unknown during the
RA phase.

Since different stakeholders will have different views on the priorities of require-
ments and these views often collide. Hence, one of the major tasks of the analyst
is to bring the stakeholders together and negotiate compromises. Often, it will
not be possible to satisfy every stakeholder, but the analyst needs to avoid that
stakeholders start to undermine the requirements engineering process because
they feel like their view is not being taken into account sufficiently (Sommerville,
2011, p.102).

Considering this aspect, the proposed approach provides additional benefits, since
the methodology is particularly suitable to register the stakeholders’ opinion not
only to specific domain-items, but also to more abstract and soft factors like i.e.
social aspects or the business policy of a company. While such topics might be
omitted within a conventional analysis, they will be recorded and also represented
in the code system with our approach and therefore are still present when they
might turn out to be helpful at a later point of time.

40

3.1.5 Results and Products

3.1.5.1 Description of the Project Environment

The discovery of the project environment should result in a list of elements of the
project environment. Often, this information is represented using mind maps.
They are particularly suited to represent these elements, since it is possible to
collect and structure information by the use of main and subordinate branches,
whereas it is possible to use colors, symbols, different fonts and also include
pictures. Hence, they enable both a structured representation and a fast and
easy way to model loose pieces of information. As a result, mind maps provide
an overview over a particular topic and its aspects and therefore inspire new ideas
(Balzert, 2009, p.506).

The representation of such kind of data is one of the strong points of our approach.
The code system includes all the information anyway, and since it was processed
and assessed by the analyst, it is already structured and correlated to the other
entities. At a point of time where the analyst decides to prepare such a description
of the project environment, he has already collected relevant information, which
is deposited within the code system if our approach is carried out. Therefore the
description of the project environment is already given there, and the approach
features the deduction of a domain model anyway.

If the analyst wants to adapt the representation or i.e. limit the information which
shall be represented in the domain model, this can easily be done by customizing
the mapping process from the code system into a graphic representation. It is
possible to make a determination which types of information to take into account
here, and it is also possible to save this determination as a template.

Moreover, the updating of the representation is featured implicitly, since the
mapping of the code system into a graphic representation is possible in a very
easy way, once the mapping is initially defined. Hence, our approach features
several benefits and reduces the analyst’s work at the same time.

3.1.5.2 Results of the Elicitation Phase

The requirements elicitation phase aims at gathering as much information as pos-
sible about the system to be developed and its domain and generating require-
ments out of this information. Requirements describe what the system should
do and the constraints on its operation. The goal of the elicitation phase is to
generate a collection of these requirements which is as complete as possible.

After the initial requirements elicitation phase, the requirements will not be very
detailed, especially at the first iterations of elicitation, and in addition they will

41

not be represented in a very formal way (Rupp & SOPHISTen, 2014, pp.37ff.).

Hence, the collection does not necessarily have to be a list written in prose,
similar to a SRS. Often, the derived requirements are documented less formal,
for example as notes, videos, audio transcriptions or mindmaps (Balzert, 2009,
p.509).

We believe that our approach provides multiple benefits in this context, since
it enables the described less formal representation formats, but gives the inter-
connections a structure and makes it explicit. The code system can be seen as
the backbone that interrelates all artifacts, yet does not limit the representation
formats.

3.1.5.3 The Software Requirements Document (SRS)

The SRS is a document which contains a complete collection of all requirements of
the project. It arises as a result of the RA-process in general and the requirement
specification phase specifically, which is described in section 3.1.4.4 Requirements
Specification.

The SRS states what the system developers should implement. This will include
both the user requirements for the system and the system requirements, which
will define the specifics in detail (see also section 3.1.3.1 Abstraction Levels).

Corresponding to the quality criteria for requirements, there are also 8 charac-
teristics of a high-quality SRS, which are defined in (IEEE29148.2011 , 2011,
sec.5.2.8, pp.12ff.):

• completeness For each desired functionality of the system, all possible
inputs, events and the demanded reactions of the system have to be doc-
umented. This includes also the non-functional requirements like i. e.
availability. The SRS must not include incomplete requirements.
The completeness of the SRS often constitutes the greatest challenge of
requirements analysis (Rupp & SOPHISTen, 2014, p.28f.).

• consistency The SRS must not include conflicting requirements or partic-
ular requirements multiple times. Furthermore the technical terminology
of the domain needs to be consistent; the same entity must be labeled with
the same identifier throughout all requirements (Rupp & SOPHISTen, 2014,
p.29).

• correctness relative to the collection of requirements

• unambiguity allows exactly one interpretation

• evaluation of importance and/or stability

42

• verifiability allows the verification of the implementation of the SRS in
an efficient way

• modifiability particularly includes the lack of redundance

• traceability ”Requirements traceability refers to the ability to describe
and follow the life of a requirement, in both forwards and backwards direc-
tion (i.e. from its origins, through its development and specification, to its
subsequent deployment and use, and through all periods of on-going refine-
ment and iteration in any of these phases)” (Gotel & Finkelstein, 1994).

It is advisable to use a standard structure for writing a SRS (Ludewig & Lichter,
2013, p.393). There are various templates available which were developed and
have proved their worth in years of engineering work. A prominent example can
be found in (IEEE29148.2011 , 2011, chapter 8).

3.2 openETCS

We used the openETCS project as an example project to execute this new ap-
proach. This section provides an overview of openETCS. A more detailed de-
scription can be found in (Hase, 30.03.2012) and the full project proposal can be
found at (Hase, 04.07.2013).

openETCS is appendant to the European railway sector and is the successor of
the ETCS project. The goal of ETCS is to replace the national and proprietary
signaling systems in 30 countries. The project aims at the development of on-
board units that make trains which are equipped with ETCS capable to adopt
to each signaling system in Europe. Furthermore ETCS on-board units shall be
the standard equipment in future trains.

By harmonizing and unifying the different systems various benefits are expec-
ted: the reduction of national boundaries, increase of competition and in general
decreasing costs for the European railway systems of the future.

Yet, more than two decades after the start of ETCS, not a single on-board unit
is authorized for all European tracks, although more than 4000 km of track are
equipped with ETCS and a detailed technical specification is available to the
public (Hase, 30.03.2012). The project is afflicted with several difficulties: The
high complexity of a multi-national project in combination with lots of national
specialties, a imprecise specification and the manageability of highly complex,
proprietary software products, which also entail in high follow-up costs.

The openETCS project is designed to tackle these difficulties.

43

The key aspect of openETCS is the use of the open Proofs concept. This means
that not only the end product software, but every document and tool that is used
for specification, development, operation and maintenance need to be FLOSS
licensed, which aims at building an open source consortium and at having a
strong standardizing effect. The channeling of experts is expected to result in
higher quality and reliability, with decreasing costs at the same time.

The goal of our example project was to find out about the tool chain of open-
ETCS which is used at the requirement analysis phase of the project. We did
a requirement analysis of the RA phase of openETCS and used a qualitative
data analysis approach which is based on Grounded Theory, but substantially
modified. This approach is described in detail in chapter 2.4 Research Approach.

3.3 Grounded Theory

In this thesis we propose an adapted transformation of Grounded Theory. The
following chapter introduces the original Grounded Theory approach. The adap-
tion is discussed in chapter 2.4 Research Approach.

3.3.1 Qualitative Data Analysis

Qualitative research is a discipline from social studies which preoccupies with
the investigation and analysis of so-called qualitative data. It is focused on the
description, interpretation and understanding of behavior and interdependencies.

Qualitative data are non-numerically measurable data which often present them-
selves in continuous text or in audiovisual forms. As they are not processable with
common standardized techniques (like i.e. mathematical methods), the research
methods are mostly flexible and open.

Qualitative research is employed at fields of study where no structures or theories
are present that allow a deduction of hypotheses. It aims at finding general rules
and therefore derive explanations and an understanding for the field of research.

3.3.2 Grounded Theory

Grounded Theory is a ”qualitative research method that uses a systematic set
of procedures to develop an inductively derived grounded theory about a phe-
nomenon” (Strauss & Corbin, 1990, p.24), which is originally developed by
(Glaser & Strauss, 1967). It is one of the standard methods of methodically
controlled qualitative research.

44

Today, there are various schools of thought concerning Grounded Theory, which
developed out of the diverging understanding of the originators themselves. These
different approaches will not be discussed in this thesis since they are beyond its
scope. This thesis will follow the methodology proposed by (Strauss & Corbin,
1990).

Grounded Theory is an iterative process with continual elicitation of new data
which are coded and analyzed in parallel. This means, in every iteration data is
collected, coded and processed and this data serves also as an input for deciding
how to progress further on.

This particularly distinguishes Grounded Theory from other techniques, where
in a first step huge amount of data is collected and in a second step this data is
analyzed.

3.3.2.1 Coding

Coding is the key process in Grounded Theory (Bryant & Charmaz, 2007, p.265).
The task of data coding is to split the data up into units of meaning, ordering
them into categories and sub-categories and finally derive a theory about the re-
search topic by building a well-structured, hierarchical arrangement of categories.

The coding process consists of three coding steps: Open Coding, Axial Coding
and Selective Coding.

3.3.2.1.1 Open Coding Open Coding is the initial coding step during the
data analysis in Grounded Theory and is ”the process of breaking down, ex-
amining, comparing, conceptualizing and categorizing data” (Strauss & Corbin,
1990, p.61). The new data, like i.e. an interview transcript, is analyzed and
split up into units of meaning, thus statements, ideas, or phrases. Each unit is
labeled with a so-called code, which represents the content of the excerpt or an
annotation.

There are four components which build a theory when using the Grounded Theory
approach:

• codes represent the content of the associated phrase. They should be
selected logically and represent the data.

• concepts are collections of codes with a similar content. This allows the
data to be grouped.

• categories denote phenomena. They are collections of similar codes. They
serve as a first level of grouping the codes and deriving a theory.

45

• properties are attributes of a category.

3.3.2.1.2 Axial Coding The term axial coding labels the process of ordering
the data which were fractionated during the open coding step. By comparing the
similarities and differences between the concepts from the open coding step, they
are ordered into categories, which are more abstract.

To help the researcher with a systematic thinking about the data, (Strauss &
Corbin, 1990) provide the so-called coding paradigm, which focuses the relation-
ships between the concepts to the following aspects: causal conditions, phe-
nomenon, context, intervening conditions, action/interaction and consequences
(Halaweh, 2011, p.55).

3.3.2.1.3 Selective Coding Selective Coding is the final of the three coding
steps and applies the definition of core categories. The categories are rarefied
at a high level of abstraction and those categories that appear repeatedly are
candidates for core categories. In the end, the step of selective coding will lead
to the setting up of a theory.

Therefore selective coding resembles axial coding, yet it is done on a more abstract
level of analysis (Strauss & Corbin, 1990, p.117).

3.3.2.2 Memos

During the whole process of coding the researcher composes so-called memos. A
memo is directly associated with a code. Memos are short texts that the author
uses for recording ideas, arising questions etc. Therefore they support the coding
process and ultimately the deriving of the desired theory. An example for this
type of memo can be found in figure 2.3.

3.3.2.3 Theoretical Sampling

”Theoretical Sampling denotes the process of collecting data with the goal of
deriving a theory. During the process the researcher collects, codes and analyzes
data in parallel and decides, which pieces of information to elicit next and where
to find them. This process is controlled by the theory to be developed” (Glaser
& Strauss, 1998, p.53).

Hence, this technique aims at choosing new data sources in a way that enables
a broader and deeper understanding. The desired result is that only important
data is processed. Another result is that the volume of data to be analyzed is
reduced.

46

3.3.2.4 Constant Comparison

The fundamental principle of data analysis in Grounded Theory is the constant
comparative method. This means that after the researcher coded a particular
phenomenon, he will systematically search for more data which either contrast
or confirm the coded phenomenon.

Thereby, data become an indicator for a underlying concept which is denominated
through the coding. During the further process, codings will then be mapped into
concepts, out of which categories and ultimately core categories will be extracted
(Mey & Mruck, 2007, p.25).

3.3.2.5 Theoretical Sensitivity

This term describes the ability of the analyst to recognize what is important in
the hitherto data. Therefore it characterizes a personal quality of the researcher.

”Theoretical sensitivity refers to the attribute of having insight, the ability to
give meaning to data, the capacity to understand and capability to separate
the pertinent from that which isn’t. All this is done in conceptual rather than
concrete terms. It is theoretical sensitivity that allows one to develop a theory
that is grounded, conceptually dense and well-integrated - and to do this more
quickly than if this sensitivity were lacking.” (Harvard Business School, 2007,
p.41f.)

3.3.2.6 All is Data

One of the fundamental properties of Grounded Theory is that not only inter-
views or documents, but anything that is data can be used by the researcher at
studying a certain domain or phenomenon. Everything that helps the researcher
generate concepts for the emerging theory is a valid data source, including i.e.
meeting protocols, newspaper articles, films, television talk shows, law texts,
group meetings etc.

3.3.2.7 Theoretical Saturation

Theoretical saturation means that ”no additional data can be found which helps
the researcher to develop further properties of the category (Glaser & Strauss,
1998, p.69). When all categories are saturated, the elicitation of data is finished.

47

Grounded Theory

Figure 3.7: The derived Domain Model of the RE tool chain of openETCS

48

Bibliography

Ambler, S. W. (2008). Beyond functional requirements on agile projects.
Dr.Dobb’s Journal , 33 (10), 64–66.

Balzert, H. (2009). Lehrbuch der softwaretechnik: Basiskonzepte und require-
ments engineering (3. Aufl. ed., Vol. 1). Heidelberg: Spektrum Akademis-
cher Verlag.

Booch, G. (2006). Object oriented analysis & design with application. Pearson
Education India.

Braude, E. J. & Bernstein, M. E. (2011). Software engineering: Modern ap-
proaches (2nd ed. ed.). Hoboken, NJ: J. Wiley & Sons.

Bryant, A. & Charmaz, K. (2007). The sage handbook of grounded theory. Los
Angeles and London: SAGE.

Coleman, G. & O’Connor, R. (2007). Using grounded theory to understand
software process improvement: A study of irish software product companies.
Information and Software Technology , 49 (6), 654–667.

DIN. (2009-01). Projektmanagement - projektmanagementsysteme - teil 1:
Grundlagen (69901-1: ed.) (No. 69901). Berlin: Beuth.

Dumke, R. (2001). Software-engineering: Eine einführung für informatiker und
ingenieure: Systeme, erfahrungen, methoden, tools (3., überarb. Aufl. ed.).
Braunschweig and Wiesbaden: Vieweg.

ESI. (n.d.). Eight things your business analysts need to know: A prac-
tical approach to recognising and improving competencies.. Re-
trieved 08.05.2015, from http://www.esi-intl.com/resources/

knowledge-center/thought-leadership/business-analysis/

eight-things-your-business-analysts-need-to-know

Glaser, B. G. & Strauss, A. L. (1967). The discovery of grounded theory:
Strategies for qualitative research. Chicago: Aldine Pub. Co.

Glaser, B. G. & Strauss, A. L. (1998). Grounded theory. Strategien qualitativer
Forschung. Bern, 53–84.

Gotel, O. C. Z. & Finkelstein, A. C. W. (1994). An analysis of the requirements
traceability problem. In Requirements engineering, 1994., proceedings of
the first international conference on (pp. 94–101).

49

http://www.esi-intl.com/resources/knowledge-center/thought-leadership/business-analysis/eight-things-your-business-analysts-need-to-know
http://www.esi-intl.com/resources/knowledge-center/thought-leadership/business-analysis/eight-things-your-business-analysts-need-to-know
http://www.esi-intl.com/resources/knowledge-center/thought-leadership/business-analysis/eight-things-your-business-analysts-need-to-know

Bibliography

Halaweh, M. (2011). Using grounded theory as a supportive technique for system
requirements analysis. In Icons 2011, the sixth international conference on
systems (pp. 54–59).

Halaweh, M. (2012). A case study of using grounded theory-based tech-
nique for system requirements analysis. Journal of Information Sys-
tems and Technology Management , 9 (1), 23–38. doi: \url{10.4301/S1807
-17752012000100002}

Harvard Business School. (2007). Basics of qualitative research. Re-
trieved from http://isites.harvard.edu/fs/docs/icb.topic536759

.files/Strauss Corbin Chaps 3 and 4.pdf

Hase, K.-R. (04.07.2013). openetcs - full project proposal: Open proofs methodo-
logy for the european train control system. München.

Hase, K.-R. (30.03.2012). openetcs projektsteckbrief: openetcs soll europäische
zugsicherung interoperabel, sicher und bezahlbar machen.

Hickey, A. M. & Davis, A. M. (2003). Elicitation technique selection: how do
experts do it? In Requirements engineering conference, 2003. proceedings.
11th ieee international (pp. 169–178).

IEEE. (n.d.). Ieee 610.12-1990 (610.12-1990 ed.). IEEE Press. doi: \url{10.1109/
IEEESTD.1990.101064}

Ieee29148.2011 (First edition, 2011-12-01 ed.). (2011). Geneva and New York:
ISO and IEC and Institute of Electrical and Electronics Engineers.

Kaufmann, A. & Riehle, D. (2015). Improving traceability of requirements
through qualitative data analysis. In Software engineering.

Ludewig, J. & Lichter, H. (2013). Software engineering: Grundlagen, menschen,
prozesse, techniken (3., korrigierte Aufl. ed.). Heidelberg: Dpunkt.verlag.

Marciniak. (1994). Encyclopedia of software engineering.
Mey, G. & Mruck, K. (2007). Grounded theory methodologie—bemerkungen zu

einem prominenten forschungsstil. Historical Social Research/Historische
Sozialforschung. Supplement , 11–39.

Prime Minister’s Strategy Unit. (2004). Strategy survival guide. Cabinet Office,
Admiralty Arch, The Mall, London SW1A 2WH .

Rupp, C. & SOPHISTen, d. (2014). Requirements-engineering und -management:
Aus der praxis von klassisch bis agil (6., aktualisierte und erweiterte Auflage
ed.). München: Hanser, Carl.

Sommerville, I. (2011). Software engineering (9th ed ed.). Boston: Pearson.
Sommerville, I. (2012). Software engineering (9., aktualisierte Aufl ed.).

München: Pearson.
Strauss, A. & Corbin, J. M. (1990). Basics of qualitative research: Grounded

theory procedures and techniques. Sage Publications, Inc.
van Lamsweerde, A. (2009). Requirements engineering: From system goals to

uml models to software specifications. Chichester, England and Hoboken,
NJ: John Wiley.

50

http://isites.harvard.edu/fs/docs/icb.topic536759.files/Strauss_Corbin_Chaps_3_and_4.pdf
http://isites.harvard.edu/fs/docs/icb.topic536759.files/Strauss_Corbin_Chaps_3_and_4.pdf

	Introduction
	Original Thesis Goals
	Changes to Thesis Goals

	Research
	Introduction
	Related Work
	Application of QDA Methods to Requirements Engineering
	Domain Model Generation in Requirements Engineering

	Research Question
	Research Approach
	Outline of One Iteration
	Execution of Interview
	Selection of Interviewee
	Preparation of Interview
	Interview
	Transcription of the Audio Record

	Analysis of the Transcript
	Code System Revision

	Extraction of Domain Model and Glossary
	Information Representation in the Memos
	The MaxQDA File System and the Mapping of the Artifacts

	Used Data Sources
	Interviews
	Further Data Sources

	Research Results
	Views and Perspectives
	The Degree of Freedom in Coding
	Abstraction Levels
	Shortcomings of MaxQDA

	Results Discussion
	Conclusions

	Elaboration of Research
	Requirements Analysis: The State of the Art
	Placement of Requirements Analysis within the Requirements Engineering Process
	Involved People
	Stakeholders
	Project Environment

	Requirements and Types of Requirements
	Abstraction Levels
	Functional vs. Non-Functional Requirements
	Acceptance Criteria

	Requirement Elicitation and Analysis
	Requirements Discovery
	Interviewing Techniques
	Observance
	Further Elicitation Techniques
	When to Use which Technique

	Requirements Analysis, Classification and Organization
	Requirements Prioritization and Negotiation
	Requirements Specification
	Challenges and Difficulties of Requirements Elicitation

	Results and Products
	Description of the Project Environment
	Results of the Elicitation Phase
	The Software Requirements Document (SRS)

	openETCS
	Grounded Theory
	Qualitative Data Analysis
	Grounded Theory
	Coding
	Open Coding
	Axial Coding
	Selective Coding

	Memos
	Theoretical Sampling
	Constant Comparison
	Theoretical Sensitivity
	All is Data
	Theoretical Saturation

	Bibliography

